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The Gauge-Natural Bilinear Operators
Similar to the Dorfman—Courant Bracket
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Abstract. All gauge-natural bilinear operators A : I'y(TE @ T*E) x
I'y(TE®TE) — I'y(TE ® T*E) transforming pairs of linear sections
of the “doubled” tangent bundle TE @ T*FE of a vector bundle E into
linear sections of TE & T*FE are completely described. Then, all such A
with the Jacobi identity in Leibniz form are extracted.
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1. Introduction

All manifolds considered in the paper are assumed to be Hausdorff, second
countable, finite dimensional, without boundary, and smooth (of class C*).
Maps between manifolds are assumed to be C*°.

In [3,8], the authors completely described bilinear operators on sections
of TN ®T*N — N (for N a smooth manifold), which are M f,,-natural,
i.e., invariant under the morphisms in the category M f,, of m-dimensional
manifolds and their submersions. The principal result of [3] is precisely the full
classification of such operators which also, like the Courant bracket, satisfy
the Jacobi identity in Leibniz form. The Courant bracket, defined in [2], is of
particular interest, because it involves in the concept of Dirac structures and
in the concept of generalised complex structures on N, see [2,4,5].

This article classifies bilinear operators on the linear sections of the
double vector bundles (TE; E,TM; M) and (T*E; E,E*; M) (for E — M a
smooth vector bundle), which are gauge-natural, i.e., invariant under the mor-
phisms in the category VB, , of rank-n vector bundles over m-dimensional
bases and their vector bundle isomorphisms onto images. These double vector
bundles are of particular interest, because their direct sum (TE @& T*E; E,
TM @ E*; M) is the standard VB-Courant algebroid. The Dorfman—Courant
bracket is part of this structure and an example of a VB, ,-gauge natu-
ral operator I'y(TE & T*E) x 'y (TE @ T*E) — T (TE & T*E), where
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I'.(TE @ T*E) denotes the space of linear sections of TE @ T*E — E. The
Dorfman—Courant bracket is the restriction of the Courant bracket to linear
sections of TE@®T*E — E, see [6]. (It can be also interpreted as the bracket
of the Omni-Lie algebroid Der(E*) & J(E*), studied in [1].)

The principal result of the paper is precisely the full classification of
such operators which also, like the Dorfman—Courant bracket, satisfy the
Jacobi identity in Leibniz form. The article first establishes the general form
of VB, n-gauge natural bilinear operators A : T4 (TE @ T*E) x I'',(TE @
T*E) — I',(TE®T*E), while its later half is dedicated to establishing which
of these operators A satisfy the Jacobi identity in Leibniz form. Thus, the
main result of the paper is the following.

Theorem 1.1. Let m > 2 and n > 1. Any VB, ,,-gauge-natural bilinear op-
erator A : T(TE @ T*E) x T'(TE @ T*E) — T'(TE © T*E) is of the
form

AX'ow, X2 o w?) =a[X', X @ {01 Lx1w?
+boLx2w! + badix1w? + bydixaw® + bsLxrdipw? + bgLx2dipw'}

for arbitrary (uniquely determined by A) real numbers a,by,ba, b3, by, bs, b,
where [—, —] is the usual bracket on vector fields, L denotes the Lie derivative,
d denotes the exterior derivative, i denotes the insertion derivative and L
denotes the Fuler vector field.

Moreover, such A satisfies the Jacobi identity in Leibniz form (i.e.

AW, AW %) = A(A(WY, V), 03 + AW, At v?))

for any vt € T (TE®T*E) fori = 1,2,3 ) if and only if (a, b1, ba, b3, ba, bs, bs)
is from the following list of T-tuples:

(¢,0,0,0,0,¢,0),(c,0,0,0,0,c, —c),

(¢,¢,0,0,0,—c¢,0),(c,c,—c,0,0,—c,c),

(¢,0,0,0,0,0,0), (¢, ¢, 0,0,0,0,0),

(CCOOOO ¢), (e,¢,—¢,0,0,0,0),

( C,O,C )\707)\)7(0,0,07>\7M»—>\;—/i),

where ¢, \, p are arbztmry real numbers with ¢ # 0.

It seems that the case m = 1 and n > 1 is more complicated. It remains
open.

Most proofs in the paper hinge the application of the following multilin-
ear Peetre theorem in the same manner: This implies that any VB, ,,-gauge-
natural bilinear operator T, (TE®T*E) x 'y, (TE®T*E) — 'y (TE®T*E)
is of finite order.

Multilinear Peetre Theorem (Theorem 19.9 in [7]). Let Ly, ..., Ly be vector
bundles over the same base M, L — N be another vector bundle and let
m: N — M be continuous and locally non-constant. If D : C*°(L1) x ... x
C>®(Ly) — C*=(L) is a k-linear w-local operator, then for every compact
set K C N, there is a natural number r such that for every x € n(K) and
all sections s,q € C°(Ly1 @ ... @ Ly), the condition j"s(x) = j"q(x) implies
Ds|(m7Y(x) N K) = Dq|(m 1 (z) N K).
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From now on, let R™"™ be the trivial vector bundle over R™ with the
standard fibre R™ and let 2%, ...,2™, y',...,4” be the usual coordinates on
R,

2. The Gauge-Natural Bilinear Operators Similar to the
Dorfman—Courant Bracket

Let E = (E — M) be a vector bundle.

Applying the tangent and the cotangent functors to £ — M, we obtain
double vector bundles (TE; E,TM; M) and (T*E; E, E*; M).

A vector field X on FE is called linear if it is a vector bundle map
X :FE — TFE between E — M and TE — TM. Equivalently, a vector field
X on FE is linear iff it has expression

X = Za (zb, ..,z )axi + Z b?(a:l,...os )yja—yk7

k=1

in any local vector bundle trivialization on F. The Euler vector field L on
E is an example of a linear vector field on E. (We recall that the coordinate
expression of L is L = Y7 ¢/ %.)

A 1-form w on F is called linear if it is a vector bundlemapw : £ — T*E
between F — M and T*E — E*. Equivalently, a 1-form w on E is linear iff
it has expression

w:m na44x1 ]d:ch b;( ™ dy’
ZZ 1]( yeeny L Z ya

i=1 j=1

in any local vector bundle trivialization on F.
We need the following definition being respective modification of the
general one from the fundamental monograph [7].

Definition 2.1. A VB, ,-gauge-natural bilinear operator A : TY(T @ T*) x
T &T*) ~ THT®T*) is a VB, p-invariant family of R-bilinear operators

A:TY(TE®T*E) x TS (TE ® T*E) — T'5(TE © T*E)

for all VB, ,-objects E, where I',(TE @ T*E) is the vector space of linear
sections of TE@T*E (i.e. couples X Gw of linear vector fields X and linear 1-
forms w on E). The VB,, ,-invariance of A means that if (Xlow!, X20w?) €

I (TE&T*E)x Ty (TE®T*E) and (X @o', X @w?) e TL HTESTE) x
I (TE ® T*E)) are @-related by an VB, ,-map ¢ : E — FE (i.e. X'op=
TpoX? zind o o= T*pow' for i = 1,2), then so are A(X! dw!, X2 @ w?)
and A(X ow', X ow?).

Remark 2.2. Quite similarly, we can define VB, ,,-gauge-natural bilinear op-
erators I''(T) x TY(T) ~ TYT), TYT) x TY(T*) ~ T'Y(T), etc. For example,
a VB, n-gauge-natural bilinear operator A : T''(T) x TY{(T*) ~» TYT) is a
VB, p-invariant family of R-bilinear operators A : Ty (TE) x 'y (T*E) —
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I (TE) for all VB,, ,-objects E, where I'l,(TE) is the space of linear vector
fields on E and T'y;(T*E) is the space of linear 1-forms on E.

Ezample 2.3. The usual bracket [X,Y] of (linear) vector fields defines a
VB, n-gauge-natural bilinear operator [—, —| : T/(T) x TY(T) ~ TY(T).

Ezample 2.4. The Lie derivative Lxw of linear 1-forms w with respect to
linear vector fields X defines a VB, ,-gauge-natural bilinear operator L :
TYT) x THT*) ~ TYT™).

Example 2.5. Let w be a linear 1-form and X be a linear vector field on a
vector bundle F. Then, we have linear 1-form i xdw, and we have the corre-
sponding VB, ,-gauge-natural bilinear operator T'/(T') x T(T*) ~ TY(T*),
where d denotes the exterior derivative and 7 denotes the insertion derivative.

Ezample 2.6. The Dorfman—Courant bracket [[X!®w!, X2@w?]] := [X, X?]
@ (Lx1w? — ix2dwt) gives VB, ,-gauge-natural bilinear operator [[—, —]] :
T & T*) xTHT & T*) ~ TYT & T*).

Ezample 2.7. Let w be a linear 1-form and X be a linear vector field on a
vector bundle E and let L denotes the Euler vector field on E. Then, we have
linear 1-form Lxdirw, and we have the corresponding VB, ,-gauge-natural
bilinear operator T'(T) x T'(T*) ~ TY(T*).

Lemma 2.8. Any VB, ,-gauge-natural bilinear operator A (in question) is of
finite order. It means that there is a finite number r (depending on A) such
that

(Jzv1 = JaV1, Jove = JuVa) = A(vi,10)|8, = A(V1,72)|E,
for any VB, n-object E — M, any linear sections v and vy on I and any
x € M, where E,, is the fibre of E — M over x € M, and j,vi = jIU1 means

that jiv1 = jivy for any v € E, (or equivalently for any v from the basis of

Proof. The space I',(TE @ T*E) is a locally free C>°(M)-module. Hence,
there is a vector bundle £ over M such that I'(TE @& T*E) is isomorphic
to TE as C® (M)-module. So, we can treat A as bilinear local operator A :
IExTE — T'E. Then, the multi-linear Peetre theorem (cited in Introduction)
fork=2, M=N=R", n=id, K={0},Li=Ly=L=R™"and D= A
implies that there is a natural number r such that for every pairs (v1,v2)
and (71,72) of linear sections, the condition ji(v1,v2) = j§(71,72) implies
A(v1,v2) = A(D1,73) at 0. Then, using the invariance of A, we complete the
proof.

For the other operators mentioned in Remark 2.2, the proofs are similar.

O
A linear vector field X on R™"™ is monomial if it is of the form z¢ a‘}
or :co‘yj%7 where a = (al, ..., &™) is a m-tuple of non-negative integers and

m

i=1,..,m, j,k=1,..,n, Of course, 2® := (z1)* - ... (z™)*".
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Similarly, a linear 1-form w on R™™ is monomial if it is of the form
xdy’ or z%yIdx’.

A linear section X @w is called monomial if (X is monomial and w = 0)
or (X =0 and w is monomial).

Lemma 2.9. Let A be a VB, ,-gauge-natural bilinear operator (in question)
such that A(vi,ve) =0 over 0 € R™ for all monomial linear sections vy and
vy on R™"™. Then A = 0.

Proof. Because of the invariance of A with respect to local trivialization, it
suffices to show that A(v1,15) = 0 over 0 € R™ for any linear sections 14
and v on R™". Since A is of finite order r (because of Lemma 2.8), we may
assume that v, and vy are polynomial of degree not more than r. Then, since
A is bilinear, we may assume that v; and vo are monomial. ]
Lemma 2.10. Let A : TY(T) x TYT) ~ TYT) (or A : THT) x TYT) ~
TYT*)) be a VB, n-gauge-natural bilinear operator. Assume that m > 2 and
Az, (21)752) = 0 over 0 € R™ for all ¢ =0,1,... . Then A= 0.

Proof. Because of the invariance of A with respect to local trivialization, it
suffices to show that A(X,Y) = 0 over 0 € R™ for any linear vector fields
X and Y on R™". We can assume X is not vertical over 0. Then by the
Frobenius theorem and the invariance of A, we can assume X = 6%1. Next,
by the similar arguments as in the proof of Lemma 2.9, we may assume that
Y is monomial.

So, let 8 = (f1,02,...,Bm) € (NU{0})™ and j,k = 1,....,n and ¢ =
1,....m.

There exists a VB, ,-map ¥ : R™" — R"" preserving 2! and %

and sending the germ at 0 € R™ of % into the germ at 0 € R™ of 622 +
(22)Pz. . (zm)Bm yj%. Then, by the invariance of A with respect to 1, from

assumption A(z2r, (z1)%152;) = 0 over 0 € R™, we get A(52, (z1)%1 52 +
xﬁyjaiyk) =0 over 0 € R™. Then A(a%l,xﬂyj%) =0 over 0 € R™.

If i = 2,...,m, there exists a VB, ,-map ¢ : R™" — R™" preserving
2! and % and sending the germ at 0 € R™ of % into the germ at 0 € R™
of 3%2 +(z)B2 ... (a™)Pm 8(2:1" Then, similarly as above (using the invariance
with respect to @), we get A(z2r, 2% 52;) = 0 over 0 € R™.

Then, using the invariance of A with respect to (z! + 722,22, ...,2™, 4!,
s y™), we get A(%, (xt — T22)Pr(22)P2 . .. (mm)ﬁm(a%z + 7'8%1))(@) =0
for any 7 € R and any e in the fibre of R™"™ over 0 € R"™. Considering the
coefficient on 7, we get A(52r, 27 521 )(e) — B1A(F2r, (1)1~ (?)P2 1 (23) .

- (z™)Pm 59 (e) = 0. Then A(z2r, 2" 5%r) = 0 over 0 € R™.

The lemma is complete U
Lemma 2.11. Let m > 1 and n > 1. Let A : TYT) x TYT*) ~ TYT) be
a VB, n-gauge-natural bilinear operator. Assume that A(%,w) = 0 over
0 € R™ for all monomial linear 1-forms w on R™™. Then A = 0.

Proof. Tt suffices to show that A(X,w) = 0 over 0 € R™ for any linear vector
field X and any linear 1-form w on R"™". We can assume X = 6%1 and w is
monomial. O
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Lemma 2.12. Let m > 1 and n > 1. Let A : TY(T*) x TY{(T*) ~ TYT) (or
A THT*) x TYT*) ~ TYT™)) be a VB, n-gauge-natural bilinear operator.
Assume that A(w!,w?) = 0 over 0 € R™ for all monomial linear 1-forms
wh,w? on R™™. Then A =0.

Proof. 1t is the particular case of Lemma 2.9. O

Lemma 2.13. Let A : TYT) x TY(T*) ~ TYT*) be a VB, ,-gauge-natural
bilinear operator. Assume that m > 2 and

A (8‘;, (:r,l)kdyl) (e1) =0 and A (8‘;, (xl)kyldxl> (e1) =0

for all k =0,1,... , where e; = (1,0,...,0) € R"™ is the element in the fibre
over 0 € R™ of R™". Then A =0.

Proof. Tt suffices to show that A(52%r,w) = 0 over 0 € R™ for any monomial
linear 1-form w on R™™.

(I) At first, we prove that A(z2r,2%dy’) = 0 over 0 € R™ for all m-
tuples 8 = (b1, ..., Bm) of non-negative integers and all j =1,...,n.

Consider a m-tuple 8 = (f1, ..., Bm) of non-negative integers. Let j =
1,..,n and e = (&, ...,&,) be a point from the fibre over 0 € R™ of R™".
We may assume &; # 0. Let k = |3|. Using the invariance of A with respect
to VB, n-maps

1 2 m .2 m , 1 n\—
(ma” +mx + .o+ mpa™, 2%, 2™y, e y")

for my # 0,72, ..., i (sending % into i% and preserving e;), from the

T1
assumption of the lemma, we get

1

0
A (83@1’ (ria! + max? 4 .. + mem)kdy1> (e1) = 0.

Then, considering the coefficients on (71)%" - ... (7,, )% of these polynomials
in 7i,..., T, we get A(%,mﬁdyl)(el) = 0. Since §; # 0, there is a linear
isomorphism ¢ : R® — R™ sending y' into gijyj and e; into e. Then, using

the invariance of A with respect to (x!,...,2™, ¢(y',..,y")), we get

1 0 -
eA (Garrar ) @ =0,
J

ie. A(%,xﬁdyj)(e) =0.
(II) Now, we prove A(z2,z7y7dz’) = 0 over 0 € R™ for all m-tuples
8= (B1,..., Bm) of non-negative integers and j =1,...,n and i = 1,...,m.
Let 8 = (b1, ..., Bm) be an m-tuple of non-negative integers, j = 1, ..., n,
i=1,...,m and e be from the fibre over 0 € R™ of R"™"™. If Bo+ ...+ B, > 1,
using the invariance of A with respect to VB,, ,-map

(', 27, 2™yt 4+ (@)L (@) Pyt Ry T

(preserving % and ep), from the assumption A(a%l, (zh)Prytdat)(er) = 0
we get

ozt’

A(8 uﬂmw%uﬁﬁwmwf%%wmf)@nzo
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Consequently, A(a 20 aPytdat)(ey) = 0 (for Bo + ...+ B = 0, too). So, if i =

2,...,m, then, by the invariance of A with respect to (z! + 7%, 2%, ..., 2™, y*,
y2...,y") ! (preserving % and e;), we get
A <883;1’ (ml + Txi)ﬁl (x2)52 B (xm)ﬁ"‘yld(x1 + T.’ﬂi)> (e1) =0.
Then, considering the coefficient on 7, we get
1B+ A ((aal,xﬁ L ) (e1)=0,
where B := A(B:nl’( e (@2)P2 . ()BT (™) Py tdat) (eg). If

B1 # 0, B = 0 (it is proved above). If 5, = 0, the term 1B does not
occur. Consequently, A(z2r,2%y'dz?)(e1) = 0 (for i = 1, too). Then (us-
ing similar arguments to the one of the end of the part (I) of the proof)
A(awl,xﬁyjdx )(e) = 0. O

Lemma 2.14. The collection of VB, »-gauge-natural operators A* : TH(T) x
DHT™) ~ TYT™) fori=1,2,3 given by A*(X,w) = Lxw, A%(X,w) = ixdw
and A*(X,w) = Lxdirw is R-linearly independent.

Proof. We know that L = Z;-L:l yj% end e = (1,0...,0) € R" is the
element over the fibre over 0 € R™ of R" ™. Then, it is easy to compute that
Al(a(zl 7y1d'751)(61) =0, A2(%’y1dxl)(el) = _d61yl AS(azl 7y1d-73 )( ) =
0, A(gar,a'dy')(er) = de,y', A% (gor,aldy")(er) = de,y", A% (Ghr, 2" dy")
(61) = delyl Al(azH( 1)2dy1)(61> =0, AQ(azH( ) dy )( ) =0, Ag(ail,
(x1)2dy')(e1) = 2d., x'. Now, the lemma is clear. O

Proposition 2.15. Let m > 2 and n > 1. Any VB,, ,,-gauge-natural bilinear
operator A : THT) x TYT) ~ TYT) is the constant multiple of the usual
bracket [—, —] on (linear) vector fields.

Proof. Let k be a non-negative integer. We can write

9 IR < W N
A(@xl’(x) 5372) Zf axl +,Z:g 8yl‘€

for any e = (e',...,e") from the fibre R™ at 0 € R™ of R™", where f[¥]

k.1

and g;" are the real numbers (independent of e).

Using the invariance of A with respect to (z!,t2? 23, ..., 2™ y!,...,y™)
for t > 0, we get the conditions ¢t ¥4 = flF4 for i = 1,3, ...,m (ie. for i # 2)
and tg[]C l] gj[-k’l] for j,1 = 1,....,n. Then f*4 =0 for i = 1,3,...,m and

][-k U= 0 for jil=1..n

Similarly, by the invariance of A with respect to (%xl, 22, yt
y"), we get th=1flk2 = g2 i fIR2 =0 if k #£ 1.

Then by Lemma 2.10, A is determined by the value f12 € R. Conse-
quently, the vector space of all such A is of dimension not more than 1. Then,
the dimension argument completes the proof of the proposition. O
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Proposition 2.16. Let m > 1 and n > 1. Any VB, n-gauge-natural bilinear
operator A : TYT) x TY(T*) ~ TYT) is zero.

Proof. Let a = (a?,...,a™) € (NU{0})™ be an m-tuple of non-negative
integers and let i, € {1,...,m} and j, € {1,...,n}.
We can write

0 ; ) = 0
i=1 =1 €

for any e = (e!,...,e") from the fibre R™ at 0 € R™ of R™", where f* and
gé- are the real numbers (depending on «, i, and j, and independent of e).
Using the invariance of A with respect to (z1,...,2™, 1y1,. - %y") for

t >0, we get
= 10
Z fl deje Z 9 Zfzaxz Zgﬁ'ejga*
jil=1

Then A(52, 2%y/dz'>) = 0 over 0 € R™ for i, = 1,...,m, jo = 1,...,n,
a € (NU{0})™. By the same argument (replacing x®y7edz' by z*dy’°), we
derive A(%,xadyjo) =0over 0 € R™ for j,=1,..,nand a € (NU{0})™
Consequently, A(%,w) =0 over 0 € R™ for any linear 1-form w on R™".
Now, applying Lemma 2.11, we complete the proof. O

l
lte

Proposition 2.17. Let m > 1 and n > 1. Any VB, n-gauge-natural bilinear
operator A : TY(T*) x TYT*) ~ TY(T) is zero.

Proof. We proceed quite similar as for Proposition 2.16. Let w! = Ay da™
or w' = 2Pdy’t and let w? = x%ylodr’> or w? = z*dy’>. We can write

- 0 - 0
Alwr. w2 _ i ‘ g =
Whwi)(e) ;f dai e lz; %0y,
1= 7,l=1
for any e = (e, ..., e") from the fibre R at 0 € R™ of R™", where f* and gé»

are the real numbers (depending on w! and w? and independent of ¢). Using
the invariance of A with respect to (z?, ..., 2™, %yl, ey 3y™) for ¢t > 0, we get

n

m ia 7’
;t2f %H jZ 2 —ejay e Z-f alel Z tay L,

=1 i=1 3=

o

Then A(w!',w?) =0 over 0. R™". Then A = 0 because of Lemma 2.12.  [J.

Proposition 2.18. Let m > 2 and n > 1. Any VB, ,,-gauge-natural bilinear
operator A : TYT) x THT) ~ THT*) is zero.

Proof. Let k be a non-negative integer. We can write

(o) -5 v - S5 s

i=1 [=1



MJOM The Gauge-Natural Bilinear Operators Page 9 of 25 40

for any e = (e!,...,e") from the fibre R™ at 0 € R™ of R™", where f][k] and

gl[f] are the real numbers (independent of e). By the invariance of A with

respect to (zb, ta?, ..., a™ yl, ..., y") for t > 0, we get

Xn:tfj[k}deyj+§:zn:tgl eld.at *Zf dyj+zztélzglledx

j=1 i=1 1=1 i=1 I=1
(the Kronecker delta). Then A(z2, (a:l)k@) = 0 over 0 for k = 0,1,....
Then A = 0 because of Lemma 2.10. O

Proposition 2.19. Let m > 1 and n > 1. Any VB, ,,-gauge-natural bilinear
operator A : TY(T*) x TYT*) ~» TY(T*) is the zero one.

Proof. Let w!' = 2Pyirda™ or w! = 2Pdy’t and let w = z%yodr’ or w =

x*dy’e. We can write

A ij ey’ +Zzglledx

i=1 [=1

for any e = (e',...,e™) from the fibre R™ at 0 € R™ of R"™", where f; and
gi1 are the real numbers (independent of e). Using the invariance of A with

respect to (2!, ..., 2™, 1y1,. . %y") we get
Zt f]dl y? —&-ZZtQQzl*e d1 T —th_]dley —&—ZZglge dl x
=1 (=1 =1 (=1
Then A(w!,w?) =0 over 0. Then A = 0 because of Lemma 2.12. O

Proposition 2.20. Let m > 2 and n > 1. Any VB, ,,-gauge-natural bilinear
operator A : TYT) x TH(T*) ~ TU(T*) is of the form

A(X, w) =c1Lxw+ coixdw + csLxdipw
for the (uniquely determined by A) real numbers ¢y, ¢, c3.

Proof. Let k be a non-negative integer and e; = (1,0,...,0) € R™. We can

write
m

7 - ORI k i
Ao @ ) (e =30 1 + Y o s
j=1 i=1
where f;k) and ggk) are the real numbers. Using the invariance of A with
respect to (txl, .. ta™ yt, . y"), we get tk’lf(k) = f}k) and tk’lg(k) =
gl(k)t. Then f;k) =0forj=1,...,nif k# 1, and if k£ # 2 then g(k) =0 for
i=1,...,m. Hence,

9 kg1 .
. <8ml’ ()" dy > (1) =0if k= 0,3,4,5,...,

n 1) m 2
Alggr 'ty (er) = X7, FVde,y? and Az, (21)2dy")(er) = Y7, g
d.,z'. Now, using the invariance of A with respect to (x!,tz?, ..., tz™, y!, ty?, ...

y™) for t > 0, we deduce that
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9 (1) 0 (2)
A (iaxl,xldyl> (61) = fl delyl and A (83;17 (1’1)2dy1> (61) = gl dell'l.

Similarly, we can write
9 Nk, 1.1 - (k) L\ = (k) i
A(axl’(l’ )iy dz ) (e1) :;fj de,y’ +;gi de, 2",
where f;k) and gf’“’
get

4 ((ffcl’yldx1> (e1) = f{”de,y" and A <ail,x1y1dm1) (e1) = gV d,, 2!

and A(32r, (z)Fytdzt)(er) = 0if k = 2,3,4,5, ...
We prove that

are the real numbers. Then quite similarly as above, we

20 o =29+ ).
We know (see, above) that

A (8‘91 Ld(zt )) (e1)=A (aal,xldyl> (e1)+ A (ail,yldxl> (e1)
= (A + FD)dey".

Consequently, by the invariance of A with respect to (z!, ... ,y Lyrg! y TR
...,y™) preserving e; and sending 8.%1 into 8% + 1+TT1y 8y1 and y! into

yt — oty + 72 (2h)?yt — ..., we get

9 9 21,1 0 vz e, 1 O
<81+Ty8 Txyayl—i—...—i—( DT (2 yayl,

d(z'(y" — ety + .+ (1) (@) 2y )) ()
1 0
= (1" + ") ey = 7dey )
where r = max(2,7) and 7 is the finite order of A. Considering the coefficients
on 7, we get

AP ) o) = 4 (1 podtaty!)) ) = (1 + )

%llt Algzr. d((@")?yM))(er) = 2A(50r, 2y dat)(er) + A(52r, (x1)dy")(er).

a (2 0 1), 70
25 ey’ + g1 des! = AW 5 5o d(@y ) en) + (17 + A (e
Further, we have observed above that A(z%,dy")(e1) = 0. Then, using the
invariance of A with respect to (z!,...,2™,yt + 7xlyl,y%, ..., y"), we deduce
that

(_1)r+17_r+2(x1)r+1 1i

0 0 0
A Zplyt — 4+ .
(81+Ty8 Ta:yayl—i— + yayl’

diy' — ralyt + .+ (D)2 () 2y ) (e) = 0 .
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Then, considering the coefficients on 7, we get

A (v gt ) (o) = A (odla's)) o) = (0 + 7

Then, using the invariance of A with respect to (z!, ..., 2™,y +7zlyt, 4%, ..., y")
preserving ylaiy1 (as it is the Euler vector field in VB 1 and then it is VB ;-
invariant), we deduce that

4 <ylaal,d(y1 Tty et (1>’“+27T+2(“71)T+2y1)> )
= (A" + A7) (dery! = 7de, ).

So, considering the coefficients on 7, we get
0
(st e

That is why, 2g(1) + 91 (f1 + le(o)) .
So, by Lemma 2.13, A is determined by the real numbers fl(l), giz) and

fl(o). Then the dimension of vector space of all A in question is not more than
3. So, the dimension argument (Lemma 2.14) completes the proposition. [

Now, we are in position to obtain the following theorem corresponding
to the first part of Theorem 1.1.

Theorem 2.21. Let m > 2 and n > 1. Any VB, »-gauge-natural bilinear

operator A : THT @ T*) x T{T @ T*) ~ TYT @ T*) is of the form
AX'ow, X2 @ w?) =a[X, X2 @ {h Lx10?
+boLx2w! + badix1w? + bydixaw® + bsLxrdipw? + bgLx2dipw'}
(1)
for arbitrary (uniquely determined by A) real numbers a, by, by, bs, by, by, bg.
Proof. Let A :THT @ T*) x T{T & T*) ~ TYT @ T*) be a VB,, ,-gauge-

natural bilinear operator. Let X! @ w!, X2 @ w? € T,(TE @ T*E). We can
write

AX' 20", X2 =AX' @', X2 0 uw?) @ AX @ w!, X? @ w?),
where A(X'@®w!, X2@w?) € T (TE) and A(X'®w!, X2@w?) € T (T*E).
Next,

A(Xl @CUl,Xz EB(U2) A(l)(Xl X2) 4 A(Q) ,w 2
+A® (W' X?) + AV (W, 0?),
where AD(X1 X2) = AX'®0,X230) , A®(X" w?) = AX' 30,00
w?), ete. , and similarly for A instead of A. Hence, A defines (is determined
by) eight VB,, n-gauge-natural bilinear operators A : TYT) x THT) ~
LUT), A® : THT) x THT*) ~ TYT), ... , AW : TYT*) x TYT*) ~ THT™).
Further, the VB,, ,-gauge-natural blhnear operators B : T/(T*) x TYT) ~
TY(T) are in bijection with the VB3,, ,-gauge-natural bilinear operators B :
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TYT) x TYT*) ~ TYT) by B°?(X,w) = B(w,X), etc. So, our theorem
is a immediate consequence of Propositions 2.15-2.20 and the expression
Lx =ixd+dix. O

We end this section by the following two lemmas.

Lemma 2.22. For any linear vector field X and any linear 1-form w on a
vector bundle E (with the basis of dimension > 2), we have

diLEXw = EXdiLw = diLﬂxdiLu), (2)
where L is the Euler vector field on E.

Proof. We have three VB,, ,-gauge-natural bilinear operators A', A%, A3 :
TUT) x THT*) ~ TY(T*) given by

AI(X,W) = diLEXw 5 A2(X,w) = EXdiLw 5 AS(X,LU) = diLﬁxdiLw.

It remains to show that A! = A% = A3,
By Lemma 2.13, it is sufficient to verify that

0 () = (. ) = ()
:k,( )k 1dy —l—k’ ) )k21d$
9
Bz

and A} (2, () rytdat) = A2(r, (o) byt dat) = AP(52, (o) oytda) = 0.
Il

Lemma 2.23. For any linear vector field X and any linear 1-form w on a
vector bundle E (with the basis of dimension > 2), we have

diLdixw = din. (3)

Proof. We have two VB, ,-gauge-natural bilinear operators A*, A% : T'(T') x
DHT*) ~ TYT*) given by AY(X,w) = dirdixw , A*(X,w) = dixw . It
remains to show that Al = A2,

By Lemma 2.13, it is sufficient to see that A'(52r, (z1)kdy') = A2(
(z1)*dyl) = 0; and Al(dxl,(:c Veytdzt) = Az(dxl,(:zzl) Ydzt) = k(xt)F- .,
da! + (z')*dyt. O

3. The Complete Description of All VB, ,-Gauge-Natural
Operators A : TY(T @ T*) x TY(T & T*) ~ YT & T*)
Satisfying the Jacobi Identity in Leibniz Form

Let A:T{T @ T*) x TYT & T*) ~ T''(T & T*) be a VB,, ,-gauge-natural
bilinear operator in the sense of Definition 2.1.

Definition 3.1. We say that A satisfies the Jacobi identity in Leibniz form if
AW, AW V?) = A(AWY, V), 0% + AW, AVt v?)) (4)

for any linear sections v’ = X' ®w’ € I, (TE ® T*E) for i = 1,2,3 and any
VB, n-object E.



MJOM The Gauge-Natural Bilinear Operators Page 13 of 25 40

By Theorem 2.21, A is of the form (1) for (uniquely determined by A)
real numbers a, by, ba, ..., bg. We are going to obtain some conditions on the

numbers a, by, b, b3, by, b5, bg equivalent to the Jacobi identity in Leibniz form
of A.

Lemma 3.2. For any linear vector fields X', X2, X3 on R™" and any linear

1-forms w', w?, w3 on R™™, we can write

AX'eowh  AX? 0w, XPow?) =X X2 X3 e Q,

AAX' oW, X2 0 w?), X3 o uw?) = a?[[X1, X7, X% @ 6,

AXP o AX e, XPow’) =X XL X 0T,
where

Q = b1 Lx1{b1 Lx2w® 4+ ba Lxsw? + badix2w® + bydixsw?

+ b5 Lyadirw® + beLxadipw?} + baLypx, xo)w" + badixi {b1 L x2w®
+ boLxsw? + badix2w? 4 bydixsw? + bsLx2dipw® + bgLxsdipw?®}
+ badigx2, xapw" + bsLxrdip {b1 Lx20®
+ baLxsw? + bydix2w® + bydi xsw?
+ bsLxadipw® + be Lxadipw?} + beLofx2, xodiLw’,

© =b1Lyx1 x2)w” + baLxa{b1Lx1w® + by Lx2w" + badix1w®
+ bydixew! + bsLx1diw? + bgLxadipw'} + badiapxt x2w®
+ bydixs {b1 Lx1w? + baLx2w' + badix1w? + baydix2w' + bsLx1dipw?
+ beLx2dirw'} + bs Lopx1, x21dipw® + beLxsdip {b1 Lx10w* + by L x2w’
+ badix1w? + bydix2w + bsLx1dipw? + bgLxadipw'} |

T =b1 Lx2{b1 Lx10> + boLxsw® + badix1w® + badi xsw®
+ bsLyrdipw® 4+ beLyadipw'} + baLoxr xa)w? + badix2{b1Lx10°
+ boLxsw! 4 badix1w® + bydixsw' + bsLxrdipw?® + bgLysdipw'}
+ badiqxr x2)w? + bsLyx2dip {b Lx1w?
+ boLxswt + badix1w® + badixsdw!
+ bsLyrdipw® + beLxadipw'} + beLopx1 xa)dipw?.

The Jacobi identity in Leibniz form of A is equivalent to
Q=0+T7. (5)
Proof. The lemma is obvious. O

Lemma 3.3. The Jacobi identity in Leibniz form of A is equivalent to the

system of equalities (6), (7) and (8) for all linear vector fields X', X2, X3

and all linear 1-forms w',w?,w® on R™™, where
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blﬁxl{blﬁxzws + bgdiX2w3 + b5ﬁx2diLw3}
+bsdix1{b1 Lx2w® + badix2w> + bsLx2dipw’}
+bsLx1dip {b1Lx2w? + badixaw® + bsLx2dipw®}
= blﬁa[xl’Xz}w?’ + bgdia[X17X2]w3 + bsca[Xl,XQ]diLw?)
b1 Lx2 {01 Lx1w> + badix1w® 4+ bs Lxrdipw®}
+bsdix2{b1 Lx1w® + badix1w® + bsLx1dipw?}
+b5Lx2dir {1 Lx1w* + bydix1w® + bsLx1dipw?}, (6)

bi1Lx1{boL xsw? + bydixsw? + bgLxsdipw?}
+badix1{boLxsw? + badixsw? + bgLxsdipw?}
+b5L x1 diL{bQEX3w2 + b4diX3w2 + b6£X3diLw2}
= boLxs{b1 Lx1w® + b3dix1w? + bsLx1dipw?}
—|—b4diX3{b1£X1w2 + bgdiX1w2 + b5 L x1 diLw2}
+beLxsdip {b1Lx1w? + badix1w? + bsLyrdipw?}
+b2£a[X1,X3]W2 + b4dia[X1,Xs]w2 + b6£a[X1,X3]diLw2; (7)
b2£a[X2,X3]W1 + b4dia[X2,X3]w1 + b6£a[X2,X3]diLW1
= boLxs{baLx2w" + bydix2w' + bgLx2dirw'}
+bydixs {baLx2wt + bydix2w! + bgLx2dipw'}
oo Lxsdip {b2Lx2w! + badixaw' + bgLxadipw'}
+b1Lx2{boLxsw! 4+ bydixsw® + bgLysdipw'}
+badix2{boLxsw! + badixsw' + bgLxsdipw'}
+bsLx2dip {baLxsw' + bydixsw' + bgLxsdipw'}. (8)
Proof. If we put w! = w? = 0 (in 5), we get (6). Similarly, if we put w! =

w? =0, we get (7). Similarly, if we put w? = w? = 0, we get (8). Conversely,
adding the above equalities (6)—(8), we get (5). The lemma is complete. O

Proposition 3.4. The Jacobi identity in Leibniz form of A is equivalent to the
system consisting of conditions (9) and (10)—(12) for all linear vector fields

X1, X2, X3 and all linear 1-forms w!,w?, w3 on R™™, where

(b2,b1) = (0,0) or (ba,b1) = (0,a) or (be,b1) = (—a,a), 9)

by Lx1{b3dix>w® + bsLx>dipw®}
+bsdix1{b1 Lx2w® + badix2w> + bsLx>dipw®}
+bsLx1dip {b1 Lx2w® + badix2w3bs L x2dipw®}

= bgdia[xl,xﬂwg + bSEa[Xl,X2]diLw3

+b1Lx2{bsdix1w® + bsLx1dipw®}
+bsdix2 {by Lx1w® + badix1w® + bsLx1dipw®}
+bsLx2dip {b1 Lx1w® + badix1w® + bsLx1dipw®}, (10)
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b1 Lx1 {b4diX3w2 + bgL x3 diLw2}
+badix1{baLxsw? + bydixsw? + bgLxsdipw?}
+b5£X1diL{b2£,X3w2 + b4dixsw2 + bgﬁxading}
= byLys{b3dix1w? + bsLx1dipw?}
Fbydixs {by Lx1w? + badix1w? + bsLx1dipw?}
+beLxsdip {b1Lx1w? + badix1w® + bsLx1dipw?®}
+b4dia[X1)X3]w2 + bGLa[Xl)XS]disz, (11)
b4dia[X2’Xa]w1 + beﬁa[xgxﬂd’tjwl
= byL s {badix2w"' + bgLx2dipw'}
+bydixs {baLx2wt + badix2w' + bgLx>dipw'}
—|—b6/:,X3diL{b2£X2w1 + b4dixzw1 + b6£X2diLw1}
+b1 Lx2 {badixsw" + bgLxsdirw'}
+b3dixz{b2£)(sw1 + b4diX3w1 + b6£X3diLw1}
+bsLx2dip {baLxsw! + badixsw' + beLxsdipw'}. (12)

Proof. Applying the differential d to both sides of the equalities (6)—(8) and
applying the formulas d?> = 0 and dLx = Lxd, we immediately obtain

Vi Lx1 Lxadw® = bialix: x2)dw® + b1 L2 Ly dw® (13)

for all linear X', X2, w?, and
bibaLx1 Lxsdw?® = baby Lxs Lx1dw® + baalx1, xs)dw® (14)

for all linear X', X3, w?, and
boalixe xajdw' = b3LxsLx2dw' + biboLya Lxadw' (15)

for all linear X2, X3, w!.

Then by the formula E[Xy] =LxLy — LyLx, we get
(b7 — bra)Lix1 x2dw® =0 (16)
for all linear X', X2, w?, and
(b1ba — baa) Lix1 x31dw® = 0 (17)
for all linear X', X3,w?, and
(b1ba — baa)Lix2 xsjdw’ + (b3 + boby) Lxs L2dw' =0 (18)

for all linear X2, X3, w!.
Considering linear X', X* w?® such that Lix1 x2jdw® # 0 (for example

X' =32 and X2 = 21 ;% and w® = (2!)%dy'), from (16) we get

b? —bia = 0. (19)
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Similarly, considering linear X', X3 w? with Lx1 ysjdw? # 0 (for example,

X' =32 and X? = 21 ;% and w? = (2!)%dy?), from (17) we get
b1b2 - b2a =0. (20)

Similarly, considering linear X2, X3 w! with LyxsLx2dw' # 0 (for example,
X3 =32 and X? = 2 ;% and w! = (2!)%dy'), from (18) and (20) we get

b3 + baby = 0. (21)

Consequently, we obtain (9).
Conversely, if b1, by and a satisfy (9), then using the formula £Lx Ly w —
LyLxw = Lix yjw, we get

biLx1Ly2w® = bialix: x2jw® + biLx2Lx1w° (22)

for all linear X', X2, w?, and
biboLx1 Lysw® = babi Lxs Lx1w® + baalix: xa)w? (23)

for all linear X', X3, w?, and
boalixe xsw' = b3Lxs Lx2w’ + bibaLx2 Lysw' (24)

for all linear X2, X3, w!.
Now, we can easily see that the proposition is a simple consequence of
Lemma 3.3. g

We prove the following theorem corresponding to the second part of
Theorem 1.1.

Theorem 3.5. Let m > 2 and n > 1 be natural numbers. Any VB, ,-gauge-
natural bilinear operator A : TH{T@T*)xTY (T @T*) ~ (T ®T*) of the form
(1) satisfies the Jacobi identity in Leibniz form if and only if (a, by, ba, bs, by, b5,
bg) is from the following list of T-tuples:

(¢,0,0,0,0,¢,0) , (¢,0,0,0,0,¢,—c),

(¢,¢,0,0,0,—¢,0) , (¢,c,—¢,0,0,—c,c),
(COOO0,0,0),(CCOOOOO) (25)
(C a vOa C) ( &) 670707030)7

(Ca &) C? y € — )‘70 )‘) (0703();)‘7#7_)‘;_/1))

where ¢, \, p are arbitrary real numbers with ¢ # 0.

Proof. At first we prove the part “ = 7 of the theorem.

Let A: TH{T@T*)xTHT®T*) ~ TYTST*) be a VB,, ,-gauge-natural
bilinear operator of the form (1). Assume that A satisfies the Jacobi identity
in Leibniz form.
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If we put linear vector fields X! = 52 and X2 = ;2 and linear 1-form

w? = 2?ytdaz! into (10), we get
b1b30 + b1b50 + b3bydy® + b30 + b3bs0 + bsb10 + bsbs0 + b20
= b3a0 + b5a0 + bybsdy* + b1bs0 + b3b, 0
+b2dy* + b3bs0 + bsbi0 + bsbsdy® + b20.
Then bsbzdy* + b3dy' = 0. Then
b3 =0 or by + bs = 0. (26)

If we put linear vector fields X! = % and X? = :I:la%l and linear
1-form w? = y'dz! into (10), we get

bibsdy' 4 b1bs0 + bsbidy" + bidy" + b3bs0 + bsbi0 + bsbzdy® + b20

= bsady® + bsa0 + b1b30 + b1bs0 + b3b, 0
+b30 + b3bs0 + bsb10 + bsbs0 + b20.

Then bybz + bgby + b3 + bsbs = bsa, i.e. b3(2by + bz + bs — a) = 0. Then

2b1+b3+b5—a:00rb3:0. (27)
If we put linear vector fields X' = 2 and X? = z'52; and linear

1-form w?® = ztdy! into (10), we get
b1b30 + bybsdy' + b3bi0 + b30 + babsdy® + bsbidy"' + bsbs0 + b2dy"
= bga0 + bsady® 4 b1b30 + bybs0 + b3b0
+b20 + b3bs0 + bsb10 + bsb30 + b20.
Then, bybs + bsbs + bsby + b2 = bsa, i.e. b5(2by + bs + bs — a) = 0. Then,
bs =0 or 2by +b3 +bs —a=0. (28)

If we put linear vector fields X? = % and X3 = 2! 821 and linear
1-form w' = yldz! into (12), we get
baady® + bga0 = baby0 + babg0 + bybo0 + b0 + bybg0 + bsba0 + bgbs0
+ D20 4 bybady® + b1b0 4 bsbody® + b3bady" + bsbg0
+ bsby0 + bsbady' + bsbg0.
Then bya = bibs + b3bs + bzby + bsby. Then

b4(a — b — b5) = b3(b2 =+ b4) (29)
If we put linear vector fields X? = % and X3 = 2! agl and linear

I-form w! = 2'dy" into (12), we get
byal + bgady" = bybs0 + babg0 + bybo0 + b30 + bybg0 + beba0 + bebs0
+030 + b1b40 + bybedy" + b3ba0 + b3bs0 + bzbgdy’
+bsbady® + bs5bs0 + bsbgdy’.
Then bga = bybg + bsbg + bsbs + bsbg. Then
be(a — by — bs) = bs(by + bg). (30)
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If we put linear vector fields X2 = 52+ and X® = 52; and linear 1-form

w! = 2%ytda! into (12), we get
b4a0 + bgal = bobydy® + babg0 + bybo0 + b3dy" + bybg0 + bgba0 + bebady®
+b20 + b1b40 + b1bg0 + b3bady® + b3bs0 + bzbs0 + bsbe0

+ b5b40 + bsbs0.
Then 0 = byby + b2 + bgby + bgby. Then
by(by + bg) = —ba(bs + bs3). (31)
If we put linear vector fields X? = xlﬁ and X3 = agl and linear

1

1-form w! = 2'dy" into (12), we get

bya0 + bga(—dy*) = babs0 + bobgdy® + bybo0 + b20 4 bybedy’
+ bebady" + bgbs0
+bady* + bybs0 + bybg0 + bzba0 + bzbs0 + b3bg0
+ b5020 4 b5b40 + b5b60.
Then —bga = babg + bybg + bgba + bZ. Then bg(2by + by + bg + a) = 0, i.e.
bg =0 or 2by +bs +bg +a =0. (32)

It remains to consider two cases consisting of several subcases and sub-
subcases.

Case L. a # 0.

If b3 # 0, then by (26) bs + bs = 0, and then by (27), 2b; = a. So, using
(9), we get a = 0. Contradiction. So, in our case

bs = 0. (33)

We consider two subcases.

Subcase I.1. b5 # 0.

By (9), we have three sub-subcases.

Sub-subcase I.1.1. (b1, b2) = (0, 0).

Since by = 0 and b3 = 0 and bs # 0, then by (28) we have b; = a.

Since by = 0, then by (31), by(bs + bg) =0, i.e. by = 0 or by + bg = 0.

If by = 0, then (since ba = 0) by (32), bg = 0 or bg = —a.

If by + bg = 0, then (since b2 = 0) by (32), bg = 0 (as a # 0), and then
by = —bg = 0.

Summing up, in our sub-subcase, we have

(blab25b3ab47b57b6) = (0,0,0,0,G,O)
or (b11b2ab37b47b53b6) = (07050707(]" _a’)' (34)

Sub-subcase 1.1.2. (b1, b2) = (a,0).

By (28), since bs # 0 and by = a and b3 = 0 (see (33)), 2a+0+bs—a = 0,
i.e. by = —a.

Since by = 0, then by (31), by(by + bg) =0, i.e. by = 0 or by + bg = 0.

If by = 0, then by (32) since by = 0, we get bg = 0 or bg = —a. So, since
(b1, b2, b3, b4, b5,b6) = (a,0,0,0, —a, —a) do not satisfy (30), then bg = 0.

If by + bg = 0, then by (32) and bs = 0, we get bg = 0 (as a # 0), and
then and b4 = —bg =0.
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Summing up, in our sub-subcase, we have
(blab2ab37b47b57b6) = (a,O,(LO,—a,O). (35)

Sub-case 1.1.3. (b1, b2) = (a, —a).

By (28), since b5 # 0 and by = a and b3 = 0 (see (33)), 2a+0+b5—a = 0,
i.e. by = —a.

Then, by (30), we have bg(a—a—0) = (—a)(—a+bg),i.e. 0 = —a(—a+bg).
Then bg = a.

Moreover, by (29), we have by(a — a — (—a)) = 0, i.e. bya = 0. Then
by = 0.

Summing up, in our sub-subcase, we have
(blab27b37b47b57b6) = (aa _a7070a —a7a). (36)

Subcase I. 2. b5 = 0.

By (9) we have three sub-subcases.

Sub-subcase 1.2.1. (by,b2) = (0, 0).

By (30), we have bg(a — 0 — 0) = 0, i.e. bg = 0. Then by (31) we have
b4(b4 + O) =0, ie. by =0.

Summing up, in our sub-subcase, we have

(blvbQ,b37b4;b5ab6) = (07070707070)' (37)

Sub-subcase 1.2.2. (b1, bs2) = (a,0).

Suppose by # 0. By (31), ba(bs + bg) = 0. Then by + bg = 0. Then by
(32), bg = 0, and then and by = —bg = 0. Contradiction. So, by = 0.

Then by (32), bg = 0 or bg = —a.

Summing up, in our sub-subcase, we have

(bl, bQ, bg, b4, b57 b6) = (CL, 0, 0, 07 O, O)
or (bl,bg,b3,b4,b5,b6) = (CL,0,0,0,0, _a)' (38)

Sub-subcase 1.2.3. (b1,b2) = (a, —a).

By (31), we have bz + b4b6 = ab4, i.e. b4 =0or b4 + b6 = a.

If by = 0 then by (32), bg = 0 or bg = a.

Summing up, in our sub-subcase, we have

(b1,b2,b3,by,b5,b6) = (a,—a,0,a — A\, 0,\) for A € R
or (bl,bg,bg,b4,b5,b6) = (a, 7(1,0,0,0,0). (39)
For A = a we realise the case with by = 0 and bg = a. That is why we do not
expose separately this in above.

Case II. a = 0.

Then by (9), by = b2 = 0. So, if b # 0 or b5 # 0, then by (26) and (28)
we have bz + b5 = 0. If b3 = b5 = 0, then we also have bz + b5 = 0. Similarly,
if b4 7£ 0 or b6 7é O7 then by (31) and (32) we have b4 + b6 =0.If b4 = b6 =0
then of course by + bg = 0.

Summing up, in our case, we have

(b17 b27 b37 b47 b57 bG) = (07 0, )‘7 Hs _)‘7 _IU/) for )‘7 e R. (40)

The part “ = 7 of the theorem is complete.

Now, we are going to prove the part “ <= ” of the theorem.
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Let (a,by,ba,bs, by, bs5,b6) be a arbitrary 7-tuple from the list (25). By
Proposition 3.4, it is sufficient to show that (a,b1,be, b3, by, b5, bg) satisfies
conditions (9)—(12) for all linear vector fields X', X2 X and all linear 1-
forms w!,w?, w3 on R™™.

We consider two cases and several subcases.

Case 1.a#0 .

Subcase 1.1. (bl, bg, bg7 b4, b5, bﬁ) = (O, 0, O, 0, 0, 0)

The condition (9) holds as (b2, b1) = (0,0). The equalities (10)—(12) are
0=0.

Subcase 1.2. (bl, b2, b37 b4, b5, bﬁ) = (CL, 0, 0, 0, 0, 0)

The condition (9) holds as (b, b1) = (0,a). The equalities (10)—(12) are
0=0.

Subcase 1.3. (bl, bg, bg, b4, b5, bﬁ) = (0, 0, 0, 0, a, 0)

The condition (9) holds as (bg, b1) = (0,0). The equalities (11) and (12)
are 0 = 0. Using (2), the equality (10) can be written as

a2£X1£X2diLw3 = azﬁ[xl’xz]dist + a2£X2£X1diLw3.
It is satisfied (by (b1, b2, b3, ba, b5, b)) because Lix yjw = Lx Lyw — Ly Lxw.
Subcase 1.4. (b1, ba, b3, by, b5,bs) = (a,—a,0,0,0,0).
The condition (9) holds as (b2,b1) = (—a,a). The equalities (10)—(12)
are 0 = 0.
Subcase 1.5. (by, ba, b3, by, b5, bg) = (0,0,0,0,a,—a).
The condition (9) holds as (be,b;) = (0,0). Using (2), the equalities
(10)—(12) can be written as
a’Lx1 Lxadipw® = a®Lix1 xodipw® + a*Lx2 Ly dipw?®,
—a?Lx1Lysdipw?® = —a?Lxs Lxrdipw? — a2£[X1)X3]diLw2,
—a2£[X2’X3]diLw1 = CL2£X3,CX2diLw1 - a2£X2L'X3diLw1.
They are satisfied because Lix yjw = LxLyw — Ly Lxw.
Subcase 1.6. (b1, ba, b3, by, b5,b) = (a,0,0,0,0, —a).
The condition (9) holds as (b2,b1) = (0,a). The equality (10) is 0 = 0.
Using (2), equalities (11) and (12) can be written as
—a’Lx1 Lxsdipw? = —a*Lxs Lxadipw® — a®Lixr xs)digw?,
—GQ,C[Xz,Xa]diLwl =a’LxsLx2dipw' —a’Lx2Lxsdipw'.
They are satisfied because Lx yjw = LxLyw — Ly Lxw.
Subcase 1.7. (by, ba, b3, by, b5, bg) = (a,0,0,0, —a, 0).
The condition (9) holds as (b2, b;) = (0,a). Equalities (11) and (12) are
0 = 0. Using (2), equality (10) can be written as
—a’Lx1 Lxadipw® — a’Lx1 Lyadipw® + a®Lx1 Lx2dipw®
= —aQE[lexa]ding’ — &2£X2EX1diLw3 — a2£X2£X1diLw3
+a2EX2£X1 diLw3,

or (after reduction of similar terms) as

—a2£X1£X2diLw3 = —a2£[X1)Xz]diLw3 — (12EX2,CX1 ding.



MJOM The Gauge-Natural Bilinear Operators Page 21 of 25 40

It is satisfied because Ly yjw = LxLyw — Ly Lxw.

Subcase 1.8. (bl, bg, bg, b4, b5, bﬁ) = (CL, —a, 07 O, —a, a).

The condition (9) holds as (ba,b1) = (—a,a). Using (2), equality (10)
can be written as

—a2£X1£X2diLw3 - a2£X1£deiLw3 + a2£X1 ﬁxzding
= —azﬁ[Xl,Xz]d’ing - az,CXz,CdeiLwS - azﬁxzﬁxldiLwS

+a?Lx2Lxrdipw?,
or (after reduction of similar terms) as
—a*Lx1 Lx2dipw® = —a2£[X1,X2}diLw3 —a’Lx2 L1 dipw?.
Similarly, (11) can be written as

a2£X1£X3diLw2 + a2£X1 £X3di[,w2 — a2£X1 ﬁXSdiLw2
= az,CXsL:deiLw2 + a2£X3£X1diLw2 - a2£X3£X1diLw2

—|—a2£[X1)X3]diLw2,
or (after reduction of similar terms) as
a*Lx1 Lxsdipw? = a’Lys Lxrdipw? + a®Lixr xodipw?®.
Similarly, (12) can be written as

a2£[X27X3]diLw1 = fa2£X3£deiLw1 - azﬁxzﬁxzdiLwl
+a2£X3£X2diLw1 + a2ﬁx2ﬁxsdiLw1 + a2ﬁx2ﬁx3diLw1

—a2£X2ﬁxadiLw1,
or (after reduction of similar terms) as
2 12 12 o1
a”Lixe2 xs)dipw = —a"LxsLxzdipw +a"Lx2Lxsdipw.

So, (10)-(12) are satisfied because of Lix yjw = LxLyw — Ly Lxw.
Subcase 1.9. (bl, b2, b3, b4, b5, b@) = (CL, —a, 0, a — /\, 0, /\)
The condition (9) holds as (bz,b1) = (—a,a). Condition (10) is 0 = 0.
Using (2), (11) can be written as
ala — N Lx1dixsw? + a\Lx1 Lxsdipw?® = (a — N)adixs £ x1w?
+/\a£X3£X1diLw2 + (a — A)adi[xl7X3]w2 + /\C(,ﬁ[X1,X3]diLw2.

Then, using formulas L[X,y]w =LxLyw—LyLxw and dLx = Lxd, condi-
tion (11) can be written as

ala — N)dLxrixsw? = (a — Nadixs Lx1w® + (a — )\)adi[X17X3]w2.

So, (11) is satisfied because Lxiy —iyLx = i[x,y]-
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Using (2) and dLx = Lxd, (12) is
(a — )\)adi[Xz,Xs]wl + )\aE[X;Xs]diLwl
= —(a — NadL yxsix2w' —a\LxsLyadipw?

—(a — NadixsLx2w" + (@ — N\ dixsdix2w’

+(a — M) AdixsLx2dipw' — NaLxsLxadipw?

+Ma — N Lxsdipdixew' + N Lxs Lx2dipw?

+a(a — N)dLx2ixsw' + a\Lx2Lysdipw'. (41)
So, to prove that (12) is satisfied, it is sufficient to show that the coefficients
on A\ of both sides of (41) are equal, and the coefficients on A! of both sides

of (41) are equal, and the coefficients on A? of both sides of (41) are equal.
Comparing the coefficients on A\° in (41), we obtain

a2di[xz’xs]w1 = —a?dLysix2w! — a’dixs Lx2w" + a’dixsdix2w?
+a?dL x2ixsw!.
This condition is satisfied because
dijx2 x3) = d(Lx2ixs —ixsLx2) = dLx2ixs — dixsLx>
= (dLxzixs —dixsLx2) + (dixsdix2 — dLxzix2)
= —dLxsix2 —dixsLyx2 +dixsdix2 +dLx2ixs

as dixsdixz = d(dixs +ixsd)ixz = dLxsixez.
Comparing the coefficients on A in (41) and using dLx = Lxd, we
obtain

—adi[xzyXa]wl + aE[Xz,Xs]diLwl
= al xsdix2w! —al xsLx2dipw' + adixs Lx2w' — 2adixsdix2w®
+adiys Lx2dipw' — al xsLxzdipw!
—|—a£XsdiLdiX2wl — ad£X2iX3wl + aﬁxzﬁxsdiLwl. (42)

USil’lg the formulas L‘[Xz,X?’] = £X2£X3 — £X3£X2 and i[X2,X3} = ,CXziXS —
ixsLxz2 we can short equivalently (42) to

0 = al xsdix2w' — 2adixsdix2w! + adixs Lx2dipwt
—aﬁxalszdiLwl + aﬁxsdiLdixzwl. (43)

By (3), we have dirdix:w! = dix2w!. Then Lysdirdix2w! = Lysdix2w?.
Moreover, by the formulas Ly = ixd+dix and d> =0 and Lxd = dLx, we
have

dixsdix2w' = (dixs + ixsd)dix2w® = Lxsdixsw?. (44)
Also dixsLxzdipw! = (dixs +ixsd)dLy2ipwt = LysLxzdipw!, ie.
dixs Lxadipw! = Lxs Lxadipw. (45)
So, our equality (43) can be equivalently rewritten as
0= alysdixew® —2aLxsdix2w" + al xs L x2dipw"

—a£X3£X2diLw1 + aﬁXS»diXle ,
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i.e. as 0 = 0. So, (42) holds.
Comparing the coefficients on A\? in (41), we get

0= dixsdix2w' — dixsLxzdipw' — Lxsdipdix2w' + LxsLx2dipw'.
This condition holds because of (44) and (2) and (45) it can be rewritten as
0= Lysdix:w' — LxsLx2dipw' — Lxsdixzw' + LxsLxadigw’.
Case 2. a =0 and (b1, ba, b3, ba, b5,b6) = (0,0, A, 1, =\, —p1).
The condition (9) holds as (b2, b1) = (0,0).
Condition (10) is
Ndix1dix2w® — N2dix1 Lx2dipw® — N2 Lxrdipdix2w®
AN L dip Lx2dipw® = N2dixadixiw®
~Ndix2Lxr1dipw® — N2 Lx2dipdixiw® + N Lxadip Lxrdipw®.
It is satisfied because by (44) and (45) and (2) and (3) it can be rewritten
as
NLidix2w® — N L1 Lyedipw® — N Lx1dix2w®
+>\2£X1£X2diLw3 = /\2/:,X2diX1w3
N Lx2Lxrdipw® — N2 Lxadixiw® + N2 Lx2Lxrdipw®.
So, it can be reduced to 0 = 0.
Condition (11) is
Mudix1dixsw? — Apudix1 L xsdipw? — ML xrdipdi xsw?
ML xrdr Lxsdipw? = pddixsdixiw?
—pMdixs Lx1dipw? — pALxsdipdixiw? + pA\Lxsdr L x1dipw?.

It is satisfied because by (44) and (45) and (2) and (3) it can be rewritten
as

Aﬂﬁxldix3w2 - )\ﬂﬁxlﬁxzdiLw2 - )\ML:deix3w2
ML x1 Lsdipw? = pAL xsdix1w?
— AL xs Lx1dipw?® — pALxsdixiw? + pALxs Lx1dipw?,
i.eas 0=0.
Condition (12) is
0= pPdixsdix2w' — pPdixs Lx2dipw!
—LLQ,CXsdiLdinwl + Mzﬁxsd’iLﬁxzwl
+\udi 2 dixswt — Apdix2Lxsdipw' — A\l x2dipdixsw?
—l—)\,uEdeiL.CXswl.

It is satisfied because by (44) and (45) and (2) and (3) it can be rewritten
as

0= Mzﬁx?»dixu,dl — M2ﬁx3£X2d’iLwl — MZ,stdinwl
+N2£X3£X2diLw1 + )\ﬂﬁx2dix3u_}1
—)\Mﬁx2ﬁxadl‘[lwl - A/Lﬁx2di_}(3wl + /\Mﬁx2£XsdiLw1,
ie. 0=0.



40 Page 24 of 25 ‘W. M. Mikulski MJOM

The theorem is complete. O

Remark 3.6. The space I',(TE @ T*FE) is a locally free C>°(M)-module.
Hence, there is a vector bundle E over M such that Th(TE ® T*E) is
isomorphic to T'E as C°°(M)-modules. The vector bundle E is called the
fat vector bundle. It is isomorphic to the Omni-Lie algebroid A(E) :=
Der(E*) @ JY(E*), studied in [1], where Der(E*) is the bundle of deriva-
tions on E*, and J!(E*) the first jet prolongation bundle, see [6]. Denote
A(E) := E. Any VB,, ,-map f : E — Ej with the base map f : M — M,
induces in obvious (functor) way the vector bundle map A(f) : A(E) —
A(E7) covering f. In other words, we have a so-called vector gauge bundle
functor A : VB;,n — VB. Thus a VB, ,-gauge-natural bilinear operator
A:THT @ T*) xTHT & T*) ~ TYT & T*) is a (usual) VB,, ,-gauge-natural
bilinear operator A : A x A ~» A (in the sense of [7]). Thus, Theorem 3.5
gives the full description of all VB3,,, ,-gauge-natural bilinear brackets satisfy-

ing the Jacobi identity in Leibniz form on sections of the Omni-Lie algebroid
of E.

Definition 3.7. A natural Lie bracket on Iy, (TE & T*E) is a VBB, ,-gauge-
natural bilinear skew-symmetric operator A : TY(T @ T*) x TY(T @& T*) ~»
(T @ T*) satisfying the Jacobi identity in Leibniz form.

We have the following immediate consequence of Theorems 2.21 and
3.5.

Corollary 3.8. Let m > 2 and n > 1 be natural numbers. Let A : Fl(T @
T*)x T @ T*) ~ THT & T*) be a VB,, n-gauge-natural bilinear operator.
Then, A is skew-symmetric if and only if it is of the form (1) for arbitrary
(uniquely determined by A) real numbers a,by,bs,bs, by, bs, bs satisfying
by = —ba, by = —bs, b5 = —bs.
Moreover, such A is a Lie bracket if and only if (a,b1,ba,bs, by, b5, bg)

is from the following list of T-tuples:

(C7 07 0’ 0’07 c7 _0)7 (67 C7 _C? 0, 07 _C7 C)? (C’ 07 07 07 0’ 0’0)?

(¢,c,—¢,0,0,0,0), (0,0,0,A, =\, =\, A),

where ¢, A are arbitrary real numbers with ¢ # 0.

(46)
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