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OBJECTIVE

Abnormally elevated proinsulin secretion has been reported in type 2 and early
type 1 diabetes when significant C-peptide is present. We questioned whether
individuals with long-standing type 1 diabetes and low or absent C-peptide
secretory capacity retained the ability to make proinsulin.

RESEARCH DESIGN AND METHODS

C-peptide and proinsulin were measured in fasting and stimulated sera from
319 subjects with long-standing type 1 diabetes (‡3 years) and 12 control subjects
without diabetes. We considered three categories of stimulated C-peptide: 1)
C-peptide positive, with high stimulated values ‡0.2 nmol/L; 2) C-peptide posi-
tive, with low stimulated values ‡0.017 but <0.2 nmol/L; and 3) C-peptide
<0.017 nmol/L. Longitudinal samples were analyzed from C-peptide–positive
subjects with diabetes after 1, 2, and 4 years.

RESULTS

Of individuals with long-standing type 1 diabetes, 95.9% had detectable serum
proinsulin (>3.1 pmol/L), while 89.9% of participants with stimulated C-peptide
values below the limit of detection (<0.017 nmol/L; n = 99) had measurable
proinsulin. Proinsulin levels remained stable over 4 years of follow-up, while
C-peptide decreased slowly during longitudinal analysis. Correlations between
proinsulinwithC-peptideandmixed-meal stimulationofproinsulinwere foundonly
in subjects with high stimulated C-peptide values (‡0.2 nmol/L). Specifically,
increases in proinsulin with mixed-meal stimulation were present only in the
group with high stimulated C-peptide values, with no increases observed among
subjects with low or undetectable (<0.017 nmol/L) residual C-peptide.

CONCLUSIONS

In individuals with long-duration type 1 diabetes, the ability to secrete proinsulin
persists, even in those with undetectable serum C-peptide.

Type 1 diabetes results from autoimmune-mediated destruction of the pancreatic
b-cell, resulting in the need for exogenous insulin treatment (1). The classic paradigm
that type 1 diabetes leads to a complete loss of b-cell mass and absolute insulin
deficiencyhas been challengedby recent data (1). Analysis of pancreatic sections from
organ donors with diabetes indicates the presence of residual insulin-containing
islets many years after disease onset (2). In addition, multiple groups have reported
detectable levels of serum C-peptide in cohorts of individuals with long-duration T1D
(3–9). These studies have included highly selected populations, such as the Joslin
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Medalists, who were identified on the
basis of long-term survival, as well as
groups more reflective of general diabe-
tes populations, with estimates that up
to 80% of individuals with type 1 diabe-
tes retain the ability to secrete small
amounts of stimulated C-peptide (3–7).
For detection of residual b-cell mass

and function, these studies have relied
nearly exclusively on the measurement
of C-peptide, which is generated from the
processing of immature preproinsulin
molecules into insulin and C-peptide.
Preproinsulin processing begins with
cleavage of the N-terminal signal peptide
to form proinsulin within the lumen of
the b-cell endoplasmic reticulum (ER)
(10). Disulfide bond formation and ter-
minal protein folding occurs in the ER
and Golgi, and proinsulin is eventu-
ally cleaved into mature insulin and
C-peptide by the enzymes prohormone
convertase 1/3, prohormone convertase
2, and carboxypeptidase E within secre-
tory granules (10). b-Cell dysfunction,
such as that caused by inflammatory
or ER stress, results in the accumulation
and release of incompletely processed
proinsulin (11–13). Thus, measurement
of C-peptide secretion alone could un-
derestimate the ability of the b-cell to
initiate hormone production, while in-
creasedproinsulin secretionmayprovide
insight into specific disease pathology.
Studies in human cohorts have sug-

gested that abnormalities in b-cell pro-
insulin processing have clinical relevance
to type 1 diabetes. Levels of circulating
proinsulin relative to C-peptide (PI:C
ratios) are elevated at the time of
type 1 diabetes onset and have been
shown to be predictive of type 1 diabetes
development in autoantibody-positive
individuals (14–16). Similarly, the ratio
of proinsulin–to–insulin-positive b-cell
area is increased in pancreatic sections
from donors with recent-onset type 1
diabetes and in autoantibody-positive
donors without diabetes (17). Persistent
elevations in islet proinsulin content

relative to insulin and C-peptide have
also been reported in whole pancreata
from donors with long-standing type 1
diabetes (18). However, whether de-
tectable proinsulin secretion is present in
individuals with extended-duration type 1
diabetes has not been adequately tested.

To gain insight into the relationships
between C-peptide and proinsulin secretion
in long-standing type 1 diabetes, we
analyzed longitudinal samples from a
diverse cohort of subjects with estab-
lished disease ($3 years) who were
categorized based on the presence or
absence of residual stimulated C-peptide
secretion. We sought to define patterns
of change in C-peptide and proinsu-
lin secretion over 4 years of follow-up
and to explore relationships between
meal-stimulated C-peptide and proinsulin
secretion.

RESEARCH DESIGN AND METHODS

Study Approval
Sample collections were performed
after institutional review board ap-
proval was obtained from T1D Ex-
change Network sites and Indiana
University. Written informed consent
was obtained from participants prior
to study inclusion.

Subjects
We previously reported nonfasting se-
rum C-peptide levels in 919 individuals
with varying durations of disease (all$3
years from disease onset) identified
through the T1D Exchange clinic regis-
try who participated in the Residual
C-peptide in Type 1 Diabetes Study
evaluating residual insulin secretion in
those with long-standing type 1 diabetes
(3). To be enrolled in this study, an
individual must have had a clinical di-
agnosis of type 1 diabetes made by an
endocrinologist on the basis of either
positive islet cell antibodies or insulin
therapy started around the time of
diagnosis and used continually thereafter
(with the exception of individuals who

received a pancreas or islet transplant)
(3). From this group, 319 subjects in
whom mixed-meal tolerance tests
(MMTTs) were performed were included
in the current analysis (3). In brief, this
included subjects with detectable random
nonfasting C-peptide and 10% of subjects
with C-peptide,0.017 nmol/L on a ran-
domnonfasting test (n = 99). For subjects
with serum C-peptide $0.017 nmol/L
(n=220), repeatMMTTswereperformed
1, 2, and 4 years after the initialMMTT. In
addition, MMTT was performed in a small
group of healthy adult control subjects
locally at Indiana University School of
Medicine (n = 12). Subject characteristics
are described in Table 1.

Measurements and Assays
Standard MMTTs were performed as
previously described with blood sam-
ples drawn at 210, 0, 30, 60, 90, and
120 min (3,19). Control samples drawn
at Indiana University were immediately
processed and stored at 280 without
freeze/thaw prior to testing. Serum
fromsubjectswithdiabeteswas shipped
to Northwest Lipid Metabolism and Di-
abetes Research Laboratories (NWRL,
University of Washington) on cold
packs the day of sample collections.
Samples were immediately analyzed for
C-peptide. Otherwise, serum was stored
at 280°C without freeze/thaw until
proinsulin measurement. HLA-DRB1
typing, HbA1c, fasting glucose, and
autoantibodies against GAD, islet an-
tigen 2 (IA-2), and zinc transporter
8 (ZnT8) were measured as previously
described (19).

C-peptide values were measured
from eachMMTT time point in a blinded
fashion by NWRL using the Tosoh two-
site immunoenzymometric assay (Tosoh
Bioscience), which had a sensitivity of
0.017 nmol/L at study start (3,19).
Though the TOSOH assay sensitivity
changed to 0.007 nmol/L over the
course of the study, for consistency in
our longitudinal analyses, the threshold
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of 0.017 nmol/L was applied through-
out. Proinsulin levels were assayed at
the 210 and 90 min time points in a
blinded fashion by NWRL using a radio-
immunoassay (catalog number HPI-15 K;
Millipore), which detects 100% human
intact proinsulin, 95% human Des
(31,32) proinsulin, and ,0.1% human
Des (64,65) proinsulin (20). The re-
ported sensitivity of this assay is 3.1
pmol/L. Intra- and interassay variation
determined by NWRL were 1.4–6.0%
and 4.84–7.48%, respectively. Cross-
reactivity for both human C-peptide
and human insulin are ,0.1%. Experi-
ments performed to validate assay
variation, sensitivity, specificity, and
cross-reactivity, including analysis of
sera from patients before and after
pancreatectomy, analysis of insulin
antibody–positive serum, and vali-
dation of radioimmunoassay results
using targeted mass spectrometry
analysis of serum, are included in Supple-
mentary Tables 1–6 and Supplementary
Figs. 1–4.

MMTT 90-min values were used to
define stimulated C-peptide or proinsulin
secretion. For C-peptide–positive sub-
jects, PI:C ratios were calculated as mo-
lar ratios 3 100.

Statistics
A Kruskal-Wallis test with Dunn multiple
comparisons test was used to compare
continuous variables between groups,
and a x2 test was used to compare
proportions. An intraclass correlation
coefficient was calculated to quantify
the degree of clustering for repeated
longitudinal proinsulin values. Analyses
were done using SAS, version 9.4, and
GraphPad Prism 7.0. For all analyses,
two-tailed P values of #0.05 were con-
sidered significant.

RESULTS

To define patterns of C-peptide and
proinsulin secretion in long-standing
type 1 diabetes, we analyzed hormone
secretion at fasting and in response
to mixed-meal stimulation in a cohort

of 319 individuals with diabetes of $3
years’ duration (range 3–81). Demo-
graphics of the study cohort are
reported in Table 1. MMTTs were per-
formed at baseline and then repeated at
12-month, 2-year, and 4-year follow-up
visits. As previously reported, we con-
sidered three categories of stimulated
C-peptide: 1) C-peptide positive, with
stimulated values $0.2 nmol/L; 2)
C-peptide positive, with stimulated val-
ues $0.017 but ,0.2 nmol/L; and 3)
C-peptide ,0.017 nmol/L (3). Median
fasting and stimulated C-peptide val-
ues from the initial visit for each
group are shown in Table 2, with in-
dividual stimulated values from each
visit displayed in Fig. 1A. Although
most subjects had small reductions
in stimulated C-peptide over 4 years
of follow-up, most remained within
their originally assigned C-peptide
category.

To categorize residual proinsulin se-
cretion between the groups, we assayed
proinsulin levels from the MMTT fasting

Table 1—Characteristics of the study population

Variable
C-peptide ,0.017
nmol/L (n = 99)

C-peptide 0.017–0.2
nmol/L (n = 117)

C-peptide $0.2
nmol/L (n = 103)

Control subjects
(n = 12)

Age at initial MMTT (years)*** 34.0 (17.0, 56.0) 29.0 (17.0, 45.0) 41.0 (28.0, 48.8) 20.5 (18.0, 25.8)

Sex (% male) 46.5 42.7 44.7 50

BMI (kg/m2) 25.5 (22.0, 29.0) 25.4 (22.1, 28.4) 26.1 (22.7, 29.2) 24.7 (23.1, 28.4)

Race/ethnicity (% non-Hispanic white)* 93.9 87.2 86.7 66.7

T1D duration at consent (years)*** 16.0 (7.0, 33.0) 6.0 (4.0, 11.5) 7.0 (4.0, 13.0) n/a

Age at diagnosis (years)*** 15.0 (7.0, 25.0) 19.0 (11.0, 45.0) 29.0 (21.5, 38.0) n/a

HbA1c (%)* 7.8 (5.3, 8.7) 7.7 (6.8, 9.3) 7.3 (6.6, 8.1) n/a

GAD positive* 41.4 62.4 60 n/a

IA2 positive** 35.4 44.4 22.9 n/a

ZnT8 positive*** 14.1 40.17 25.7 n/a

$1 high risk HLA DRB1 alleles present 83.2 76.2 75 n/a

Data represent values obtained at initial visit and are median (interquartile range) or percent unless otherwise indicated. AUC, area under the curve;
n/a, not applicable. *P,0.05; **P,0.01; ***P, 0.001 for differences among groups using Kruskal-Wallis test for continuous variables andx2 test for
categorical variables.

Table 2—Fasting and stimulated C-peptide and proinsulin values

Variable
C-peptide ,0.017
nmol/L (n = 99)

C-peptide 0.017–0.2
nmol/L (n = 117)

C-peptide $0.2
nmol/L (n = 103)

Control subjects
(n = 12)

Fasting C-peptide (nmol/L) n/a 0.023 (,0.017, 0.036)***# 0.156 (0.095, 0.30)* 0.601 (0.525, 0.800)

Stimulated (90 min) C-peptide (nmol/L) n/a 0.079 (0.040, 0.111)***# 0.513 (0.344, 0.847)* 1.84 (1.08, 2.47)

Fasting proinsulin (pmol/L) 13.5 (6.2, 23.8) 10.9 (7.3, 21.5) 15.2 (9.8, 23.8) 15.19 (11.8, 17.4)

Stimulated (90 min) proinsulin (pmol/L) 11.2 (4.6, 19.7)***# 11.3 (7.3, 34.8)***# 22.5 (17.1, 34.8) 46.7 (34.3, 74.2)

Fasting PI:C ratio n/a 37.7 (22.0, 58.5)***# 9.6 (5.9, 18.1)** 2.3 (2.0, 3.1)

Stimulated PI:C ratio n/a 15.4 (8.4, 27.9)***# 4.9 (2.4, 6.9) 2.6 (2.4, 3.2)

Data represent values obtained at initial visit and are expressed as median (interquartile range). n/a, not applicable. *P , 0.05; **P , 0.01;
***P , 0.001 compared with control subjects and #P , 0.001 compared with C-peptide $0.2 nmol/L group using Kruskal-Wallis test with
Dunn multiple comparisons test.
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and 90-min time points. Table 2 displays
median baseline fasting and stimulated
proinsulin values grouped by C-peptide
positivity. As anticipated, nearly all sub-
jects who were C-peptide positive at
baseline had detectable fasting or stim-
ulated proinsulin, including 100% in the
highest C-peptide group and 98.3%
in the group with C-peptide $0.017
but ,0.2 nmol/L. Unexpectedly, proin-
sulin was also detectable in 89.9% (89
of 99) of subjects with serum C-peptide
levels ,0.017 nmol/L. Of note, median
fasting proinsulin values among each of
the groups with type 1 diabetes (13.5,
10.9, and 15.2 pmol/L) were well above
the recommended level of detection for
the assay (3.1 pmol/L) and fell in the
midpoint of the standard curve for the
assay. Fasting proinsulin concentrations
were not significantly different between
any of the groups, and there was no
reduction in presence or level of fasting
proinsulin with increasing diabetes du-
ration (Fig. 1B). For validation of these

findings, targeted mass spectrometry
analysis was performed on 10 sam-
ples from individuals with undetect-
able stimulated C-peptide measured by
the TOSOH assay (,0.017 nmol/L) but
detectable proinsulin measured by the
Millipore radioimmunoassay (Supple-
mentary Tables 5 and 6 and Supplemen-
tary Figs. 2 and 3). The presence of
serum proinsulin in the absence of de-
tectable serum C-peptide was confirmed
in all 10 samples. Taken together, these
data point to the continued presence
of proinsulin production and secretion,
even in the presence of minimal stimu-
lated C-peptide secretion.

To define relationships between pro-
insulin and C-peptide secretion, we ex-
amined changes in proinsulin levels
in response to MMTT stimulation by
comparing fasting and stimulated values
of proinsulin among the different
C-peptide categories and compared
these values with those obtained in a
small cohort of young control subjects

without diabetes. In adults without di-
abetes, proinsulin levels increased
approximately threefold with mixed-
meal stimulation (Table 2, with indi-
vidual increments during stimulation
plotted in Fig. 1C). In contrast, among
groups with long-standing type 1 dia-
betes, proinsulin secretion increased
with stimulation only in subjects with
the highest C-peptide values. In this
group, proinsulin secretion increased
;1.5-fold with meal stimulation (P ,
0.001 compared with fasting values)
(Table 2 and Fig. 1C). No significant
increase in proinsulin was present
with mixed-meal stimulation among
the groups with C-peptide ,0.017 or
C-peptide$0.017but,0.2nmol/L (Table
2 and Fig. 1C). Along these lines, corre-
lation analysis by C-peptide category
revealed that stimulated C-peptide
and proinsulin values were correlated
only in the group with high residual
C-peptide secretion (correlation coef-
ficient of 0.54).

Figure 1—Longitudinal C-peptide and proinsulin values in subjects with long-standing type 1 diabetes. Values are color coded based on stimulated
C-peptide values (,0.017 nmol/L [teal],$0.017–0.2 nmol/L [light blue], or$0.2 nmol/L [royal blue]). A: Individual stimulated (90 min) serum C-peptide
(C-pep) levels over 4 years of follow-up. B: Fasting proinsulin values during the initial MMTT, grouped by C-peptide category and type 1 diabetes (T1D)
duration. C: Scatterplot of individual proinsulin increments from fasting to stimulated MMTT time points. D: Individual longitudinal proinsulin values
for participants with stimulated C-peptide $0.017–0.2 nmol/L or $0.2 nmol/L. Subjects with undetectable stimulated C-peptide were not invited
for longitudinal MMTTs per study protocol. For graphical depiction, values below the assay limit of detection were plotted as one-half the assay
limit of detection. Bars in scatterplot graphs represent medians and interquartile range values. *P , 0.05; ***P , 0.001.
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Over the course of 4 years of follow-
up, stimulated serum proinsulin levels
tended to stay relatively stable. Figure
1D displays individual stimulated pro-
insulin values for the groups with
C-peptide $0.017 but ,0.2 nmol/L and
C-peptide $0.02 nmol/L at each study
visit. Among all participants, the intra-
class correlation coefficient for re-
peated proinsulin values was 0.795,
confirming a strong clustering of re-
peated measurements over the dura-
tion of the study.
We have previously shown that circu-

lating PI:C ratios are elevated in pediatric
subjects with new-onset type 1 diabetes
compared with matched healthy control
subjects (15). Moreover, elevations in the
circulating PI:C ratio were associated
with clinical progression to type 1 di-
abetes in autoantibody-positive individ-
uals, suggesting utility of the PI:C ratio
as an indicator of b-cell stress (14). To
define whether circulating PI:C ratios
differed among the groups with long-
standing type 1 diabetes and control
subjects, we calculated fasting and stim-
ulated PI:C ratios for subjects with de-
tectable C-peptide and control subjects
without diabetes. Similar to findings
observed at diabetes onset, fasting PI:
C ratios were increased in both groups
with type 1 diabetes and detectable
C-peptide compared with control sub-
jects without diabetes (P , 0.001 for
each group compared with control sub-
jects) (Table 2). Consistent with this
measure as a reflection of b-cell dys-
function, PI:C ratios were the highest
in the group with the lowest residual
stimulated C-peptide secretion (P ,
0.001 compared with group with C-
peptide values $0.02 nmol/L) (Table 2).

CONCLUSIONS

Recently, several independent groups
have reported that a substantial per-
centage of individuals retain the ability
to secrete C-peptide many years after
the diagnosis of type 1 diabetes (3–8).
However, less is known about the
relationship between proinsulin and
C-peptide secretion in long-standing
type 1 diabetes. Older analyses of sub-
jects with type 1 diabetes detected
circulating proinsulin in subjects with
undetectable fasting C-peptide (21–23).
In addition, a recent report from a subset
of adult subjects from the T1D Exchange
registry described detectable circulating

proinsulin in 16% of samples from
C-peptide–negative subjects with long-
standing type 1 diabetes. However, this
analysis was performed on randomly
collected samples without regard for
meal stimulation, andall previous studies
were cross-sectional in nature (24). Here,
we analyzed longitudinal fasting and
stimulated serum samples from subjects
with established type 1 diabetes, using
a proinsulin radioimmunoassay with
negligible cross-reactivity to insulin or
C-peptide. In a cohort with a wide distri-
bution of age at diagnosis and duration of
disease, we found that almost all individ-
uals tested had detectable serum pro-
insulin under fasting or meal-stimulated
conditions, including 89.9% of subjects
with undetectable serum C-peptide
(,0.017 nmol/L). Median values for
the cohorts were well within the limits
of detection for the proinsulin radioim-
munoassay used and fell in the midpoint
of the standardcurve for theassay. In fact,
fasting proinsulin values were similar
among all groups, irrespective of stim-
ulated C-peptide status. Taken together,
these data indicate that the vast ma-
jority of subjects with long-standing
type 1 diabetes retain the ability to
initiate preproinsulin production and
secrete proinsulin.

These data provide an important clin-
ical measure that substantiates recently
published findings quantifying elevations
in proinsulin at the level of the islet. This
includes increases in islet PI:insulin area
in euglycemic individuals with positive
islet autoantibodies as well as in subjects
with recent-onset type 1 diabetes (17).
In pancreatic sections from donors with
long-standing type 1 diabetes, persis-
tence of islet insulin mRNA and proin-
sulin protein, despite reduced islet
insulin and C-peptide content, was
also recently reported (18). Our study
is the first to examine longitudinal rela-
tionships of circulating C-peptide and
proinsulin values in established type 1
diabetes. Our data show that although
C-peptide levels decreased gradually,
proinsulin levels remained stable over
4 years of follow-up.

In light of these findings, we suggest
that detectable proinsulin in subjects
with low or undetectable C-peptide lev-
els provides additional information
regarding b-cell hormone production
over that afforded by measurement
of C-peptide alone. Interestingly, our

analysis indicates that in long-standing
type 1 diabetes, the relationship be-
tween meal stimulation and proinsulin
secretion is influenced by the level of
ambient and residual b-cell function.
Only subjects with highly functional
b-cells (stimulated C-peptide levels
$0.2 nmol/L) exhibited increased pro-
insulin levels with meal stimulation. No
significant increase in proinsulin values
was observed with stimulation among
the groups with undetectable (,0.017
nmol) or low stimulated C-peptide val-
ues. Along these lines, stimulated pro-
insulin and C-peptide values were
correlated only in the group with high
residual stimulated C-peptide secretion.
The etiology of this observation is un-
clear but will require further testing in
human samples to explore underlying
mechanisms.

Many individuals in this cohort were
diagnosed with type 1 diabetes as adults.
Still, 130 of 133 (97.7%) of subjects di-
agnosed as children had detectable pro-
insulin, suggesting that applicability of
these findings is not limited to individuals
with a later age of diagnosis. Because
only a small number of individuals
exhibited undetectable proinsulin and
C-peptide values, we were unable to
adequately examine differences in clin-
ical characteristics of this group, but
future analyses are warranted to explore
factors related to absolute proinsulin and
C-peptide deficiency. Additionally, some
subjects in the T1D Exchange cohort
were diagnosed with type 1 diabetes
using clinical parameters, and we can-
not exclude the possibility that some
individuals may have been misdiag-
nosed. We calculated PI:C ratios as a
potential proxy for b-cell stress, which
is the standard method of analysis in
the field (14). While our data identified
an increase in PI:C ratios in subjects with
long-standing type 1 diabetes com-
pared with a small cohort of healthy
control subjects without diabetes, we
acknowledge that differences between
the groups were driven by lower levels
of C-peptide among subjects with di-
abetes.

Finally, our proinsulin and C-peptide
assays exhibit different sensitivities. Al-
though more sensitive C-peptide assays
are available, the TOSOH assay used
here has been most widely used in
large clinical networks including the
T1D Exchange, TrialNet, nPOD (Network
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for Pancreatic Organ Donors With Dia-
betes), and the Immune Tolerance
Network (3,19,25,26). Additionally, stan-
dardization of C-peptide assays is not
performed at lower levels of C-peptide,
such as those observed in many of our
subjects. The National Institutes of Health
has recently highlighted issues with re-
search rigor and reproducibility, related
in large part to specificity of assay re-
agents. To address this, we performed
multiple assay validation experiments,
including analysis of sensitivity, intra-
and interassay variability, proinsulin
recovery, reproducibility with mass
spectrometry testing, and testing for
specificity, with testing for human in-
sulin, human C-peptide, proinsulin in
the context of insulin autoantibodies,
and proinsulin in individuals after pan-
createctomy requiring exogenous in-
sulin analogs. These results were all
reassuring. However, we cannot guaran-
tee with absolute certainty that our pro-
insulin assay is binding only intact
proinsulin or proinsulin split products
in sera from our subjects with type 1
diabetes. Analysis of additional cohorts
using different proinsulin assays, includ-
ing those measuring both intact and
total proinsulin, should be performed.
Notwithstanding these limitations,

our findings demonstrate that persistent
circulating proinsulin can be detected in
almost all subjects with long-standing
type 1 diabetes, including 89.9% of
those with low or absent C-peptide.
The ability to increase proinsulin se-
cretion under conditions of meal stimu-
lation occurred only in those patients
with significant C-peptide levels. To-
gether, these observations suggest a po-
tential hierarchy of b-cell dysfunction,
which begins with a healthy b-cell that
secretes mostly C-peptide. Early defects
are characterized by increased proin-
sulin secretion with relatively intact
C-peptide secretion. Increased progres-
sion of b-cell dysfunction is character-
ized by lower C-peptide secretion but
retained ability to increase proinsulin in
response to stimulation. Ultimately, as
C-peptide levels fall further, proinsulin
secretion in response to meal stimula-
tion is blunted. Whether this hierarchy
represents distinct stages of disease
that are common among all individuals
or whether aspects of this framework
can be applied to dissect pathophysio-
logical heterogeneity in type 1 diabetes

is uncertain. However, the observation
of persistent proinsulin production in
late-stage disease raises the tantaliz-
ing proposition that therapies aimed
at b-cell health could have utility in
improving insulin secretion in type 1
diabetes.
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