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Abstract

The basal ganglia (BG) is a collection of nuclei located deep beneath the cerebral cortex

that is involved in learning and selection of rewarded actions. Here, we analyzed BG mecha-

nisms that enable these functions. We implemented a rate model of a BG-thalamo-cortical

loop and simulated its performance in a standard action selection task. We have shown that

potentiation of corticostriatal synapses enables learning of a rewarded option. However,

these synapses became redundant later as direct connections between prefrontal and pre-

motor cortices (PFC-PMC) were potentiated by Hebbian learning. After we switched the

reward to the previously unrewarded option (reversal), the BG was again responsible for

switching to the new option. Due to the potentiated direct cortical connections, the system

was biased to the previously rewarded choice, and establishing the new choice required a

greater number of trials. Guided by physiological research, we then modified our model to

reproduce pathological states of mild Parkinson’s and Huntington’s diseases. We found that

in the Parkinsonian state PMC activity levels become extremely variable, which is caused

by oscillations arising in the BG-thalamo-cortical loop. The model reproduced severe

impairment of learning and predicted that this is caused by these oscillations as well as a

reduced reward prediction signal. In the Huntington state, the potentiation of the PFC-PMC

connections produced better learning, but altered BG output disrupted expression of the

rewarded choices. This resulted in random switching between rewarded and unrewarded

choices resembling an exploratory phase that never ended. Along with other computational

studies, our results further reconcile the apparent contradiction between the critical involve-

ment of the BG in execution of previously learned actions and yet no impairment of these

actions after BG output is ablated by lesions or deep brain stimulation. We predict that the

cortico-BG-thalamo-cortical loop conforms to previously learned choice in healthy condi-

tions, but impedes those choices in disease states.
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Introduction

The basal ganglia (BG) is an evolutionarily conserved complex network of excitatory and

inhibitory neurons located in the deep brain of vertebrates that controls action selection (see

e.g. [1]). The BG is comprised of the dorsal striatum, external and internal portions of the glo-

bus pallidus (GPe, GPi), subthalamic nucleus (STN) and substantia nigra [2]. It is traditionally

implicated in motor control since BG lesions are associated with movement disorders [3,4].

The BG is a shared processing center involved in a broad spectrum of motor and cognitive

control [2]. A cortico-BG-thalamo-cortical neurocircuit loop is suggested to be the structure

that provides this control [2,5]. However, understanding how this loop functions remains far

from complete and requires more experimental and theoretical studies.

The BG is also widely recognized for its involvement in learning [6,7]. Reinforcement learn-

ing is recognized as the mechanism that establishes behavioral responses for rewards, such as

food or drugs of abuse and is altered in numerous disorders and disease states including Par-

kinson’s disease [8–10]. Reinforcement learning is based on communication between mid-

brain dopamine neurons and the striatum [9], specifically ventral tegmental area (VTA)

projections to ventral striatum in the mesolimbic neurocircuit and substantia nigra pars com-

pacta (SNc) projections to dorsal striatum in the BG [11,12]. Dopamine (DA) released by

dopaminergic VTA and SNc inputs to striatum signals the difference between received and

expected rewards–the reward prediction error (RPE) [10,13]. RPE encoding in VTA-ventral

striatal neurocircuits involves prediction of reward value which in turn feeds back to both

VTA and SNc dopamine neurons [13]. Given its role in motor control, the SNc-dorsal stria-

tum component of the BG translates RPE into action: the hypothesized critic-actor roles of

these two dopaminergic projections [13,10]. If the RPE is positive, additional DA release leads

to positive reinforcement of the preceding action; if the error is negative (expected more than

received), a pause in DA release leads to negative reinforcement and blocks the action. As a

mechanism for this control, DA modulates plasticity of synaptic projections from the cortex to

striatal medium spiny neurons (MSNs) [14,15]. As a reflection of the bidirectional DA modu-

lation, there are two types of MSNs. Those that are responsible for promoting movement are

part of the BG direct pathway and express D1-type dopamine receptors (D1-MSNs) and those

that inhibit movement are part of the BG indirect pathway and express D2 dopamine receptors

(D2-MSNs) [16–18]. Indirect and direct BG pathways respectively inhibit or disinhibit the tha-

lamocortical relay neurons responsible for producing particular movements [19,20]. The coor-

dination of activity within the two types of MSNs determines action [21–23]. Within the BG

loops, synaptic plasticity of corticostriatal projections is a key node in the learning of rewarded

choices [6,7,24,15].

The BG is suggested to remain involved in action selection after the action-reward associa-

tion is learned [5,25]. On the other hand, clinical interventions for Parkinson disease (PD) do

not cause impairments in learned movements [26–28]. Specifically, GPi lesions and deep brain

stimulation (DBS) in the STN, which both thought to disrupt the main output of the BG, are

used to improve motor functions. This observation gave rise to a hypothesis that the BG play a

critical role in learning, but not in the expression of already learned actions or choices [29,30].

These choices are suggested to instead be stored in synaptic connections within cortex. This

hypothesis apparently contradicts the suggested involvement of the BG in executing actions

learned previously. Therefore, it is essential to fill in this knowledge gap by further investigat-

ing the role of the BG in action learning.

Mathematical modeling have been widely used to reproduce and explain various aspects of

BG electrophysiology and related behavior. A large set of these models is focused on under-

standing the dynamics of specific neurons in disease and control conditions irrespective of the
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BG function [31–34]. Other models are constructed based on functional ideas and emulate

how biophysical changes caused by a disorder violate the functions [35–39]. Both types of

models contribute to understanding of the BG function at different levels [40,41]. However

the picture remains far from complete, and the obvious reason for that is the complexity of

the BG circuitry and physiology, as well as the diversity of its functions. The present model

was designed as a simple implementation of principles suggested to underlie the learning and

action selection functions of the BG in the simplest, yet most frequently used two-choice

instrumental conditioning task. This simplification allows for a comprehensive implementa-

tion of mechanisms for BG functions and dysfunctions. Thus, our paper addresses the need

for simplified BG model that reproduces learning and action selection in a standard behavioral

task.

The goal of the present study was to design a simple model of BG function that utilized

experimentally known physiological processes and replicate behavior in a classical task. Such a

model would provide an opportunity for identifying gaps in knowledge to better guide addi-

tional experimentation. To this end, this paper presents a computational model of the cortico-

BG-thalamo-cortical loop involved in a two-choice instrumental conditioning task [25]. This

task is standard for assessing action-reward association in animals and humans. Our model

design is similar to a previously published design [30,42], but focused on choice selection. We

implemented two synaptic mechanisms that can mediate learning: reward-related plasticity of

corticostriatal synapses [43] and activity-dependent Hebbian plasticity [44,45] of cortico-corti-

cal synapses. To elucidate the role of the BG in Parkinson’s and Huntington diseases, we cali-

brate the model to reflect the altered BG connectivity documented for these diseases and

simulate these changes in BG activity.

Materials and methods

We adopt rate model formalism extensively used to reproduce activity and function of numer-

ous brain structures [46]. In particular, we follow a validated model of motor control [42] and

modify it for action selection.

Structure of the basal ganglia

Fig 1 presents a schematic diagram of nuclei and connections within the BG and their con-

nections with cortices. The cortico-BG-thalamo-cortical loop is separated into channels

selective for each of the two actions of the model (see below). First, the striatum, the primary

input structure of the BG, receives excitatory inputs from the prefrontal cortex (PFC) and

premotor cortex (PMC) in the cerebrum as well as the thalamus. From the striatum, two

competing pathways are activated: a direct pathway (striatum-SNr/GPi) and an indirect

pathway (striatum-GPe-STN-SNr/GPi). These two pathways converge at the BG output

nuclei, the SNr and GPi, and serve to modulate their activites. In the model SNr and GPi

activity are treated as one unit. SNr/GPi activity inhibits a corresponding neural group in

the thalamus and PMC and blocks the corresponding action. Thalamus and PMC activity is

treated as a single unit (PMC/Thal). To execute the action, SNr/GPi activity must decrease

and disinhibit the PMC/Thal neurons. The actions (channels) compete with each other via

reciprocal inhibition at the PMC level. Reciprocal inhibition also exists at the GPe level, but

it was omitted in the model as STN-GPe network dynamics was shown to be only weakly

dependent on this inhibition [47,48]. In addition, DA neurons in the SNc signal a reward

prediction error (RPE), which change synaptic weights of PFC-striatum connections via

DA-dependent long-term synaptic potentiation (LTP) and long-term synaptic depression

(LTD) to allow for reward-based learning.
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Behavioral task

Our model implements a standard design for intertemporal choice tasks [25]. The circuitry

shown in Fig 1 is built to reproduce selection between two actions, one of which is rewarded.

A typical task is to learn that, for instance, action 1 is rewarded if a conditioning stimulus (CS)

is presented. Then, this task is “reversed”: after learning this contingency, the reward following

the same CS is shifted to action 2. Thus, the cortico-BG-thalamo-cortical loop has 2 channels:

for choice 1 and 2, except for the PFC that represents the CS and the SNc that represents the

unexpected reward. Activation of neural groups 1 and 2 in the PMC/thalamus correspond to

Fig 1. The structure of the cortico-basal ganglia-thalamo-cortical loop model. The BG receives inputs from the

prefrontal cortex (PFC) signaling the conditioning stimulus (CS) as well as reward inputs via substantia nigra pars

compacta (SNc). The SNc forms a dopamine reward prediction error (RPE) signal, which governs plasticity of the

connections from the PFC (DA LTP/LTD; green). The BG input structure, striatum, contains medium spiny neurons

(MSNs), which cluster in 2 subtypes: D1 and D2 dopamine receptor-containing (direct and indirect pathways

respectively). The rest of the nuclei are the globus pallidus external (GPe), subthalamic nucleus (STN), and the output

structures: substantia nigra pars reticulata and globus pallidus internal (SNr/GPi). The loop is completed by

connections from and to premotor cortices/thalamus (PMC/Thal). The two channels of the loop are colored purple/

blue.

https://doi.org/10.1371/journal.pone.0228081.g001
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execution of action 1 and 2 respectively. Thus, in the model, an action is considered selected if

the activity level of the corresponding PMC neural group at the end of a simulated trial exceeds

that of the other group plus the noise level (0.1; see below). The behavioral readout is if the

stimulus-reward contingencies can be learned, and how many trials learning takes.

Firing rate equations

The activity of every neuron (except the dopaminergic neurons in the SNc) is governed by the

following differential equation [42]:

t
dA
dt
¼ s Ið Þ � Aþ N tð Þ ð1Þ

where A is the instantaneous activity level of the neuron. N(t) is a uniformly distributed noise

with amplitude 0.1. Here, τ is a time constant taken to equal 12.8 msec for the STN, 20 msec

for the GPe, and 15 msec for all other neural groups based on previous models and experimen-

tal studies [49]. I is the synaptic input to the neuron. The expressions for synaptic input to

each neuron group, and the formula are compiled in Table 1. σ(I) is a normalized response

function defined as:

sðIÞ ¼
0; if I � 0

tanhðIÞ; if I > 0

(

ð2Þ

This formalism normalizes firing rates for all nuclei to be between 0 and 1 to avoid difficulties

with modeling very different firing rates observed in BG of different species and allows us to

focus on the general learning mechanism. We have adapted the following notation: Xm to

denote the activity (firing rate) of neural group X in the pathway for the mth action. Since our

model contains only two actions, the only possible values for m are 1 and 2. The index n in the

formula for Xm is equal to 2 if m = 1, and n = 1 if m = 2, i.e. it refers to the other of the two

channels and describes interaction between them. Further, wX_Y denotes the synaptic weight

(strength of connection) from group X to group Y and drX denotes a tonic drive to group X.

Many of these weights are assumed constant throughout our trials, but several of them are

plastic as described below.

Synaptic plasticity

The synaptic weights from PFC to PMC neurons and from PFC to MSNs are plastic, which

means that they change depending on the activity of these nuclei and behavioral outcome

(reward received) respectively [44,45,43]. In simulations, the synaptic weights are updated at

the beginning of every trial depending on the behavior of the model in previous trials. Before

Table 1. Synaptic inputs.

Neuron Formula for Synaptic Input

PFC IPFC = input_pfc
D1 MSN ID1 MSNm

¼ wPFC� D1PFC þ wPMC� D1PMCm

D2 MSN ID2 MSNm
¼ wPFC� D2PFC þ wPMC� D2PMCm

GPe IGPem ¼ drGPe � wD2� GPeD2 MSNm þ wSTN� GPeSTNm

STN ISTNm ¼ drSTN � wGPe� STNGPem þ wHDPMCm

GPi IGPim ¼ drGPi � wD1� GPiD1 MSNm þ wSTN� GPiSTNm

PMC IPMCm ¼ drPMC þ wPFC� PMCm
PFC � wGPi� PMCGPim � wPMCn � PMCm

PMCm

https://doi.org/10.1371/journal.pone.0228081.t001
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we discuss the specific mechanisms by which we updated these plastic synaptic weights, we

will first discuss how we calculated the activity of the dopaminergic neurons in the SNc, which

essentially mediate reward-based learning.

The activity of the SNc neurons is associated with a reward prediction error (RPE) [50]. Fol-

lowing previous models (e.g. [42]), we assume that the activity of the SNc neural group reflects

the difference between the expected reward and the actual reward:

SNc ¼ R � Rej ð3Þ

where R is the actual reward given based on the action selected, and Rej is the expected reward

at the jth trial. The animals are pre-trained on single choice task, and, therefore, they expect a

reward. The expected reward on the first trial, Re
1
, is equal to 1 and is then subsequently

updated according to the following scheme [42]:

Re
jþ1
¼ aRj þ ð1 � aÞR

e
j ð4Þ

where α is a constant (set equal to 0.15) and Rj denotes the actual reward received by the

model on the jth trial. Note that the RPE given by Eq (3) may be positive (actual greater than

expected) or negative (actual less than expected).

The actual reward received in simulations, R, is determined by the following:

R ¼
1; if rewarded action performed

0; if rewarded action not performed

(

where we determined which action is selected by comparing the activities of the PMC neurons

at the end of each trial as described above.

Altogether, after each trial, the PFC-striatal synaptic connections are updated by adding the

following increments to the previous values:

DwPFC� D1m ¼ lD1 � SNc � PFC �D1m � d �wPFC� D1m ð5Þ

DwPFC� D2m ¼ � lD2 � SNc � PFC �D2m � d �wPFC� D2m ð6Þ

where PFC, D1m, and D2m denote the activity of the respective neural group at the end of the

trial (m = 1,2). Here, λD1 and λD2 are learning rate constants and d is the decay rate constant.

The value for these constants are adopted from the previous literature [30,42] with a modifica-

tion that takes into account the differences for synapses contacting D1 and D2 MSNs: Gurney

et al. [51] has shown using experiments and modeling that plasticity of the synapses on D2

MSNs is weaker approximately by a factor of two than on the D1 MSNs. Note that the formal-

ism does not allow for direct modeling of the eligibility traces necessary for stimulus-reward

association [52–54], and we account for that by PFC activity that persists for the duration of

the trial.

Lastly, we describe the mechanism by which we updated the connections between the PFC

and PMC neurons. Here, we let wPFC‒PMCm denote the synaptic weight of the connection

between the PFC neural group and the mth PMC neural group. After each trial, the synaptic

weights are updated according to the following Hebbian Learning Rule:

DwPFC� PMCm ¼ lCM � PFC �PMCm � dCM �wPFC� PMCm ð7Þ

where λCM is the learning rate and dCM is the decay rate of the cortical connections. Here, PFC
and PFCm denote the activity of the PFC neurons and mth PMC neuron group at the end of

the trial.
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Now, we will outline our methodologies for calibrating our three different BG model states:

healthy, Parkinsonian, and Huntington’s disease.

Healthy BG state

We target to reproduce rodent behavior in instrumental conditioning (IC) tasks [29,25]. Thus,

an animal will learn contingencies between a conditioning signal and a rewarded action—

pressing one of two levers. We reduce the model by [30,42] and focus our model on the inter-

action of the thalamocortical and BG networks (Fig 1) and reproduce the function of the cor-

tico-BG-thalamo-cortical loop in the above two-choice task. The parameter values are shown

in Table 2. The values were taken from previous studies [30,42] with a few minor modifica-

tions that allow for both robust instrumental conditioning as well as reversal learning.

Specifically, equations for the D1 and D2 MSN neurons reproduce their balanced excitation

by cortical inputs in vivo [21,55]. The balance is supported by a number of complex mecha-

nisms, from differential effects of DA on excitability of the D1 and D2 MSNs [56] to their lateral

inhibition and contribution of striatal fast spiking interneurons [32]. These mechanisms are

very hard to implement in a rate model, and we calibrate the D1 and D2 MSN equations identi-

cally to reflect the balance. The balance is perturbed in the PD DA depleted state (see below).

Parkinsonian BG state

The neuropathology of Parkinson’s Disease (PD) is well-understood: it begins with the

destruction of the dopaminergic neurons in the SNc [57,58]. Further, the disease is accompa-

nied by a decreased firing rate of the D1 MSNs [59,55], GPe [60–62], and PMC [63] as well as

increased firing rates in the D2 MSNs [59,55], STN [64,65], and GPi [66,60,67]. We induced

an in silico mild Parkinsonian state in our model by suppressing SNc output by 70% and

changing synaptic weights along with tonic drives [32,58,68–75] as outlined in Table 3. There

Table 2. Parameters of the healthy BG model state.

Parameter Value used in this model

inputpfc 3.0

wPFC� D1m
& wPFC� D2m

Randomly set between 0 and 0.001, updated after each trial

wPMC−D1 2.0

wPMC−D2 2.0

drGPe 1.6

wD2−GPe 2.0

drSTN 0.8

wGPe−STN 1.0

drGPi 0.2

wD1−GPi 1.4

wSTN−GPi 1.6

drPMC 1.3

wPFC� PMCm
Initial 0; varies with trials

wGPi−PMC 1.8

wPMCm � PMCn
1.6

wSTN−GPe 0.4

wHD 0.3

λ 0.0005

λCM 0.0005

https://doi.org/10.1371/journal.pone.0228081.t002
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are multiple mechanisms that beak the activation balance of D1 and D2 MSNs in the DA

depleted state [56]. All of them lead to the net increase in the activation of the D2 MSNs and

decreased activation of D1 MSNs [32]. Thus, we model these changes by decreased synaptic

excitation of D1 MSNs and increased synaptic excitation of D2 MSNs (Table 3).

Huntington’s BG state

The pathology of Huntington’s Disease (HD) is less well-understood; however, it is clear that

there is a progression of the disease from chorea (involuntary, jerky movement) at its onset to

akinesia (loss of the power of voluntary movement) at its conclusion [76]. We modeled the

chorea phase (Grade 2 HD) by weakening the D2 MSN-GPe connection by 75%, weakening

the D1 MSN-GPi connection by 35%, and decreasing the PFC and PMC inputs to account for

destruction of the cortices [76,77]. These percentages are gathered from the physiological

observations of Reiner et al. [76]. The resulting parameters are shown in Table 4.

Numerical simulations

Our model was coded in MATLAB. We considered a trial to last 750 msec, and at the end we

register the activity of each neuron in the circuit. We chose to cutoff trials at this point because

it was sufficient to guarantee that the neural activity converges to a steady state. An exception

is a case when neural activity does not approach a steady state and remains oscillatory, which

we also found in this study. We update strengths for the plastic synapses after each trial.

Finally, we reset the initial activity of the neurons to be at randomized levels at the beginning

of each subsequent trial. We ran simulations consisting of 500 such trials. The code is available

in ModelDB database http://modeldb.yale.edu/261616.

Results

We simulated the same standard two-choice IC and reversal task in three conditions: Healthy,

Parkinsonian, and Huntington’s BG. Fig 1 presents a schematic diagram of nuclei and

Table 3. Changes in the parameters of the model that reproduce Parkinsoninan BG state.

Parameter Value in Healthy state Value in mild Parkinsonian state Justifying literature

wPMC−D1 2.0 1.25 [57,32,53]

wPMC−D2 2.0 2.75 [57,32,53]

wD2−GPe 2.0 2.4 [67–69]

wGPe−STN 1.0 1.2 [70–72]

drSTN 0.8 1.0 [62,63]

drGPi 0.2 0.25 [58,64,65]

wD1−GPi 1.4 1.1 [58,64,65]

wSTN-GPi 1.6 2.0 [58,64,65]

wSTN−GPe 0.4 0.5 [73]

https://doi.org/10.1371/journal.pone.0228081.t003

Table 4. Changes in the parameters of the model that reproduce Huntington disease state.

Parameter Value in Healthy state Value in Grade 2 HD State Justifying literature

input_pfc 3.0 0.8 (74,75)

wPMC−D1,2 2.0 1.5 (74,75)

wD1−GPi 1.4 0.9 (74,75)

wD2−GPe 2.0 0.5 (74,75)

https://doi.org/10.1371/journal.pone.0228081.t004
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connections within the BG and their connections with cortices. The model is described in

detail in Materials and Methods. The models received a stimulus (CS) that activates prefrontal

cortical (PFC) neurons for all 500 trials. We say that the network chooses action 1 if the activity

of the premotor cortical (PMC) neural group 1 exceeds the activity of the PMC group 2 by 0.1.

The comparison of the activity levels is made at the end of each trial. For reversal training,

after action 1 is rewarded in trials 1 through 199, for trials 200 through 500, action 2 was

rewarded instead. We analyze and compare the learning and reversal performance in the three

model states below.

Healthy BG facilitates learning of rewarded choices

Fig 2A shows choices made in the simulations: a higher activity of the PMC1 manifests choice

1 and vice versa. The graph shows the activity at the end of each trial, which is taken to be 750

msec long. On early trials, the choice is made randomly due to random initial conditions in

the PMC network and mutual inhibition of PMC1 and PMC2. This reproduces the exploration

phase, where the information about reward is collected [78,79]. The modeled animal receives

an unexpected reward every time it chooses action 1 (PMC1 on top). Within several trials, the

system starts to consistently choose the rewarded action, although a few exploratory deviations

may be made after that. This fast initial learning replicates experiments and is thought to occur

so fast because animals are pretrained first on a single choice task (e.g. to press a single lever

Fig 2. Healthy BG facilitates learning of the initial task and reversal. Trial-by-trial dynamics of the PFC activity and underlying modulation

of synaptic weights in the Healthy BG model. Trials 1–199:initial learning; trials 200–500: reversal (A) A higher activity of PMC1 (blue)

manifests choice 1, whereas higher activity of PMC2 manifests choice 2. (B) Synaptic weights of the PFC to striatum connections. (C) Synaptic

weights of the PFC to PMC connections. (D) and (E) Percentage correct trials over 25 trials at the start and the end of the initial learning and

reversal learning respectively. The scores were averaged over 10 simulated animals.

https://doi.org/10.1371/journal.pone.0228081.g002
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for reward). On trial 200, we switch the simulated task to reversal: action 2 is rewarded instead.

This quickly leads to reestablished exploratory behavior, and then locks the system to the

rewarded choice, with occasional exploratory returns to choice 1. Fig 2E shows performance

improvement over reversal learning that matches experiments [29]. As explained below, our

model allows for detailed analysis of the mechanism of this learning.

Two mechanisms facilitate learning of the rewarded choice–one fast and one slow. The

first mechanism is the potentiation of the PFC-to-striatum synaptic connections (Fig 2B).

Since the animals are pre-trained on single choice task, they expect a reward, and a reward

omission creates a negative RPE (unexpected punishment; Fig 3) encoded by SNc DA signal-

ing that potentiates PFC connections to all D2-MSNs (Fig 2B). Importantly, whereas the DA

signal itself is not selective for MSNs specific to the rewarded action, DA-mediated potentia-

tion of PFC-MSN synapses is selective. What makes potentiation selective is the level of acti-

vation of the corresponding MSN: in the initial trials the reward is omitted if choice 2 is

selected, that is when PMC2 activity is greater, and, consequently, MSNs selective to choice

2 are activated more (due to static synaptic connections from PMC to MSNs specific for

each choice). Since synaptic plasticity explicitly depends on the activity of the postsynaptic

neuron, PFC-to-D2-MSN2 connections are potentiated much more strongly than D2-MSN1

connections (Fig 2B purple vs. yellow). Then, every choice that is not followed by the

expected reward activates the corresponding indirect pathway (i.e. D2-MSN2), which excites

the downstream GPi2 neurons, and consequently inhibits the PMC2 activity. This blocks the

nonrewarded action and helps to lock the choice to the rewarded action.

Simultaneously, reward omission reduces expected reward, and the next rewarded trial

results in positive RPE and leads to potentiation of the connections to D1-MSNs (Fig 2B blue).

This further selectively activates D1-MSNs responsible for action 1. The mechanism for this

selectivity is the same: the reward is granted only if choice 1 is selected, that is when PMC1

activity is greater, and, consequently, the MSN corresponding choice 1 is activated more (Fig

4). The increased activity level of D1-MSN1s selectively inhibits downstream GPi1 neurons

Fig 3. Reward, expected reward (A), and the RPE (B) during initial learning and reversal trials in the model with healthy BG.

As before, reversal starts at trial 200 (vertical black line).

https://doi.org/10.1371/journal.pone.0228081.g003
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and, consequently, disinhibits the PMC1 neural group (Figs 2A and 4). Thus, due to direct

excitation from the PFC associated with the stimulus, activation of D2-MSNs associated with

choice 2 and D1-MSNs associated with choice 1 increase. Co-activation of the two mecha-

nisms is sufficient to lock the choice to the rewarded action. Note that the complex pattern of

co-activation of D1 and D2 MSN populations is in agreement with the recent literature

[21,80].

During subsequent repetitions of the same trial, the PFC-MSN connection strength starts

to decrease and approaches zero (Fig 2B trials 40 to 200). However, the persistence of the

rewarded choice remains intact (Fig 2A). The mechanism for this is the growth of direct

PFC-PMC1 connections (Fig 2C) via classical reward-independent Hebbian synaptic plastic-

ity: the two neural groups are co-active most of the time. This transition from PFC-MSN to

PFC-PMC connections as a robust supporting mechanism for the rewarded choice occurs

after the number of repetitions exceeds approximately a hundred (Fig 2). In these later trials,

the PFC-MSN connection strengths are decreased, but the choice remains locked to the

rewarded action. Therefore, the model predicts that direct cortico-cortical connections are

responsible for the choice of the rewarded action after long training.

We next analyzed the behavior of the model when we began rewarding a choice different

from the choice the model had been previously conditioned to make; this learning task is called

reversal learning [81]. Beginning at trial 200, we rewarded the model for selecting the other

action (choice 2). Thus, starting at trial 200 the model mimics omission of a reward (unex-

pected punishment) for selecting action 1. This punishment potentiates synaptic connections

from the PFC to D2-MSNs associated with action 1 (D2-MSN1, Fig 2B yellow), and, slightly

later, to D1-MSNs associated with action 2 (D1-MSN2, Fig 2B red). This engagement of both

direct and indirect pathways offsets the model bias for action 1 and quickly sends the model

into another exploratory phase. As Fig 2A demonstrates, between trials 200 and 300 the model

is randomly choosing between the two actions. It is important to note that, in accordance with

others’ findings [82,83], this second exploratory phase lasts longer than the initial exploratory

phase. During reversal, the new potentiation of PFC-MSN connections is not enough to

Fig 4. Within-trial dynamics of neural activity in the model with healthy BG. The network is biased towards option

1 as the PFC-D1-MSN1 and PFC-D2MSN2 connection weights are both set at 0.7, which corresponds to a trial in late

initial learning phase (~100). Activation of the D1-MSN1 group inhibits GPi1 neurons, and thus disinhibits PMC1.

GPi2 neurons remain excited and inhibit PMC2.

https://doi.org/10.1371/journal.pone.0228081.g004
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effectively overcome the bias for the initially learned choice and ensure choosing the newly

rewarded option. The reversal exploratory phase ends only when the PFC-PMC2 connections

become as strong as PFC-PMC1 and remove the bias (Fig 2). Thus, the longer exploratory

phase during reversal occurs because the model must first overcome its bias for the previously

learned choice and then develop a new stimulus-choice 2 association. The lengths of the

exploratory phases matches experimental results [82,83].

After the onset of reversal learning, the system continues choosing option 1, even though

it’s not rewarded, due to the potentiated PFC-PMC1 connection. This generates a negative

reward prediction error (Fig 3) and potentiates PFC connections to the D2-type neurons asso-

ciated with action 1 (D2-MSN1; Fig 2B yellow). The connection of PFC to D1-MSN2 lags by

several trials (Fig 2B, red), during which the exploratory phase begins and allows finding the

new rewarded option. Both the initial and the reversal learning engage direct pathways at a

greater strength than the indirect (Fig 2B, yellow and red) because the model reflects a greater

plasticity rate for the cortical connections to D1 than to D2 MSNs.

Mild parkinsonian BG: Impeded learning and spontaneous oscillations

In our Parkinsonian BG mode, the indirect pathway is strengthened by parameter changes

reflecting physiological data. Our simulations (Fig 5) show drastic difference in dynamics of

the PMC neurons during initial learning and reversal in the model with mild-parkinsonian

BG. During both phases, learning is severely impaired. First, the choice remains random for

approximately the first 50 trials. Second, the model does not reliably choose the rewarded

Fig 5. Decreased learning performance and increased variability of PMC activity in the model with mild-parkinsonian BG.

Trial-by-trial dynamics of PMC activity (A) and underlying modulation of synaptic weights (B,C) in the model with mild-

parkinsonian BG state. Notation is the same as in Fig 2. Note the difference in scale in panels (B) and (C) compared to Fig 2. (D) and

(E) present performance at the beginning and the end of the initial learning and reversal respectively. The scores were averaged over

10 simulated animals.

https://doi.org/10.1371/journal.pone.0228081.g005

Basal ganglia role in learning and execution of rewarded choices

PLOS ONE | https://doi.org/10.1371/journal.pone.0228081 February 10, 2020 12 / 26

https://doi.org/10.1371/journal.pone.0228081.g005
https://doi.org/10.1371/journal.pone.0228081


option even after this period, although the rewarded option is chosen on a much greater num-

ber of trials (Fig 5A blue above red in the initial learning and vice versa in the reversal). Third,

the activity of the PMC neurons is overall reduced compared to that in the model with healthy

BG, and the trial-to-trial variations of this activity are drastically increased, even when only tri-

als with the same choice are considered.

The underlying dynamic of the synaptic weights is also significantly altered. During both

initial learning and reversal, the activation levels for both direct and indirect pathways (Fig 5B)

is much lower than in the model with healthy BG (Fig 2B). The latter follows directly from the

reduced SNC signaling (by 70%), which decreases the RPE and, thus, impedes potentiation of

PFC-MSN connections. Since both PMC neural groups are active at a similar level, both con-

nections from PFC are potentiated (Fig 5C), and the system does not develop a preference for

the rewarded choice. After trial 50, the rewarded choice starts to prevail as the PFC-PMC con-

nections reflect the preference for choice 1. However, the PFC-PMC1 connection does not

achieve the level reached in the model with healthy BG (Fig 2C) within the 200 trials desig-

nated for initial learning. Hence, exploration between the choices persists for all 200 trials, and

the prevalence of the rewarded choice requires the persistent activation of PFC-MSN connec-

tions. Therefore, the model with mild parkinsonian BG is capable of learning the choices, but

the effective learning rate is much lower.

Reversal learning has been shown impaired in PD conditions [84–86]. In the model, the

low levels of PFC-PMC connections persist into the reversal phase and never reach the levels

shown by the model with healthy BG even though plasticity rules of the PFC-PMC connec-

tions remain the same in both models. Therefore, our modeling predicts that the mild-parkin-

sonian BG does not allow for the proper potentiation of the PFC-PMC connections, and this

leads to impaired learning. Learning based on cortical synaptic potentiation simply reflects the

choice frequency because the PMC group responsible for the choice fires together with the

PFC. One reason for the lack of proper potentiation is that the models with parkinsonian BG

cannot maintain the rewarded choice. Experimentally, the inability to maintain the choice was

observed in 6-OHDA-leasioned rats [86]. The model also reproduces perseveration of the pre-

viously correct choice as shown experimentally [86] to contribute to the low performance at

the very beginning of reversal (trials 1–5). Interestingly, the reversal phase starts with activa-

tion of both indirect pathways simultaneously (Fig 5B, purple and yellow). This suppresses the

activity of both PMC neural groups, blocks any choice (Fig 5E) and blocks changes in the

PFC-PMC synaptic weights. Only after some 50 trials, the blocking signal for choice 2 is

removed (Fig 5 purple). The abrupt drop in the connection weight to the D2-MSN2 group is

caused by positive RPE following the choice of a rewarded option. The choice is made by

chance, and most of the previous trials were not rewarded because PMC activity was sup-

pressed, and the probability of one PMC group to significantly exceed the activity of the other

was low. Thus, the model with mild-parkinsonian BG predicts that the exploratory phase at

the beginning of the reversal learning is replaced by blockade of any choice, and this further

impedes learning.

Perhaps the most interesting change in the model with parkinsonian BG is the drastic

increase in the trial-to-trial variability of the PMC neurons (Fig 5A). To explain the mecha-

nism of this variability, we considered within-trial dynamics of activity for all neural groups in

the model. Fig 6 shows these dynamics for the PMC, GPe and STN neural groups in the

healthy vs. parkinsonian BG models. In the healthy case activity levels come to an equilibrium,

while in the parkinsonian case, they engage in persistent oscillations. The oscillations arise

from the negative feedback loop that the BG, and in particular its indirect pathway, provides

for the activity of each PMC neural group. Indeed, the static PMC to D2 MSN connections,

which constitute this negative feedback, are stronger in the parkinsonian case (wPMC−D2, in
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Table 3). The period of these oscillations is approximately 150 ms, which is 6.7 Hz. No potenti-

ation in the PFC-PMC and PFC-MSN connections within the ranges in Fig 5B and 5C sup-

press the oscillations. Therefore, the simulations predict that the trial-to-trial variability of the

PMC neurons in the model with parkinsonian BG is caused by robust within-trial oscillations

in the activity of all neuron groups in the model.

In order to model the impact of surgical interventions on performance and learning in PD,

we performed additional simulations of the PD model in which the BG signal to PMC was

ablated from trial 150 till the end (Fig 7). This directly models GPi lesions, which was the first

standard surgical treatment for PD, and also mimics DBS treatment, which is suggested to

reduce GPi output (see Discussion). In this period, the variability of the PMC activity vanishes

completely. Furthermore, the PFC-striatal connections no longer exert any influence on the

choices, but the PFC-PMC connections are strong enough to lock the choice to the rewarded

option, and the cortical connections increase further at a greater rate. After the reversal on

trial 200, however, the changed values of the choices remain unnoticed by the system, the

choice remains locked on the now unrewarded option, and the cortical connections support-

ing this choice keep rising. In this state, behavior improves, but learning is impaired.

Fig 6. Within-trial dynamics of neural activity in the model with healthy (left) and parkinsonian (right) BG. Panels A, B, and C

show firing rates for PMC,D1 MSNs and D2 MSNs respectively. In the healthy case, the firing rates equilibrate within 500 ms. In the

parkinsonian case, oscillations in the firing rate emerge and persist. The anti-phase for the oscillations in the neural groups

corresponding to the choice 1 and 2 is due to mutual competition (inhibition) between PMC1 and PMC2 groups. This synchrony

may not persist for more complex tasks and setups. All plastic synaptic connections are set to zero to simulate the state of no bias

towards any choice. Note different BG populations than in Fig 4 shown to focus on the contribution of the indirect pathway

responsible for oscillations.

https://doi.org/10.1371/journal.pone.0228081.g006
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Grade 2 Huntington’s disease BG state: Persistent exploratory behavior

If the above case of Parkinson’s disease is associated with strengthening the indirect path-

way, in the case of Huntington’s disease the connections in the indirect pathway become

weaker (Table 4). The major difference with the healthy BG model is that the trial-to-trial

dynamics of the PMC neural groups looks like the exploratory phase never ends (Fig 8A). At

the same time, we see from the synaptic weights (Fig 8B and 8C) that choice-reward contin-

gencies are learned almost as effectively as in the healthy case (notice similarity with Fig 2),

although the synaptic weights are somewhat lower. The synaptic weight dynamics is qualita-

tively similar to the healthy case because the plasticity rules stay the same. The differences

are the persistence of the potentiated PFC-MSN connections for the duration of initial/

reversal training similar to the parkinsonian case and the activation of the indirect pathway

for choice 2 lingering at the beginning of the reversal phase (Fig 8B purple). The former,

however, is not a cause but rather a consequences of the continuous exploratory choices that

bring no reward. Therefore, despite the efficacious learning (Fig 8C), choice behavior is

impaired relative to control (Fig 8A).

The cause for the persistent exploratory phase is the positive PMC-BG feedback loop

through D1 MSNs, which is not balanced by the D2 MSN pathway. Thus, activation of the D2

Fig 7. In the PD state model, the variability of PMC activity and switching between choice 1 and 2 cease shortly after the

treatment onset. Trial-by-trial dynamics of the PMC activity and underlying modulation of synaptic weights in the PD BG model

with simulated treatment starting at trial 150. Same notation as in Fig 2. (A) The levels of PMC1 and PMC2 activity (choice 1 vs. 2) at

the end of each trial (B) Synaptic weights of the PFC to striatum connections reflect rewarded choices. (C) Synaptic weight of the

PFC to PMC1 connection keep growing after treatment onset, and during reversal.

https://doi.org/10.1371/journal.pone.0228081.g007
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MSN pathway cannot robustly stop the unwanted action. Indeed, an occasional increase in the

activity of the PMC2 neural group, which represents a non-rewarded action, excites the corre-

sponding D1 MSN group, and through inhibition of GPi2 activity, further increases the PMC2

activity (Fig 9). The reduced connectivity in the D2 MSN pathway makes the GPi neural activ-

ity the same for choices 1 and 2 (Fig 9) and excludes the BG from the competition between the

choices. This leads to occasional choices of the non-rewarded option, and our simulations

show that this behavior is robust with respect to growing PFC-PMC and PFC-MSN connec-

tions (Fig 8). Therefore, the lack of balance between direct and indirect pathways in the model

of Huntington’s disease causes persistent random switching from rewarded to non-rewarded

choice after both initial learning and reversal.

In order to model the impact of BG DBS or surgical interventions on performance and

learning in HD, we also performed additional simulations of the HD model in which the BG

signal to PMC was ablated from trial 100 till the end (Fig 10). The random switches between

the choices cease shortly after, but not at the onset of the treatment. The response to the treat-

ment is very similar to that in the PD case (Fig 7). In this period, the PFC-striatal connections

no longer exert any influence on the choices, but the PFC-PMC connections are strong enough

to lock the choice to the rewarded option. After the reversal on trial 200, however, the changed

values of the choices remain unnoticed by the system, the choice remains locked on the now

unrewarded option, and the cortical connections supporting this choice keep rising. Therefore,

during DBS, or after surgical interventions ablating BG output, behavior improves, but learn-

ing is impaired in HD as well as in the PD state.

Fig 8. Random switches between rewarded and unrewarded options persist in the model with Huntington state BG. Trial-to-

trial dynamics of PFC neural activity (A) and underlying dynamics of synaptic weights (B,C). The notation is the same as in Fig 2.

(D) and (E) present performance at the beginning and the end of the initial learning and reversal respectively. The performance

scores were averaged over 10 simulated animals.

https://doi.org/10.1371/journal.pone.0228081.g008
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Discussion

Our model implements the cortico-BG-thalamo-cortical loop function in a standard 2-choice

instrumental conditioning task. We have shown that potentiation of cortico-striatal synapses

enables learning of rewarded options. However, later these synapses become redundant as

direct connections between prefrontal and premotor cortices (PFC-PMC) potentiate by Heb-

bian learning. The model shows that disease-related imbalances of the direct and indirect path-

ways in the BG impairs learning and suggests that these imbalances may also impede choices

that have been learned previously, in spite of BG redundancy for those choices.

Our model of the parkinsonian state reproduces several major behavioral and electrophysi-

ological features documented experimentally: First, the overall PMC activity is diminished in

Fig 9. Occasional choice of the nonrewarded option made in the model with Huntington state BG. Within-trial

dynamics of PMC, D1 MSN, and GPi neural activity is shown. The greater activity of PMC2 groups signifies that the

action 2 is chosen, even though choice 1 is made preferable in the model by potentiating PFC-PMC1, PFC-D1 MSN1

and PFC-D2 MSN2 connections: WPFC1−PMC1 = 0.04, WPFC1−D1MSN1 = 1,WPFC1−D2MSN2 = 1. The rest of the

connections remain at zero.

https://doi.org/10.1371/journal.pone.0228081.g009
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the PD state, consistent with PD studies [68]. Further, the model predicts that this activity is

lowest at the beginning of the reversal due to aberrant engagement of the indirect pathway,

which can be displayed as stronger bradykinesia and very low task performance scores. Rever-

sal learning has been shown impaired in PD conditions [84–86]. Perseveration of the previ-

ously correct choice and impairment in maintaining of the new choice has been shown

experimentally to contribute to the low performance [86], and our model reproduces these

components as well. We have not found experimental evidence for the prediction of stronger

bradykinesia. However, PD physiology is diverse and such bradykinesia may be evident at its

more advanced stages. We tested the model for a range of parameters, and the duration of the

choice blockade increases gradually as the model transitions from the healthy to the Parkinso-

nian state. Additionally, the block may be interrupted due to fluctuations in neuronal activity,

and such perturbations as changes in the environment or forced choice trials would end the

blockade phase. Second, the model shows robust oscillations in the activity of the cortico-BG-

thalamo-cortical loop in the PD state. The frequency of these oscillations is about 6 Hz, which

Fig 10. In the HD state, the random switches between choice 1 and 2 gradually cease after the treatment onset. Trial-by-trial dynamics of the PMC

activity and underlying modulation of synaptic weights in the Huntington BG model with simulated treatment starting at trial 100. Same notation as in

Fig 2. (A) The levels of PMC1 and PMC2 activity (choice 1 vs. 2) at the end of each trial (B) Synaptic weights of the PFC to striatum connections reflect

rewarded choices. (C) Synaptic weight of the PFC to PMC1 connection keep growing after treatment onset, and during reversal.

https://doi.org/10.1371/journal.pone.0228081.g010
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is in the theta band. An increase in the EEG theta band is a marker of PD-related cognitive

decline [87,88]. The oscillations are generated by a negative feedback branch of the loop

through the indirect pathway as suggested before [40,89]. The hyperdirect pathway also con-

tributes to this negative feedback and may support oscillations. Our simulations show that the

oscillations cause multiple choice errors and, consequently, impede task performance and

learning. Parkinsonian-state oscillations in the BG, although in the beta band and caused by a

different mechanism, has been suggested to affect decision making by another model [90].

In the HD state, our model displays persistent randomly occurring choices of the unre-

warded option, especially frequent after the reversal. This would register as impaired learning

in behavioral tests, which is consistent with experimental results for cognitive [91,92] and

motor tasks [93,94] in HD patients in the early stages of the disease. Furthermore, the model

suggests that performance for previously learned tasks is also reduced by approximately 20%.

Therefore, our model reproduces impairments of the previously learned actions docu-

mented in BG-affecting diseases like PD and HD as well as after certain BG lesions [5,25,95].

However, surgical and DBS interventions in PD and HD patients do not impair, but rather

restore motor function [26–28,96]. This raises the question: how can these two lines of evi-

dence therefore be reconciled?

Learning in the model consists of two phases: BG-based and cortex-based. In a faster BG-

based phase, the connections from PFC to MSNs are potentiated according to the RPE sig-

nal. The BG output inhibits choices with negative RPE and disinhibits those with positive

RPE. Once the behavior is learned, the RPE vanishes, and the PFC-MSN connections decay

to zero. The future choices are supported by the slower cortex-based learning phase: The

connections from PFC directly to PMC are potentiated based on the Hebbian mechanism.

Our simulations show that, even after the cortico-cortical connections increase to the levels

ensuring robust choice of the rewarded option in the healthy state, both of the disease mod-

els are unable to make robust choices. Thus, behaviors that no longer need the BG are

impaired. In accord with this result, 6-OHDA-lesioned rodents cannot maintain the correct

choice, especially after reversal [86]. The model shows that it is an abnormal BG output that

impairs the choices. Indeed, the BG output to the PMC does not vanish even when the

behavior is learned and the BG no longer receives any RPE signal. In this case, due to the

inputs from the PMC, the healthy BG disinhibits the previously learned choice, i.e. it con-

forms with the PFC-PMC associations. This disinhibitory function is impaired in both PD

and HD, as well as after striatal lesions [5,25,95]. According to this prediction, disruption of

the BG output would improve performance on previously learned tasks. Indeed, our model

of a lesion of BG output demonstrates strengthening of performance on previously learned

choices. Thus, GPi lesions were predominantly used in early surgical treatments of the PD,

and sometimes are used now [97]. Additionally, DBS was successfully used in PD [26–28]

and tested in HD patients [96]. The mechanism for DBS is not fully known, but thought to

functionally lesion the excitatory input to GPi from STN and reduce GPi activity either by

synaptic depletion or plasticity [40,98]. Therefore our model reconciles how specific GPi

lesions that abolish BG output, or DBS that reduces the impact of this output, restore previ-

ously learned behaviors that were lost due to disrupted BG function, however this comes at

the expense of decreased cognitive flexibility. A similar solution was suggested in an exten-

sive computational study by Scholl and colleagues [36,41,99]. However, our model also com-

bines the functional alterations with aberrant neural oscillations in PD.

The combination of the two learning mechanisms has been proposed and explored previ-

ously both experimentally and computationally [29,30,42]. Such combinations have been

shown to be essential for cortical sensorimotor control, explained how reinforcement learning

can shape cortical plasticity, and been used in brain-machine interface [100–102]. Here, we

Basal ganglia role in learning and execution of rewarded choices

PLOS ONE | https://doi.org/10.1371/journal.pone.0228081 February 10, 2020 19 / 26

https://doi.org/10.1371/journal.pone.0228081


demonstrated how cortical learning can be indirectly disrupted in PD and HD conditions. The

three types of dynamics, healthy-, PD- and HD-like behavior persist in wide ranges of parame-

ters in the model, whereas specific quantitative features, such as performance scores, show

gradual parameter dependence. We tested multiple model manipulations, such as ablation of

the hyperdirect pathway, or the STN-GPe feedback pathway to prove model robustness and

mechanisms supporting dynamical properties of the model (data not shown). We showed that,

in pathological states, ablation of the BG output may reveal hidden cortical learning and drasti-

cally improve performance. Cortical learning simply reflects the average of past choices regard-

less of the reward. If the switch to reversal occurs much earlier, the model predicts that cortical

learning is not sufficiently engaged, and reversal takes fewer trials. By contrast, the model pre-

dicts that after sufficiently large number of rewarded trials, cortical learning may lock the

choice even if it becomes non-rewarded, or even punished. Such aversion-resistant behavior is

shown in substance abuse disorders [103,104]. The ability of the system to stop an unwanted

behavior depends on the strength of the cortical vs. BG inputs to the PMC. To avoid aversion-

resistant behavior for non-addictive, natural reinforcers, it’s necessary to assume that the cor-

tico-cortical synaptic plasticity is further limited to the low values achieved in our simulations.

Homeostatic mechanisms that counteract Hebbian potentiation are plentiful [105], and mis-

functioning of these mechanisms may, therefore, lead to aversion-resistant behaviors.

On the other hand, our model will forget a choice that was rewarded once tens of trials in

the past due to the decay in the cortico-striatal connections. While there may be situations in

which rare decisions are kept in the memory, which are not reproduced by the model, these

situations are probably kept by other memory systems (e.g. emotional memory). Other limita-

tions of our mode are mostly related to the firing rate formalism: First, the formalism does not

allow for direct modeling of the eligibility traces necessary for stimulus-reward association,

and we account for that by PFC activity that persists for the duration of the trial. Second, the

D1 and D2 MSNs in the model reproduce their balanced excitation by cortical inputs in vivo

[21,53]. The balance is supported by a number of complex mechanisms, from differential

effects of DA on excitability of the D1 and D2 MSNs [54] to their lateral inhibition and contri-

bution of striatal fast spiking interneurons [32]. These mechanisms are very hard to implement

in a rate model, and we calibrate the D1 and D2 MSN equations identically to reflect the bal-

ance. The balance is perturbed in the PD DA depleted state (see Methods). Third, reciprocal

inhibition between actions is implemented only at the PMC level, and omitted at the GPe level

as STN-GPe network dynamics was shown to be only weakly dependent on this inhibition

[45,46]. Fourth, the model does not differentiate between premotor cortex and thalamus

because their interaction is a very complex separate direction. Finally, the oscillations that the

model shows in the PD state are highly regular in spite of the noise added to all model compo-

nents. The firing rate model is defined in terms of averaged firing rates of neural populations,

and therefore, does not aim to reproduce all the noise. By contrast, it reproduces dynamical

mechanisms that underlie robust deterministic processes that determine signal processing in

the networks.

BG is suggested to be one of the main brain structure that determines action selection in

multiple tasks and contexts. Hence, BG dysfunctions are shown to be linked to a broad spec-

trum of diseases, from Parkinson, to drug abuse. Traditionally, research effort on these dis-

eases are disconnected from one another, even though they concern the same circuitry.

Combining these efforts, in particular by modeling, will give us a more comprehensive pic-

ture of mechanisms involved in action selection at different levels of the brain circuitry.

Modelling such complex mechanisms require connecting multiple brain regions, including

cortical and subcortical. As a future direction, this model will be used as a building block in

simulations of this circuitry. In particular, separating the dorsomedial and dorsolateral
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striatal circuits (and, correspondingly, the cortical regions that project to these circuits), will

allow one to address the development of goal-directed and habitual behavior in simulations

as the two parts of the striatal circuitry are associated with the two distinct types of behavior

[106]. One can further separate thalamic and cortical circuits to take into account the contri-

bution of their interaction to action selection [107]. Finally, the model may be generalized

into more complex tasks with multiple stimulus-response mappings. Thus, the simplicity of

our model allows for qualitative explanation of mechanisms and, simultaneously, building

large scale models that involve multiple brain regions.

Altogether, we have modeled the function of the cortico-BG-thalamo-cortical loop in a 2

choice instrumental conditioning task and shown that disbalance of the direct and indirect

pathways is the mechanism by which this function is disrupted in HD and PD conditions. The

model predicts that, after long training, direct cortico-cortical connections are responsible for

the choices, and the cortico-BG-thalamo-cortical loop conforms to previously learned choices.

The model also predicts that reversal is easier to achieve after short training of the initial con-

tingency, and may be greatly impeded after very large number of repetitions of the initially

rewarded choice. We have predicted how in pathological states, when BG impedes these

choices, GPi lesion or DBS restores them, but completely disrupts learning of new behavior.

Along with other computational studies [36,98,99], our results further reconcile the apparent

contradiction between the critical involvement of the BG in execution of previously learned

actions and yet no impairment of these actions after BG output is ablated by lesions or reduced

by DBS.
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