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Abstract

Effective administration of traditional cytotoxic chemotherapy is often limited by off-target 

toxicities. This clinical dilemma is epitomized by cisplatin, a platinating agent that has potent 

antineoplastic activity due to its affinity for DNA and other intracellular nucleophiles. Despite its 

efficacy against many adult-onset and pediatric malignancies, cisplatin elicits multiple off-target 

toxicities that can not only severely impact a patient’s quality of life, but also lead to dose 

reductions or the selection of alternative therapies that can ultimately affect outcomes. Without an 

effective therapeutic measure by which to successfully mitigate many of these symptoms, there 

have been attempts to identify a priori those individuals who are more susceptible to developing 

these sequelae through studies of genetic and nongenetic risk factors. Older age is associated with 

cisplatin induced ototoxicity, neurotoxicity and nephrotoxicity. Traditional genome-wide 

association studies have identified single nucleotide polymorphisms in ACYP2 and WFS1 
associated with cisplatin-induced hearing loss. However, validating associations between specific 

genotypes and cisplatin-induced toxicities with enough stringency to warrant clinical application 

remains challenging. This review summarizes the current state of knowledge with regard to 

specific adverse sequelae following cisplatin-based therapy with a focus on ototoxicity, 

neurotoxicity, nephrotoxicity, myelosuppression and nausea/emesis. We discuss variables (genetic 

and nongenetic) contributing to these detrimental toxicities, and currently available means to 

prevent or treat their occurrence.

Introduction

Cisplatin and the platinating agents represent one of the most widely used and successful 

groups of cytotoxic drugs worldwide. Each year, more than 5.8 million patients are 

diagnosed with cancers for which first-line therapy potentially includes platinating agents 

(colon, rectum, cervix, endometrium, bladder, stomach, head and neck, lung, esophagus, 

pancreas, osteosarcoma, ovary, testis, and childhood cancers) (1). Although cisplatin elicits 

potent antineoplastic activity through the formation of DNA crosslinks (2), the agent also 
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triggers several severe off-target toxicities (Table 1), some of which affect patients acutely 

and resolve after treatment, and some which display little reversibility (2, 3). Although not 

the focus of this review, mechanisms by which cisplatin elicits these toxicities are listed in 

Table 1. For a more comprehensive description, refer to previous reviews for ototoxicity (4–

7); neurotoxicity (8, 9); nephrotoxicity (10–12); myelosuppression (13); and nausea/emesis 

(14, 15).

Due to improved survival rates, most notably in testicular cancer and in pediatric 

malignancies, there are a significant number of survivors living with these severe adverse 

sequelae that affect quality of life. The non-uniformity of these toxicities in patient 

populations has been the subject of much research in efforts to circumvent their occurrence. 

Figure 1 provides an overview of nongenetic risk factors contributing to cisplatin-induced 

toxicities. Of particular interest is the association between older age and an increased 

susceptibility to several cisplatin-induced toxicities. Although the exact mechanisms of this 

association have not been explicitly studied, it is known that drug clearance can decrease 

with age, particularly when elimination is mediated by renal clearance (16). Since cisplatin 

is eliminated predominantly through the kidney, and is also known to be highly nephrotoxic, 

the agent ultimately reduces the ability for platinum to be excreted from the body (10), 

thereby increasing the likelihood of developing cisplatin-induced toxicities. Further, it is not 

surprising that older adults are associated with cisplatin-induced ototoxicity and 

neurotoxicity because these individuals often experience age-related hearing loss/tinnitus 

(17, 18) and paresthesias/neuropathies (19, 20), and the addition of cisplatin will likely 

exacerbate symptoms.

Variability in patient response can also be explained in part by pharmacogenomics, which 

aims to provide the foundation for genetically guided treatment regimens that maximize 

efficacy and minimize toxicity. Initially developed from candidate gene approaches, 

advances in genomic sequencing technologies over the past decade have enabled agnostic 

genome-wide analyses of patient populations characterized for specific drug response 

phenotypes. Thus, pharmacogenomics has elucidated genetic variability as a key 

determinant in both therapeutic benefit and potential toxicities likely to be experienced 

during cisplatin-based chemotherapy. One of the challenges in pharmacogenomics is that 

most cancers are treated with a multi-drug regimen making it difficult to ascertain the 

genetic variants associated with a specific chemotherapeutic toxicity. This is the case for 

cisplatin, however some toxicities (i.e. ototoxicity and nephrotoxicity) are primarily due to 

cisplatin; therefore the genetic variants identified are most likely associated with cisplatin 

exposure. However, understanding both the functional significance and clinical application 

of these findings remains elusive. Therefore, this review will highlight nongenetic and 

genetic risk factors contributing to cisplatin-induced toxicities, and provide recent data on 

novel therapeutic strategies by which to reduce adverse effects.

Ototoxicity

Cisplatin is associated with irreversible, bilateral sensorineural hearing loss that occurs at a 

much higher rate than other ototoxic drugs. Reports indicate that up to 75–80% of patients 

may experience some degree of hearing loss and 13–18% may develop severe-to-profound 
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hearing loss (21–23). In addition, approximately 40% of cisplatin-treated patients (23) 

experience some degree of tinnitus, which occurs at a significantly higher rate than either the 

general population (15%; (24)), or in comparable cancer patients not given cisplatin-based 

chemotherapy (12%; (25)). The frequency of severe tinnitus is also markedly increased in 

cisplatin-treated patients (13–22%; (23, 25)) with one study noting that 42% of patients 

report tinnitus as a major symptom after dose-intensive cisplatin chemotherapy (25). In 

contrast, severe tinnitus occurs in only 1–2% of the general population (24). Further, cancer 

survivors with hearing loss, tinnitus, and neuropathy are more likely to report poorer quality 

of life than those with neuropathy only (26). Another investigation reported worse perceived 

stress among cancer survivors with tinnitus (27).

Although nongenetic risk factors for cisplatin-associated ototoxicity (CAO) have been 

identified (Figure 1), previous studies have focused almost exclusively on hearing loss 

susceptibility. Further, there have been conflicting results with regard to the importance of 

noise exposure and cumulative cisplatin dose on hearing loss (23, 28, 29). However, in 

pediatric cancer patients, males appear to be more susceptible to cisplatin-induced hearing 

loss than females (p=0.005; (29)). Hypertension has also been identified as a potential risk 

factor for hearing loss in testicular cancer patients, with the association remaining significant 

when controlling for age and cisplatin dose (p=0.0066; (23)).

Recently, the FDA granted sodium thiosulfate (STS) “fast-track designation” to prevent 

cisplatin-related hearing loss in pediatric patients diagnosed with hepatoblastoma based on 

the results of a clinical trial of 109 pediatric hepatoblastoma patients in which 20 g/m2 STS 

was administered intravenously 6 hours after the discontinuation of cisplatin for four 

preoperative and two postoperative courses. Not only did STS treatment reduce grade 1 or 

higher hearing loss incidence by 48% (18 of 55 children (33%) in the cisplatin-STS group 

experienced hearing loss compared to 29 of 46 (63%) in the cisplatin-alone group; relative 

risk, 0.52; 95% confidence interval [CI]: 0.33 to 0.81; p=0.002), but cisplatin-STS conferred 

overall and event-free survival rates comparable to those who did not receive the protective 

agent (30). However, of the 16 serious adverse reactions experienced by patients, 8 were 

likely attributed to STS, including two grade 3 infections, two grade 3 neutropenias, one 

grade 3 anemia leading to transfusion, and two tumor progressions. In addition, the 

otoprotective effect of STS was associated with a large sodium load that must be considered 

in planning therapy. The investigators also cautioned that, despite the use of prophylactic 

antiemetic agents, STS remained emetogenic. These adverse events are in accord with prior 

experiences that note the frequency and severity of STS toxicities (31), and the agent must 

be administered with considerable caution. Although STS has demonstrated potential in the 

pediatric setting among a small subgroup of cancer patients, there has yet to be a large, 

multi-institutional study in adult patients, thereby limiting the potential applicability of the 

agent. Consequently, there remains no FDA approved agent to reduce ototoxicity for the vast 

majority of patients who receive cisplatin.

A number of pharmacogenetics studies have been conducted to identify CAO risk-conferring 

genotypes (summarized in Supplementary Table 1). In a study (32) that utilized a platform 

containing primarily single nucleotide polymorphisms (SNPs) in metabolizing genes, 

genetic variants in TPMT (rs12201199) and COMT (rs9332377) were identified that 
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prompted the FDA to revise their label recommendations in 2012 for pediatric patients given 

cisplatin. However, the modification was rescinded in 2015 due to conflicting evidence of 

association between TPMT genetic variants and cisplatin-induced hearing loss provided by 

two replication studies and a meta-analysis (33–35). The lack of reproducibility in 

pharmacogenomic studies related to cisplatin is likely due to genetic heterogeneity as well as 

heterogeneity in treatment protocols and population substructures, small sample sizes, and 

the use of cranial radiation in combination with cisplatin which could substantially increase 

the likelihood of CAO due to its ototoxic effects (36). Specimen type, handling, sequencing 

method, gene calling, as well as the method of assessment of the particular toxicity being 

studied could also contribute to the lack of reproducibility. This points to the importance of 

replication of these pharmacogenomic studies.

Technological advances have enabled agnostic, genome-wide study designs to identify 

contributing SNPs associated with a selected trait. Contrary to candidate gene studies, such 

alleles are not limited by a priori hypotheses of loci that generally reside in exonic genomic 

regions. If fact, the majority of disease-associated variants identified from genome-wide 

association studies (GWAS) reside in intergenic regions associated with transcriptional 

regulatory mechanisms including expression quantitative trait loci (eQTL) known to 

influence gene expression (37, 38). Chemotherapeutic drug susceptibility-associated SNPs, 

including those for cisplatin-induced cytotoxicity, are more likely to be eQTLs and be 

associated with the expression levels of multiple genes (39).

The first GWAS of CAO in 238 pediatric brain tumor patients identified an association with 

a genetic variant in ACYP2 (rs1872328, hazard ratio (HR)=4.5, 95% CI 2.63–7.69, p=3.9 × 

10−8), and results were replicated in a second cohort of 68 pediatric patients (40). Further, 

increased ACYP2 expression highly correlated with cisplatin sensitivity in lymphoblastoid 

cell lines in vitro (p=6.5 × 10−5), but the genotype at the SNP rs1872328 position was not 

associated with cisplatin sensitivity in vitro, nor was it related to expression of ACYP2 and 

other genes 300 kb within this index SNP. Nevertheless, three studies have replicated this 

association with cisplatin-induced hearing loss in 156 osteosarcoma patients (41), 149 

pediatric cancer patients (42) and 229 testicular cancer patients (43). ACYP2 encodes for an 

enzyme that catalyzes phosphate hydrolysis in membrane pumps, most notably the Ca2+/

Mg2+ ATPase from the sarcoplasmic reticulum of skeletal muscle (44). Importantly, ACYP2 
is expressed in the cochlea for ATP-dependent Ca2+ signaling that is critical for hair cell 

development and has been directly implicated in hair cell damage (45, 46), providing a 

rationale for its association with CAO.

The first GWAS of CAO in adult-onset cancer in 511 testicular cancer survivors identified a 

genome-wide significant SNP (rs62283056; p=1.4 × 10−8) in the first intron of Mendelian 

deafness gene WFS1 (wolframin ER transmembrane glycoprotein) (47). This finding was 

replicated in a Canadian study of 229 testicular cancer patients when evaluating the same 

phenotype, i.e., the geometric mean of hearing thresholds at 4–12 kHz (p=5.67 × 10−3, OR = 

3.2), although it was not replicated using a phenotype of audiologist-defined hearing loss 

(43). This difference in statistical significance based on the definition of hearing loss is 

important to note because it indicates that the same genotype can having varying levels of 

statistical association with a phenotype of interest based on how the trait is defined by the 
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investigators. Nevertheless, the SNP is an eQTL for WFS1 based on the Genotype-Tissue 

Expression (GTEx) project, with the risk (and minor) allele being associated with lower 

gene expression in several human tissues. Using an independent cohort from BioVU (a 

large, de-identified DNA biobank linked to a clinical data warehouse), WFS1 was associated 

with ICD-9 derived codes for hearing loss. In a meta-analysis of this GWAS and the GWAS 

that initially identified ACYP2 (40), rs62283056 in WFS1 remained the top signal. However, 

the meta-analysis did not support the ACYP2 variant rs1872328 as being significantly 

associated with adult-onset cancer CAO. Thus, functional validation studies of both WFS1 
and ACYP2 using experimental methods are warranted.

Neurotoxicity

Cisplatin-based therapy is associated with peripheral neuropathy (manifested as tingling, 

numbness, weakness, or burning pain) that occurs in about 36–38% of patients (48, 49). 

Predominantly affecting sensory nerves, cisplatin-induced peripheral neuropathy (CisIPN) 

has been described as a dose-dependent phenomenon, as most cases do not occur until a 

threshold cumulative dose of 300 mg/m2 is reached (50), and almost all patients receiving a 

cumulative dose of 500–600 mg/m2 have objective evidence of nerve damage (51). In 

addition, patients may also experience coasting, which is a persistent worsening of 

symptoms several months after treatment completion (52). The severity of neurotoxicity may 

also be correlated with serum platinum levels, as shown by Sprauten et al. (53) who 

demonstrated that long term serum platinum levels are significantly associated with the 

severity of neurotoxicity 5 to 20 years after cisplatin treatment, and the relationship remains 

significant after adjustment for initial cisplatin dose.

Depending on neuropathy severity, patients can experience a significant reduction in overall 

quality of life, with a strong negative correlation between CisIPN and self-reported health 

(OR = 0.56; p=2.6 × 10−9) demonstrated in 680 cisplatin-treated testicular cancer survivors 

(48). There was also a strong negative correlation of CisIPN with physical activity 

(OR=0.72; p=0.02), and a strong positive correlation with weight gain since therapy (OR per 

Δkg/m2=1.05; p=0.004). Since this investigation was cross-sectional, causal inferences could 

not be made, and a longitudinal design would help determine whether neuropathy deters 

from physical activity, and thus promotes weight gain. In a multivariate model, variables 

significantly related to cisplatin-induced neuropathy included age at diagnosis (OR/yr=1.06, 

p=2 × 10−9), smoking (OR=1.54, p=0.004), excess drinking (OR=1.83, p=0.007), and 

hypertension (OR=1.61, p=0.03) (Figure 1). Currently, there are no effective treatments to 

prevent or reduce the severity of neuropathy induced by cisplatin or other antineoplastic 

agents, but duloxetine is moderately recommended for associated pain (54).

Within the few studies that have investigated genetic susceptibility to long-term cisplatin 

neurotoxicity, there have been several reported associations involving glutathione-S-

transferases (GSTs), in particular, GSTP1 (55, 56) as well as XPC and ERCC1 (57). None of 

these were found to be significant when evaluated through a GWAS ((48); Supplementary 

Table 2).
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In contrast to hearing loss (a quantitative phenotype), peripheral neuropathy is either 

physician-graded or patient-reported using questionnaires. Using the validated EORTC 

QLQ-CIPN20 questionnaire with 680 cisplatin-treated testicular cancer survivors, there were 

no genome-wide significant associations (48). However, using PrediXcan (58), a gene-based 

computational method that uses reference transcriptome (genotype-gene expression) data to 

generate models to ‘impute’ gene expression levels from genotype data and associate the 

predicted gene expression with phenotypes of interest, lower expression of RPRD1B was 

identified as significantly associated with CisIPN. An evaluation of 18,620 genotyped 

patients from BioVU demonstrated a relationship between RPRD1B gene expression and 

polyneuropathy due to drugs. RPRD1B is of particular interest because defects in its 

expression or knockdown have been shown to inhibit DNA repair mechanisms that resolve 

cisplatin-induced lesions (59). Further, RPRD1B knockdown in human breast carcinoma 

cells potentiates cisplatin sensitivity (60). As illustrated in this example, the advantage of 

PrediXcan analysis is that it substantially reduces multiple corrections in comparison to 

SNP-based GWAS, while also providing a directionality of effect between gene expression 

and phenotype.

Nephrotoxicity

The kidneys are particularly susceptible to toxicity since cisplatin is eliminated 

predominantly through renal clearance (11). Consequently, impaired renal function is found 

in approximately 25–35% of patients after a single cisplatin dose (61). In spite of preventive 

measures (i.e., intense intravenous hydration during cisplatin administration), successive 

treatment courses can potentiate a progressive nephrotoxicity that can lead to permanent 

damage (12). Further, cisplatin induces acute kidney injury in approximately 20–30% of 

patients, while hypomagnesemia manifests in 40–100% (12).

In addition to known risk factors for cisplatin-induced renal toxicity such as older age, 

comorbidities, low albumin levels, preexisting kidney disease, and concurrent use of 

nephrotoxic medications (Figure 1) (12), an increasing number of studies have investigated 

the importance of genetic contributions, albeit only in candidate gene studies 

(Supplementary Table 2). A SNP in ERCC1 (8092C>A/rs3212986) has been shown to be 

significantly associated with a reduced risk of cisplatin-induced nephrotoxicity in two 

separate candidate gene studies (62, 63), as well as rs1051740 in EPHX1 (64). In addition, 

two cation transporters vital for cisplatin renal uptake (OCT2/SLC22A2 and CTR1/
SLC31A1; Table 1) have SNPs associated with renoprotection and maintenance of estimated 

glomular filtration rate (rs596881 (OCT2); rs12686377 and rs7851395 (CTR1; (65).

Myelosuppression

As do many antineoplastic agents, cisplatin can profoundly impact hematopoiesis. 

Myelosuppression occurs in 25–30% of patients, particularly when cisplatin doses exceed 50 

mg/m2 (66), and severe myelosuppression develops in approximately 5–6% (13). Cisplatin-

based therapy often has a disproportionate effect on erythrocyte production in comparison 

with other blood cells, resulting in a cumulative, clinically significant anemia (67). The 

increase in oxidative stress that induces other cisplatin-induced adverse sequelae (Table 1) 
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also appears to contribute to bone marrow toxicity (68). While acute myelosuppression is an 

immediate clinical concern, many patients receiving chemotherapy and/or radiotherapy also 

develop residual bone marrow injury, as evidenced by a sustained reduction in hematopoietic 

stem cell reserves that can potentiate long-term hematological complications (69, 70). 

Indeed, two studies have shown statistically significant associations between cumulative 

cisplatin dose and the subsequent development of leukemia (71, 72). In addition, patients 

who have a poor performance status and have had prior chemotherapy exposure are at 

increased risk of hematological complications (Figure 1) (73, 74).

Although the analysis of genetic contributions to cisplatin-induced myelosuppression has 

been limited, a GWAS was undertaken in non-small cell lung carcinoma (NSCLC) patients 

of Han Chinese descent. Two SNPs (rs13014982 and rs9909179) exhibited associations with 

myelosuppression in the discovery and replication sets, but did not reach genome-wide 

significance in the discovery set. Nevertheless, these SNPs retained plausible associations in 

the subsequent meta-analysis of both patient cohorts (rs13014982: p=1.36 × 10−5; 

rs9909179: p=0.001 (75). rs13014982 is located in a gene desert at 2q24.3 (within 500 kb of 

FIGN), limiting its potential genetic significance, but rs9909179 was determined via GTEx 

to be a plausible eQTL for HS3ST3A1 in blood (p=0.03), an enzyme involved in heparan 

sulfate biosynthesis, which may be important in hematopoiesis (76).

Nausea/Emesis

Nausea and emesis are frequently cited as among the most feared complications of 

chemotherapy (14, 77). Although the development of antiemetics has reduced the incidence 

of these toxicities, many patients still experience either acute (within 24 hours), or delayed 

nausea and/or emesis. This is epitomized by cisplatin treatment, as doses of 50 mg/m2 or 

more induce acute nausea and vomiting in > 90% of patients not administered antiemetic 

prophylaxis (14), with 60–90% experiencing delayed nausea/emesis (77). Women have a 

higher susceptibility to developing emesis following cisplatin treatment than men, as shown 

in two separate studies in NSCLC patients (78, 79). Other risk factors for chemotherapy-

induced nausea and vomiting include younger age, history of low alcohol intake, experience 

of emesis during pregnancy, impaired quality of life, and prior chemotherapy exposure 

(Figure 1) (77, 80).

Variation in the susceptibility of patients experiencing emesis following cisplatin 

administration based on genetic ancestry has been noted by Khrunin et al. (81) in which 

Yakuts (North Asians) had a borderline statistically significant difference in developing 

severe emesis compared to Russians of Eastern European descent (38% vs 25%; p=0.061). 

Importantly, severe emesis in Yakuts was independently associated with two polymorphisms 

in the CYP2E1 gene, but was only associated with the GSTT1-null genotype in Eastern 

European Russians.

Trends in Relevant Pharmacogenomic Studies

Although analyses of genetic predisposition to cisplatin-induced toxicities are relatively 

novel with most studies published within the last decade, several important trends have 
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emerged that may guide future investigations. Of the 36 genetic studies analyzed in the 

present review, an overwhelming majority investigated ototoxicity (n=26), with 

neurotoxicity the next most common toxicity (n=5). Thus, ototoxicity was the only toxicity 

to have genetic associations investigated for validity through multiple independent 

replication studies, and many analyses failed to confirm previously identified SNPs 

(Supplementary Table 1). Although ototoxicity is a prominent cisplatin-related adverse 

event, other toxicities also occur in a relatively high proportion of patients (Table 1) and can 

result in the administration of doses that are sub-optimal for antineoplastic efficacy. Further, 

most investigations have relied on a candidate gene approach, and only four GWAS have 

been performed (40, 47, 59, 75). GWAS have the potential to identify causal SNPs in genes 

agnostically, but require large cohorts of patients treated with the same regimen and 

uniformly phenotyped for toxicity.

In addition to the disproportionate number of studies that have used candidate gene 

approaches to probe cisplatin-induced toxicities, few investigations have evaluated these 

adverse sequelae in cohorts not predominantly/exclusively of European ancestry. This 

observation mirrors the lack of ancestral diversity represented in GWAS of 

chemotherapeutic toxicities despite known differences in allele frequencies and effect sizes 

among individuals of differing ancestries (82). One reason for this is that several GWAS 

were performed in testicular cancer survivors, a disease that disproportionately affects white 

males (83). As such, genetic variants that are associated with varying levels of cisplatin 

sensitivity in European-based studies may not be relevant in patients of other genetic 

ancestries, thereby promoting a gap in health disparities. Although these slight genetic 

variations may appear to be subtle nuances among heterogeneous patient populations, 

finding causal associations of adverse sequelae is a hallmark paradigm of precision 

medicine, and may eventually enable treatment regimens and doses to be tailored 

specifically to the individual patient to maximize treatment efficacy while limiting toxicities.

Future Directions

Based on the analysis of previous pharmacogenomic studies of cisplatin-induced toxicities, 

it is apparent that investigators should expand the search of relevant genetic variants beyond 

ototoxicity and patient populations of European ancestry. Further, the lack of reproducibility 

found in candidate gene studies of ototoxicity underscores the importance of genome-wide 

studies with large cohorts of uniformly treated patients to comprehensively examine the 

entire genome for potential associations with other cisplatin-induced toxicities. Regardless 

of the in silico approach used to identify genetic variants of potential interest, it is paramount 

that associations are functionally validated in vitro and/or in vivo (84). Through this critical 

step, the biological significance of the identified genetic variants can be definitively 

ascertained. Moreover, physiological validation of the genetic architecture underlying 

different cisplatin-induced toxicities may potentiate the discovery of novel drug targets that 

can mitigate the adverse effects, thereby reducing its overall morbidity. These 

mechanistically based therapeutic strategies may ultimately be leveraged to identify novel 

drug targets that can reduce selected toxicities without inhibiting antineoplastic efficacy.
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The Platinum Study examines the long-term effects of cisplatin treatment in cured testicular 

cancer survivors to comprehensively evaluate the toxicities associated with cisplatin (1). 

Since testicular cancer generally affects men of European descent, it is inherently limited in 

its ability to examine cisplatin toxicities in different genetic ancestries. Current plausible 

alternative cohorts include the St. Jude LIFE Study and the multi-institutional Childhood 

Cancer Survivor Study, initiatives designed to examine the long-term effects of radiotherapy 

and chemotherapy in pediatric cancer survivors (85, 86). However, in both endeavors, only a 

small subset of patients received cisplatin. Therefore, the development of patient cohorts of 

varying genetic backgrounds and cancer diagnoses is required to fully characterize the 

genetic architecture of cisplatin-induced toxicities.

Once viable predictive biomarkers of cisplatin-induced toxicities have been established, 

additional preclinical and clinical studies will be required to determine how to optimally 

apply this information to minimize cisplatin-induced toxicities while maintaining therapeutic 

efficacy. In addition to establishing a priori which patients may likely require either dose 

reductions or alternative therapy, these patients may also serve as an ideal cohort to examine 

novel platinum analogs with a reduced toxicity profile (87), provided comparable 

antineoplastic efficacy has been established.

Conclusion

Cisplatin-induced toxicities are numerous and high in frequency, making identification of 

patients likely to experience adverse events critical for optimizing clinical care. 

Understanding non-genetic risk factors for off-target toxicities is informative for physicians 

because this knowledge can be used to educate patients on their likelihood of experiencing 

adverse events during and after cisplatin-based therapy. Since cisplatin is a highly used 

antineoplastic agent, such information is relevant for the treatment of multiple adult-onset 

and pediatric malignancies. Further, it is important to emphasize that a growing number of 

patients treated with cisplatin-based chemotherapy are being cured of their disease (i.e. 

hepatoblastoma, HPV+ oropharyngeal cancer, medulloblastoma, osteosarcoma, and 

testicular cancer). Cisplatin is also finding use in the neoadjuvant setting for multiple tumor 

types, particularly bladder cancer (88, 89), indicating that there will be an increasing number 

of patients exposed to cisplatin who will live many years after their initial cancer diagnosis. 

Consequently, understanding the underlying basis for cisplatin toxicity has an emerging role 

in the management of this growing patient population. Given that many patients’ tumors and 

germline DNA are now being sequenced, understanding genetic predisposition to cisplatin 

toxicity will provide a basis for a personalized medicine approach to managing its toxicity.

Although cisplatin-induced toxicities have been well-characterized, the importance of 

genetic variation in the occurrence of adverse reactions is only now becoming appreciated 

through modern pharmacogenomic approaches. Nevertheless, a diversification of studies in 

regards to toxicity types and patient cohorts is needed, with greater emphasis on 

implementing genome-wide analyses followed by independent replication and functional 

validation. Only then can these associations be considered plausible biomarkers of cisplatin-

induced toxicity that can be harnessed to tailor treatment regimens to individual patients.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This review was supported in part by National Cancer Institute grants RO1CA036401 (subaward to ME Dolan) and 
CA213466 (subaward to ME Dolan), R01 CA 157823 (LB Travis; subaward to ME Dolan), University of Chicago 
Women’s Board (ME Dolan), and the University of Chicago Comprehensive Cancer Center P30 CA14599 (M Le 
Beau).

Abbreviations:

CAO: cisplatin-associated ototoxicity

eQTL: expression quantitative trait loci

GTEx: Genotype-Tissue Expression

GWAS: genome-wide association study

NSCLC: non-small cell lung carcinoma

SNP: single nucleotide polymorphism

STS: sodium thiosulfate

References

1. Travis LB, Fossa SD, Sesso HD, Frisina RD, Herrmann DN, Beard CJ, et al. Chemotherapy-induced 
peripheral neurotoxicity and ototoxicity: new paradigms for translational genomics. J Natl Cancer 
Inst. 2014;106.

2. Hartmann JT, Lipp HP. Toxicity of platinum compounds. Expert Opin Pharmacother. 2003;4:889–
901. [PubMed: 12783586] 

3. Ruggiero A, Trombatore G, Triarico S, Arena R, Ferrara P, Scalzone M, et al. Platinum compounds 
in children with cancer: toxicity and clinical management. Anticancer Drugs. 2013;24:1007–19. 
[PubMed: 23962902] 

4. Rybak LP. Mechanisms of cisplatin ototoxicity and progress in otoprotection. Curr Opin 
Otolaryngol Head Neck Surg. 2007;15:364–9. [PubMed: 17823555] 

5. Rybak LP, Mukherjea D, Jajoo S, Ramkumar V. Cisplatin ototoxicity and protection: clinical and 
experimental studies. Tohoku J Exp Med. 2009;219:177–86. [PubMed: 19851045] 

6. Callejo A, Sedo-Cabezon L, Juan ID, Llorens J. Cisplatin-Induced Ototoxicity: Effects, Mechanisms 
and Protection Strategies. Toxics. 2015;3:268–93. [PubMed: 29051464] 

7. Paken J, Govender CD, Pillay M, Sewram V. Cisplatin-Associated Ototoxicity: A Review for the 
Health Professional. J Toxicol. 2016;2016:1809394. [PubMed: 28115933] 

8. Avan A, Postma TJ, Ceresa C, Avan A, Cavaletti G, Giovannetti E, et al. Platinum-induced 
neurotoxicity and preventive strategies: past, present, and future. Oncologist. 2015;20:411–32. 
[PubMed: 25765877] 

9. Kanat O, Ertas H, Caner B. Platinum-induced neurotoxicity: A review of possible mechanisms. 
World J Clin Oncol. 2017;8:329–35. [PubMed: 28848699] 

10. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of Cisplatin nephrotoxicity. 
Toxins (Basel). 2010;2:2490–518. [PubMed: 22069563] 

Trendowski et al. Page 10

Clin Cancer Res. Author manuscript; available in PMC 2020 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



11. dos Santos NA, Carvalho Rodrigues MA, Martins NM, dos Santos AC. Cisplatin-induced 
nephrotoxicity and targets of nephroprotection: an update. Arch Toxicol. 2012;86:1233–50. 
[PubMed: 22382776] 

12. Manohar S, Leung N. Cisplatin nephrotoxicity: a review of the literature. J Nephrol. 2018;31:15–
25. [PubMed: 28382507] 

13. Go RS, Adjei AA. Review of the comparative pharmacology and clinical activity of cisplatin and 
carboplatin. J Clin Oncol. 1999;17:409–22. [PubMed: 10458260] 

14. Schnell FM. Chemotherapy-induced nausea and vomiting: the importance of acute antiemetic 
control. Oncologist. 2003;8:187–98. [PubMed: 12697943] 

15. Ranganath P, Einhorn L, Albany C. Management of Chemotherapy Induced Nausea and Vomiting 
in Patients on Multiday Cisplatin Based Combination Chemotherapy. Biomed Res Int. 
2015;2015:943618. [PubMed: 26425563] 

16. Mangoni AA, Jackson SH. Age-related changes in pharmacokinetics and pharmacodynamics: basic 
principles and practical applications. Br J Clin Pharmacol. 2004;57:6–14. [PubMed: 14678335] 

17. Yamasoba T, Lin FR, Someya S, Kashio A, Sakamoto T, Kondo K. Current concepts in age-related 
hearing loss: epidemiology and mechanistic pathways. Hear Res. 2013;303:30–8. [PubMed: 
23422312] 

18. Bhatt JM, Lin HW, Bhattacharyya N. Prevalence, Severity, Exposures, and Treatment Patterns of 
Tinnitus in the United States. JAMA Otolaryngol Head Neck Surg. 2016;142:959–65. [PubMed: 
27441392] 

19. Mold JW, Vesely SK, Keyl BA, Schenk JB, Roberts M. The prevalence, predictors, and 
consequences of peripheral sensory neuropathy in older patients. J Am Board Fam Pract. 
2004;17:309–18. [PubMed: 15355943] 

20. Popescu S, Timar B, Baderca F, Simu M, Diaconu L, Velea I, et al. Age as an independent factor 
for the development of neuropathy in diabetic patients. Clin Interv Aging. 2016;11:313–8. 
[PubMed: 27042031] 

21. Knight KR, Chen L, Freyer D, Aplenc R, Bancroft M, Bliss B, et al. Group-Wide, Prospective 
Study of Ototoxicity Assessment in Children Receiving Cisplatin Chemotherapy (ACCL05C1): A 
Report From the Children’s Oncology Group. J Clin Oncol. 2017;35:440–5. [PubMed: 27937095] 

22. Mukherjea D, Rybak LP. Pharmacogenomics of cisplatin-induced ototoxicity. Pharmacogenomics. 
2011;12:1039–50. [PubMed: 21787192] 

23. Frisina RD, Wheeler HE, Fossa SD, Kerns SL, Fung C, Sesso HD, et al. Comprehensive 
Audiometric Analysis of Hearing Impairment and Tinnitus After Cisplatin-Based Chemotherapy 
in Survivors of Adult-Onset Cancer. J Clin Oncol. 2016;34:2712–20. [PubMed: 27354478] 

24. Vona B, Nanda I, Shehata-Dieler W, Haaf T. Genetics of Tinnitus: Still in its Infancy. Front 
Neurosci. 2017;11:236. [PubMed: 28533738] 

25. Brydoy M, Oldenburg J, Klepp O, Bremnes RM, Wist EA, Wentzel-Larsen T, et al. Observational 
study of prevalence of long-term Raynaud-like phenomena and neurological side effects in 
testicular cancer survivors. J Natl Cancer Inst. 2009;101:1682–95. [PubMed: 19940282] 

26. Miaskowski C, Paul SM, Mastick J, Schumacher M, Conley YP, Smoot B, et al. Hearing loss and 
tinnitus in survivors with chemotherapy-induced neuropathy. Eur J Oncol Nurs. 2018;32:1–11. 
[PubMed: 29353626] 

27. Miaskowski C, Paul SM, Mastick J, Abrams G, Topp K, Smoot B, et al. Associations Between 
Perceived Stress and Chemotherapy-Induced Peripheral Neuropathy and Otoxicity in Adult Cancer 
Survivors. J Pain Symptom Manage. 2018;56:88–97. [PubMed: 29524582] 

28. Bokemeyer C, Berger CC, Hartmann JT, Kollmannsberger C, Schmoll HJ, Kuczyk MA, et al. 
Analysis of risk factors for cisplatin-induced ototoxicity in patients with testicular cancer. Br J 
Cancer. 1998;77:1355–62. [PubMed: 9579846] 

29. Yancey A, Harris MS, Egbelakin A, Gilbert J, Pisoni DB, Renbarger J. Risk factors for cisplatin-
associated ototoxicity in pediatric oncology patients. Pediatr Blood Cancer. 2012;59:144–8. 
[PubMed: 22431292] 

30. Brock PR, Maibach R, Childs M, Rajput K, Roebuck D, Sullivan MJ, et al. Sodium Thiosulfate for 
Protection from Cisplatin-Induced Hearing Loss. N Engl J Med. 2018;378:2376–85. [PubMed: 
29924955] 

Trendowski et al. Page 11

Clin Cancer Res. Author manuscript; available in PMC 2020 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



31. FDA Center for Drug Evaluation and Research. FDA Label for Sodium Thiosulfate Injection. 
https://wwwaccessdatafdagov/drugsatfda_docs/nda/2012/203923Orig1s000Lblpdf. 4/19/2018.

32. Ross CJ, Katzov-Eckert H, Dube MP, Brooks B, Rassekh SR, Barhdadi A, et al. Genetic variants in 
TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. 
Nat Genet. 2009;41:1345–9. [PubMed: 19898482] 

33. Yang JJ, Lim JY, Huang J, Bass J, Wu J, Wang C, et al. The role of inherited TPMT and COMT 
genetic variation in cisplatin-induced ototoxicity in children with cancer. Clin Pharmacol Ther. 
2013;94:252–9. [PubMed: 23820299] 

34. Pussegoda K, Ross CJ, Visscher H, Yazdanpanah M, Brooks B, Rassekh SR, et al. Replication of 
TPMT and ABCC3 genetic variants highly associated with cisplatin-induced hearing loss in 
children. Clin Pharmacol Ther. 2013;94:243–51. [PubMed: 23588304] 

35. Hagleitner MM, Coenen MJ, Patino-Garcia A, de Bont ES, Gonzalez-Neira A, Vos HI, et al. 
Influence of genetic variants in TPMT and COMT associated with cisplatin induced hearing loss 
in patients with cancer: two new cohorts and a meta-analysis reveal significant heterogeneity 
between cohorts. PLoS One. 2014;9:e115869. [PubMed: 25551397] 

36. Ratain MJ, Cox NJ, Henderson TO. Challenges in interpreting the evidence for genetic predictors 
of ototoxicity. Clin Pharmacol Ther. 2013;94:631–5. [PubMed: 24241639] 

37. Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs are more 
likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 2010;6:e1000888. 
[PubMed: 20369019] 

38. Albert FW, Kruglyak L. The role of regulatory variation in complex traits and disease. Nat Rev 
Genet. 2015;16:197–212. [PubMed: 25707927] 

39. Gamazon ER, Huang RS, Cox NJ, Dolan ME. Chemotherapeutic drug susceptibility associated 
SNPs are enriched in expression quantitative trait loci. Proc Natl Acad Sci U S A. 2010;107:9287–
92. [PubMed: 20442332] 

40. Xu H, Robinson GW, Huang J, Lim JY, Zhang H, Bass JK, et al. Common variants in ACYP2 
influence susceptibility to cisplatin-induced hearing loss. Nat Genet. 2015;47:263–6. [PubMed: 
25665007] 

41. Vos HI, Guchelaar HJ, Gelderblom H, de Bont ES, Kremer LC, Naber AM, et al. Replication of a 
genetic variant in ACYP2 associated with cisplatin-induced hearing loss in patients with 
osteosarcoma. Pharmacogenet Genomics. 2016;26:243–7. [PubMed: 26928270] 

42. Thiesen S, Yin P, Jorgensen AL, Zhang JE, Manzo V, McEvoy L, et al. TPMT, COMT and ACYP2 
genetic variants in paediatric cancer patients with cisplatin-induced ototoxicity. Pharmacogenet 
Genomics. 2017;27:213–22. [PubMed: 28445188] 

43. Drogemoller BI, Brooks B, Critchley C, Monzon JG, Wright GEB, Liu G, et al. Further 
Investigation of the Role of ACYP2 and WFS1 Pharmacogenomic Variants in the Development of 
Cisplatin-Induced Ototoxicity in Testicular Cancer Patients. Clin Cancer Res. 2018;24:1866–71. 
[PubMed: 29358504] 

44. Zhang F, Zhang Y, Deng Z, Xu P, Zhang X, Jin T, et al. Genetic variants in the acylphosphatase 2 
gene and the risk of breast cancer in a Han Chinese population. Oncotarget. 2016;7:86704–12. 
[PubMed: 27894080] 

45. Fuchs PA. A ‘calcium capacitor’ shapes cholinergic inhibition of cochlear hair cells. J Physiol. 
2014;592:3393–401. [PubMed: 24566542] 

46. Thomas AJ, Hailey DW, Stawicki TM, Wu P, Coffin AB, Rubel EW, et al. Functional 
mechanotransduction is required for cisplatin-induced hair cell death in the zebrafish lateral line. J 
Neurosci. 2013;33:4405–14. [PubMed: 23467357] 

47. Wheeler HE, Gamazon ER, Frisina RD, Perez-Cervantes C, El Charif O, Mapes B, et al. Variants 
in WFS1 and Other Mendelian Deafness Genes Are Associated with Cisplatin-Associated 
Ototoxicity. Clin Cancer Res. 2017;23:3325–33. [PubMed: 28039263] 

48. Dolan ME, El Charif O, Wheeler HE, Gamazon ER, Ardeshir-Rouhani-Fard S, Monahan P, et al. 
Clinical and Genome-Wide Analysis of Cisplatin-Induced Peripheral Neuropathy in Survivors of 
Adult-Onset Cancer. Clin Cancer Res. 2017;23:5757–68. [PubMed: 28611204] 

Trendowski et al. Page 12

Clin Cancer Res. Author manuscript; available in PMC 2020 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://wwwaccessdatafdagov/drugsatfda_docs/nda/2012/203923Orig1s000Lblpdf


49. Seretny M, Currie GL, Sena ES, Ramnarine S, Grant R, MacLeod MR, et al. Incidence, prevalence, 
and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-
analysis. Pain. 2014;155:2461–70. [PubMed: 25261162] 

50. Amptoulach S, Tsavaris N. Neurotoxicity caused by the treatment with platinum analogues. 
Chemother Res Pract. 2011;2011:843019. [PubMed: 22312559] 

51. Jongen JL, Broijl A, Sonneveld P. Chemotherapy-induced peripheral neuropathies in hematological 
malignancies. J Neurooncol. 2015;121:229–37. [PubMed: 25326770] 

52. Park SB, Goldstein D, Krishnan AV, Lin CS, Friedlander ML, Cassidy J, et al. Chemotherapy-
induced peripheral neurotoxicity: a critical analysis. CA Cancer J Clin. 2013;63:419–37. [PubMed: 
24590861] 

53. Sprauten M, Darrah TH, Peterson DR, Campbell ME, Hannigan RE, Cvancarova M, et al. Impact 
of long-term serum platinum concentrations on neuro- and ototoxicity in Cisplatin-treated 
survivors of testicular cancer. J Clin Oncol. 2012;30:300–7. [PubMed: 22184390] 

54. Hershman DL, Lacchetti C, Dworkin RH, Lavoie Smith EM, Bleeker J, Cavaletti G, et al. 
Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult 
cancers: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 
2014;32:1941–67. [PubMed: 24733808] 

55. Oldenburg J, Kraggerud SM, Brydoy M, Cvancarova M, Lothe RA, Fossa SD. Association 
between long-term neuro-toxicities in testicular cancer survivors and polymorphisms in 
glutathione-s-transferase-P1 and -M1, a retrospective cross sectional study. J Transl Med. 
2007;5:70. [PubMed: 18162130] 

56. Goekkurt E, Al-Batran SE, Hartmann JT, Mogck U, Schuch G, Kramer M, et al. Pharmacogenetic 
analyses of a phase III trial in metastatic gastroesophageal adenocarcinoma with fluorouracil and 
leucovorin plus either oxaliplatin or cisplatin: a study of the arbeitsgemeinschaft internistische 
onkologie. J Clin Oncol. 2009;27:2863–73. [PubMed: 19332728] 

57. Lamba JK, Fridley BL, Ghosh TM, Yu Q, Mehta G, Gupta P. Genetic variation in platinating agent 
and taxane pathway genes as predictors of outcome and toxicity in advanced non-small-cell lung 
cancer. Pharmacogenomics. 2014;15:1565–74. [PubMed: 25340731] 

58. Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, et al. A gene-
based association method for mapping traits using reference transcriptome data. Nat Genet. 
2015;47:1091–8. [PubMed: 26258848] 

59. Sawant A, Kothandapani A, Zhitkovich A, Sobol RW, Patrick SM. Role of mismatch repair 
proteins in the processing of cisplatin interstrand cross-links. DNA Repair (Amst). 2015;35:126–
36. [PubMed: 26519826] 

60. Morales JC, Richard P, Rommel A, Fattah FJ, Motea EA, Patidar PL, et al. Kub5-Hera, the human 
Rtt103 homolog, plays dual functional roles in transcription termination and DNA repair. Nucleic 
Acids Res. 2014;42:4996–5006. [PubMed: 24589584] 

61. Han X, Yue J, Chesney RW. Functional TauT protects against acute kidney injury. J Am Soc 
Nephrol. 2009;20:1323–32. [PubMed: 19423693] 

62. Khrunin AV, Moisseev A, Gorbunova V, Limborska S. Genetic polymorphisms and the efficacy and 
toxicity of cisplatin-based chemotherapy in ovarian cancer patients. Pharmacogenomics J. 
2010;10:54–61. [PubMed: 19786980] 

63. Tzvetkov MV, Behrens G, O’Brien VP, Hohloch K, Brockmoller J, Benohr P. Pharmacogenetic 
analyses of cisplatin-induced nephrotoxicity indicate a renoprotective effect of ERCC1 
polymorphisms. Pharmacogenomics. 2011;12:1417–27. [PubMed: 21902499] 

64. Khrunin AV, Khokhrin DV, Moisseev AA, Gorbunova VA, Limborska SA. Pharmacogenomic 
assessment of cisplatin-based chemotherapy outcomes in ovarian cancer. Pharmacogenomics. 
2014;15:329–37. [PubMed: 24533712] 

65. Chang C, Hu Y, Hogan SL, Mercke N, Gomez M, O’Bryant C, et al. Pharmacogenomic Variants 
May Influence the Urinary Excretion of Novel Kidney Injury Biomarkers in Patients Receiving 
Cisplatin. Int J Mol Sci. 2017;18.

66. Prestayko AW, D’Aoust JC, Issell BF, Crooke ST. Cisplatin (cis-diamminedichloroplatinum II). 
Cancer Treat Rev. 1979;6:17–39. [PubMed: 378370] 

Trendowski et al. Page 13

Clin Cancer Res. Author manuscript; available in PMC 2020 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



67. Wood PA, Hrushesky WJ. Cisplatin-associated anemia: an erythropoietin deficiency syndrome. J 
Clin Invest. 1995;95:1650–9. [PubMed: 7706473] 

68. Basu A, Ghosh P, Bhattacharjee A, Patra AR, Bhattacharya S. Prevention of myelosuppression and 
genotoxicity induced by cisplatin in murine bone marrow cells: effect of an organovanadium 
compound vanadium(III)-l-cysteine. Mutagenesis. 2015;30:509–17. [PubMed: 25778689] 

69. Wang Y, Probin V, Zhou D. Cancer therapy-induced residual bone marrow injury-Mechanisms of 
induction and implication for therapy. Curr Cancer Ther Rev. 2006;2:271–9. [PubMed: 19936034] 

70. Georgiou KR, Foster BK, Xian CJ. Damage and recovery of the bone marrow microenvironment 
induced by cancer chemotherapy - potential regulatory role of chemokine CXCL12/receptor 
CXCR4 signalling. Curr Mol Med. 2010;10:440–53. [PubMed: 20540706] 

71. Travis LB, Holowaty EJ, Bergfeldt K, Lynch CF, Kohler BA, Wiklund T, et al. Risk of leukemia 
after platinum-based chemotherapy for ovarian cancer. N Engl J Med. 1999;340:351–7. [PubMed: 
9929525] 

72. Travis LB, Andersson M, Gospodarowicz M, van Leeuwen FE, Bergfeldt K, Lynch CF, et al. 
Treatment-associated leukemia following testicular cancer. J Natl Cancer Inst. 2000;92:1165–71. 
[PubMed: 10904090] 

73. Ouyang Z, Peng D, Dhakal DP. Risk factors for hematological toxicity of chemotherapy for bone 
and soft tissue sarcoma. Oncol Lett. 2013;5:1736–40. [PubMed: 23760066] 

74. Kogo M, Watahiki M, Sunaga T, Kaneko K, Yoneyama K, Imawari M, et al. Analysis of the risk 
factors for myelosuppression after chemoradiotherapy involving 5-fluorouracil and platinum for 
patients with esophageal cancer. Hepatogastroenterology. 2011;58:802–8. [PubMed: 21830394] 

75. Cao S, Wang S, Ma H, Tang S, Sun C, Dai J, et al. Genome-wide association study of 
myelosuppression in non-small-cell lung cancer patients with platinum-based chemotherapy. 
Pharmacogenomics J. 2016;16:41–6. [PubMed: 25823687] 

76. Holley RJ, Pickford CE, Rushton G, Lacaud G, Gallagher JT, Kouskoff V, et al. Influencing 
hematopoietic differentiation of mouse embryonic stem cells using soluble heparin and heparan 
sulfate saccharides. J Biol Chem. 2011;286:6241–52. [PubMed: 21148566] 

77. Jordan K, Sippel C, Schmoll HJ. Guidelines for antiemetic treatment of chemotherapy-induced 
nausea and vomiting: past, present, and future recommendations. Oncologist. 2007;12:1143–50. 
[PubMed: 17914084] 

78. Wheatley-Price P, Le Maitre A, Ding K, Leighl N, Hirsh V, Seymour L, et al. The influence of sex 
on efficacy, adverse events, quality of life, and delivery of treatment in National Cancer Institute of 
Canada Clinical Trials Group non-small cell lung cancer chemotherapy trials. J Thorac Oncol. 
2010;5:640–8. [PubMed: 20354457] 

79. Wheatley-Price P, Blackhall F, Lee SM, Ma C, Ashcroft L, Jitlal M, et al. The influence of sex and 
histology on outcomes in non-small-cell lung cancer: a pooled analysis of five randomized trials. 
Ann Oncol. 2010;21:2023–8. [PubMed: 20332134] 

80. Sekine I, Segawa Y, Kubota K, Saeki T. Risk factors of chemotherapy-induced nausea and 
vomiting: index for personalized antiemetic prophylaxis. Cancer Sci. 2013;104:711–7. [PubMed: 
23480814] 

81. Khrunin A, Ivanova F, Moisseev A, Khokhrin D, Sleptsova Y, Gorbunova V, et al. 
Pharmacogenomics of cisplatin-based chemotherapy in ovarian cancer patients of different ethnic 
origins. Pharmacogenomics. 2012;13:171–8. [PubMed: 22188361] 

82. Mapes B, El Charif O, Al-Sawwaf S, Dolan ME. Genome-Wide Association Studies of 
Chemotherapeutic Toxicities: Genomics of Inequality. Clin Cancer Res. 2017;23:4010–9. 
[PubMed: 28442506] 

83. Ghazarian AA, Trabert B, Graubard BI, Schwartz SM, Altekruse SF, McGlynn KA. Incidence of 
testicular germ cell tumors among US men by census region. Cancer. 2015;121:4181–9. [PubMed: 
26280359] 

84. Gallagher MD, Chen-Plotkin AS. The Post-GWAS Era: From Association to Function. Am J Hum 
Genet. 2018;102:717–30. [PubMed: 29727686] 

85. Krull KR, Brinkman TM, Li C, Armstrong GT, Ness KK, Srivastava DK, et al. Neurocognitive 
outcomes decades after treatment for childhood acute lymphoblastic leukemia: a report from the St 
Jude lifetime cohort study. J Clin Oncol. 2013;31:4407–15. [PubMed: 24190124] 

Trendowski et al. Page 14

Clin Cancer Res. Author manuscript; available in PMC 2020 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



86. Robison LL, Armstrong GT, Boice JD, Chow EJ, Davies SM, Donaldson SS, et al. The Childhood 
Cancer Survivor Study: a National Cancer Institute-supported resource for outcome and 
intervention research. J Clin Oncol. 2009;27:2308–18. [PubMed: 19364948] 

87. Sarkar A Novel platinum compounds and nanoparticles as anticancer agents. Pharm Pat Anal. 
2018;7:33–46. [PubMed: 29227198] 

88. Dash A, Pettus JAt, Herr HW, Bochner BH, G Dalbagni, Donat SM, et al. A role for neoadjuvant 
gemcitabine plus cisplatin in muscle-invasive urothelial carcinoma of the bladder: a retrospective 
experience. Cancer. 2008;113:2471–7. [PubMed: 18823036] 

89. Yin M, Joshi M, Meijer RP, Glantz M, Holder S, Harvey HA, et al. Neoadjuvant Chemotherapy for 
Muscle-Invasive Bladder Cancer: A Systematic Review and Two-Step Meta-Analysis. Oncologist. 
2016;21:708–15. [PubMed: 27053504] 

90. Clerici WJ, DiMartino DL, Prasad MR. Direct effects of reactive oxygen species on cochlear outer 
hair cell shape in vitro. Hear Res. 1995;84:30–40. [PubMed: 7642453] 

91. Kopke RD, Liu W, Gabaizadeh R, Jacono A, Feghali J, Spray D, et al. Use of organotypic cultures 
of Corti’s organ to study the protective effects of antioxidant molecules on cisplatin-induced 
damage of auditory hair cells. Am J Otol. 1997;18:559–71. [PubMed: 9303151] 

92. Banfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH. NOX3, a superoxide-
generating NADPH oxidase of the inner ear. J Biol Chem. 2004;279:46065–72. [PubMed: 
15326186] 

93. Liang F, Schulte BA, Qu C, Hu W, Shen Z. Inhibition of the calcium- and voltage-dependent big 
conductance potassium channel ameliorates cisplatin-induced apoptosis in spiral ligament 
fibrocytes of the cochlea. Neuroscience. 2005;135:263–71. [PubMed: 16109459] 

94. Breglio AM, Rusheen AE, Shide ED, Fernandez KA, Spielbauer KK, McLachlin KM, et al. 
Cisplatin is retained in the cochlea indefinitely following chemotherapy. Nat Commun. 
2017;8:1654. [PubMed: 29162831] 

95. McDonald ES, Windebank AJ. Cisplatin-induced apoptosis of DRG neurons involves bax 
redistribution and cytochrome c release but not fas receptor signaling. Neurobiol Dis. 2002;9:220–
33. [PubMed: 11895373] 

96. McDonald ES, Randon KR, Knight A, Windebank AJ. Cisplatin preferentially binds to DNA in 
dorsal root ganglion neurons in vitro and in vivo: a potential mechanism for neurotoxicity. 
Neurobiol Dis. 2005;18:305–13. [PubMed: 15686959] 

97. Pabla N, Murphy RF, Liu K, Dong Z. The copper transporter Ctr1 contributes to cisplatin uptake 
by renal tubular cells during cisplatin nephrotoxicity. Am J Physiol Renal Physiol. 
2009;296:F505–11. [PubMed: 19144690] 

98. Sprowl JA, Lancaster CS, Pabla N, Hermann E, Kosloske AM, Gibson AA, et al. Cisplatin-induced 
renal injury is independently mediated by OCT2 and p53. Clin Cancer Res. 2014;20:4026–35. 
[PubMed: 24916697] 

Trendowski et al. Page 15

Clin Cancer Res. Author manuscript; available in PMC 2020 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Nongenetic risk factors that may predispose patients to developing adverse events following 

cisplatin-based therapy. Where relevant, risk factors are denoted as being either continuous 

or categorical variables based on how they were examined for association with the given 

toxicity.
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