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Abstract: Cyanobacterial harmful algal blooms (CHABs) have been a concern for aquatic systems,
especially those used for water supply and recreation. Thus, the monitoring of CHABs is essential
for the establishment of water governance policies. Recently, remote sensing has been used as a
tool to monitor CHABs worldwide. Remote monitoring of CHABs relies on the optical properties
of pigments, especially the phycocyanin (PC) and chlorophyll-a (chl-a). The goal of this study is to
evaluate the potential of recent launch the Ocean and Land Color Instrument (OLCI) on-board the
Sentinel-3 satellite to identify PC and chl-a. To do this, OLCI images were collected over the Western
part of Lake Erie (U.S.A.) during the summer of 2016, 2017, and 2018. When comparing the use of
traditional remote sensing algorithms to estimate PC and chl-a, none was able to accurately estimate
both pigments. However, when single and band ratios were used to estimate these pigments, stronger
correlations were found. These results indicate that spectral band selection should be re-evaluated for
the development of new algorithms for OLCI images. Overall, Sentinel 3/OLCI has the potential to be
used to identify PC and chl-a. However, algorithm development is needed.
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1. Introduction

At the beginning of 2016, the launch of the Sentinel-3A satellite—the first of a row of consecutive
satellites—stimulated research and service development for inland waters using Earth Observations [1].
On-board this satellite is the Ocean and Land Color Instrument (OLCI) which was developed by the
European Space Agency (ESA) [2] and has a spectral configuration that is suitable for the monitoring of
water quality [1]. This sensor fills the gap in images left by the demise of its predecessor: the Medium
Resolution Imaging Spectrometer (MERIS) which was functioning from 2002 to 2012. Additionally,
the Sentinel 3/OLCI is expected to contribute to the remote monitoring of cyanobacteria harmful algal
blooms (CHABs), because of its unique spectral band configuration which has a spectral band centered
at 620 nm.

The remote sensing of CHABs in inland waters is based on the remote estimation of chlorophyll-a
(chl-a) [3] and phycocyanin (PC) [4]. However, chl-a is not an accurate indicator of CHABs because it is
a common pigment to almost all phytoplankton groups [5]. In contrast, PC is an accessory pigment
unique to inland water cyanobacteria, which is characterized by its absorption feature at 620 nm [6–9].
Thus, the information around this wavelength is essential for the monitoring of CHABs. Since MERIS
and OLCI are the only multi-spectral orbital sensors with a band centered at 620 nm [2], the launch of
the Sentinel 3/OLCI was expected for many environmental managers and scientists. Since MERIS was
used to monitor cyanobacteria and to develop bio-optical algorithms for the estimation of PC, it is
expected that OLCI will also be capable of such tasks [10–12].

Previous studies developed remote sensing algorithms for the quantification of PC concentration
using MERIS spectral bands [5,8,13,14]. Recently, studies assessed the capability of OLCI to remotely
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which evaluates the use of OLCI imagery for the assessment of CHAB. Thus, the goal of this research
is to evaluate the performance of Sentinel 3/OLCI imagery for estimation of PC and chl-a. This is
achieved by the evaluation of the relationship among traditional bio-optical algorithms, OLCI spectral
bands, and in situ concentrations of PC and chl-a from the Western basin of Lake Erie, U.S.A.

2. Materials and Methods

2.1. Study Site

Lake Erie is one of the Laurentian Great Lakes in North America with an average depth of 19 m.
This lake can be bathymetrically separated into three distinct basins: western, central, and eastern
basins. The western basin is the most turbid and shallowest, with an average depth of 7.4 m [15]. It is
also the western basin which receives most of the nutrient loads and CHABs have been observed as the
dominant phytoplankton group in this region since 1942 [16]. CHABs not only impair the water quality
and ecosystem integrity of Lake Erie but also have the potential to produce potent toxins, generating
significant public health risks and economic losses.

Recently, Lake Erie experienced high magnitude CHAB events. In 2011, the CHAB began in
mid-July and covered an area of ∼600 km2 [17]. In August of 2014, a CHAB caused the water supply
shutdown to over 500,000 residents in Toledo, Ohio [18]. In 2015, the peak of the CHAB spread to
200 km across most of the lake [19]. These events affect Lake Erie’s water quality, which supplies more
than 11 million people via its multiple uses (commercial fisheries, leisure and recreational activities,
and drinking water). Therefore, the monitoring of CHABs is essential to effectively manage this
important aquatic system.

2.2. Measured Pigments

PC and chl-a concentrations were measured by the Great Lakes Environmental Research Laboratory
(GLERL) in collaboration with the Cooperative Institute for Great Lakes Research (CIGLR). They monitor
eight stations bi-weekly in May/June and weekly from July to October (with some variance between
years). In the manuscript, PC and chl-a concentration measured from water samples collected in the
subsurface (0.75m) between 2016 to 2018 were used to match up with Sentinel 3/OLCI images. Figure 1
shows GLERL/CIGLR sampling locations in the Western region of Lake Erie, U.S.A. Chl-a-concentration
was measured by concentrating lake water on a Glass Fiber Filter (GF/F) filter (Whatman, 47 mm).
The extraction of the pigment from this filter was conducted with acetone under low light and analyzed
with a 10 AU fluorometer [20]. For PC concentration measurements, concentrated lake water on a
GF/F filter (Whatman, 47 mm) were extracted in phosphate buffer (Ricca Chemical, pH 6.8) using two
freeze–thaw cycles, followed by sonication [21]. The extracted solution was fluorometrically measured
on a Turner Aquafluor fluorometer, and fluorescence values were converted to PC concentration using
a calibration curve from a series of dilutions of a commercial standard (Sigma-Aldrich).
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Figure 1. Sampling locations from the Great Lakes Environmental Research Laboratory/Cooperative 
Institute for Great Lakes Research (GLERL/CIGLR) at the Western region of Lake Erie, U.S.A. 

2.3. Satellite Imagery 

2.3.1. Data Acquisition 

Satellite images were acquired from the Copernicus Online Data Access (REProcessed) managed 
by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) [22]. 
Sentinel-3A OLCI Full Resolution (FR) Level-1 product and Sentinel-3A OLCI Full Resolution (FR) 
Level-2 water quality products were downloaded for the dates matching up the weekly samplings in 
Lake Erie, U.S.A. A total of 22 cloud-free images were found from 2016 to 2018 over Lake Erie. From 
these 22 images, 13 images were acquired on the same day of the field sampling, 5 images were 
acquired the day before the field sampling, and 4 images were acquired the day after the field 
sampling. 

2.3.2. Atmospheric Correction 

As described in the previous section, two types of products were downloaded: the Sentinel-3A 
OLCI Full Resolution (FR) Level-1 product and the Sentinel-3A OLCI Full Resolution (FR) Level-2 
water quality product. The Level-2 water quality product uses an Alternative Atmospheric 
Correction algorithm (AAC) for the atmospheric correction. This algorithm is based on a neural 
network procedure which uses as inputs top-of-atmosphere reflectances (corrected for absorbing 
gases and smile effect) and observation geometry [23]. Through this process, it provides water-
leaving reflectances and aerosol optical thickness in different wavelengths. While this Level 2 product 
provides an atmospheric corrected image, the Level 1 product provides the original image. To 
perform the atmospheric correction on the Level 1 product, the Case 2 Regional Coast-Colour 
(commonly known as C2RCC) was used. The C2RCC is available through the European Space 
Agency’s Sentinel Toolbox, and it is used to generate the Case 2 water products in Sentinel 3/OLCI. 
The algorithm is also based on a neural network algorithm which relies on a large database of 
simulated water-leaving reflectances and related top-of-atmosphere radiances [24]. 

2.4. Evaluation of OLCI Imagery to Retrieve PC and chl-a 

2.4.1. Atmospheric Correction Comparison 

To select the best product, we compared the two atmospheric correction procedures: one from 
the Level 1 product processed with the C2RCC algorithm and the Level 2 product processed with the 
AAC algorithm. Since no in situ remote sensing reflectance (Rrs) spectra were available, the 
comparison between these two atmospheric correction procedures was based on the spectral 
differences between Rrs spectra from both images. Additionally, normality and t-test were used to 

Figure 1. Sampling locations from the Great Lakes Environmental Research Laboratory/Cooperative
Institute for Great Lakes Research (GLERL/CIGLR) at the Western region of Lake Erie, U.S.A.

2.3. Satellite Imagery

2.3.1. Data Acquisition

Satellite images were acquired from the Copernicus Online Data Access (REProcessed) managed
by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) [22].
Sentinel-3A OLCI Full Resolution (FR) Level-1 product and Sentinel-3A OLCI Full Resolution (FR)
Level-2 water quality products were downloaded for the dates matching up the weekly samplings
in Lake Erie, U.S.A. A total of 22 cloud-free images were found from 2016 to 2018 over Lake Erie.
From these 22 images, 13 images were acquired on the same day of the field sampling, 5 images were
acquired the day before the field sampling, and 4 images were acquired the day after the field sampling.

2.3.2. Atmospheric Correction

As described in the previous section, two types of products were downloaded: the Sentinel-3A
OLCI Full Resolution (FR) Level-1 product and the Sentinel-3A OLCI Full Resolution (FR) Level-2
water quality product. The Level-2 water quality product uses an Alternative Atmospheric Correction
algorithm (AAC) for the atmospheric correction. This algorithm is based on a neural network procedure
which uses as inputs top-of-atmosphere reflectances (corrected for absorbing gases and smile effect)
and observation geometry [23]. Through this process, it provides water-leaving reflectances and
aerosol optical thickness in different wavelengths. While this Level 2 product provides an atmospheric
corrected image, the Level 1 product provides the original image. To perform the atmospheric
correction on the Level 1 product, the Case 2 Regional Coast-Colour (commonly known as C2RCC)
was used. The C2RCC is available through the European Space Agency’s Sentinel Toolbox, and it is
used to generate the Case 2 water products in Sentinel 3/OLCI. The algorithm is also based on a neural
network algorithm which relies on a large database of simulated water-leaving reflectances and related
top-of-atmosphere radiances [24].

2.4. Evaluation of OLCI Imagery to Retrieve PC and chl-a

2.4.1. Atmospheric Correction Comparison

To select the best product, we compared the two atmospheric correction procedures: one from the
Level 1 product processed with the C2RCC algorithm and the Level 2 product processed with the AAC
algorithm. Since no in situ remote sensing reflectance (Rrs) spectra were available, the comparison
between these two atmospheric correction procedures was based on the spectral differences between
Rrs spectra from both images. Additionally, normality and t-test were used to evaluate if the Rrs spectra
were statistically different from one atmospheric correction method to another. To do that, each spectral
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band was compared to its respective spectral band in the other atmospherically corrected product. The
t-test (t) was used when the dataset passed the normality test, and if it did not pass the normality test,
a Mann–Whitney U test (U) was used.

2.4.2. Remote Sensing Algorithms Comparison

Remote sensing algorithms can be divided into different types, such as empirical, semi-empirical,
semi-analytical, and quasi-analytical [25]. In this study, only semi-empirical algorithms were evaluated
since semi-empirical algorithms have been commonly used to estimate PC and chl-a concentration.
The most common structures of semi-empirical algorithms are two bands algorithms (2BDA), three
bands algorithms (3BDA) and normalized difference algorithms (commonly named indices) [26,27].
For PC estimation, the 2BDA usually uses the Rrs at 620 nm which is related to the absorption of the PC,
and the Rrs at 709 nm which is related to the scattering of particles [4,8]. The same bands are usually
used for the normalized difference algorithm [28] and for the 3BDA, which also uses the Rrs at 665 nm,
which is related to the absorption of chl-a [5]. For the chl-a estimations, 2BDA usually uses the Rrs

at 665 nm and the Rrs at 709 nm [29] while the 3BDA adds the Rrs at 754 nm, which is related to the
absorption of pure water [30]. The normalized difference algorithm for chl-a estimation uses the Rrs at
665 nm and the Rrs at 709 nm [31]. A summary of these remote sensing algorithms is presented in
Table 1.

Table 1. Semi-empirical algorithms for the remote estimation of phycocyanin (PC).

Pigment Acronym Formulation Range of Concentration (mg/m3) References

PC 2BDA-PC PC ∝
(

Rrs(709)
Rrs(620)

)
0.8–79.8 [4,8]

PC 3BDA-PC * PC ∝
(
R−1

rs (620) −R−1
rs (665)

)
·Rrs(754) N/A [5]

PC NDPCI PC ∝
(

Rrs(709) −Rrs(620)
Rrs(709) + Rrs(620)

)
45–330 [28]

Chl-a 2BDA-CL Chl− a ∝
(

Rrs(709)
Rrs(665)

)
4–236 [29]

Chl-a 3BDA-CL PC ∝
(
R−1

rs (665) −R−1
rs (709)

)
·Rrs(754) 4–236 [29,30]

Chl-a NDCI Chl− a ∝
(

Rrs(709) −Rrs(665)
Rrs(709) + Rrs(665)

)
0.9–28.1 [31]

* Adjusted for OLCI spectral bands.

2.4.3. OLCI Spectral Bands and Cyanobacterial Pigments

To evaluate the use of OLCI spectral band for the estimation of PC and chl-a concentration, the
relationship between each spectral band and pigments was explored using images acquired on the
previous day, on the same day, and one day after the field sampling. These relationships were explored
using scatter plots and linear regressions [27]. Moreover, the relationship between PC and chl-a and
band ratios were explored via the use of a two-dimensional (2D) color correlation plot which was
computed using a web-tool named “Interactive Correlation Environment” (ICE) [32]. ICE computes all
possible spectral band ratios and analyses the relationship (via a correlation coefficient, an absolute
correlation coefficient or a determination coefficient) with the pigment concentration. The best
band-ratio relationship for each pigment was evaluated using scatter plots and linear regressions.

3. Results

3.1. Atmospheric Correction of OLCI Images

To evaluate the best atmospheric corrected product to retrieve Rrs from an OLCI image, images
from 22 August 2016 and 13 September 2016 from both atmospheric correction procedures were used.
For the image from 22 August 2016, all spectral bands passed the normality test, and the t-test showed
that there is a statistically significant difference between the spectral bands centered at 400 nm and
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412.5 nm (P ≤ 0.001). For the other spectral bands, no statistically significant difference was found
(Table 2). For the image from September 13, 2016; spectral bands centered at 400, 412.5, 442.5, 490, 510,
708.75, and 753.75 nm failed the normality test. The Mann–Whitney U test (U) and t-test (t) showed
that only the spectral bands centered at 560 and 708.75 nm were different (Table 2).

Table 2. Statistical differences between spectral bands from the two atmospheric correction procedures.

Image Date Spectral Band (nm) Normality U or T p-Value Difference

08/22/2016

400 P = 0.818 −4.465 <0.001 Yes
412.5 P = 0.652 −3.707 0.002 Yes
442.5 P = 0.986 −1.106 0.287 No
490 P = 0.940 0.913 0.377 No
510 P = 0.871 1.115 0.284 No
560 P = 0.998 0.597 0.560 No
620 P = 0.717 0.107 0.916 No
665 P = 0.491 0.887 0.390 No

673.75 P = 0.461 0.969 0.349 No
681 P = 0.437 1.030 0.321 No

708.75 P = 0.817 1.051 0.311 No
753.78 P = 0.859 0.441 0.666 No

09/13/2016

400 P < 0.050 20 0.620 No
412.5 P < 0.050 24 1.000 No
442.5 P < 0.050 19 0.535 No
490 P < 0.050 12 0.128 No
510 P < 0.050 10 0.073 No
560 P = 0.659 2.790 0.016 Yes
620 P = 0.620 1.002 0.336 No
665 P = 0.260 1.645 0.126 No

673.75 P = 0.890 1.370 0.196 No
681 P = 0.747 1.511 0.157 No

708.75 P < 0.050 7 0.026 Yes
753.78 P < 0.050 12 0.128 No

* Shaded areas indicate where the Mann–Whitney test was applied.

The statistical analysis showed that both atmospheric correction algorithms have similar
performance for some of the spectral bands. To select which atmospheric correction algorithm
performed better, Rrs spectra were plotted (Figure 2). Figure 2A,B show that for the shorter wavelengths,
the algorithms performed differently, which agrees with the statistical analysis (Table 2). Figure 2A
shows that spectral features were similar while in Figure 2B, spectral features for the longer wavelengths
were different (as shown in Table 2). It was observed that the image from September 13, 2016, the ACC
algorithm overcorrected the Rrs for the shorter wavelengths (Figure 2B) having negative intensities.
Because of these observations, the C2RCC algorithm was selected as the most appropriated for
computing Rrs.
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Figure 2. Rrs spectra extracted from sampling points from GLERL in the Western region of Lake Erie,
U.S.A. (A) Rrs spectra from 22 August 2016 image; (B) Rrs spectra from 13 September 2016 image.



Environments 2019, 6, 60 6 of 14

3.2. Remote Sensing Models Evaluation

Several studies evaluated remote sensing algorithms based on the simulation of OLCI spectral
bands [10–12]. This study evaluated the performance of the most common semi-empirical algorithms.
Table 3 presents the determination coefficient (R2) and the root mean square error (RMSE) for remote
sensing algorithms for PC and chl-a concentration estimation from OLCI images. The performance
was evaluated using all images, images collected on the same day of the field sampling, on the day
before the field sampling, and during the day after the field sampling. All six selected algorithms
showed poor performance for all four datasets—R2 values lower than 0.2. For the dataset using all
images, the range of PC concentration was 0 to 538.38 µg/L while for the chl-a concentration the range
was 2.18 to 531.7 µg/L. To calculate the normalized RMSE (NRMSE) and be able to compare the RMSE
for all datasets, the concentration range for each dataset was used to divide the RMSE. Therefore, the
3BDA-PC showed an NRMSE � 12%, while the NDCI showed an NRMSE � 9%. Other ranges of PC
were 0.41 to 26.37 µg/L for the images collected on the day before the field campaign, 0 to 538.38 µg/L
for the images collected on the same day of the field campaign, and 0.25 to 170.39 µg/L for the images
collected the day after the field campaign. Chl-a ranges were 4.43 to 51.92 µg/L for the images collected
on the day before the field campaign, 2.18 to 531.7 µg/L for the images collected on the same day of
the field campaign, and 4.77 to 183.42 µg/L for the images collected the day after the field campaign.
Although the values of the NRMSE showed lower percentages, because of the low R2 values, it was
observed that the selected remote sensing algorithms could not be used to estimate cyanobacterial
pigments from OLCI images.

Table 3. Statistical estimators for each algorithm for chlorophyll-a (chl-a) and PC estimation.

Algorithm All Images (n = 164) Day Before (n = 40) Same Day (n = 97) Day After (n = 27)

NDPCI
R2 = 0.011 R2 = 0.010 R2 = 0.014 R2 < 0.001

RMSE = 69.925 RMSE = 6.265 RMSE = 88.609 RMSE = 37.127

3BDA-PC
R2 = 0.051 R2 = 0.136 R2 = 0.075 R2 < 0.001

RMSE = 68.501 RMSE = 5.851 RMSE = 85.829 RMSE = 37.125

2BDA-PC
R2 = 0.011 R2 = 0.009 R2 = 0.015 R2 < 0.001

RMSE = 69.922 RMSE = 6.267 RMSE = 88.597 RMSE = 37.119

NDCI
R2 = 0.003 R2 = 0.159 R2 = 0.0150 R2 = 0.002

RMSE = 47.860 RMSE = 10.363 RMSE = 58.780 RMSE = 35.307

3BDA-CL
R2 = 0.002 R2 = 0.155 R2 = 0.013 R2 = 0.014

RMSE = 47.882 RMSE = 10.386 RMSE = 58.842 RMSE = 35.497

2BDA-CL
R2 = 0.002 R2 = 0.163 R2 = 0.012 R2 = 0.020

RMSE = 47.882 RMSE = 10.337 RMSE = 58.852 RMSE = 35.391
* Shaded areas indicate the best performance for each pigment.

3.3. Single and Band Ratio Evaluation

Since remote sensing algorithms did not perform well, an analysis of each spectral band from
OLCI was performed to evaluate the use of OLCI for the monitoring of PC and chl-a concentration.
To do that, the linear relationship between each spectral band and PC and chl-a concentration were
evaluated using R2 values. Figure 3 presents the R2 values for each spectral band for the four datasets:
all images dataset, before the field campaign dataset, same day as the field campaign dataset, and the
day after the field campaign dataset. Figure 3A presents the linear relationship between each spectral
band and PC concentration, which is higher for the datasets of images collected before and on the same
day of the field campaign for all spectral bands. Figure 3B presents the R2 values for the relationship
between each spectral band and chl-a concentration. For the shorter wavelengths, images from the
same day of the field campaign showed higher R2 values, while for longer wavelengths, images from
the day before the field campaign showed higher R2 values. Compared to the relationship among PC
and chl-a concentration and remote sensing algorithms (Table 3), single bands resulted in a higher
R2 for PC estimation and a similar performance with chl-a estimations. The spectral band centered
at 490 nm obtained an R2 = 0.27 for the estimation of PC using images from the day before the field
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campaign (Figure 3) while 3BDA-PC obtained an R2=0.13 for the same dataset (Table 3). For the chl-a
estimation, the spectral band centered at 753.75 nm obtained an R2= 0.15 for the estimation of chl-a
using images from the day before the field campaign (Figure 3) while 2BDA-CL obtained an R2= 0.16
for the same dataset (Table 3). In addition to the improvement of R2 values, the relationship between
spectral bands and pigments is still weak (R2 values lower than 0.3).
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Figure 3. Determination coefficient (R2) values for a linear relationship between each OLCI’ spectral
band and (A) Phycocyanin (PC) concentrations and (B) Chlorophyll-a (Chl-a) concentration.

Band ratios among the spectral bands of OLCI in the visible and near-infrared channels were used
for the computation of a 2D color correlation plot (Figure 4). This plot compares all possible band
ratios from OLCI visible and near-infrared channels and relates it to PC concentrations. Figure 4A
shows the best band ratio for the estimation of a PC using all images available. For this dataset, the best
band ratio was the one involving the spectral bands centered at 681 and 620 nm. Figure 4B shows the
best band ratio for the estimation of PC using the dataset of images collected a day before the field
campaign. In this dataset, the ratio between spectral bands centered at 510 and 442.5 nm produced
the highest R2. Figure 4C shows the best band ratio for the estimation of PC using the dataset of
images collected on the same day of the field campaign. For this dataset, the best band ratio was the
same as the entire dataset (between 681 and 620 nm). Lastly, the images collected on the day after the
field campaign obtained the best relationship with the ratio between 412.5 and 490 nm (Figure 4D).
In comparison to remote sensing algorithms and single spectral bands, the band ratio analysis showed
stronger relationships with PC concentrations. For each dataset, the use of the band ratios generated
higher R2 values of 0.390, 0.265, 0.410, and 0.002 for all images, for images acquired before the field
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campaign dataset, for images acquired on the same day as the field campaign dataset, and for images
acquired on the day after the field campaign, respectively.
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For chl-a estimation, the relationship with OLCI spectral band ratios was evaluated using the 2D
color correlation plot in Figure 5. Figure 5A shows the best band ratio for the estimation of chl-a using
all images available, which was the ratio between the spectral bands centered at 442.5 and 620 nm.
This same band ratio was also the best for the dataset of images collected on the same day of the field
campaign (Figure 5C). Figure 5B shows the best band ratio for the estimation of chl-a using the dataset
of images collected a day before the field campaign. In this dataset, the ratio between spectral bands
centered at 673.75 and 620 nm produced the highest R2. Lastly, the images collected on the day after
the field campaign obtained the best relationship with the ratio between 560 and 490 nm (Figure 5D).
As well as the PC analysis, band ratios showed stronger relationships with chl-a concentration. For each
dataset, the use of the band ratios generated higher R2 values of 0.470, 0.341, 0.495, and 0.073 for all
images, for images acquired before the field campaign dataset, for images acquired on the same day as
the field campaign dataset, and for images acquired the day after the field campaign, respectively.
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It was observed that single band (Figure 3) and band ratio (Figures 4 and 5) over performed
remote sensing algorithms (Table 3) on the estimation of PC and chl-a concentration. Table 4 presents
the comparison among the highest R2 computed from remote sensing algorithms, single band and
band ratio. The shaded areas in Table 4 indicate which method provided the highest R2 value. For the
estimation of PC, the band ratio using the bands centered at 681 and 620 nm obtained the highest
R2 values for datasets with a large range of concentration (0–538.38 µg/L). On the other hand, single
bands obtained the highest R2 on the datasets with lower PC concentrations (0.41–26.37 µg/L and
0.25–170.39 µg/L). For the estimation of chl-a, all datasets obtained their best performance when
estimated from the identified band ratios (442.5/620; 673.75/620; and 560/490). It is important to
highlight that these ratios are not common for the identification of chl-a, which usually uses the band
related to the chl-a absorption (665 nm) and cells scattering (709 nm).

Table 4. R2 values for all tested algorithms.

Type All Images Day Before Same Day Day After

Best remote sensing algorithm (PC) R2 = 0.051 R2 = 0.136 R2 = 0.075 R2 < 0.001
Best single band (PC) R2 = 0.067 R2 = 0.272 R2 = 0.085 R2 = 0.009
Best band ratio (PC) R2 = 0.390 R2 = 0.265 R2 = 0.410 R2 = 0.002

Best remote sensing algorithm
(Chl-a) R2 = 0.003 R2 = 0.163 R2 = 0.015 R2 = 0.020

Best single band (Chl-a) R2 = 0.049 R2 = 0.157 R2 = 0.065 R2 = 0.051
Best band ratio (Chl-a) R2 = 0.470 R2 = 0.341 R2 = 0.495 R2 = 0.073

* Shaded areas indicate the best performance for each pigment.

4. Discussion

4.1. Sensitivity to Lower Concentrations

The low performances of remote sensing algorithms for both PC and chl-a estimations were
surprising. However, based on the results presented in the previous section, it was observed that the
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lowest R2 values could be related to the lower pigment concentrations. Ruiz-Verdu et al. [33] showed
that for the estimation of PC, remote sensing algorithms did not perform well for PC concentrations
lower than 50µg/L. Figure 6 presents the boxplots for PC (Figure 6A) and chl-a (Figure 6B) concentrations
for each dataset. It was observed that all median values for PC concentrations were lower than 10 µg/L,
especially for the dates where satellite images were acquired after the field campaign (Figure 6).
Therefore, the poor performance of remote sensing models could be linked to the use of datasets with
most of the PC concentrations lower than 10 µg/L and chl-a lower than 50 µg/L.
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To evaluate the impact of low PC and chl-a concentration, remote sensing algorithms were
computed for sampling locations with concentrations higher than 50 µg/L. This threshold was based
on the study by Ruiz-Verdu et al. [33] as well as in the Ohio Environmental Protection Agency
(EPA) Harmful Algal Bloom Response Strategy [34]. This document classifies severe bloom by the
presence of a thick scum of algal blooms over the water surface, a cyanobacteria cell count higher than
100,000 cells/mL, presence of cyanotoxins, biovolume higher than 10 mm3/L, and chl-a concentration
higher than 50 µg/L. Thus, 50 µg/L is the threshold used to discriminate severe blooms, especially
CHABs. Table 5 summarizes the new estimators for the application of remote sensing models to the
dataset with sampling points with high pigment concentration (>50 µg/L). The analysis was divided
by the type of algorithm: normalized difference index (NDI), 3BDA, and 2BDA for each algorithm
(see Table 1 for the list of algorithms). The best remote sensing algorithm for PC estimation was the
3BDA. However, the R2 value was only 0.217 and the RMSE = 207.167. For the chl-a concentration, the
best performance was achieved when NDI was applied with an R2 = 0.384 and an RMSE= 107.858. It
was also observed that R2 improved when using a higher concentration of PC and chl-a, however, the
RMSE and R2 are not significant.

Table 5. Statistical estimators for each algorithm for chl-a and PC estimation.

Pigment NDI 3BDA 2BDA

PC >50 µg/L
(n = 8)

R2 = 0.192;
RMSE = 210.432

R2 = 0.217;
RMSE = 207.167

R2 = 0.185;
RMSE = 211.407

Chl-a > 50 µg/L
(n = 13)

R2 = 0.384;
RMSE = 107.585

R2 = 0.243;
RMSE = 119.201

R2 = 0.335;
RMSE = 111.752

* Shaded areas indicate the best performance for each pigment.

The same dataset of PC and chl-a concentrations higher than 50 µg/L was used for the computation
of 2D color correlation plots for OLCI spectral bands. Figure 7 presents two 2D color correlation plots
for PC estimation (Figure 7A) and for chl-a estimation (Figure 7B) higher than 50 µg/L. Similar to the
results from remote sensing algorithms, band ratios showed an improvement in the relationship with
higher concentrations. The relationship between PC and OLCI band ratios improved from R2 = 0.410
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for the same day dataset (Figure 4) to an R2 = 0.539 for the dataset of PC concentrations higher than 50
µg/L. The relationship with chl-a was also improved in the dataset for pigment concentrations higher
than 50 µg/L. Figure 7B shows that the band ratio between the spectral bands centered at 560 and 620
nm obtained an R2 = 0.887 which is higher than the R2 = 0.495 from the same day dataset (Figure 5).
However, it is important to highlight that these datasets of PC and chl-a higher than 50 µg/L only have
a low number of samples (8 for PC and 13 for chl-a). Therefore, these results may not well represent
the relationship between band ratios and pigments, especially when there are large variations in the
concentration where concentrations can vary from 50 to more than 500 µg/L (Figure 6). Nevertheless,
these results corroborate with the previous results suggesting that current algorithms are not able to
accurately estimate cyanobacteria pigments from OLCI.
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4.2. Band Selection for the Development of Algorithms

Previous results suggest that the development of new remote sensing algorithms is needed for
the estimation of PC and chl-a using OLCI. While traditional remote sensing algorithms for PC and
chl-a use Rrs spectral features, such as the trough around 620 nm, the trough at 665 nm, and the
peak near 700 nm (see Table 1 for algorithms), this study showed that other spectral bands may be
used to estimate cyanobacteria pigments from OLCI. For PC monitoring, most of the algorithms use
the Rrs around 620 nm which is primarily associated with PC absorption [4–9] and the Rrs around
709 nm which is generated by the absorption by pure water in the near infrared and the absorption
of chl-a around 665 nm [35]. Some studies also use the Rrs around 650 nm, which is related to the
fluorescence of PC [36]. The spectral band centered at 681 nm was only used in the spectral shape
algorithm [37], which will be changed to cyanobacterial index [38]. The authors explained that at 681
nm, the presence of cyanobacteria would create a negative spectral shape because of the cyanobacteria,
which overwhelms the fluorescence signal. The spectral shape algorithm (or cyanobacteria index) was
developed for MERIS images over Lake Erie, U.S.A., and it is currently being applied in the Lake Erie
HAB Bulletin [39]. For chl-a remote sensing algorithms other than the already mentioned spectral
bands, it is common to have a spectral band centered around 753 nm, which is related to the absorption
of pure water [30].

The results from the presented study indicate that Sentinel 3/OLCI could be used to monitor
cyanobacteria pigments, however, traditional remote sensing algorithms should be re-formulated.
For PC concentration estimation, it is suggested to use spectral bands centered at 681 and 620 nm.
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Figure 4A,C showed that for datasets with a higher range of PC concentration, the reflectance at
620 nm is strongly correlated to the reflectance at longer wavelengths. This is explained by the spectral
features of PC which are usually related to longer wavelengths, such as the fluorescence at 650 nm and
cell’s scattering at 709 nm, as well as chl-a absorption around 665 nm and chl-a fluorescence around
681 nm. For chl-a concentration estimation, it is suggested to use spectral bands centered at 442.5
and 620 nm. The Rrs around 442.5 nm is commonly used for chl-a estimation in ocean waters, and it
is primarily related to the chl-a absorption [40]; however, the use of the band centered at 620 nm to
estimate chl-a is uncommon, since it is related to the absorption of PC. Figure 5A,C showed that at
620 nm, the reflectance was strongly correlated to shorter wavelengths and slightly weaker correlations
to longer wavelengths. Based on these results, a re-evaluation of spectral band selection for remote
sensing algorithm is needed for Lake Erie, U.S.A., and it could be needed for other aquatic systems as
well. Thus, this analysis has highlighted the need to re-evaluate the use of traditional algorithms on
OLCI images.

Additionally, the use of the spectral band around 681 nm for PC estimation in Lake Erie could
be related to an empirical factor, which could explain the fact that the spectral shape algorithm
(or cyanobacteria index) did not perform well in other study sites [12]. Thus, this spectral feature
around 681 nm should be explored in further studies, especially in Lake Erie. Thus, future works should
focus on the bio-optical characterization of Lake Erie waters, to fully understand the dependence of
the use of the band around 681 nm for the estimation of PC.

5. Conclusions

The analysis presented in this study showed that traditional remote sensing algorithms for PC
and chl-a estimation did not perform well on Sentinel 3/OLCI images over Lake Erie, U.S.A. Although
in this study, only images of Lake Erie were analyzed, these findings could be used as a guide for other
aquatic systems. The same way that traditional remote sensing algorithms were not able to retrieve
PC and chl-a information from Lake Erie, they could show the same poor performances in other
environments. Based on these results, the importance of an evaluation of remote sensing algorithms
using real satellite images not only using proximal remote sensing. Nevertheless, the evaluation of
single bands and band ratios showed a stronger relationship (higher R2 values, Table 4) to PC and chl-a
concentration when compared to traditional remote sensing algorithms. This indicates that for the
monitoring of CHABs in Lake Erie, it is important to develop new remote sensing algorithms and/or
change the selection of spectral bands in the existing algorithms.

The analysis of single and band ratios related to PC and chl-a concentration showed that instead
of the spectral band centered at approximately 709 nm, remote sensing algorithms use the spectral
band centered at 681 nm for the estimation of PC concentration. For chl-a concentration, the spectral
bands that showed a stronger relationship to chl-a were 442.5 nm and 620 nm. Based on these findings,
the importance of collecting accurate and precise in situ radiometric data is highlighted. Moreover,
it is important to emphasize that in situ hyperspectral Rrs data from Lake Erie is essential for the
development of new tools. Therefore, future work should focus on a large field campaign of radiometric
data in Lake Erie, especially during the CHABs season.
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