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PT -symmetry from Lindblad 
dynamics in a linearized 
optomechanical system
B. Jaramillo Ávila1*, C. Ventura-Velázquez2, R. de J. León-Montiel3, Yogesh N. Joglekar4 & 
B. M. Rodríguez-Lara2,5

We analyze a lossy linearized optomechanical system in the red-detuned regime under the rotating 
wave approximation. This so-called optomechanical state transfer protocol provides effective lossy 
frequency converter (quantum beam-splitter-like) dynamics where the strength of the coupling 
between the electromagnetic and mechanical modes is controlled by the optical steady-state 
amplitude. By restricting to a subspace with no losses, we argue that the transition from mode-
hybridization in the strong coupling regime to the damped-dynamics in the weak coupling regime, is a 
signature of the passive parity-time (PT) symmetry breaking transition in the underlying non-
Hermitian quantum dimer. We compare the dynamics generated by the quantum open system 
(Langevin or Lindblad) approach to that of the PT-symmetric Hamiltonian, to characterize the cases 
where the two are identical. Additionally, we numerically explore the evolution of separable and 
correlated number states at zero temperature as well as thermal initial state evolution at room 
temperature. Our results provide a pathway for realizing non-Hermitian Hamiltonians in 
optomechanical systems at a quantum level.

Photonics provides a fertile ground for the classical simulation of non-Hermitian systems with gain, loss, or both, 
including systems with balanced gain and loss, i.e. parity-time (PT) symmetric systems1. In such a simulation 
with classical light, the complex potentials in the PT-symmetric Hamiltonian of a quantum system translate into 
complex refractive media that represent localized amplification or absorption. These parity-time symmetric 
structures are described by a Schrödinger-like differential equation, where the renormalized paraxial propagation 
mimics quantum dynamics of a non-relativistic particle in the presence of complex optical potentials2–4. A key 
feature of the PT-symmetric Hamiltonian is that at small gain-loss strength, its spectrum remains purely real, its 
linearly independent eigenfunctions are no longer orthogonal, but continue to remain simultaneous eigenfunc-
tions of the combined PT operator. When the gain-loss strength is large, the spectrum renders into complex 
conjugate eigenvalue pairs, and the associated eigenfunctions transform into the other under the PT operation5. 
This transition from the PT-symmetric phase to the PT-symmetry broken phase occurs at an exceptional point 
(EP) where the algebraic multiplicity of the Hamiltonian differs from its geometric multiplicity6. The dynamics of 
non-Hermitian systems across and in the neighborhood of the transition point have been extensively investigated 
in recent years in mostly classical, optical realizations.

On a fundamental level, the effective, non-Hermitian Hamiltonian model ignores the thermal fluctuations 
attendant with the loss (due to fluctuation-dissipation theorem7) and zero-temperature quantum fluctuations 
attendant with the gain (due to the vacuum noise in linear quantum amplifiers8). Therefore, non-Hermitian 
dynamics has been realized in mode-selective lossy systems, including heralded single photons9, ultracold 
atoms10, and superconducting transmons11, where the thermal fluctuations can be safely ignored. Such lossy sys-
tems are also a promising candidate for observing PT-symmetric quantum optics across EPs of arbitrary order 
with appropriate post-selection12. In systems with both gain and loss, the inclusion of non-classical light13 requires 
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the introduction of (quantum) fluctuations induced by the linear media either by Langevin equation14–16 or 
Lindblad master equation17–19 formalism. Indeed, the trace-preserving, steady-state generating Lindblad 
approach allows us to understand, in a more realistic way, the dynamics of optomechanical systems and, at the 
same time, the emergence of a non-Hermitian Hamiltonian in this approach. Although the relation between the 
Lindblad and non-Hermitian approaches has been explored in the past20, there is renewed interest in the excep-
tional point structures21 of the two approaches, in part due to the recent realization of non-Hermitian 
Hamiltonian dynamics in a single qubit11.

In this paper, we provide a thorough analysis of both approaches and present the main differences between 
them. As model system, we consider a standard, first red-sideband, strongly-driven optomechanical system, 
where the optomechanical coupling leads to the hybridization of the electromagnetic and mechanical modes22. 
This protocol generates an effective, linearized quantum-fluctuation Hamiltonian for the electromagnetic and 
mechanical modes that is equivalent to that of a lossy, quantum beam-splitter for the two modes23.

The plan for the paper is as follows. First, we introduce the basic model and its Lindblad dynamics, recall the 
corresponding Langevin equation treatment, and obtain the mode-selective lossy Hamiltonian. We show that 
coupling to a thermal reservoir leads to a passive PT-symmetric dimer dynamics where the electromagnetic 
driving controls the PT-symmetric or PT-symmetric broken phases of the dimer. Next, we present numerical 
results that compare the non-Hermitian Hamiltonian evolution of the density matrix with the evolution under a 
zero-temperature Lindblad master equation for product initial states and correlated N00N initial states. Then, we 
present finite temperature results for the transition from strong to weak coupling regimes in state transfer proto-
col at finite temperature to relate it with the PT-symmetry transition. We conclude the paper with a brief 
discussion.

Results
Optomechanical state-transfer protocol.  The Hamiltonian for the standard optomechanical system24,25, 
in a frame rotating at the pump frequency ωp and units of ,

ω ω ω= − + + + + Ω +ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † † †H a a b b g a a b b a a( ) ( ) ( )/2, (1)a p b0 0

models the interaction of an electromagnetic mode, with frequency ωa and annihilation operator â, and a 
mechanical mode, with frequency ωb and annihilation operator b̂. The bare optomechanical coupling, g0, indicates 
the coupling between the dimensionless intensity of the electromagnetic mode, provided by the number operator 
ˆ ˆ†a a, and the dimensionless mechanical displacement, +ˆ ˆ†

b b( ). The parameter Ω gives the strength of the electro-
magnetic pump. Hereafter, we will use subscripts a and b to label electromagnetic and mechanical modes, respec-
tively. Strong driving allows us to split the mode dynamics into semi-classical and quantum fluctuation parts, 

α= +ˆ ˆa c  and β= +ˆ ˆb d 26,27. In the presence of a thermal bath, which introduces dissipation for both modes, 
the semi-classical part shows a steady state with electromagnetic coherent amplitude α ω ω γ= − Ω − −i i/[2( ) ]a p a  
and mechanical coherent amplitude β α ω γ= − | | −g i/[ /2]b b0

2 . Here γa and γb are the phenomenological decay 
rates for the electromagnetic and mechanical mode-occupation numbers, respectively. Under red-sideband driv-
ing, ω ω ω β= − + Rg2 ( )p a b 0 , and the rotating-wave approximation, a quantum beam-splitter Hamiltonian pro-
vides the dynamics for the quantum fluctuation,

ω= + + +ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † †
H c c d d g c d cd( ) ( ), (2)b

where the steady-state electromagnetic coherent amplitude enhances the bare optomechanical coupling, 
g = g0|α|28.

In this scenario, the Lindblad master equation29,30,

ρ ρ γ ρ γ ρ γ ρ γ ρ∂ = + + + + + +ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† †
D D D Di H n c n c n d n d[ , ] [ ] ( 1) [ ] [ ] ( 1) [ ] , (3)t a a a a b b b b

governs the dynamics of the optomechanical density matrix, ρ ρ≡ˆ ˆ t( )ab , coupled to a thermal bath defined by the 
action of the zero-trace superoperator

ρ ρ ρ ρ= − +ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †
D A A A A A A A[ ] 1

2
[ ], (4)

where the average thermal mode-occupation numbers, = −ωn e1/( 1)x
k T/x B  with x = {a, b}, are given in terms of 

Boltzmann constant kB and the bath temperature T. The anti-commutator term in Eq. (4) can be interpreted as a 
purely imaginary gain or loss potential in an effective, non-Hermitian Hamiltonian. At zero temperature, the 
Lindblad approach leads to the following equations for the average excitation numbers 〈 〉ˆ ˆ†c c  and 〈 〉ˆ ˆ†

d d ,

γ∂ 〈 〉 = + 〈 〉 − 〈 〉ˆ ˆ ˆ ˆ ˆ ˆ† † †c c g c d c c2 Im , (5)t L L a L

γ∂ 〈 〉 = − 〈 〉 − 〈 〉 .ˆ ˆ ˆ ˆ ˆ ˆ† † †
d d g c d d d2 Im (6)t L L b L

The quantum Langevin equations of motion for the annihilation operators31,
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provide an equivalent approach to the open quantum evolution. Here, the dimensionful operators ξ̂x with zero 
mean and correlation functions ξ ξ γ δ〈 〉 = −ˆ ˆ†

t s n t s( ) ( ) ( )x x x x  and ξ ξ γ δ〈 〉 = + −ˆ ˆ†
t s n t s( ) ( ) ( 1) ( )x x x x , with x = {a, b}, 

model the quantum noise for the electromagnetic and mechanical modes respectively. A Hamiltonian with spe-
cific mode losses,

γ γ= − +ˆ ˆ ˆ ˆ ˆ ˆ† †
H H i c c d d( )/2, (8)nH a b

generates the first term on the right-hand side of Eq. (7). When confined to a subspace with a fixed total excitation 
number = +ˆ ˆ ˆ ˆ ˆ† †

N c c d d, Eq. (8) becomes ω γ γ= − + +ˆ ˆ ˆ ˆ ˆ ˆ† †
PTH i N c d H c d( [ ]/4) ( ) ( )nH b a b

T with

σ σ= − ΓPTH g i , (9)x z

where σx, σz are standard Pauli matrices and Γ = (γa − γb)/4. It follows that the decay rates of the two eigenmodes 
of ĤnH are equal (PT-symmetric phase) for |Γ| < g, they reach the maximum at |Γ| = g, and a slowly decaying 
eigenmode emerges for |Γ| > g10,12,32–34.

The dynamics generated by Eqs. (3) and (7) are completely equivalent31. However, we want to identify and 
elucidate the cases where they are equivalent to the non-unitary time evolution generated by the non-Hermitian 
Hamiltonian, i.e. Eq. (8). In the absence of the quantum noise terms, the Hamiltonian approach gives the follow-
ing equations of motion for the mode occupation numbers,

γ γ∂ 〈 〉 = + 〈 〉 − 〈 + 〉ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † † †
c c g c d c c c c d d2 Im ( ) , (10)t nH nH a b nH

γ γ∂ 〈 〉 = − 〈 〉 − 〈 + 〉 .ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † † †
d d g c d d d c c d d2 Im ( ) (11)t nH nH a b nH

In the following, we compare the numerical results obtained by solving Eqs. (5) and (6) with those from Eqs. (10)  
and (11). We explore both zero and finite temperatures with initial states that are either product states or correlated  
N00N states.

Numerical results.  For our simulations, we make use of optomechanical parameters from an experimental state 
transfer protocol ω ω γ γ = . × . × . × . ×{ , , , } {1 02 10 , 1 59 10 , 3 26 10 , 3 00 10 }a b a b

10 7 5 2  Hz35. The experimental  
enhanced optomechanical coupling ω= . × −g 1 33 10 b

2  provides dynamics in the PT-symmetric regime.  
We calculate the required value to reach the exceptional point, γ γ ω= − = . × = . ×−g ( )/4 5 12 10 8 14 10a b b

3 4 Hz. 
For the broken symmetry regime, we take an order of magnitude less than the reported experimental value, 

ω= . × −g 1 33 10 b
3  without further consideration regarding the validity of the mean-field approximation. For the 

sake of simplicity, we start our numerical experiments for Lindblad master equation carried at zero temperature and 
the initial states are given in terms of Fock states. It is important to remark that, even though zero-temperature condi-
tions are ideal for optomechanical experiments, simulations assuming such condition can help elucidate the difference 
in the dynamics of both approaches, namely the full quantum analysis and the non-Hermitian Hamiltonian approach. 
For simulations at zero temperature, we use bosonic subspaces of dimension equal to the maximum number of excita-
tions plus two to unfold and reduce the complex differential equations into a set of real differential equations solved 
using standard Livermore Solver for Ordinary Differential Equations (LSODA) methods. At finite temperature, the 
solutions to the Langevin equations are obtained exactly by means of an adaptive integrator31.

We start with the single-excitation subspace. In this limit, the Lindblad master equation dynamics and the 
non-Hermitian Hamiltonian dynamics are identical,

γ

γ

∂ 〈 〉 = ∂ 〈 〉 = + 〈 〉 − 〈 〉

∂ 〈 〉 = ∂ 〈 〉 = − 〈 〉 − 〈 〉

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

† † † †

† † † †

c c c c g c d c c

d d d d g c d d d

2 Im ,

2 Im , (12)

t L t nH a

t L t nH b

because 〈 〉 = 〈 〉ˆ ˆ ˆ ˆ ˆ ˆ† † †x xx x x x  for x = {a, b}, and 〈 〉 =ˆ ˆ ˆ ˆ† †
c cd d 0 in the single-excitation subspace. Figure 1 shows the 

occupation numbers for the electromagnetic mode na(t) and the mechanical mode nb(t) obtained via the Lindblad 
master equation (solid lines), and the non-Hermitian Hamiltonian evolution (dashed lines). The initial state is 
separable (first row), and a correlated N N00  state (second row). The first, second, and third columns correspond 
to the system in the PT-symmetric region ( ω= . × −g 1 33 10 b

2 ), at the exceptional point ( ω= . × −g 5 12 10 b
3 ), 

and in the PT-symmetry broken region ( ω= . × −g 1 33 10 b
3 ) respectively.

To explore the dynamics beyond the single-excitation subspace, we define instantaneously renormalized 
excitation numbers and first order correlation or coherence,

= 〈 〉 〈 〉ˆ ˆ ˆ†n t c c N( ) / , (13)a

= 〈 〉 〈 〉ˆ ˆ ˆ†
n t d d N( ) / , (14)b
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= 〈 〉 〈 〉.ˆ ˆ ˆ†g t c d N( ) / (15)(1)

We note that the process of instantaneous renormalization is equivalent to restricting to a fixed excitation number  
〈 〉N̂  sector. In this sector, the Hamiltonian PTc d H cd( ) ( )Tˆ ˆ ˆ ˆ† †

 is an N + 1 matrix in the photon-phonon number basis 
and post-selecting to this sector is equivalent to measuring the quantities na(t), nb(t) and g(1)(t)11,12.

The top row in Fig. 2 shows occupation numbers na(t), nb(t) for an initial state ψ| 〉 = | 〉N(0) , 0  with N = 5 obtained 
from the Lindblad (solid lines) and Hamiltonian (dashed lines) dynamics. The bottom row, on the other hand, shows 
results for ψ| 〉 = | − 〉N m m(0) ,  with m = 2 and N = 5. We observe the three well defined dynamical regimes: the 
anharmonic oscillations in nx(t) have a slightly different period in the PT-symmetric region, but converge asymptot-
ically at the exceptional point and in PT-symmetry broken region. This surprising result, where Lindblad dynamics 
does not rise to a steady-state behavior, is solely due to the post-selection scheme we have discussed.

Figure 3 shows the real (blue) and imaginary (blue) parts of the optomechanical coherence g t( )(1)  for separable 
states |N, 0〉 (top row) and | − 〉N m m,  (bottom row) respectively. The difference between the Lindblad master 
equation dynamics (solid lines) and the non-Hermitian Hamiltonian evolution (dashed lines) is again manifest 
only for product states where both modes are excited.

Figure 1.  Time-dependent occupation numbers na(t) (blue) and nb(t) (red) for an initial (a–c) separable, 
ψ| 〉 = | 〉(0) 1, 0 , and (d–f) correlated, ψ| 〉 = | 〉 + | 〉(0) ( 1, 0 0, 1 )/ 2 , single-excitation state. Solid and dashed 
lines correspond to Lindblad master equation and non-Hermitian Hamiltonian evolution, in that order. 
Columns show dynamics in the PT-symmetric region, at the exceptional point, and in the PT-symmetry 
broken region from left to right.

Figure 2.  Time dependent occupation numbers na(t) (blue) and nb(t) (red) for initial separable states (a–c) 
ψ| 〉 = | 〉N(0) , 0  with N = 5 and (d–f) ψ| 〉 = | − 〉N m m(0) ,  with N = 5 and m = 2. Columns show dynamics in 
the PT-symmetric region, at the exceptional point, and in the PT-symmetry broken region from left to right. 
Solid and dashed lines correspond to Lindblad master equation and non-Hermitian Hamiltonian evolution, in 
that order. The full Lindblad result differs from the Hamiltonian evolution, but has clear signatures of the PT
-symmetry breaking transition.
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Next, we consider the zero-temperature evolution with highly correlated initial states, such as the so-called 
N N00  states, with different values of N. Figure 4 shows that the Lindblad master equation results (solid lines) for 
the scaled occupation numbers na(t) and nb(t) are independent of N, while the Hamiltonian evolution results 
(dashed line) show deviations that increase with N. Again, the characteristic dynamics for the PT-symmetric 
phase, exceptional point, and PT-symmetry broken phase appear. The anharmonic oscillation period is the 
same for both approaches in the PT-symmetric region, but the interference in the Hamiltonian evolution differ-
entiates them apart. In the exceptional and broken regimes both dynamics converge asymptotically.

Figure 5 shows qualitatively similar results for the optomechanical coherence g(1)(t) with N N00  initial states. 
We find it remarkable that asymptotic value of g(1) at the exceptional point is a maximum in any each case. This is 
a fascinating effect that could prove useful for preserving coherence in the implementation of quantum informa-
tion protocols.

Finally, we consider the finite-temperature case that is most relevant to current optomechanical experiments, 
where the states of the modes are thermal coherent states. In this case, the full quantum dynamics asymptotically 
provides a thermal steady-state, and the interplay between decay ratios and the enhanced optomechanical cou-
pling provides the dynamics before stabilization22. Figure 6 shows these dynamics for finite temperature =T 293 
K where the initial state of the fluctuations given by thermal states with mean excitation numbers 

Figure 3.  Time-dependent coherence g(1)(t) for initial separable states (a–c) ψ| 〉 = | 〉N(0) , 0  and (d–f) 
ψ| 〉 = | − 〉N m m(0) ,  with N = 5 and m = 2. Blue and red show the real and imaginary part of the 
optomechanical coherence g(1)(t) respectively. Solid and dashed lines correspond to Lindblad master equation 
and non-Hermitian Hamiltonian evolution, in that order. Columns show dynamics in the PT-symmetric 
region, at the exceptional point, and in the PT-symmetry broken region from left to right.

Figure 4.  Time dependent occupation numbers na(t) (blue) and nb(t) (red) for correlated N00N state, 
ψ| 〉 = | 〉 + | 〉N N(0) ( , 0 0, )/ 2 , with (a–c) N = 2 and (d–f) N = 5. Solid and dashed lines correspond to 
Lindblad master equation and non-Hermitian Hamiltonian evolution, in that order. The full Lindblad result 
differs from the Hamiltonian evolution, but has clear signatures of the PT-symmetry breaking transition.
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〈 〉 = . ×ˆ ˆ†c c 3 76 103 and 〈 〉 = . ×ˆ ˆ†
d d 2 41 106. For a strong optomechanical coupling, > |Γ|g , the electromagnetic 

and mechanical modes hybridize and this standard mode-splitting results in oscillatory behavior that provides 
state transfer, Fig. 6(a), similar to dynamics in the PT-symmetry region. The transition point from strong to 
weak coupling occurs at what in non-Hermitian Hamiltonian systems is the exceptional point = |Γ|g  where 
power-law approach to steady-state arises and there is no state transfer anymore, Fig. 6(b). For weak coupling, 

< |Γ|g , the electromagnetic mode decays according to its damping rate but the mechanical mode shows an effec-
tive decay rate that includes the effect of the electromagnetic mode on the mechanical oscillator equivalent to the 
broken symmetry regime, Fig. 6(c). These results are obtained via the full Langevin equation for the same exper-
imental system35, but now at room temperature.

Conclusion
We revisited the optomechanical state transfer protocol from a non-Hermitian-Hamiltonian point of view. After 
the mean-field approximation, the linearized quantum fluctuation beam-splitter-like Hamiltonian provides us 
with a theoretical testing ground to compare the results from Lindblad master equation and non-Hermitian 
Hamiltonian evolution for a realization of the standard quantum PT-symmetric dimer.

We have shown that Lindblad dynamics and the Hamiltonian evolution at zero temperature provide identi-
cal dynamics for separable initial states where one of the modes is a number state and the other is the vacuum. 
However, for Fock initial states with non-zero mode numbers, the dynamics are not identical, but continue to be 
qualitatively similar. The same trend holds for correlated N00N states. Although the zero-temperature bath and 
Fock initial states cannot be explored in the present-day experimental optomechanical setting, they point to the 
fact that these regimes are differentiable in systems with engineered losses, such as coupled photonic waveguides.

Finally, at finite temperature, we find that the presence or absence of state transfer is a signature of the PT

-symmetric or PT-symmetry broken phases, although the dynamics are described by the full, finite-temperature 
Langevin equation. These results are accessible in a single device through control of the driving strength.

Received: 8 August 2019; Accepted: 5 December 2019;
Published: xx xx xxxx

Figure 5.  Time-dependent coherence g(1)(t) for correlated N00N state, ψ| 〉 = | 〉 + | 〉N N(0) ( , 0 0, )/ 2 , with 
(a–c) N = 2 and (d–f) N = 5. Blue and red show the real and imaginary part of the optomechanical coherence 
g(1)(t) respectively. Solid and dashed lines correspond to Lindblad master equation and non-Hermitian 
Hamiltonian evolution, in that order. Surprisingly, the coherence is maximum at the exceptional point.

Figure 6.  Time dependent occupation numbers na(t) (blue) and nb(t) (red) obtained by solving the Langevin 
equation at room temperature for initial thermal states. The dynamics has clear signatures of the PT-symmetry 
breaking transition displaying (a) the PT-symmetry regime, (b) the EP and (c) the broken-symmetry regime.
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