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ABSTRACT 

Purpose of review 

Clonal hematopoiesis of indeterminate potential (CHIP) increases with age and occurs when 

a single mutant hematopoietic stem cell (HSC) contributes to a significant clonal proportion of 

mature blood lineages. Somatic mutations in the TP53 gene, which encodes the tumor 

suppressor protein p53, rank in the top five among genes that were mutated in CHIP. This 

review focuses on mechanisms by which mutant p53 promotes CHIP progression and drives 

the pathogenesis of hematological malignancies, including myelodysplastic syndromes 

(MDS), and acute myeloid leukemia (AML). 

Recent findings 

TP53 was frequently mutated in individuals with CHIP. While clinical studies suggest that 

expansion of HSCs with TP53 mutations predisposes the elderly to hematological 

neoplasms, there is a significant gap in knowledge regarding the mechanisms by which TP53 

mutations promote HSC expansion. Recent findings suggest that several cellular stressors, 

including hematopoietic transplantation, genotoxic stress, and inflammation, promote the 

expansion of HSCs with TP53 mutations. Further, TP53 mutations identified in CHIP 

cooperate with genetic and/or epigenetic changes in leukemogenesis.  

Summary 

TP53 mutations identified in CHIP are associated with increased risks of de novo and 

therapy-related hematological neoplasms. Thus, targeting mutant p53 and related pathways 
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holds great potential in preventing CHIP progression and treating hematological 

malignancies. 
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KEY POINTS 

Tumor suppressor gene TP53 was frequently mutated in individuals with clonal 

hematopoiesis of indeterminate potential (CHIP). 

 

Several cellular stressors, including transplantation, genotoxic stress, and inflammation, 

promote the expansion of hematopoietic stem cells (HSCs) with TP53 mutations. 

 

TP53 mutations identified in CHIP cooperate with genetic and/or epigenetic changes in 

leukemogenesis.  

 

Targeting mutant p53 and related pathways holds great potential in preventing CHIP 

progression and treating hematological malignancies. 
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INTRODUCTION 

Human aging is associated with an exponential increase in the occurrence of clonal 

hematopoiesis of indeterminate potential (CHIP) in aged individuals. CHIP occurs when a 

single mutant hematopoietic stem cell (HSC) contributes to a significant, measurable clonal 

proportion of mature blood lineages [1, 2    , 3]. CHIP is also known as age-related clonal 

hematopoiesis (ARCH) [4    ]. CHIP is associated with an increased risk of hematological 

malignancies, such as myelodysplastic syndromes (MDS) and acute myeloid leukemia 

(AML), as well as a higher incidence of other age-related pathological conditions such as 

cardiovascular disease (CVD) [5-10,11  ]. Given that CHIP is an age-dependent risk factor for 

MDS, AML, and CVD, preventing CHIP progression may prove to be beneficial for human 

health. However, mechanisms by which somatic mutations in blood cells contribute to the 

pathogenesis of age-related diseases are largely unknown. The vast majority of the 

mutations identified in CHIP are dispersed across the genome. However, five genes, 

including DNMT3A, TET2, ASXL1, JAK2 and TP53, have disproportionately high numbers of 

somatic mutations [5-7]. TP53 ranks in the top five among genes that were mutated in CHIP 

and the frequency of TP53 mutations increases with age [5-9, 12    ,13    ]. TP53 gene 

encodes the tumor suppressor p53 protein [14]. This review will focus on the involvement of 

p53 in CHIP progression and pathogenesis of hematological malignancies, including MDS 

and AML. 

p53 in clonal hematopoiesis of indeterminate potential (CHIP) 

p53 is a transcription factor that regulates a large number of genes in response to a variety of 

cellular insults, including oncogene activation, DNA damage, and inflammation. These 

stressors activate p53 through post-translational modifications that result in augmented levels 

of p53 protein and transactivation activity [14-15]. Activated p53 induces growth arrest, 
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apoptosis, DNA repair, and differentiation in damaged cells to suppress cellular 

transformation [14-15]. p53 is a critical regulator of hematopoietic stem cell behavior and we 

discovered that p53 maintains HSC quiescence and regulates DNA damage response [16-

17]. p53 activates the transcription of target genes to mediate DNA damage repair, growth 

arrest or apoptosis [14, 18]. We have identified both Necdin and Gfi1 as p53 target genes in 

HSCs [16-17].  

Like solid tumors, p53 function is always compromised in hematological malignancies, 

usually as a result of somatic mutations and deletions [14-15, 19-23].  TP53 ranks in the top 

five among genes that were mutated in CHIP (Fig. 1). The majority of TP53 mutations in 

CHIP are missense mutations. The remainder of the TP53 mutations are nonsense, 

frameshift, and splice site mutations [5-7,12    ,13    ]. TP53 mutation spectrums in CHIP are 

similar to hematological malignancies, including MDS and AML [19-23]. While clinical studies 

suggest that expansion of HSCs with TP53 mutations predisposes the elderly to 

hematological neoplasms [5-7, 12    ,13    ], the mechanisms by which TP53 mutations 

promote HSC expansion during aging are largely unknown. We discovered that TP53 

mutations identified in CHIP enhances the repopulating potential of HSCs, thereby conferring 

a competitive advantage to HSCs following transplantation stress [24    ]. Hematopoietic 

transplantation also expanded p53 mutant clones in patients with hematological malignancies 

[13    ].   

Modulation of gene transcription is an important mechanism for mutant p53 in cancer 

development [15]; however, how mutant p53 regulates gene expression in HSCs is largely 

unknown. Loss of epigenetic regulation of gene expression in aged HSCs contributes to 

aging phenotypes and dysregulated epigenetic control has been implicated in the 



 6 

pathogenesis of hematological malignancies [20-21, 25-26]. Indeed, recent studies revealed 

that some mutant p53 proteins increase the expression of epigenetic factors, including MLL1, 

MLL2, and MOZ, in human cancer cells [27]. However, we found that the expression of Mll1, 

Mll2, and Moz is comparable in p53 wild-type and mutant HSCs (S.C. and Y.L., unpublished 

data). As mutant p53 proteins have been shown to play context dependent roles in human 

cancer [15], it is possible that mutant p53 proteins may utilize different mechanisms to 

modulate gene expression in HSCs. We found that mutant p53 interacts with epigenetic 

regulator EZH2. EZH2, a key component of Polycomb repressive complex 2 (PRC2), 

catalyzes the trimethylation of lysine 27 of histone H3 (H3K27me3) in cells [28]. 

Hematopoietic-specific deletion of Ezh2 impairs hematopoietic stem cell self-renewal and 

terminal differentiation [29]. We discovered that mutant p53 enhanced the association of 

EZH2 with the chromatin and increased the levels of H3K27m3 in genes regulating HSC self-

renewal and differentiation (S.C. and Y.L., unpublished data). Thus, we have uncovered a 

novel mechanism by which mutant p53 drives clonal hematopoiesis. Since common 

mutations identified in CHIP affect epigenetic modulators, including DNMT3A, TET2, and 

ASXL1 [5-7], our findings that mutant p53 modulates EZH2 activity and increases the levels 

of H3K27m3 in HSCs underscore the importance of dysregulated epigenetic control in CHIP 

development. 

Most of TP53 mutations in human cancer lost their tumor suppressor function [15]. 

However, mounting evidence suggests that some mutant p53 proteins not only lose their 
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tumor suppressor function, but also acquire new oncogenic properties that are independent 

of wild-type p53, known as gain-of-function (GOF) properties [15]. To ascertain the oncogenic 

effects of GOF TP53 mutations, p53R248W and p53R273H mutant were engineered into the 

endogenous Trp53 locus in mice [30]. Homozygous p53R248W/R428W and p53R273H/R273H mice 

developed novel tumors compared to p53−/− mice [30]. Thus, GOF mutant p53 proteins have 

enhanced oncogenic potential beyond the simple loss of p53 function. Since EZH2 interacts 

with mutant p53 but not wild-type p53, our findings suggest that some TP53 mutations 

identified in CHIP may have GOF properties. 

In transplantation assays, p53 mutant hematopoietic cells always outcompeted wild-

type competitor cells and became clonal dominance [13    , 24    ].  While we have identified a 

cell autonomous mechanism by which mutant p53 drives clonal hematopoiesis, recent 

studies indicate that mutations identified in CHIP may utilize cell non-autonomous 

mechanisms to promote clonal hematopoiesis [11  , 31    ]. For example, mutant 

hematopoietic cells displayed increased secretion of pro-inflammatory cytokines, including IL-

1β and IL-6 [11  , 31    ]. We found that inhibition of inflammatory signaling in Tet2 mutant 

preleukemic cells mitigates clonal hematopoiesis [31    ]. RNA-seq analysis revealed that 

inflammatory response genes are enriched in p53 mutant HSCs (S.C. and Y.L., unpublished 

data), suggesting that mutant p53 may drive clonal hematopoiesis through activating pro-

inflammatory pathways. The potential cell non-autonomous mechanisms by which mutant 

p53 promotes HSC expansion during aging await future investigation. 

 

p53 in therapy-related CHIP 
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TP53 mutations are commonly found in therapy related CHIP as well as in secondary 

MDS and AML [12    ,13    , 24    , 32]. Indeed, somatic TP53 mutations are present in 5 to 

10% of MDS cases and in 30% of secondary MDS patients arising after exposure to radiation 

or chemotherapy [20-21]. TP53 mutations in CHIP are associated with prior exposure to 

chemotherapy or radiotherapy [12    ,13    ]. Chemotherapy treatment resulted in expansion of 

both p53+/- and p53 R28W/+ HSCs [13    , 24    , 32]. p53-/- HSCs are resistant to radiation [16] 

and we observed that TP53 mutations identified in CHIP confer radiation resistance, leading 

to selective expansion of TP53-mutant HSPCs (S.C. and Y.L., unpublished data). TP53 

mutations in therapy-related CHIP are also associated with smoking [12    ], suggesting that 

smoking-induced DNA damage may promote the expansion of hematopoietic clones with 

TP53 mutations. 

Mutations in protein phosphatase Mg2+/Mn2+ 1D (PPM1D) have been identified in 

CHIP and myeloid neoplasms, with a enrichment in patients previously exposed to 

chemotherapy [5-7, 12    ,13    , 33    ,34    ]. PPM1D negatively regulates p53 and several 

proteins involved in the DNA damage response [35-36]. PPM1D mutations confer 

chemotherapy resistance, resulting in the selective expansion of PPM1D-mutant 

hematopoietic cells [33    ,34    ]. However, PPM1D mutants lack an advantage under bone 

marrow transplantation stress [13    , 33    ,34    ]. Thus, mutant p53 appears to play distinct 

roles in driving clonal hematopoiesis compared to PPM1D mutants. 
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p53 in the pathogenesis of hematological malignancies 

The frequency of TP53 mutations in AML is approximately 10% [22]. However, in AML with 

complex karyotype, the frequency of p53 mutations and/or deletions is almost 70% [23]. p53 

mutations and/or deletions were thought to be secondary events that occur during leukemic 

transformation [37-39]. However, an aged individual with TP53 mutation in hematopoietic 

cells developed AML after acquiring additional chromosomal changes [5]. Interestingly, Li-

Fraumeni syndrome (LFS), a rare, autosomal dominant disease, predisposes individuals to 

hereditary cancer linked to TP53 germline mutations, and some LFS patients develop MDS 

and AML as they age [15, 40], suggesting that TP53 mutations may be early events in 

leukemia development. 

Most homozygous p53 knockout and mutant mice develop spontaneous tumors, 

including lymphoma and sarcoma, and die within 3 to 6 months after birth [30]. Since MDS is 

an age-related hematological disorder [20-21], we reasoned that heterozygous p53 mutant 

mice may develop myeloid malignancies with age. We maintained p53+/+ and p53R248W/+ mice 

for more than a year and monitored tumor development. We found that some p53R248W/+ mice 

developed MDS with age based upon pathological analysis of BM and peripheral blood. 

Other p53R248W/+ mice developed lymphoma and sarcoma (S.C. and Y.L., unpublished data). 

Thus, we demonstrated that mutant p53 drives MDS in mice with age. 

While coexisting mutations with TP53 mutations in AML are limited, previous studies 

indicate that TP53 mutations do co-occur with AML driver mutations in oncogenic signaling 

molecules such as NRAS and FMS-like tyrosine kinase receptor-3 (FLT3) [41    , 42, 43    ].  

Loss of p53 has been shown to cooperate with Nras mutations in AML development in mice. 

Mechanistically, p53-/- synergizes with enhanced oncogenic NrasG12D signaling to transform 

megakaryocyte-erythroid progenitors (MEPs) into leukemia-initiating cells (LICs) thereby 
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driving AML development [43    ]. We found that mutant p53 cooperates with FLT3-ITD in 

chronic myeloid leukemia (CML) development in mice. Further, we found that mutant p53 

enhanced the self-renewal potential of FLT3-ITD+ leukemia-initiating cells [44    ]. Given that 

TP53 mutations are present in both chronic and blast crisis phases of CML [45], our studies 

underscore the importance of mutant p53 in CML pathogenesis. 

Targeting mutant p53 to prevent CHIP progression and treat hematological 

malignancies 

TP53 is the most frequently mutated gene across all cancer types [14-15, 46    ].  The 

presence of mutant p53 predisposes to tumor development and is associated with ineffective 

therapeutic responses and unfavorable prognosis [15, 46    ]. Indeed, somatic TP53 

mutations are associated with advanced disease and poor prognosis in both MDS and AML 

[19-23]. Despite these effects, no drug that abrogates the oncogenic functions of mutant p53 

has yet been approved for the treatment of cancer [46    ]. To date, there are no effective 

treatment for MDS and AML patients with TP53 mutations, and most patients die within two 

years of diagnosis [19-23]. Thus, there is an urgent need to develop therapeutic strategies 

that can target mutant p53 and related pathways, enhancing our abilities to prevent CHIP 

progression and treat age-related diseases. While hematopoietic cell transplantation has 

curative potential, TP53 mutations are unfavorable prognostic markers for transplantation in 

MDS patients and negatively affect post-transplant survival [47    , 48]. While MDS and AML 

patients with TP53 mutations have been observed to have favorable clinical response and 

robust mutation clearance after receiving a 10-day courses of decitabine, the response is not 

durable [49]. Epigenetic factor EZH2 is rarely mutated in CHIP [5-7] and we found that 

genetic and pharmacological inhibition of EZH2 decrease the repopulating potential of p53 
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mutant HSCs (S.C. and Y.L., unpublished data), suggesting that EZH2 may be a novel target 

for preventing CHIP progression in aged individuals with TP53 mutations.  

CONCLUSION 

Tumor suppressor gene TP53 was frequently mutated in individuals with CHIP and the 

frequency of TP53 mutations increases with age [5-9]. Recent findings suggest that several 

cellular stressors, including hematopoietic transplantation, genotoxic stress, and 

inflammation, promote the expansion of HSCs with TP53 mutations [11  , 12    ,13    , 24    ,  

31    ,32]. Further, TP53 mutations identified in CHIP cooperate with genetic and/or 

epigenetic changes in leukemogenesis [43    ,44    ] (Fig. 2). Since TP53 mutations identified 

in CHIP are associated with increased risks of de novo and therapy-related hematological 

neoplasms [5-9, 12    ,13    ], targeting mutant p53 and related pathways holds great potential 

in preventing CHIP progression and treating hematological malignancies. 
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FIGURE LEGENDS 

Figure 1. Tumor suppressor gene TP53 ranks in the top five among genes that were mutated 

in clonal hematopoiesis of indeterminate potential (CHIP).  

 

Figure 2. TP53 mutations identified in CHIP utilize distinct mechanisms to promote HSC 

expansion during aging. Expanded mutant HSCs become fully transformed leukemia-

initiating cells (LICs) after acquiring additional genetic and/or epigenetic changes. 
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