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Abstract

Assumed stress finite elements are known for their extraordinary good performance in
the framework of linear elasticity. In this contribution we propose a mixed variational
formulation of the Hellinger–Reissner type for hyperelasticity. A family of hexahedral
shaped elements is considered with a classical trilinear interpolation of the
displacements and different piecewise discontinuous interpolation schemes for the
stresses. The performance and stability of the new elements are investigated and
demonstrated by the analysis of several benchmark problems. In addition the results
are compared to well known enhanced assumed strain elements.
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Introduction
An enormous effort was invested in the development of finite element methods based
on the variational approach going back to Galerkin [28], which are in general consider-
ing the approximation of one basic variable. It is well known that low order elements,
based on this variational approach yield poor results in the framework of nearly incom-
pressibility and bending dominated problems. The reason for this are locking effects, see
[12]. Developments considering the approximation of additional fields in the variational
setup are for example given in Reissner [44] (compare also [29] and [43]), here an inde-
pendent stress approximation is applied in addition to the displacements, which acts as a
Lagrangemultiplier.We refer to this type of formulation, which is based on a complemen-
tary stored energy function, as Hellinger–Reissner (HR) formulation. A few years later,
[30] and [57] proposed independently a variational principle related to displacements,
stresses and strains, based on the so-called Hu-Washizu functional. In the framework of
finite element analysis, mixed formulations lead to saddle-point problems and therefore
a major constraint of these approaches is the restriction to the so-called LBB-conditions,
see [11,19,20,35] and [10]. Mathematical aspects concerning the mixed finite element
formulation for elasticity based on the Hellinger–Reissner (HR) principle are discussed
in Arnold and Winther [4], Auricchio et al. [10], Lonsing and Verfürth [37], Arnold et al.
[3], Boffi et al. [18] and Cockburn et al. [25]. In contrast to the Stokes problem, where the
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enrichment of the discrete space of the primal variable leads always to stable elements in
the linear range, the situation is more difficile in the framework of the HR formulation.
Here, the discrete spaces have to be carefully balanced.
Within the principle of HR two methods can be distinguished. A shift of the derivatives

from the displacements to the stresses, using integration by parts, leads to a formulation
with the displacements in the L2 and the stresses in the H (Div) Sobolev spaces. In the
literature, this is often denoted as the dual HR formulation. Stable elements in the linear
range based on the dual HR formulation with a strong enforcement of the symmetry
can only be achieved at high polynomial order, see e.g. [6,31] in 2D and [1,7] in 3D. A
reduction of the symmetry constraint leads to some flexibility in the construction of the
finite elements, see [5,18,53,54] and [32].
In the primal HR formulation the derivatives are correlated to the displacements, such

that the displacements are in theH1 and the stresses in L2 Sobolev spaces. Elements, based
on this formulation, are called assumed stress elements going back to the pioneering work
of Pian [39]. In 2D, often a discontinuous stress approximation using a 5-parameter ansatz
proposed by Pian and Sumihara [40] is used. The advantages of this approach are char-
acterized by a remarkable insensitivity to mesh distortion, locking free behavior for plane
strain quasi-incompressible elasticity and superconvergent results for bending dominated
problems, see e.g. [40,52] and [23]. Its stability with regard to the LBB-conditions and an a
posteriori error estimation has been shown by Yu et al. [61] and Li et al. [36]. Awell known
extension to the 3D case is the element by Pian and Tong [41]. The family of assumed
stress elements is closely related to the family for enhanced assumed strains elements, see
e.g. [2,60] and [16].
The “direct” extension of the HR principle, which requires a complementary energy

function in terms of stress measures, is in general not possible. Some effort has been
pursued in the extension of the dual version of the HR principle considering small-strain
elasto-plasticity, [46,48]. Considering a large-strain setup the workgroup of Atluri (see
[8,9,49]), has been proposed an incremental variational formulation, involving the dis-
cretization of the displacement, rotations and the hydrostatic pressure considering the
primal HR formulation. In addition [42] extended the underlying variational formulation
to a Hu-Whashizu type form, closely related to the family of enhanced assumed strains.
Another approach has been discussed in Wriggers [58], where the complementary con-
stitutive relation has been derived in an explicit form for a special Neo-Hookean type.
In the proposed work, a general framework is introduced, which extends the family of

assumed stress elements to hyperelasticity. It is based on an iterative solution procedure
of the constitutive law at the level of the element integration points. In this work, the
framework is adopted to a family of 3D hexahedral elements, with a varying interpolation
scheme of the stresses. It should be noted that in the framework of hyperelasticity, the
corresponding solution spaces are shifted from the classical Lebesgue spaces to the more
general frameworkof theHilbert spaces, see [24] for adetaileddiscussion.Thus, the related
solution spaces for the proposed formulations are represented for the displacements and
stresses by W 1,p and W 0,p, whereas p ≥ 2 depends on the constitutive relation. The
stress interpolation is discussed with respect to volumetric locking, shear locking and
hourglassing. In addition the related EAS elements are mentioned and the properties and
characteristics of the various elements are discussed on the example of different numerical
benchmarks.
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Table 1 Kinematics, constitutive quantities and stresses

Symbol Continuummechanical description

u Displacement vector

F = I + Gradu Deformation gradient

C = F TF Right Cauchy-Green tensor

E = 1
2 (C − I ) Green-St. Venant strain tensor

χ Complementary stored energy

ψ Helmholtz free energy

S Second Piola-Kirchhoff stress tensor

P = FS First Piola-Kirchhoff stress tensor

τ = PF T Kirchhoff stress tensor

σ = (det F )−1τ Cauchy stress tensor

Kinematics and variational formulation
Let B ⊂ IR3 be the body of interest in the reference placement, parametrized in X . Its
boundary ∂B is decomposed into a nontrivial Dirichlet part ∂Bu and a Neumann part ∂Bt
with ∂Bu ∪ ∂Bt = ∂B and ∂Bu ∩ ∂Bt = ∅. The nonlinear deformation map ϕ, which
maps points X ∈ B onto points x of the actual placement, is given by x = ϕ(X). As
basic kinematical quantities we define the deformation gradient, the right Cauchy-Green
tensor, and the Green-Lagrange strain tensor

F = I + Grad u, C = FTF and E = 1
2
(C − I ), (1)

respectively. Here, I denotes the second-order identity tensor. The Jacobian of the defor-
mation gradient has to satisfy J := det F > 0. In addition we introduce the symmetric
second Piola-Kirchhoff stresses S as an additional independent variable. The relevant
continuum-mechanical quantities are listed in Table 1. Before we extend the discrete
formulation to a general hyperelastic framework, we first assume for simplicity here the
existence a complementary stored energy function χ (S) which describes the constitutive
equation by

∂Sχ (S) := E. (2)

E.g. in the case of St. Venant type nonlinear elasticity E = C−1 : S, we simply obtain the
explicit expression

χ (S) = 1
2
S : C−1 : S (3)

where the compliance tensor C−1 is defined as the inverse of the fourth-order elasticity
tensor. In case of isotropy the compliance tensor is given by

C
−1 := 1

2μ
II − �

2μ(2μ + 3�)
I ⊗ I , (4)

with the dyadic product defined as (I ⊗ I )ijkl = δijδkl , the fourth-order identity tensor
IIijkl = 1

2 (δilδjk + δikδjl) and the Lamé constants � and μ. It should be mentioned that in
general an explicit complementary stored energy does not exist for arbitrary hyperelastic
constitutive laws. This issue will be discussed in the next chapter. The balance of momen-
tum closes, under the assumption of suitable boundary conditions, the set of equations
for the boundary value problem in hyperelasticity

Div P + f = 0 on B, (5)
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where f denotes the body force vector and Div the divergence operator with respect to
X . For a more detailed overview on the underlying continuum mechanics, the reader is
referred e.g. to Ciarlet [24]. The solution of Eqs. (2) and (5) for the displacements u and
the second Piola-Kirchhoff stresses S are equivalent to the stationary point of the HR
functional

�HR(S,u) =
∫

B
(S : E − χ (S)) dV + �ext (u), (6)

with the external potential �ext (u) given by

�ext (u) = −
∫

B
f · u dV −

∫

∂Bt

t · u dA, (7)

where t denotes the prescribed traction vector on the Neumann boundary and u satisfies
a priori the Dirichlet boundary conditions. In order to find a stationary point of the
functional, the roots of the first variations with respect to the unknown fields u and S
have to be calculated. In detail, we obtain

Gu := δu� =
∫

B
δE : S dV −

∫

B
δu · f dV −

∫

∂Bt

δu · t dA = 0 ,

GS := δS� =
∫

B
(δS : (E − ∂Sχ (S)) dV = 0 ,

(8)

with the virtual deformation δu and the virtual stress field δS. Furthermore, the virtual
strains are defined by δE = 1

2 (δF
TF + FT δF ) with δF = ∇δu.

Discrete formulation and interpolation
We consider a standard decomposition of the reference body B into an assemblage of
hexahedral elements Be such that B ≈ Bh = ⋃nele

e=1 Be, where nele is the number of
elements. In the following, underlined quantities denote the application of a matrix-
notation, which reduces second- and fourth-order tensors to suitable matrices using the
Voigt notation. The displacements and its variations are accordingly approximated by

u = IN d and δu = IN δd (9)

where IN denotes a matrix containing the Lagrangian trilinear shape functions and d
the vector of elementwise nodal displacements. This leads to a displacement interpola-
tion which is C0-continuous on Bh. The interpolation of the assumed stress field on the
isoparametric reference element is given in vector notation by

Sξ = (Sξξ , Sηη , Sζ ζ , Sξη , Sηζ , Sξζ )T = Lξ β , (10)

whereβ is the vector of element-wise unknowns andLξ thematrixwith the corresponding
interpolation functions, with the general structure

Lξ = diag
(
Lξξ ,Lηη ,Lζ ζ ,Lξη ,Lηζ ,Lξζ

)
. (11)

A variety of suitable interpolation matrices are discussed in the following section. The
transformation from the isoparametric domain to the reference configuration for the
second Piola-Kirchhoff stresses is described by

S = Ĵ Sξ Ĵ
T , (12)
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where the Jacobian matrix, mapping between the isoparametric coordinates ξ and the
reference coordinates X follows as

J = ∂X (ξ)
∂ξ

and Ĵ = ∂X (ξ)
∂ξ

∣∣∣∣
ξ=0

. (13)

In order to pass the patch test, see Figs. 2 and 3, it is necessary to use the values of the
Jacobian at the origin {ξ , η, ζ } = {0, 0, 0} as it is discussed in Pian and Sumihara [40] and
Pian and Tong [41]. Therefore, the second Piola-Kirchhoff stress in the physical space is
given by S = Lβ , with L = T Lξ where the transformation matrix T is given by

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ĵ211 Ĵ212 Ĵ213 2̂J11̂J12
Ĵ221 Ĵ222 Ĵ223 2̂J21̂J22
Ĵ231 Ĵ232 Ĵ233 2̂J31̂J32

Ĵ11̂J21 Ĵ12̂J22 Ĵ13̂J23 Ĵ12̂J21 + Ĵ11̂J22
Ĵ21̂J31 Ĵ22̂J32 Ĵ23̂J33 Ĵ22̂J31 + Ĵ21̂J32
Ĵ11̂J31 Ĵ12̂J32 Ĵ13̂J33 Ĵ12̂J31 + Ĵ11̂J32

. . .

. . .

2̂J12̂J13 2̂J11̂J13
2̂J22̂J23 2̂J21̂J23
2̂J32̂J33 2̂J31̂J33

Ĵ13̂J22 + Ĵ12̂J23 Ĵ13̂J21 + Ĵ11̂J23
Ĵ23̂J32 + Ĵ22̂J33 Ĵ23̂J31 + Ĵ21̂J33
Ĵ13̂J32 + Ĵ12̂J33 Ĵ13̂J31 + Ĵ11̂J33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

The discretized weak forms appear for a typical element as

Ge
u = δdT

∫

Be

IBT S dV − δdT
∫

Be

INT f dV − δdT
∫

∂Be
t

INT t dA ,

Ge
S = δβT

∫

Be

L
T (E − ∂Sχ (S)) dV ,

(15)

wherewehave utilized δE = B δd withB being a suitablematrix containing the derivatives
of the shape functions. In general cases, where complementary stored energy function is
not known, the partial derivative ∂Sχ (S) has to be computed iteratively. The Green-
Lagrange strain tensor is given by the approximation of the geometry whereas ∂Sχ (S) =:
Econs is implicitly evaluated from the constitutive equation. Therefore, we compute at
each integration point Econs from the residual

r(Econs; S) = S − ∂Eψ(E)
∣∣∣
Econs ≈ 0 (16)

at fixed S. Using a Newton scheme we have to update

Econs ⇐ Econs + [∂2EEψ(E)
∣∣∣
Econs ]

−1

︸ ︷︷ ︸
=: D

r(Econs; S) (17)

until ‖r(Econs; S)‖ ≈ 0. Table 2 sketches the nested algorithmic treatment for a typical ele-
ment for the case that the complementary stored energy cannot be computed analytically.
The linearization, LinGe = Ge(d,β) + �Ge(�d,�β), yields the increments

�Ge
u = δdT

∫

Be

� S dV�d + δdT
∫

Be

BT
L dV�β,

�Ge
S = δβT

∫

Be

L
TB dV�d − δβT

∫

Be

L
T
DL dV�β ,

(18)
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Table 2 Nested algorithmic treatment for a single element

ELEMENT LOOP

(1) Update displacements and stresses (Newton iteration k + 1)

d = d
(k)
n + Δd, β = β(k)

n
+ Δβ

INTEGRATION LOOP

(2) Compute stresses S and Green-Lagrange strain tensor E at each Gauss Point:

S = Lβ, E = IB d,

Read from history: Econs

CONSTITUTIVE LOOP

(3) Compute residuum: r(Econs; S) = S − ∂Eψ(E)
∣∣∣
Econs

(4) Update: Econs = Econs + D : r(Econs, S)

with D =
(
∂2
EEψ(E)

∣∣∣
Econs

)−1

(5) Check convergence

If ‖r(Econs; S)‖ ≤ tol

then Update History Econs and exit CONSTITUTIVE LOOP

(6) Check divergence

If niter > ntol Then Stop Calculation

(7) Determine and export element stiffness and rhs-vector

where� is defined as�B = ��d. We introduce for convenience the element matrices
and right hand side vectors

K e
uu :=

∫

Be

� S dV , K e
uS :=

∫

Be

L
TB dV , K e

SS :=
∫

Be

L
T
DL dV ,

reu :=
∫

Be

IBTS dV −
∫

Be

INT f dV −
∫

∂Be
t

INT t dA and

reS :=
∫

Be

L
T (E − Econs) dV .

(19)

This leads to the system of equations

LinGe =
[

δdT

δβT

]([
K e

uu K e
uS

T

K e
uS K e

SS

][
�d
�β

]
+

[
reu
reS

])
(20)

Assembling over the number of elements nele leads to the global system of equations

nele

A
e = 1

[
δdT

δβT

] ([
K e

uu K e
uS

T

K e
uS K e

SS

] [
�d
�β

]
+

[
reu
reS

])
= δD(K �D + R) = 0 (21)

and therefore the nodal unknowns are computed via

�D = −K−1R . (22)

Due to the elementwise discontinuous interpolation of the stresses, the unknowns �β

in (20) can already be eliminated at element level. This leads to a global system of equa-
tions with the same number of unknowns, and almost the same computational cost, as a
displacement based trilinear element.
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Stress interpolation

Following the limitation principle by Fraeijs de Veubeke [27], it can be shown that the
following 39 parameter based interpolation is in the linear elastic framework equivalent
to a primal displacement formulation with a trilinear interpolation for the displacements
because the resulting stress space are equivalent in both elements. For this case the inter-
polation vectors for the stresses are given by

L
39
ξξ = (1, ξ , η, ζ , ξη, ηζ , ξζ )

L
39
ηη = (1, ξ , η, ζ , ξη, ηζ , ξζ )

L
39
ζ ζ = (1, ξ , η, ζ , ξη, ηζ , ξζ )

L
39
ξη = (1, ξ , η, ζ , ηζ , ξζ )

L
39
ηζ = (1, ξ , η, ζ , ξη, ξζ )

L
39
ξζ = (1, ξ , η, ζ , ξη, ηζ )

39 stress modes

(23)

It will be shown in the numerical examples, that this formulation suffers due to volumetric
locking, which is caused by the choice of parameter corresponding to Lξξ , Lηη and Lζ ζ .
Here, a meaningful reduction will suppress the artificial stiffness. In addition, it will be
shown that this interpolation also leads to shear locking, which can be attributed to the
choice of Lξη , Lηζ and Lξζ . An expedient reduction of introduced stress-modes, lead to
a softening of the formulation. However, care must be taken not to relax the formulation
too much, since this could lead to artificial deformation states such as hourglassing. A
well known and very efficient stress discretization for the linear elastic counterpart of the
proposed HR formulation is the 18 parameter based interpolation scheme proposed by
Pian and Tong [41], which is a 3D extension of the element by Pian and Sumihara [40].
It has been shown by Andelfinger and Ramm [2] that this interpolation leads in the small
deformation framework to an equivalent EAS formulationwith 21 additionalmodes. Here
the individual interpolation vectors are given by

L
18
ξξ = (1, η, ζ , ηζ )

L
18
ηη = (1, ξ , ζ , ξζ )

L
18
ζ ζ = (1, ξ , η, ξη)

L
18
ξη = (1, ζ )

L
18
ηζ = (1, ξ )

L
18
ξζ = (1, η)

18 stress modes

(24)

Note, that this stress interpolation considers a minimal number of stress unknowns, since
any further reduction would lead to singular system matrices due to a violation of the
count condition proposed by Zienkiewicz et al. [62]. In the framework of the primal HR
formulation this count condition requires that the number of unknowns related to the
stresses is always larger or equal to the number of unknowns related to the displacements.
Note that in this case a single element constitutes themost critical patch, due to the assem-
bling procedure and the related tying of the displacement related degrees of freedom. The
numerical examples will show that this formulation does not suffer due to volumetric and
shear locking. But in case of large uniaxial homogeneous stress states hourglassing modes
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can be detected. It is known (see e.g. [34] and the references therein) that the hourglass
modes are caused by a violation of the kinematics related to the shear deformation terms.
The EAS formulation with 21 enhanced modes depict the same characteristics in the
hyperelastic framework. In a straight forward manner, further discretization schemes can
be adopted from EAS formulations. A promising approach has been published recently by
Krischok and Linder [34] where a 9 parameter based EAS element was proposed, which
does not suffer to hourglassing modes and is free from volumetric locking. The related
stress interpolation in the framework of the HR formulation needs the introduction of a
30-parameter based discretization

L
30
ξξ = (1, η, ζ , ηζ )

L
30
ηη = (1, ξ , ζ , ξζ )

L
30
ζ ζ = (1, ξ , η, ξη)

L
30
ξη = (1, ξ , η, ζ , ηζ , ξζ )

L
30
ηζ = (1, ξ , η, ζ , ξη, ξζ )

L
30
ξζ = (1, ξ , η, ζ , ξη, ηζ )

30 stress modes

(25)

It can be recognized that the only difference between the interpolation schemes of Eqs.
(24) and (25) are the additional terms for the interpolation of the shear stresses. These
additional stress modes lead to a stabilization such that hourglassing modes have not
been detected in the numerical examples. Unfortunately they also lead to shear locking
phenomena as it can be expected by the comparison Lξη − Lξζ of Eqs. (25) and (23).
With this knowledge, it makes sense to investigate one further interpolation scheme.

Since the volumetric locking problem seems to be solved by a suitable interpolation of
S11, S22 and S33, only the interpolation matrices corresponding to the shear stresses are
modified. In particular we consider the interpolation scheme which can be nested in
between the interpolations from Eqs. (24) and (25). The correspondingmatrices follow by

L
18
ξξ = (1, η, ζ , ηζ )

L
18
ηη = (1, ξ , ζ , ξζ )

L
18
ζ ζ = (1, ξ , η, ξη)

L
18
ξη = (1, ζ , ηζ , ξζ )

L
18
ηζ = (1, ξ , ξη, ξζ )

L
18
ξζ = (1, η, ξη, ηζ )

24 stress modes

(26)

Numerical simulations
In the following numerical examples the proposed family of finite elements will be investi-
gatedwith respect to locking phenomena, stability, robustness and efficiency. Each consid-
ered benchmark focuses on one of these aspects in order to be able to classify each element.
In addition to the proposed assumed stress elements the numerical studies will also be dis-
cussed for a non-mixed lowest order element, thewell knownH1P0 (see [50]) and a couple
of enhanced assumed strain element formulations. In particular we consider exactly those
elements which are, in the framework of linear elasticity and a constant Jacobian, equiva-
lent to the considered assumed stress elements. A list of the considered elements is given



Viebahn et al. Adv. Model. and Simul. in Eng. Sci.            (2019) 6:9 Page 9 of 22

Table 3 Overview of considered elements

AS-39 Assumed stress element with 39 stress modes, see Eq. (23)

H1 Isoparametric eight-node hexahedral element

AS-18 Assumed stress element with 18 stress modes, see Eq. (24)

EAS-21 Enhanced assumed strain element with 21 modes, see [2]

AS-30 Assumed stress element with 30 stress modes, see Eq. (25)

*EAS-9 Enhanced assumed strain element with 9 modes, see [34]

AS-24 Assumed stress element with 24 stress modes, see Eq. (26)

EAS-15 Enhanced assumed strain element with 15 modes, see [38]

H1P0 Displacement-pressure approach with piecewise constant pressure, see [50]

Boundary Conditions:

z = 0 : u3 = 0

z = 50 : u1 = 0
u2 = 0

x = 0 : u1 = 0

y = 0 : u2 = 0

x ≤ 25 ∧ y ≤ 25 :

t = (0, 0, −3)T

Fig. 1 Inhomogeneous compression Block; geometry, representative mesh, deformed configuration and the
boundary conditions

in Table 3. Please note that the *EAS-9 element is not the popular enhanced assumed
strain element by Simo and Rifai [51], which also comprises 9 enhanced modes.

Equivalence of the formulations in linear elasticity

All considered assumed stress element formulations have an equivalent counterpart in the
linear elastic framework if the Jacobian mapping from the isoparametric to the physical
domain is piecewise constant. This equivalency has been already discussed and proven in
a variety of publications, see e.g. [16]. Here, a numerical test is used in order to verify the
implementation of the finite element code. Therefore we consider a Neo Hookean type
free energy function of the form

ψ = μ

2
(trC − 3) −

(
�

2
+ μ

)
ln(det F ) + �

4
(detC − 1) (27)

which fulfills
∂2ψ

∂C2

∣∣∣∣
(C=I )

= C, where C is the elasticity tensor related to Hooke’s law. In

order to obtain the result referring to the linear elastic framework we consider the result
after the first Newton-iteration. The considered boundary value problem is a block with
thedimension 100×100×50which is subjected to a constant surface load at the top central
quarter t = (0, 0,−3)T . Due to the axial symmetry of the problem, only a quarter of the
block is discretized. The geometry, a representativemesh and the boundary conditions are
given in Fig. 1. The material parameters are assumed to be compressible, with a Young’s
modulus E = 5 and a Poisson’s ratio of ν = 0.3. In terms of the Lamé parameter this
is related to μ = 1.92308 and � = 2.88462. A regular hexahedral mesh with uniform
refinement is considered, such that the Jacobian is always constant in each element.
Table 4 depicts the convergence of the nodal u3 displacements at point x = (0, 0, 50). The



Viebahn et al. Adv. Model. and Simul. in Eng. Sci.            (2019) 6:9 Page 10 of 22

Table 4 Inhomogeneous compression block in linear elasticity

nele 23 43 83 163

AS-39 29.2568 27.106 27.0202 26.9881

H1 29.2568 27.106 27.0202 26.9881

AS-18 31.3466 27.2494 27.0808 27.0046

EAS-21 31.3466 27.2494 27.0808 27.0046

AS-30 29.9399 27.1645 27.042 26.9938

*EAS-9 29.9399 27.1645 27.042 26.9938

AS-24 31.1904 27.2326 27.0806 27.0046

EAS-15 31.1904 27.2326 27.0806 27.0046

H1P0 31.7699 27.1882 27.0856 27.0072

Convergence of u3 displacements at point x = (0, 0, 50). The equivalences of the corresponding elements can be recognized

z

x

y
1.0

0.5

0.0

1.0
0.5

0.0

1.0

0.5

Load case (A):

x = 0 ∧ y = 0 :
u1 = 0
u2 = 0
u3 = 0

x = 0 ∧ y = 1 ∧ z = 1 :
u1 = 0.5

Fig. 2 Patch test 1; reference mesh and deformed body

z

y

x

0.0
0.5

1.0 0.0

0.5

1.0
0.5

1.0

Load case (B):

x = 0 ∨ x = 1∨
y = 0 ∨ y = 1 ∨ z = 0 ∨ z = 1:

u1 = 0.1x + 0.05y + 0.05z

u2 = 0.05x + 0.1y + 0.05z

u3 = 0.05x + 0.05y + 0.1z

Fig. 3 Patch test 2; reference mesh and deformed body

equivalences between the different element formulations can be recognized. In fact all
nodal values of the related equivalent elements (AS-39 and H1; AS-18 and EAS-21; AS-30
and *EAS-9; AS-24 and EAS-15) are identical up to machine precision.

Patch test

The Patch test is a necessary condition for the convergence of finite elements. It demands
that an arbitrary patch of assembled elements is able to reproduce a constant state of stress
and strain if subjected to boundary displacements consistent with constant straining. This
condition is necessary since with respect to mesh refinement, where h → 0, all boundary
value problems tend to constant stress and strains in each element. This test is mainly
attributed to the work of Bruce Iron, first presented in Bazeley et al. [15]. A summary on
its theory, practice and possible conclusions on its satisfaction can be found in Taylor et al.
[55]. Following Korelc et al. [33], two different load scenarios are considered, described in
Figs. 2 and 3. Load case (A) prescribes a pure rigid bodymotion by a rotation around the z-
axis. All proposed elements are free of resulting stresses and strains and thus fulfill the first
patch test. Load case (B) prescribes a combined deformation of shear and uniaxial strain,
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which analytical solution leads to a constant strain and stress over the whole domain. All
proposed elements result in the expected constant stress and strain field and therefore
fulfill the second patch test. Note that the patch tests verify only the consistency of the
finite element and thus represents only a necessary but not a sufficient condition for the
stability of the formulation.

Inf-sup test

The theorems of Babuška [11] and Brezzi [20] ensure stability, existence and uniqueness
of the solution ofmixed finite elements in the case of linear elasticity. The crucial aspect in
the validation of these theorems for particular formulations is mainly encountered in the
proof of the discrete inf-sup condition. In many cases its analytical proof is cumbersome
and a direct numerical evaluation is impossible because an infinite number of problems
must be taken into account. For the engineering praxis, a numerical inf-sup test has been
proposed in Chapelle and Bathe [22] and Bathe [13,14]. The objective of this test is to
estimate the inf-sup constant numerically on a set of refined meshes. In the following this
inf-sup test is adopted for the proposed Hellinger–Reissner formulations considering a
stress free and undeformed (F = I ) configuration which represents the framework of
linear elasticity. A simply supported unit cube with the dimension 1× 1× 1 is considered
with a consecutive regular mesh refinement. It has been shown by Brezzi and Fortin [21]
that the square root of the smallest eigenvalue, denoted by λp, of the problem

KT
uS T

−1 K uS �d = λp A�d (28)

is equivalent to the inf-sup constant, where the matrices T and A are defined as
∫

B
S : S dV = �βT T �β

∫

B
E : E dV = �dT A�d .

(29)

In addition to the evaluationof the inf-sup values for theproposed assumed stress elements
the corresponding test is verified by means of the H1P0. This element is a well known
textbook example which does not satisfy the inf-sup condition. A detailed instruction on
the accomplishment of the inf-sup test for displacement-pressure based elements is given
in Chapelle and Bathe [22].
Figure 4 shows the development of the inf-sup value for the chosen boundary value

problem over the number of elements considering a regular structured mesh refinement.
The value seems to be bounded from below for the AS-39, AS-30 and AS-24. In case
of the AS-18 the inf-sup value shows asymptotical convergence, which also indicates a
distinct lower bound and thus passes the inf-sup test. Both described behavior are in sharp
contrast to the results of the H1P0. Here, the inf-sup value decreases with respect to mesh
refinement by an almost constant rate, clearly indicating the failure of the inf-sup test. It
should be mentioned, that such a numerical verification does not replace the need of an
analytical investigation in order to ensure the statements on the stability. Nonetheless, to
the best knowledge of the authors, not a single example has been found, where the inf-sup
test does not give similar results as the analytical proofs.
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Fig. 4 Inf-sup test: numerical evaluated inf-sup constant over the number of elements

Table 5 Eigenvalue spectrum for incompressible square element

AS-18 / EAS-21 AS-24/EAS-15 AS-30/*EAS-9 H1/AS-39 H1P0

1 ∞ ∞ ∞ ∞ ∞
2 0.33 0.33 0.38 ∞ 0.33

3 0.33 0.33 0.38 ∞ 0.33

4 0.33 0.33 0.38 ∞ 0.33

5 0.33 0.33 0.33 ∞ 0.33

6 0.33 0.33 0.33 ∞ 0.33

7 0.33 0.33 0.33 ∞ 0.22

8 0.33 0.33 0.33 0.33 0.167

9 0.33 0.33 0.33 0.33 0.167

10 0.22 0.22 0.22 0.33 0.167

11 0.11 0.11 0.167 0.33 0.09

12 0.11 0.11 0.167 0.33 0.09

13 0.11 0.11 0.167 0.22 0.09

14 0.056 0.093 0.093 0.16 0.06

15 0.056 0.093 0.093 0.16 0.06

16 0.056 0.093 0.093 0.16 0.06

17 0.056 0.056 0.056 0.056 0.056

18 0.056 0.056 0.056 0.056 0.056

Eigenvalue analysis of initial element matrix

The eigenvalue spectrum of a single element matrix in the initial state is inspected for
the case of nearly incompressibility and in addition for a slender domain. Note that in
the proposed setup the initial state represents the case of linear elasticity. For the nearly
incompressible example, we follow the example of Andelfinger and Ramm [2] and con-
sider a single square element with a side length of l = 1, a Young’s modulus of E = 1
and a Poisson’s ratio of ν = 0.49999. Table 5 shows the eigenvalue spectrum of the dif-
ferent elements, whereas eigenvalues larger than 103 are denoted by ∞ and the six zero
eigenvalues are omitted. The incompressibility should affect only a single eigenvalue to
tend to infinity which is related to the mode of volumetric dilation. It can be recognized,
that in case of the H1 and the AS-39 a total number of seven eigenvalues tend to infinity
which consequences in volumetric locking. All other proposed elements depict the correct
eigenvalue spectrum.
A second study on the eigenvalue spectrum is related to an increasing slenderness of the

domain of interest. In Fig. 5 the development of the smallest eigenvalue of a single element
cube with the dimensions 2 × 2 × t is investigated. In addition the domain is assumed
to be clamped at x = 0. The Domain on the left of Fig. 5 depicts the related eigenmode,
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Fig. 5 Investigation of eigenvalue spectrum; domain and related eigenmode depicted on the left.
Development of smallest eigenvalue over 1/t on the right

Fig. 6 Investigation of eigenvalue spectrum; domain and related eigenmode depicted on the left.
Development of smallest eigenvalue over 1/t on the right

which is clearly the mode related to bending deformation. The evolution of the smallest
eigenvalue of the elementmatrix shows two distinct characteristics. In case of the EAS-15,
EAS-21, AS-24 and AS-18 the eigenvalue is decreasing rapidly for a shrinking thickness
t. In contrast this progress is significant slower for the elements H1, AS-39, *EAS-9 and
H1P0. Based on this observation, it can be recognized that bending deformation states
are energetically preferable for the first group of elements, yielding to a locking behavior
for the latter group. The same analysis is carried for a skew-shaped domain depicted in
Fig. 6. It is interesting to mention, that for this domain the elements EAS-15 and AS-24
show a reduced ratio of decrease after a critical value of t. In contrast, the behavior of the
remaining elements is almost unaffected.

Hyperelastic nearly incompressible Cook’s membrane

A tapered cantilever beam known as the Cook’s membrane problem is considered, repre-
senting a bulk related boundary value problem with nearly incompressible material. The
geometry, boundary conditions and material parameter are summarized in Fig. 7. The
cantilever, with a thickness of t = 10 is clamped on the left and a constant shear stress
is applied on the right face. In addition the displacements in out of place direction are
restricted, imitating a plane strain setting. Thematerial parameters are chosen to be nearly
incompressible with a Young’s modulus of E = 200 and a Poisson’s ratio of ν = 0.499.
This corresponds to the Lamé parameters given by � = 33288.9 and μ = 66.711. The
convergence of the tip displacement for a regular mesh refinement in x and y direction are
shown in Fig. 8a. Note that only a single element in z direction is considered. The suffer-
ing due to volumetric locking can be recognized for the displacement based elements H1.
Unfortunately, the AS-39 does not converge at all for this numerical example. In contrast,
all other mixed finite elements achieve a comparably good convergence behavior of the
tip displacements, since they do not suffer due to volumetric locking, as expected from the
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Boundary Conditions:

x = 0 :
u1 = 0
u2 = 0
u3 = 0

x = 48 :
t = (0, 15, 0)T

z = 0 and z = 10 :
u3 = 0

Parameters:

E = 200
ν = 0.499

t = 10

Fig. 7 Cook’s membrane problem; exemplary reference mesh and deformed body on the left and boundary
conditions and parameters on the right

a

b

Fig. 8 Cook’s membrane problem: convergence of tip displacement (a) and number of necessary load steps
(b) over the number of elements

eigenvalue analysis of Table 5. Note that the elements which are equivalent in the linear
elastic framework do not yield exactly the identical solution for the displacements in the
finite deformation case. However their results are still close to each other.
Consideration of the necessary load steps, depicted in Fig. 8b, indicate that the assumed

stress elements are able to deal with large load steps in case of nearly incompressibility.
For this boundary value problem the considered elements require only a single load step,
independent of the mesh size. In contrast, the enhanced assumed strain elements and
the H1P0 element require a significant higher number of load increments, leading to a
substantially larger computation time. The level of necessary load steps in case of the
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Dimensions:

x ∈ {0, 10}
y ∈ {0, 10}
z ∈ {−0.05, 0.05}

Boundary Conditions:

x = 0 :
u = (0, 0, 0)T

x = 10 :

t = (−z, 0, 0)T

Fig. 9 Clamped plate: geometry, coarsest unstructured mesh, deformed configuration and the boundary
conditions

364 elements 666 elements 1744 elements 3494 elements

Fig. 10 Clamped plate: refined unstructured meshes

H1 element is moderate but it should kept in mind that their performance by means of
displacement accuracy is insufficient.

Hyperelastic bending of a compressible clamped plate

We consider a thin rectangular plate with the dimension 10×10×0.1 which is clamped at
one end and loaded by a bending force at the opposing end. The geometry, boundary con-
ditions and a representative mesh are depicted in Fig. 9. Two different meshing strategies
are considered in the following, note that both are restricted to a single element in thick-
ness direction. On the one hand a regular and structured meshing procedure is adopted,
where the number of elements in x and y direction coincide. A detailed visualization of the
appropriated meshes is neglected for the sake of brevity. In addition an unstructured in-
plane mesh is adopted, whereas the considered refinement steps are explicitly depicted in
Fig. 10. In a first step a perfect compressible material, characterized by the Neo Hookean
energy, see (27), and a Young’s modulus of E = 200 and a Poisson’s ratio of ν = 0 is
taken into account. In terms of the Lamé parameter this is related to μ = 100 and � = 0.
Due to thematerial parameter and the boundary conditions, this boundary value problem
considers a pure bending mode. The convergence of the displacements with respect to
both mesh refinement strategies are depicted in Fig. 11.
The elements can bemainly distinguished into three groups, whereas the close relation-

ship between the assumed stress and enhanced assumed strain elements can be recognized
again. In case of the structuredmeshing theAS-18, EAS-21, AS-24 yield EAS-15 yield opti-
mal results for the tip-displacement already for the coarsestmeshing.However, taking into
account the unstructured meshes the quality of the results is weakened, especially for the
coarsest level. However, the AS-18 and EAS-21 depict the best mesh convergence of all
considered elements, independent of the discretization strategy. The AS-24 and EAS-15
are slightly weaker in case of unstructured coarse meshes. In contrast to these four ele-
ments the H1P0, H1, AS-39, AS-30 and *EAS-9 demonstrate a distinct locking behavior
in this numerical example. Note that these observations are consent with the results of
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a

b

Fig. 11 Bending of a compressible clamped plate; convergence of tip displacement and number of
necessary load steps over the number of elements for a structured (a) and an unstructured (b) mesh
refinement strategy

the eigenvalue study related to Fig. 6, where locking behavior has been predicted for the
latter elements in case of boundary value problems with slender domains. Interestingly,
their tip-displacement convergence is slightly better for the unstructured case, which is
in contrast to the behavior of the remaining elements.
In addition the number of necessary load steps are depicted on the right of Fig. 11. It can

be recognized that also in this bending dominated problem, the number of necessary load
steps is significantly smaller for the proposed family of assumed stress elements. Especially
the enhanced assumed strain elements, which do not show locking effects (EAS-15, EAS-
21) suffer due to the need of smaller load increments compared to their AS counterparts
(AS-18, EAS-24).

Hyperelastic bending of a clamped plate—nearly incompressible

We investigate the boundary value problemwith the same geometry, boundary conditions
and constitutive relation as in the prior example.Only, thematerial is assumed to be nearly
incompressible increasing thePoisson’s ratio to ν = 0.495. In termsof theLaméparameter
this is related to μ = 66.8896 and � = 6622.07.
Considering the displacement convergence, shown on the left of Fig. 12, it can be noted

that the qualitatively response of the elements is equivalent to the compressible case,
except for the AS-39 and H1. These elements clearly depict a conspicuous additional
volumetric locking. A similar picture as for the compressible case is obtained considering
the number of necessary load steps, shown in Fig. 12b. Even if the displacement results
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a

b

Fig. 12 Bending of a nearly incompressible plate; convergence of tip displacement and number of
necessary load steps over the number of elements for a structured (a) and an unstructured (b) mesh
refinement strategy

for the EAS-21 and EAS-15 seem to be satisfactory, they suffer due to the need of smaller
load steps (a factor of 20), compared to their assumed stress counterparts.

Hyperelastic hourglassing test

The deficiency of a couple of enhanced assumed strain elements to artificial modes, often
denoted as hourglassing, have first been detected in case of homogeneous stress states by
Wriggers and Reese [59]. The investigation of these unphysical free energy modes have
been subject of many following publications, see e.g. [26] and [56]. In order to investigate
the assumed stress elements with regard to hourglassingmodes we consider the boundary
value problem depicted in Fig. 13.
The numerical test considers a cube with a side length of 50 where a compression is

applied by displacement boundary conditions. In addition displacement boundary condi-
tions are considered such that the edges are fixed to be straight. It is an easy task to see, that
for this problem surface buckling is excluded due to the choice of boundary conditions
and therefore the solution for the displacements has to be unique. Therefore each point of
instability is introduced by the numerical discretization scheme and can be considered as
artificial. The same constitutive law as in the prior examples is used, whereas the material
parameter are given by E = 4.337 and ν = 0.355. In terms of the Lamé parameter this
is related to μ = 1.60037 and � = 3.91814. Figure 14 show the development of the
smallest eigenvalues of the global condensed stiffness matrix with respect to the applied
displacement at the top edge. It can be recognized that the AS-18, EAS-21, AS-24 and
EAS-15 obtains points of instability at different load stageswhereas the remaining element
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Boundary Conditions:

x = 0 ∨ x = 50 :
u1 = 0

y = 0 ∨ y = 50 :
u2 = 0

z = 0 :
u3 = 0

z = 50 :
u3 = −25

Fig. 13 Hourglassing test: geometry, representative mesh, deformed configuration and the boundary
conditions

Fig. 14 Hourglassing test: development of the smallest eigenvalue of the stiffness matrix over the loading

AS-18 EAS-21 AS-24 EAS-15

Fig. 15 Hourglassing test: Hourglassing modes at points of instability

formulations depict stable behavior. Note that the unstable elements are exactly the shear
locking free elements. Interestingly, the load levels where the instability occurs is not close
to each other for the formulations which are equivalent in the linear elastic framework. In
case of the assumed stress discretization the point of hourglassing is on a higher state of
stress, compared to its enhanced assumed strain counterpart. The relationship between
these elements occurs again in the related eigenforms see Fig. 15. It can be recognized,
that the hourglassing modes itself are equivalent for the AS-18 and EAS-21 and also for
the AS-24 and EAS-15.

Hyperelastic fiber reinforced Cook’s membrane problem

In order to show that the proposed algorithm is also applicable tomore complex constitu-
tive equations the Cook’smembrane with a fiber reinforcedmaterial is considered. There-
fore, the underlying strain energy function is split into an isotropic and an anisotropic part

ψ = ψiso + ψaniso . (30)
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Boundary
Conditions:

x = 0 :
u1 = 0
u2 = 0
u3 = 0

x = 48 :
t = (0, 500, 0)T

Material
parameter:

α = 42,
β = 84,
γ = 6α + 12β,
ε1 = 100,
ε2 = 10,
g0 = 3000,
gc = 4,
gh = 8,
gθ = 1,

a =
√
3−1(1, 1, 1)T

Fig. 16 Cooks membrane problem: geometry, representative mesh, deformed configuration and the
boundary conditions

Fig. 17 Cook’s membrane problem, displacement convergence (left) and the number of necessary load
steps (right)

The isotropic part is represented by the following strain energy of Mooney-Rivlin type

ψiso = α

2
tr[C]2 + β

2
tr[CofC]2 − γ ln J + ε1(det[C]ε2 + det[C]−ε2 − 2) , (31)

where α, β , γ , ε1 and ε2 are material parameter and the Cofactor of a second order tensor
is defined by CofA = det[A]A−T . For the formulation of anisotropic free energies as
isotropic tensor functions we apply the concept of structural tensors, see e.g. [17].
Considering here the case of transverse isotropy we introduce a preferred direction

vector a of unit length and the structural tensor M = a ⊗ a. The anisotropic part of the
strain energy, originally introduced in Schröder et al. [47], is given by

ψaniso = g0
(

1
gc + 1

tr[CM]gc+1 + 1
gh + 1

tr[CofCM]gh+1 + 1
gθ

I−gθ
3

)
(32)

with the material parameter g0, gc, gh, gθ , see in this context also [45]. The geometry,
boundary conditions and thematerial parameter are depicted in Fig. 16. The convergence
of the displacements at node x = (48, 60, 0)T and the corresponding necessary load steps
are depicted in Fig. 17. First, it should be mentioned that for the AS-39 we have not
been able to obtain a solution for the considered boundary value problem. In contrast to
that, the previously mentioned statements are confirmed. The AS-30, *EAS-9 and the H1
suffer due to the bending of the boundary value problem. In addition, theH1 suffers due to
the constraint on the volumetric deformation, corresponding to the material parameter
ε1. The remaining elements seem to be free of locking behavior and converge quickly.
Furthermore, the number of necessary load steps is again lower in case of the assumed
stress elements.
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Concluding remarks
We proposed an extension of a mixed finite element formulation based on the Hellinger–
Reissner principle to the framework of hyperelasticity and investigated it numerically.
This principle requires an independent interpolation of the stresses and displacements.
The displacements are interpolated by classical trilinear shape functions, whereas for the
stresses four different interpolation strategies are discussed. The numerical results for
each interpolation can be summarized by the following. The AS-39 correlates to the H1
element also in the nonlinear regime and shows volumetric as well as shear locking. The
AS-18 represents the hyperelastic extension of the element proposed by Pian and Tong
[41]. A close relationship can be drawn to the EAS-21. The AS-18 performs very well
in bending dominated and nearly incompressible problems. Unfortunately, it suffers due
to hourglassing modes which could lead to instabilities also in more complex boundary
value problems. The AS-30 element is inspired by the *EAS-9 enhanced formulation,
proposed in Krischok and Linder [34]. It is free of volumetric locking, does not show
hourglass instabilities in the discussed numerical example. Unfortunately, it is not free of
shear locking and therefore behaves poor in the bending dominated problems. The AS-24
element is closely related to the EAS-15 proposed by Pantuso and Bathe [38]. It is free of
volumetric and shear locking. However, it suffers due to hourglass instabilities.
Even if non of the investigated interpolation schemes are free of all drawbacks, the pro-
posed procedure of Hellinger–Reissner formulations for large deformations has emerged
as a promising approach. The proposed elements seem to be significantly improved in
terms of robustness and large load increments. This leads to an enormous gain in terms
of computational cost comparing to the widely used EAS formulations.
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