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Zusammenfassung

Nichtlinearität in Zeitreihen findet sich nicht nur in Kointegrationsbeziehungen, sondern ist auch

eng verknüpft mit Strukturbrüchen und Persistenzbrüchen. Da beide Arten von Brüchen zu

einem Regimewechsel führen können, eignen sich diese Modelle besonders, um Zeitabhängigkeiten

zu modellieren. Lineare Modelle liefern häufig nur eine unzureichende Darstellung des vor-

liegenden DGPs, da sie Schocks wie Finanzkrisen, Trends oder aber stilisierte Fakten wie

Volatilitätsclustering und Langzeitdependenzen nicht widerspiegeln können. Aus diesem Grund

ist das Testen auf diese nichtlinearen Eigenschaften essentiell in jeder statistischen Analyse,

insbesondere im Hinblick auf eine effektive Modellspezifikation.

Nichtlineare Kointegration. In Kapitel Eins wird ein nichtlinearer Kointegrationstest vorgestellt,

der ursprünglich auf das Papier von Kapetanios et al. (2006) zurückgeht, in welchem erst-

mals nichtlineare Fehlerkorrektur explizit unter der Alternative untersucht wird. Es wird un-

terstellt, dass die Regimewechsel durch eine logistische Übergangsfunktion zweiter Ordnung

(D-LSTR) ausgelöst werden. Getestet wird
”
Keine Kointegration“gegen

”
Global stationäre D-

LSTR Kointegration
”
unter der Alternative des Tests. t- und F - Tests werden direkt aus der

nichtlinearen Fehlerkorrekturgleichung abgeleitet und für kleine Stichprobengrößen untersucht.

Die Ergebnisse des nichtlinearen Tests werden mit einem gängigen linearen Kointegrationstest

verglichen, hier dem Test von Johansen (1991). Es ergibt, dass der vorgestellte nichtlineare Test

Power gegen D-LSTR Kointegration, aber auch diskretes 3-Regime TAR-Verhalten hat und sich

die D-LSTR Funktion sich besonders als Generalisierung der Übergangsfunktionen eignet.

Strukturbrüche. Das zweite Papier untersucht die am häufigsten angewendeten Volatilitäts-

bruchtests, nämlich den CUSUM-Test von Deng and Perron (2008) sowie gewöhnliche LM- und

Wald-Tests. Im Rahmen einer Simulationsstudie unterliegen die DGPs entweder einem oder zwei

Brüchen oder erfahren einen konstanten Anstieg in der Volatilität. Neben den üblichen Size-

und Powervergleichen werden die Tests auch empirisch validiert und sowohl auf Wechselkurse

als auch Aktienkursdaten angewendet. Eines der Hauptergebnisse ist, dass große Ausreißer die

Langfristvarianz derartig beeinträchtigen, dass nicht-monotones Powerverhalten resultiert.

Persistenzbrüche. In Kapitel Drei wird der expliziten Frage nachgegangen, ob zusätzliche

Brüche in der bedingten Volatilität dazu führen, dass der R Test von Leybourne et al. (2007)

fälschlicherweise ablehnt. Da die simultan auftretenden Brüche in der bedingten Varianz nicht

unter der Nullhypothese spezifiziert werden, wird erwartet, dass die Grenzverteilung nicht-

pivotal aufgrund von nicht identifizierten Parametern ist. Um einer nicht-pivotalen Gren-

zverteilung vorzubeugen, wird ein Wild Bootstrap vorgeschlagen und auf den Test von Leybourne

et al. (2007) angewendet. Im Ergebnis lässt sich festhalten, dass der Test von Leybourne et al.

(2007) wie erwartet Probleme mit der Differenzierung zwischen einem echten Persistenzbruch

und einem Strukturbruch in der Varianz hat. Allerdings lässt sich durch die vorgeschlagene

Testversion dieser Befund nicht beheben. Die empirische Studie mit Inflations- und Aktienkurs-

daten bestätigt die Simulationsergebnisse.

Schlagwörter: Nichtlineare Kointegration, Strukturbrüche, Persistenzbrüche
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Abstract

Besides obvious nonlinear relations like a nonlinear error correction model are nonlinearities in

time series closely related to structural breaks and changes in persistence. Since both kinds

of changes can induce regime-switching, they qualify well to capture the characteristic of time-

variability. On the contrary, linear models are often an insufficient simplification of the real

underlying DGP because they fail ro reproduce trends, shocks like finance crises and stylized

facts such as long-range dependencies as well as volatility clustering. This is why testing for the

presence of these nonlinear properties as the first step of any statistical analysis is very crucial,

especially with regard to effective model building.

Nonlinear cointegration. In the first chapter, a nonlinear cointegration test is proposed which

builds on Kapetanios et al. (2006) who where the first who addressed cointegration in a nonlin-

ear error correction framework under the alternative. The switch between regimes is modeled to

follow a second order logistic smooth transition (D-LSTR) function and a null hypothesis of no

cointegration is tested against globally stationary D-LSTR cointegration. From the nonlinear

error correction regression, t-type and F -type statistics are derived and finite-sample investi-

gations are conducted. The results of the modified nonlinear cointegration test are compared

to a comparable linear cointegration test, namely the test proposed by Johansen (1991). The

D-LSTR function qualifies well as an overall-generalization of transition functions and it is found

that the D-LSTR error correction model has power against both alternatives, D-LSTR as well

as 3-regime TAR nonlinearity which is nested for large γ in the D-LSTR function.

Structural breaks. The topic of the second paper is to survey the most frequently applied

volatility break tests when they are employed to a broad range of different DGPs. Within

a simulation study, the break tests are applied to DGPs which can exhibit either single- or

double-shifting or the process can experience a smooth increase in the magnitude of the volatility

break. The surveyed tests are a CUSUM test in a version proposed by Deng and Perron (2008)

and conventional Wald and LM tests. Besides size and power comparisons the break tests are

empirically validated and it is found that more breaks are found in equity series than in exchange

rate series. One main finding is that huge outliers in the data can impact the long-run variance of

the squared return process to be no longer finite which renders non-monotonic power functions.

Changes in persistence. Chapter three addresses the specific question whether either struc-

tural breaks or nonstationarity in the conditional volatility affect the testing decision of the R

test proposed by Leybourne et al. (2007). The additional structural breaks in the conditional

volatility process are not specified under the null hypothesis and may therefore lead to a non-

pivotal limiting distribution. Hence, heteroskedasticity of an unknown form is encountered and

in order to potentially robustify the testing procedure, a wild-bootstrapped version of Leybourne

et al. (2007)’s R test is suggested. Within a simulation study, size and power of the originally

proposed test and the wild-bootstrap analogue are compared for various constellations of si-

multaneous breaks in the AR parameter as well as the GARCH parameter. It is found that

the Leybourne et al. (2007) test seems heavily impacted by additional structural breaks in the

conditional volatility, especially in very finite sample sizes. In an empirical application the two

testing procedures are applied and evaluated.

Key words: nonlinear cointegration, structural breaks, changes in persistence
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Introduction

In the recent past, the subject of nonlinearity in financial econometrics has gained tremendous

importance. Not only trends, evolving over the years, but also manmade shocks such as financial

crises can lead to regime switches in financial time series and render the data generating pro-

cesses (DGP) time-varying. Basic linear models tend to be insufficient in order to reproduce the

full time series behaviour as they are incapable to incorporate regime switches, volatility clus-

tering or long-range dependencies. Also structural breaks, as which onetime shocks are usually

identified, cannot be accommodated within this model class. It is evident, that structures have

become increasingly dynamic and interdependent as a result of the gradual integration between

economies and financial markets. Thus, in regard of effective model building all influences that

the time series data is exposed to need to be captured by the model, which is why testing for

theses incidences is inevitable.

Linear models are often appealing due to their easy applicability, good communicability and

interpretability and yield in many cases a comparatively fair model choice. Yet, in many other

situations a linear model seems to be a rather disadvantageous simplification of the actual

structure of the underlying DGP, especially in regard of effective model building. When setting

up a model specification, econometricians always encounter a chance to specify the incorrect

model, which is quantifiable and well-known as model risk. The importance of a valid risk

management is omnipresent and it is even institutionally manifested by protection mechanisms

like Basel II & III as well as Solvency II.

Protection mechanisms such as insurances or automated sell orders are considered to be a

trigger for volatility clustering, which is demonstrated by the sensitivity of financial time series

to external intervention. In the aftermath of the subprime crises in 2008, fund managers were

obliged to implement protection mechanisms such as downside portfolio protection insurances

and automated sell orders in risk management of big insurance groups for shareholders. This

directive by the regulatory institutions, however, causes also reactions on financial markets: If

equity markets experience a substantial drop during one trading day, this triggers automated

sell orders, which further decrease the price of equities in the corresponding portfolios. Since

larger portfolios are generally correlated, this could then trigger significant downward volatil-

ity. Recurrently, this exemplifies how closely incidents on financial markets and policy making

decision processes are linked.

The phenomenon of volatility clustering has been popularized ever since Engle (1982) and

Bollerslev (1986), respectively, introduced the conditional heteroscedasticity models ARCH and

GARCH. Whenever the volatility of a time series is time varying or features clusters, the volatil-

ity process does not conform to a linear pattern. It is then well specified or forecasted by this

nonlinear extension in which the volatility is modeled separately. Since its introduction, the

class of ARCH/GARCH models has experienced an immense expansion and reached common

practise. For his contribution to the analysis of time series data Robert Engle was awarded the

Nobel Price in Economics in 2003 jointly with Clive Granger.
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Granger (1981) coined the term ”cointegration“ although the pioneer work of the concept

refers to Davidson et al. (1978). The phenomenon of cointegration is mostly prevalent on

financial and macroeconomic markets. Two time series are deemed to be integrated, if they

are individually integrated of order one while a linear combination of them yields stationarity.

This concept has substantially impacted empirical applications and the concurrent perception of

interdependencies on financial markets. It shed light on time series interactions and its mutual

impact. Doubtlessly, this approach has shown econometricians quite plainly the importance of a

thorough investigation of the patterns and dependencies of the underlying DGP. The Nobel Price

committee distinctly underlined the relevance of cointegration, awarding Granger’s contributions

to the analysis of both linear and nonlinear time series.

Nonlinearities are also closely related to structural breaks and persistence changes. Both

kinds of changes can induce regime switching and capture the characteristic of time-variability.

Clements and Hendry (1996) postulate that it should routinely be tested for structural stability

because the lack of stability of the coefficients causes invalid forecasts, cf. also Antoch et al.

(2019).

The topic of cointegration and its associated error correction models have been one of the

most researched fields of theoretical econometrics since it emerged in the middle of the 70’s.

One of the latest research branches regarding cointegration is the extension to nonlinear dynam-

ics and regime-switching error correction mechanisms. Literature distinguishes between either

time varying cointegration relations, cf. Bierens and Martins (2010), or nonlinear adjustment

processes, cf. Kapetanios et al. (2006). Smooth dynamic adjustment processes enable to model

unsteady and unproportional corrections of the disequilibrium error via smooth transition (STR)

functions. Financial applications for nonlinear error correction can be found in price differen-

tials or exchange rates under the purchasing power parity in the presence of transaction costs,

cf. Taylor et al. (2001). Since mere nonlinear cointegration relations occur rather rarely, the

nonlinear error correction models are of higher empirical relevance. Whenever short-run dynam-

ics in the adjustment process to deviations from long-run equilibrium relations are nonlinear,

nonlinear error correction models offer the best model fit, cf. Kiliç (2011).

This thesis addresses empirical techniques that are needed to analyze the nonlinear dynamics

of financial markets, cf. Hsieh (1995). It is examined how statistical tests for these issues can

be designed in the course of effective model building.

The first part of this thesis focusses on nonlinear cointegration, more specifically how to test

for nonlinear error correction dynamics. It contributes an extension of nonlinear cointegration

to the discussion of linear cointegration which has been debated for nearly 40 years. The study

starts with an introduction to nonlinear cointegration and motivates its use in practice. An

investigation of the finite-sample properties of the smooth transition-based cointegration test

is presented, where the DGP under the alternative hypothesis is a globally stationary second

order LSTR model proposed by Kapetanios et al. (2006). The therein provided procedure

describes an application to long-run equilibrium relations involving real exchange rates with

symmetric behavior. The properties of the double LSTR (D-LSTR) transition function are

therefore utilised, since the D-LSTR features unit root behaviour within the inner regime on the

one hand and symmetric behaviour in the outer regimes on the other hand. A null hypothesis
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of no cointegration is assumed and tested against globally stationary D-LSTR cointegration. As

a matter of fact, the limiting distribution results to be non-standard due to the identification

problem under the null hypothesis.

The D-LSTR function has the capability of both producing three-regime threshold AR (TAR)

nonlinearity when the transition parameter tends to infinity and generates exponential-type

nonlinearity that closely approximates exponential STR (ESTR) nonlinearity. For this reason,

the D-LSTR function qualifies well and it is found that the D-LSTR error correction model has

power against both of these alternatives.

The next two chapters deal with changes in structure and persistence, respectively, and both

consider a conditional volatility process. The scope of the conditional heteroskedasticity models

is in each case a GARCH(1,1). This model is well-applied by financial institutions for modeling

the volatility of returns of stocks, bonds and market indices. The advantage of GARCH models

is the possibility to model the expected volatility structure of returns time-varying. This allows

to model the volatility structure more volatile during times of financial crises when shocks occur

and less volatile during calm and steady phases of economic growth.

In chapter three, a comparative study of volatility shifts and their impact on time series in a

number of testing procedures is presented. The performance of different structural break tests

is evaluated in the context of various DGPs. Precisely, the size and power properties of CUSUM

based, LM and Wald volatility break tests are investigated. In a simulation study, the properties

of the tests are derived supposing that the processes feature shifts in both the unconditional

and conditional variance whereat the DGP is exposed to single- or double-shifting or exhibits a

smooth increase in the volatility. One main finding is that huge outliers in the data can impact

the long-run variance of the squared return process to be no longer finite which renders non-

monotonic power functions. As an empirical example, the number and timing of volatility breaks

is determined considering four equity and three exchange rate series. Moreover, the distribution

of the p-values is derived conducting the tests in a rolling window. The findings hereof disclose

fewer volatility breaks in the currency series than in the equity series.

The last chapter picks up the foregoing discussion about structural changes and expands it to

persistence changes under nonstationary conditional volatility. It is studied whether a structural

change in the conditional volatility affects the testing decision of the persistence change test

proposed by Leybourne et al. (2007). Cavaliere and Taylor (2008) have shown that processes

which display time-varying unconditional volatility suffer from severe over-sizing in persistence

change tests since their limiting null distributions are no longer pivotal. For this reason, it

is investigated whether the variance ratio test of Leybourne et al. (2007) can be robustified

against time-varying conditional volatility by applying wild bootstrap-based implementations

similar to Cavaliere and Taylor (2008). The idea is to improve the capability of the test to

prevent from spurious rejection of the null hypothesis when persistence changes in mean and

structural changes in the volatility as well as explosive behaviour can occur simultaneously.

A simulation study is conducted and the suggested procedure is empirically applied to three

inflation rates and one stock index. The finding is that the bootstrapped test succeeds to detect

breaks in the demeaned but not in the detrended data, whereas the original Leybourne et al.

(2007) test never rejects in favour of a break in persistence.



Chapter 2

Testing for Cointegration in a

Double-LSTR Framework
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Testing for Cointegration in a Double-LSTR Framework
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A Comparative Study of Volatility Break Tests
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A comparative study of volatility break tests

Co-authored with Philip Bertram

3.1 Introduction

During the last couple of decades, a great deal of attention has been drawn to volatility shifts and

their impact on time series in the context of financial markets. Ever since the seminal articles

of Diebold (1986) and Lamoureux and Lastrapes (1990) stylized facts of volatility such as long-

range dependence or IGARCH effects are regarded as being caused by structural changes in

volatility. There exists evidence that many time series suffer from occasional structural breaks

in the conditional as well as the unconditional volatility, compare e.g. Andreou and Ghysels

(2002), Sensier and van Dijk (2004). Consequently there are several proposals in the literature

for incorporating structural changes in volatility into GARCH models, cf. Engle and Rangel

(2008), Engle et al. (2013) or Amado and Teräsvirta (2013) among others. Hence, testing

for volatility constancy marks an important task in terms of model selection and forecasting

purposes. Break detection plays also an essential role for e.g. financial decision-making like

the pricing of derivatives and portfolio risk management. Since the implicit assumption of a

stable underlying GARCH process is often confuted by sudden large shocks the unconditional

volatility of exchange rate returns can in turn be effected, c.f. Rapach and Strauss (2008).

Another strand of literature where break detection is of great importance is the influence of

volatility on causality, c.f. van Dijk et al. (2005). The most widely employed testing procedures

for treating the aforementioned issues in the field of volatility breaks are commonly CUSUM,

LM and Wald tests.

Empirical applications considering structural breaks in GARCH processes applied to the latter

tests in particular have i.a. been provided by Andreou and Ghysels (2002), Sensier and van

Dijk (2004) and Xu (2013b). The former authors have compared CUSUM and least-squares

volatility break tests concerning their size and power performance applied to GARCH processes.

By additionally considering shifts in the unconditional variance process Xu (2013b) looked at a

broader range of data generating processes (DGPs).

Our paper deals with the most frequently used volatility break tests and compares them over a

broad range of different DGPs. Thereby, we look at switches in the unconditional as well as the

conditional volatility, whereat the underlying DGP is either exposed to single or double shifting

or can alternatively exhibit a smooth and steady increase in the magnitude of the volatility

break. The comparison is done via an extensive simulation study at which we apply seven

different tests. Further, we elaborate that for certain parameter constellations the tests may

suffer from non-monotonic power functions, provided that the data contains large outliers. This

results from the fact that the long-run variance of the squared process may no longer be finite

causing the power to drop once the finite kurtosis condition is no longer fulfilled. By estimating
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the density of the break point estimators we assess the correctness of the estimation and can

further confirm the findings of the simulation study.

In the empirical application we analyze four equity series and three exchange rate series. By

estimating the number and timing of the breakpoints we see that the outcome of the tests can

indeed differ substantially for different parameter constellations. Following we carry out the

tests for each series in a rolling window allowing us to derive and compare the distribution of

the p-values of the tests. Here we find that for currencies fewer breaks in volatility are found

compared with the equity series.

The paper is organized as follows. Section 4.3 provides a short introduction of the insinuated

testing procedures. In section 3.3 the simulation study is presented and the results are discussed.

Section 3.4 then contains the empirical example while section 3.5 concludes.

3.2 Volatility Break Tests

Let {ηt}T
t=1 denote a mean-zero stochastic process with index t and T the time horizon. To test

for a possible break in the volatility of the process CUSUM, Lagrange multiplier (LM) and Wald

tests have been applied in the literature.

The CUSUM-of-squares test originally introduced by Brown et al. (1975) is given by

CUSQ = max
0≤τ≤1

∣∣∣∣∣∣

[τT ]∑

t=1

η2
t −

T∑

t=1

η2
t

∣∣∣∣∣∣
/
√

T Θ,

where [τT ] describes the break point that occurs at the time, with τ denoting the percentaged

breakpoint τ ∈ [0, 1], and Θ being the long-run variance (LRV) of the squared process. Under

the Null of no volatility breaks CUSQ → supτ∈[0,1] |BB(τ)| where BB(τ) = W (τ) − τW (1)

with W (τ) and BB(τ) being defined as a unit Wiener process on [0,1] and a Brownian Bridge

in dependence of τ , respectively. Simulating BB(τ) results in critical values of 1.224(10%),

1.358(5%) and 1.628(1%) and can be found in Ploberger and Krämer (1992). Deng and Perron

(2008) specify {ηt}T
t=1 to be α-mixing and formulate an estimator for the LRV under the Null.

Earlier Inclan and Tiao (1994) looked at variance breaks for normal iid data. Thereby the LRV

of the CUSQ simplifies to Θ = 2. As the version of Inclan and Tiao (1994) is heavily oversized

for dependent data (cf. Andreou and Ghysels (2002)) we merely look at the Deng and Perron

(2008) version (henceforth DP) of the test in the upcoming analysis.

Alternatively the LM test can be utilized. The test statistic is given by

LM(τ) = (SSR0 − SSR(τ)) /
√

Θ (1)

where SSR0 denotes the sum of squared residuals of the simple mean shift model

η2
t −

T∑

t=1

η2
t /T = ̺1(t≥[τT ]) + υt with υt

iid∼ N (0, 1).

Thereby ̺ depicts the mean shift parameter giving the break size and 1 depicts the indicator

function leading to the Null of H0 : ̺ = 0 while SSR(τ) is defined as the sum of squared

residuals under the alternative of a break in the process at time [τT ].
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The Wald test ist then specified as

W ald(τ) = (SSR0 − SSR(τ)) /
√

Θ(τ), (2)

in which Θ is determined under the alternative, i.e. Θ(τ).

In our analysis we consider supremum, mean and exponential versions of (1) and (2). The

functionals of the tests J = {LM, W ald} are then defined as:

i) sup -J = sup J (τ)

ii) mean -J =
∫ J (τ)

iii) exp -J = log
(∫

exp
[

1
2J (τ)

])
,

where the integral is defined over τ with τ ∈ τε where τε = {τ : τ ≥ ε, τ ≤ 1−ε}. ε describes the

user-chosen truncation parameter concerning the interval in which a break point is tested for.

Throughout the analysis we set ε = 0.15, following Andrews (1991) here. The critical values for

i) are taken from Andrews (1993) and those for ii) - iii) can be found in Andrews and Ploberger

(1994).

In all three tests Θ = γ0 + 2
∑∞

r=1 γr marks the long-run variance (LRV) of ηt with γr =

E(η2
t − σ2)(η2

t−r − σ2) and σ2 = E(η2
t ) for r = 0, 1, . . . , T − 1. An estimator of Θ is given by

Θ̂ = γ̂0 + 2
∑T −1

r=1 k(r/m)γ̂r with γ̂r = T −1 ∑T
t=r+1(η2

t − σ̂2)(η2
t−r − σ̂2) and σ̂2 =

∑T
t=1 η2

t /T .

Like many others we specify k(·) as the Bartlett kernel while the bandwidth m is determined

conducting the data-dependent method with an AR(1) approximation proposed by Andrews

(1991). Hence, the estimated bandwidth m̂ equals

m̂ = 4ρ̂2/(1 − ρ̂2)2 (3)

where ρ̂ denotes the OLS estimate from a regression of η̂2
t on η̂2

t−1.

3.3 Monte Carlo Study

3.3.1 Simulation Setup

By applying the presented tests to DGPs that underly a break in either the conditional or the

unconditional volatility we want to issue potential pitfalls by means of size and power properties.

Here we distinguish between three different process types on behalf of the shift type: single

shifting (I), double shifting (II) and smooth transition (III). Following Xu (2013b) the DGPs

have the form ηt = σtǫt and are composed of a conditional variance term ǫt and an unconditional

variance term σ2
t = σ2(t/T ) with σ2(s) being defined on s ∈ (0, 1] , i.e.

ǫt = htξt, h2
t = µ + αǫ2

t−1 + βh2
t−1, ξt

iid∼ N (0, 1)

σ2(s) = σ2
0 + (σ2

1 − σ2
0) · {I, II, III} with δ ≡ σ1

σ0
.

By construction the DGPs depend on the parameters τ , δ and T denoting breakpoint, break

size and sample size, respectively. Throughout the analysis σ2
0 is set to equal one and ht forms

a simple GARCH(1, 1) process with ξt being iid normal.
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As soon as the process breaks, the unconditional variance switches to one of the three process

types {I,II,III}. The switches are incorporated into the processes in dependence of the design

of the variance shift as follows:

single shifts (I): 1{s≥τ}, τ ∈ {0.3, 0.5, 0.7}
double shifts (II): 1{τ≤s≤τ+0.2}, τ ∈ {0.3, 0.5, 0.7}

smooth transition (III): s .

The DGPs of the type (I) or (II) are hence exposed to single or double shifting, incorporated

via the indicator function 1. In contrast to type (I), processes of type (II) switch from σ2
0 to σ2

1

at ⌊τT ⌋, stay on for ⌊0.2T ⌋, and switch back to the initial variance process, cf. Xu (2013b). For

a better overview a summary of the different DGPs and their properties is displayed in Figure

1.

Single shift, tau=0.5

Double shift, tau=0.5

Smooth increase in the volatility

η

η

η

τ

τ

τ

Figure 1: displays exemplary the inflation of the volatility over time for the different process types for T = 1000 with τ = 0.5.

The break itself is then incorporated via the indicator function 1 as soon as t exceeds the

predetermined τ . Whenever the break point ⌊τT ⌋ is reached, the magnitude of the break, δ,

switches from δ = 1 under the Null to δ ∈ {1.1, 1.2, 1.3, 1.5, 2} under the alternative and, thus,

causes the volatility shift. The considered samples sizes are T = 200, 500, 1000. All of these

DGPs are subject to a simple shift at certain breakpoints occurring at the smallest integer of

⌊τT ⌋. Thus, the break is defined to happen either after 30%, 50% or 70% of the time, meaning

τ ∈ {0.3, 0.5, 0.7}.

Within the class of single shift processes we use four different DGPs. DGP1 undergoes a

switch in the unconditional volatility, while DGPs 2-4 are exposed to a break in the conditional

volatility. The DGPs 2-4 are based on different specifications of the GARCH parameters µ, α
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Break points Single shift Two Shifts
Smooth

transition

DGP 1




(I)
single
shift

Simple break at τT

DGP 2 µ =(2, 2.42, 2.88, 3.38, 4.5, 8)·10−05

DGP 3 α =0.1,.19, .25, .30, .378, .48

DGP 4 β =0.4,.487, .553, .604, .678, .78

DGP 5
}

(II)
double
shift

breaks for 0.2τT

DGP 6 ξt
iid∼

√
0.6t(5)

DGP 7




(III)
smooth
transition

s = τ ∈ [0, 1]

DGP 8 s =
√

τ ∈ [0, 1]

DGP 9 s = τ2 ∈ [0, 1]

Table 1: graphs an overview of the DPGs in the simulation study.

and β. Following Hillebrand (2005) the values for (µ, α, β) = (2 · 10−5, 0.1, 0.4) are specified to

equal an annualized volatility of σ =
√

250µ/(1 − α − β) = 0.1. Hence, the DGPs 2-4 jump

from the bold type values in (4) under the null hypothesis to the following values in accordance

with the magnitude of δ = 1, 1.1, 1.2, 1.3, 1.5, 2:

in DGP2 µ varys: µ = {(2, 2.42, 2.88, 3.38, 4.5, 8) · 10−05}
in DGP3 α varys: α = {0.1, .19, .25, .30, .378, .48}
in DGP4 β varys: β = {0.4, .487, .553, .604, .678, .78}.

(4)

Additionally, we consider DGPs that are exposed to double shifting (DGPs 5-6) and processes

that undergo a smoothly increasing expansion in the unconditional volatility over time. While

DGP 5 is exposed to simple double shifting, DGP 6 has additionally heavy tails, where the

error term ξt
iid∼

√
0.6t(5), depicting a t-distribution normalized to mean zero and standard

deviation one. DGPs 7-9 exhibit a smooth transition in the volatility, depending on the transition

parameter s. Proportional to the time period the DGPs 7-9 evolve with s = s̃,
√

s̃, s̃2 ∈ [0, 1]. For

a better visualization Figure 1 displays the inflation of the volatility over time for the different

process types, respectively.

Apart from DGP 7 and DGP 8, which are taken from Cavaliere and Taylor (2007) and Xu

(2008) the remaining DGPs are adopted from Xu (2013b). Finally, to review the different DGPs

Table 1 sums up their properties.

3.3.2 Simulation Results

As the results of our study contain 5 dimensions (sample sizes, breakpoints, break sizes, DGPs

and tests) we focus on the most striking patterns in the discussion of our results. That is,

we only present the results for breaks in the middle of the sample, i.e. τ = 0.5 and for small

(T = 200) and large (T = 1, 000) samples.1

To get a first idea of the behavior of the tests we look at the power of the tests concerning

the different DGPs. As all tests behave qualitatively in the same way regarding the DGPs we

focus on the power results for the DP test for illustrative purposes. Figure 2 plots the power in

1Further results are available upon request. The results for τ = 0.3 and τ = 0.7 are qualitatively not different

from τ = 0.5.
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Figure 2: displays the power of the DP test for T = 200 (left) and T = 1000 (right) with τ = 0.5 over all DGPs.

small and large samples for τ = 0.5 for all DGPs.

As one can clearly see, the power for the single shift DGPs in small samples is naturally higher

than for two shift DGPs. Furthermore it is striking that for the smoothly increasing volatility

processes the power is substantially lower than for (single) discrete shifts in both, small and

large, samples (compare the upper and the lower first graphs in Figure 2). In large samples the

power converges to 1 for nearly all DGPs but DGP 3. It is quite interesting that the DGPs

1, 2 and 4 behave very alike and attain good power results especially when the magnitude of

the break is very distinct. Hence, a first observable phenomenon is, that there is a negligible

difference between the unconditional and conditional break in the variance, if we look at the

DGP 1 compared to DGP 2 or 4. Secondly we can state that the process with the break in

the ARCH parameter, DGP 3, even suffers from a power drop in large samples as soon as the

magnitude of the break exaggerates δ > 1.5. This non-monotonic power in DGP 3 can also be

observed for all types of the least-squares tests not pictured here. Tables 2 and 3 then return

the results for all tests and DGPs for T = 200 and T = 1, 000.2

Turning to the small sample results (cf. Table 2) first we identify the expWald tests to exhibit

the highest power of all tests for nearly all DGPs. However, we also observe the expWald and the

other two Wald tests to be slightly oversized - a fact that has already been pointed out regarding

mean shift tests by other authors such as e.g. Kejriwal (2009). Consequently the Wald versions

of the tests attain always higher power than their respective LM counterparts. Comparing the

three tests implying a breakpoint estimator, i.e. the DP, the supLM and the supWald test, one

can say that in terms of power supWald ≻ DP ≻ supLM in small samples. In accordance with

Figure 2 we state very low power for all tests concerning the double shift DGPs 5 and 6. Also

2Results for T = 500 can be found in Table 11 in the appendix.
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the power for the smoothly inflating variance-processes, DGPs 7-9, is rather low.

Rather surprising is the fact that a switch in the ARCH parameter (DGP3) is clearly less often

detected than a break in the GARCH parameter. This may be caused by outliers resulting from

a large ARCH parameter. In such cases with large outliers in the data the volatility break tests

may no longer be robust to large volatility switches as the long-run variance might no longer

be finite. These considerations are further dealt with in section 3.3.3. Apart from this the

difference between switches in the unconditional (DGP1) and conditional (DGPs 2-4) variance

process does not play a role for the power of the tests.

Altogether the tests perform very akin in small samples which is due to the fact, that the LM

and Wald test both are based on least squares and resemble each other in their procedures as

well as the CUSQ.



DGP 1 DGP 2 DGP 3

LM Wald LM Wald LM Wald

Σ DP sup mean exp sup mean exp DP sup mean exp sup mean exp DP sup mean exp sup mean exp

1 4.34 4.84 5.74 5.90 7.10 6.80 7.70 4.64 5.46 6.04 6.56 6.30 5.60 7.10 4.64 5.46 6.04 6.56 6.30 5.60 7.10

1.1 9.72 8.54 12.82 12.02 11.70 14.20 14.30 9.56 8.88 12.34 11.86 13.10 13.60 14.50 8.34 8.94 11.24 11.10 13.10 13.30 14.30

1.2 22.88 19.34 28.08 26.14 25.50 29.90 31.50 24.36 20.90 29.10 27.58 28.10 31.80 32.70 15.74 15.58 20.50 20.06 21.90 23.00 25.60

1.3 43.92 37.40 48.90 47.28 46.60 52.90 53.90 43.70 36.60 49.02 47.08 48.90 55.70 55.80 21.98 20.74 27.96 27.26 32.00 33.40 36.10

1.5 79.70 71.30 83.18 82.12 79.40 83.50 85.30 79.62 72.22 82.58 81.62 82.40 87.20 87.20 33.18 31.04 41.14 39.92 42.60 47.10 48.60

2 98.98 97.72 99.42 99.46 99.70 99.90 100.0 98.90 98.12 99.30 99.34 99.60 99.80 99.80 44.80 42.02 52.86 52.16 55.90 60.80 62.40

DGP 4 DGP 5 DGP 6

LM Wald LM Wald LM Wald

Σ DP sup mean exp sup mean exp DP sup mean exp sup mean exp DP sup mean exp sup mean exp

1 4.64 5.46 6.04 6.56 6.30 5.60 7.10 4.34 4.84 5.74 5.90 7.10 6.80 7.70 3.46 4.56 5.42 5.68 7.50 7.90 8.00

1.1 10.16 9.48 12.48 12.46 13.70 14.20 15.40 4.46 4.10 5.48 5.46 6.10 4.40 6.00 3.08 4.38 5.52 5.26 5.60 5.70 6.50

1.2 25.26 22.50 29.60 28.48 30.00 32.90 34.00 5.52 3.86 6.00 6.00 6.70 6.60 7.60 2.66 2.84 3.78 3.86 5.90 5.50 5.90

1.3 44.64 38.00 48.64 47.56 50.40 55.90 56.30 7.86 4.56 7.14 7.90 9.30 9.90 11.80 3.68 3.06 4.54 4.32 5.70 5.60 6.80

1.5 78.04 71.72 80.46 79.64 81.50 85.10 85.60 11.98 6.94 10.10 11.20 11.40 12.30 14.50 5.60 2.96 5.40 5.64 5.10 6.30 7.50

2 98.44 97.18 98.30 98.64 99.90 99.40 99.40 26.82 14.22 26.88 24.68 24.70 33.80 34.00 12.32 5.74 10.88 10.72 12.40 15.10 17.50

DGP 7 DGP 8 DGP 9

LM Wald LM Wald LM Wald

Σ DP sup mean exp sup mean exp DP sup mean exp sup mean exp DP sup mean exp sup mean exp

1 4.58 5.26 6.04 6.36 7.70 7.70 9.00 4.58 5.26 6.04 6.36 7.70 7.70 9.00 4.58 5.26 6.04 6.36 7.70 7.70 9.00

1.1 6.42 7.04 8.50 8.64 10.80 10.30 11.60 5.64 5.88 7.64 7.52 9.00 9.90 9.70 6.72 7.66 8.88 9.28 11.50 10.90 12.20

1.2 11.06 10.92 15.40 14.28 16.80 18.30 19.10 8.02 8.48 11.22 10.92 13.10 13.60 14.50 12.02 13.00 16.34 15.76 19.40 19.50 20.10

1.3 17.92 17.66 25.06 23.42 25.40 28.80 29.20 11.68 11.34 16.12 15.04 17.10 18.60 20.20 20.60 21.84 28.22 27.10 29.80 31.40 33.50

1.5 35.86 34.96 47.96 45.04 44.70 51.50 51.10 21.26 20.14 30.54 27.74 28.50 35.90 34.40 42.78 44.18 54.78 52.58 53.60 58.70 58.20

2 75.28 72.54 87.68 84.00 82.20 90.40 89.20 45.30 42.50 61.06 56.12 55.40 66.80 64.60 86.04 85.76 93.56 91.84 92.50 95.60 95.30

Table 2: reports power results for all DGPs according to the DP, LM- and Wald-type tests for τ = 0.5, ǫ = 0.15 and T = 200.
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DGP 1 DGP 2 DGP 3

LM Wald LM Wald LM Wald

Σ DP sup mean exp sup mean exp DP sup mean exp sup mean exp DP sup mean exp sup mean exp

1 6.60 6.66 6.78 7.02 8.00 8.20 8.00 6.56 6.54 6.48 7.22 7.50 5.80 7.30 6.56 6.54 6.48 7.22 7.50 5.80 7.30

1.1 39.04 34.44 39.46 38.66 36.80 40.00 40.30 39.44 34.22 39.82 39.18 37.60 41.60 41.80 33.12 30.08 34.16 34.00 33.50 36.50 37.60

1.2 88.12 83.96 87.42 87.14 83.90 87.30 87.20 88.28 83.70 87.20 87.24 85.00 87.30 87.80 70.60 64.96 70.92 70.64 67.20 71.60 71.70

1.3 99.46 99.08 99.28 99.40 99.30 99.20 99.50 99.36 98.98 99.30 99.38 99.50 99.80 99.90 88.44 84.94 88.82 88.76 86.50 89.10 89.70

1.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 93.62 92.00 94.62 94.82 93.60 96.20 95.70

2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 90.22 90.10 92.60 92.98 91.70 92.90 93.20

DGP 4 DGP 5 DGP 6

LM Wald LM Wald LM Wald

Σ DP sup mean exp sup mean exp DP sup mean exp sup mean exp DP sup mean exp sup mean exp

1 6.56 6.54 6.48 7.22 7.50 5.80 7.30 6.60 6.66 6.78 7.02 8.00 8.20 8.00 4.84 6.20 5.96 6.64 6.60 6.00 6.30

1.1 39.60 34.70 39.98 39.36 38.00 41.90 42.10 11.64 9.10 9.62 10.64 9.70 10.10 11.70 5.08 4.54 5.46 5.62 4.50 5.30 5.40

1.2 87.58 83.14 86.28 86.56 84.10 86.60 87.20 26.10 20.94 19.00 23.36 23.10 20.20 25.20 9.36 6.58 8.04 9.04 6.50 9.00 9.30

1.3 99.22 98.72 99.08 99.18 99.40 99.60 99.90 50.68 42.88 42.56 47.54 46.50 42.50 49.50 18.74 13.16 15.48 17.46 13.40 14.90 16.30

1.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 92.20 88.04 91.44 92.30 90.60 92.80 93.80 44.68 34.76 41.00 42.92 34.20 38.70 41.90

2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.94 99.88 99.98 99.94 99.90 100.0 100.0 89.08 83.92 90.06 89.66 85.70 89.30 90.10

DGP 7 DGP 8 DGP 9

LM Wald LM Wald LM Wald

Σ DP sup mean exp sup mean exp DP sup mean exp sup mean exp DP sup mean exp sup mean exp

1 6.38 7.26 6.60 7.46 6.70 6.20 6.20 6.38 7.26 6.66 7.46 6.70 6.20 6.20 6.38 7.26 6.66 7.46 6.70 6.20 6.20

1.1 18.54 17.28 21.10 20.22 19.10 20.80 20.90 13.50 13.20 15.38 15.26 15.00 15.60 15.50 19.52 19.46 21.80 21.84 21.10 21.80 22.30

1.2 46.52 44.60 51.98 49.74 49.20 55.10 53.40 30.50 29.64 35.06 34.16 32.90 37.50 37.10 50.46 49.64 55.38 54.54 53.80 59.30 58.60

1.3 75.86 74.32 82.30 80.50 75.40 82.60 81.50 52.40 51.12 59.68 57.36 51.80 59.50 58.00 81.54 80.56 85.74 84.60 81.70 85.70 84.90

1.5 97.98 97.62 98.98 98.70 98.10 99.40 99.00 85.18 84.76 90.22 89.38 87.70 91.50 91.20 99.12 99.14 99.46 99.46 99.50 99.80 99.80

2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.62 99.68 99.92 99.92 99.80 99.90 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 3: reports power results for all DGPs according to the DP, LM- and Wald-type tests for τ = 0.5, ǫ = 0.15 and T = 1000.

1
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In large samples (cf. Table 3) the tests behave qualitatively almost identical for all DGPs.

They attain reasonable power even when the break size is still low. Except for breaks in the

ARCH coefficient (DGP 3) all DGPs exhibit monotonic power functions. Nevertheless, they

behave quantitatively different. In case of a break in the unconditional variance, DGP 1, the

DP is slightly superior bearing in mind that the LS tests are slightly oversized. Within the LS

test the expWald ≻ expLM ≻ supWald and supLM. For a break in the conditional variance

(DGPs 2-4) the supLM performs worst. Concerning the double shift DGPs 5 and 6 the sup

and mean tests are slightly inferior to the exp version of the tests. The DP test also performs

quite well in this double-shift context. Regarding the smoothly inflating shifts in DGPs 7-9 the

mean version of the tests seems to be superior. The sup version and the DP test (i.e. the tests

allowing for a breakpoint estimation) perform rather similarly for smoothly inflating volatilities.

All in all the Wald tests are superior to the DP and the functionals of the LM tests, whereas

the expWald performs best.

3.3.3 Non-Monotonic Power

In his seminal article Vogelsang (1999) discusses the issue of non-monotonic power of CUSUM,

LM and Wald tests when testing for a mean shift in time series. The non-monotonicity is caused

by the LRV estimation of the process. If the bandwidth is estimated via the data-dependent

method of Andrews (1991), excessive lags are chosen in the AR(1) approximation as the AR

coefficient is biased towards one causing the LRV to become very large.

Robust alternatives concerning the LRV estimation resulting in monotonic power functions

have i.a. been proposed by Juhl and Xiao (2009), Kejriwal (2009) or Yang and Vogelsang (2011).

In terms of testing for breaks in volatility on the other hand, Xu (2013a) shows that the AR

coefficient is no longer biased resulting in monotonic power functions for the tests. Concretely

he argues that once the mean of the squared series is subject to a structural change, the same

applies to the volatility of the squared series which prevents the long-run kurtosis estimator from

selecting excessive lags.

In the present case Θ = γ0 + 2
∑∞

r=1 γr marks the LRV of ηt in all tests. Hence, in order for

Θ to be finite the autocovariances γr have to be finite. That is for r > 0, E(η2
t ) < ∞ while for

r = 0 additionally E(η4
t ) < ∞ has to be fulfilled ∀ t = (1, . . . , T ). If the latter condition is not

fulfilled the tests suffer from non-monotonic power leading to the following theorem.

Theorem 1. Let {ηt} be a mean-zero α−mixing stochastic process with bounded second moment

E(η2
t ) = σ2 < ∞. If E(η4

t ) → ∞ we have that CUSQ → 0, LM → 0 and W ald → 0 even for

increasing volatility breaks.

Actually, m tends to zero as E(η4
t ) → ∞ reducing the LRV estimator to γ̂0. Hence, decreasing

power arises through the fact that the moment condition fails rather than through a bias in the

estimation of the AR(1) coefficient for the bandwidth selection.

As a simple example consider the GARCH(1,1) process ηt = htut with h2
t = ω +αu2

t−1 +βh2
t−1

and iid innovation {u} with E(ut) = 0 and E(u2
t ) = 1. Then E(η2m

t ) is only given under

the condition that
∑m

i=0 m!αiβm−iE(u2i
t )/((m − i)!i!) < 1, cf. He and Teräsvirta (1999). As

µ2 ≡ E(η2
t ) = α + β and κ ≡ E(η4

t ) = β2 + 2αβ + α2E(u4), and noting that κ < 1 implies that

µ2 < 1, Θ < ∞ only if κ < 1.
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Consider e.g. the case where α = β = 0.4 with normally distributed errors. We then have

µ2 = 0.8 and κ = 0.96. If however α switches to 0.5, κ = 1.31 and the upper considerations imply

that the tests would have decreasing power for detecting the break in unconditional variance.

To underline these considerations we carry out some simple simulations seeking the varying

coefficient GARCH(1,1) which has also been utilized by Hillebrand (2005) and Xu (2013a). The

process is given by ηt = htut where ht = ω + αtu
2
t−1 + βh2

t−1 and u
iid∼ N(0, 1). The ARCH

coefficient is time dependent under the alternative switching from α0 to α1 a time [τT ] with

τ ∈ [0, 1], that is αt = (α0 + (α1 − α0))1{t≥[τT ]}. We test for a break in the unconditional

variance process σ2
t ≡ η2

t , i.e. H0 : σ2
t = σ2 vs. H1 : σ2

t is not constant over t for the supLM

test.3

We consider four DGPs based on different specifications of the GARCH parameter β under

the Null: (i) DGP1: β = 0, (ii) DGP2: β = 0.4, (iii) DGP3: β = 0.75 and (iv) DGP4: β = 0.75

and u ∼ t(8), where α0 = 0.1 in all specifications. (i) describes the ARCH(1) specification being

used by Deng and Perron (2008), (ii) has been considered in Xu (2013a) and Xu (2013b) while

(iii) and (iv) are persistent versions of (ii). ω is specified such that the annualized volatility

Σ =
√

250ω/(1 − α − β) equals 0.1 under the Null.

3Results for the supLM test are available upon request.



T = 500 T = 1000 T = 2000

α1 κ Σ DP LM DP LM DP LM

0.1 0.03 0.10 0.037 0.038 0.037 0.038 0.040 0.040
0.2 0.12 0.11 0.071 0.069 0.125 0.107 0.233 0.197
0.3 0.27 0.11 0.157 0.142 0.361 0.292 0.713 0.641
0.4 0.48 0.12 0.276 0.234 0.630 0.548 0.935 0.898
0.5 0.75 0.13 0.381 0.318 0.756 0.691 0.951 0.937
0.6 1.08 0.15 0.455 0.392 0.797 0.743 0.915 0.894
0.7 1.47 0.17 0.481 0.414 0.753 0.708 0.875 0.858
0.8 1.92 0.21 0.465 0.412 0.675 0.636 0.791 0.769
0.9 2.42 0.20 0.436 0.392 0.597 0.571 0.706 0.690
1.0 3.00 ∞ 0.409 0.386 0.558 0.540 0.626 0.616

Table 4: displays the power of the DP and LM test under volatility shifts with
ht = ω + (α0 + (α1 − α0))1t≥[λT ]u

2
t−1, λ = 0.5, ω = 3.6e − 05 and

α0 = 0.1.

T = 500 T = 1000 T = 2000

α1 κ Σ DP LM DP LM DP LM

0.10 0.27 0.10 0.057 0.062 0.038 0.043 0.044 0.046
0.20 0.44 0.11 0.222 0.201 0.120 0.111 0.239 0.200
0.30 0.67 0.13 0.572 0.519 0.359 0.298 0.709 0.636
0.35 0.81 0.14 0.708 0.655 0.505 0.434 0.858 0.802
0.40 0.96 0.16 0.775 0.729 0.627 0.542 0.938 0.899
0.45 1.13 0.18 0.814 0.776 0.725 0.646 0.951 0.930
0.50 1.31 0.22 0.790 0.765 0.759 0.690 0.948 0.931
0.55 1.51 0.32 0.769 0.742 0.792 0.723 0.934 0.918
0.60 1.72 ∞ 0.781 0.778 0.785 0.735 0.918 0.903

Table 5: displays the power of the DP and LM test under volatility shifts with
ht = ω+(α0 +(α1 −α0))1t≥[λT ]u

2
t−1 +0.4ht−1, λ = 0.5, ω = 2e−05

and α0 = 0.1.

T = 500 T = 1000 T = 2000

α1 κ Σ DP LM DP LM DP LM

0.100 0.74 0.10 0.217 0.223 0.250 0.254 0.282 0.293
0.125 0.80 0.11 0.346 0.341 0.472 0.465 0.643 0.635
0.150 0.86 0.12 0.596 0.576 0.812 0.797 0.956 0.947
0.175 0.92 0.14 0.820 0.794 0.965 0.957 0.998 0.997
0.200 0.98 0.17 0.931 0.914 0.995 0.992 0.999 0.998
0.225 1.05 0.25 0.974 0.962 0.992 0.991 0.997 0.994
0.250 1.13 ∞ 0.983 0.981 0.994 0.993 0.996 0.995

Table 6: displays the power of the DP and LM test under volatility shifts
with ht = ω + (α0 + (α1 − α0))1t≥[λT ]u

2
t−1 + 0.75ht−1, λ = 0.5,

ω = 6e − 06 and α0 = 0.1.

T = 500 T = 1000 T = 2000

α1 κ Σ DP LM DP LM DP LM

0.100 0.76 0.10 0.188 0.204 0.229 0.239 0.257 0.266
0.125 0.82 0.11 0.272 0.276 0.386 0.383 0.512 0.497
0.150 0.89 0.12 0.456 0.450 0.654 0.630 0.840 0.821
0.175 0.96 0.14 0.662 0.628 0.863 0.842 0.978 0.970
0.200 1.04 0.17 0.820 0.795 0.954 0.944 0.992 0.990
0.225 1.13 0.25 0.909 0.885 0.978 0.972 0.993 0.990
0.250 1.22 ∞ 0.897 0.881 0.967 0.963 0.979 0.975

Table 7: displays the power of the DP and LM test under volatility shifts
with ht = ω + (α0 + (α1 − α0))1t≥[λT ]u

2
t−1 + 0.75ht−1, λ = 0.5,

ω = 6e − 06, u ∼ t(8) and α0 = 0.1.

1
9
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Under the alternative α1 ∈ [0.1, 1 − β], specifying an IGARCH model at the upper limit of

the interval. We consider three different sample sizes of T = (500, 1000, 2000) with breakpoint

specifications of τ = (0.5, 0.9)4. The number of replications is M = 5000. Tables 4-7 return size

and power results for the four DGPs.

For the ARCH(1) in Table 4 one can clearly see for both tests that the power becomes larger

with an increasing ARCH coefficient up to a value of about 0.6 (0.7) in large (small) samples

only to decrease if the break becomes bigger. In fact the power increases with increasing κ given

that κ is smaller than one and decreases once the condition is no longer fulfilled, i.e. once the

LRV of the squared process is no longer finite. This corresponds to the upper considerations

that the LRV becomes infinite for κ > 1 leading to a power drop in both tests. Furthermore the

power seems to be the lower the higher the value of κ gets - regardless of the size of the switch in

annualized volatility. Concerning the sample size the power drop occurs earlier and is bigger for

large T . As obviously more observations are drawn in large samples the probability of drawing

a large outlier causing the LRV to converge to infinity is also higher for large T which results in

the diverse behavior of the power concerning T .

Tables 5 to 7 support these findings although the power drop is not as big as for DGP1.

This may be due to the fact that κ cannot reach such large values as in DGP1. E.g. in DGP3

max κ = 1.13 which in finite samples does not seem to imply a convergence of Θ to infinity fast

enough to lead to a drop in power. We can however at the least observe a “stagnation” of power

in all DGPs once κ > 1 in spite of increasing annualized volatility.

3.3.4 Density Estimation of Break Points

In order to assess how correctly the real breakpoint τ is estimated in the employed testing

procedures we want to plot the density of the true break point estimators. Hence, only the

testing procedures whose test statistic is based upon a supremum are being considered here,

namely the DP-, supLM and supWald-test. Since DGPs of process type III lack a distinct break

point and double shifting processes do not qualify well (DGPs 5-6) only DGPs 2-4 are under

consideration.5

For T = 200 and τ = 0.5 we conduct the CUSQ-test M = 5000 times and compare the

test statistic to the 5% critical value of 1.358. For our purpose we assume the maximum break

specification, such that Σ = 2, meaning that c.p. the processes switch as follows:

DGP 2: µ0 = 2 · 10−5 → µ1 = 8 · 10−5

DGP 3: α0 = 0.1 → α1 = 0.48

DGP 4: β0 = 0.4 → β1 = 0.78.

(5)

Within the sample the break point value implied by the maximum test statistic that exceeds the

critical value is chosen as our estimated break point. For all three τ we plot the estimated τ∗

and obtain the nonparametric density estimator of the break point estimators f(τ∗), whereby

the dotted lines depict the mode of f (τ∗). Figure 3 plots the density for T = 200.

At first sight the DGPs behave qualitatively analogical over all three tests, which is why we

4We report only the results for τ = 0.5 here. Results for τ = 0.9 are available upon request.
5Results for DGP 1 and DGPs 5-6 are available upon request.
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Figure 3: displays the density of the breakpoints in case of DGP 2-4 for T = 200, Σ = 2 and all τ .

differentiate between the DGPs instead of the tests in the following discussion. We also yield

qualitatively similar results for the different sample sizes not shown here, but can be found in

the appendix. For DGP 2 we obtain leptokurtic densities with a peak centered at the true τ ,

indicated by the dotted lines. The densities especially of the least-squares tests are positively

skewed. The results for DGP 4 show likewise patterns as in case of DGP 2 but not as good as for

DGP 2. The densities are less peaked around the insinuated τ and yet more positively skewed.

They even show a tendency for a multimodal distribution, which is due to the truncation at the

upper bound with ǫ = 0.15 and hence, τ = 0.85. Notably, the least-squares tests perform very

alike for all DGPs. However, in case of DGP 3 we have to discuss the results for all τ separately.

For τ = 0.3 the density is neither leptokurtic nor centered around the assumed τ and altogether

performs worst particularly in regard of the DP test. It is noticeable that in case of τ = 0.5

and 0.7 the density is even bimodal for the least squares tests and that the peak centers around
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DP supLM supWald

τ 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

DGP 2

T = 200

x0.5 0.340 0.510 0.700 0.320 0.515 0.715 0.320 0.515 0.715
sd 0.096 0.048 0.033 0.125 0.081 0.047 0.125 0.081 0.048

T = 500

x0.5 0.318 0.504 0.700 0.306 0.506 0.704 0.306 0.506 0.704
sd 0.058 0.022 0.014 0.054 0.036 0.028 0.054 0.036 0.028

T = 1000

x0.5 0.309 0.504 0.700 0.302 0.502 0.702 0.392 0.560 0.737
sd 0.032 0.022 0.008 0.016 0.016 0.015 0.192 0.118 0.054

DGP 3

T = 200

x0.5 0.590 0.590 0.720 0.745 0.695 0.775 0.710 0.670 0.770
sd 0.162 0.115 0.077 0.174 0.130 0.072 0.181 0.132 0.074

T = 500

x0.5 0.466 0.550 0.714 0.516 0.594 0.750 0.500 0.592 0.750
sd 0.167 0.098 0.059 0.203 0.127 0.059 0.202 0.126 0.059

T = 1000

x0.5 0.404 0.535 0.710 0.390 0.560 0.737 0.392 0.560 0.737
sd 0.154 0.085 0.042 0.192 0.118 0.054 0.192 0.118 0.054

DGP 4

T = 200

x0.5 0.360 0.510 0.700 0.335 0.525 0.715 0.335 0.520 0.715
sd 0.131 0.066 0.041 0.170 0.103 0.054 0.169 0.103 0.054

T = 500

x0.5 0.334 0.506 0.700 0.312 0.510 0.708 0.312 0.510 0.708
sd 0.088 0.038 0.020 0.113 0.073 0.041 0.113 0.073 0.041

T = 1000

x0.5 0.317 0.503 0.700 0.304 0.504 0.704 0.304 0.504 0.704
sd 0.061 0.023 0.010 0.060 0.045 0.027 0.060 0.045 0.027

Table 8: reports the median an standard deviation for the breakpoints of all sample sizes over all tests for DGPs 2-4.

τ = 0.85 for all three τ , where the sample is truncated. The reason is that DGP 3 exhibits

outliers causing the jump in the variance (α0 = 0.1 → α1 = 0.48) and suffers from an infinite

kurtosis as already pointed out in the preceding section, c.f. 3.3.3.

In large samples, T = 1, 000, the density peaks around the insinuated τ for all τ∗ in case of

DGP 2 and DGP 4. The least squares test obtain slightly more leptokurtic densities compared

to the DP test. While the positive skewness of the least squares tests is identical for all τ and

nearly negligible, the positive skewness of the DP test declines in τ . In case of DGP 3 the DP

break point estimator performs slightly better, since the densities for all τ are unimodal and

again, the positive skewness declines in τ . Although the least squares tests peak around the

true τ , in large samples they nevertheless have a second mode at the truncation point. All in

all is the DP break point estimator slightly better in case of DGP 3 in large samples, but yields

little less good results than the least squares counterparts in case of DGP 2 and DGP 4.

To confirm the findings from Figure 3 Table 8 describes the median and the standard deviation

of the break point estimators according to the previous graphic. It is striking that the standard

deviation for τ = 0.3 is always the highest for all three tests. The earlier the break happens the

higher is the dispersion of the break point estimator. Because of an early break the probability

for a maximum peak within the remaining sample period is high, since the sample fluctuations
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Figure 4: plots the returns of the 7 time series.

increase significantly after the break. Hence, it is probable that a higher peak than the break

point occurs and is chosen as the supremum of the test statistic. On the other hand is it more

unlikely to find a higher peak than the break point, when the break happens at τ = 0.5 or

τ = 0.7.

3.4 Empirical Analysis

As an empirical example we consider 7 financial time series, namely the returns of 4 stock market

indices (S&P 500, FTSE 100, DAX 30, Nikkei 225) and 3 exchange rates (Euro, Pound and Yen)

to the Dollar. We have daily data taken from Datastream from 01/01/2000 until 10/30/2013

yielding T = 3, 608 observations for each variable. Figure 4 returns a plot of the data.

In order to get a first idea of the behavior of the tests we determine the volatility break

points for each series conducting the DP, the supLM and the supWald test. The breakpoint

is estimated via the iterated cumulative sums of squares (ICSS) algorithm of Inclan and Tiao

(1994) where α = 0.05 throughout the analysis.

Defining Ji(τ) as the value of the statistic of test i at τ ∈ [0, 1], the breakpoint estimator in the

single break case is simply defined as the point where the maximum of the respective test statistic,

conditional on rejecting the Null, is reached. Hence, τ∗ := arg max
1≤τ≤T

Ji(τ) | Ji(τ
∗) > Qα

i where

Qα
i marks the critical value of test i and level α.

In the multiple break case this procedure is carried out iteratively. Starting with one break-

point the sample is divided around this very point and the test is implemented within both

subsamples. If further breakpoints are detected this procedure is repeated until the test cannot

reject any more. Additionally a minimum segment size h should be specified in advance. We

set h = 200, i.e. we allow breaks to occur every 10 months at most. Furthermore breaks are

allowed to occur in the interval τ ∈ [ε, 1 − ε] where ε is again specified as 0.15. The results are

given in Table 9 displaying the number of estimated breaks and the corresponding break dates
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Break Date

# Breaks 1 2 3 4 5 6 7

S&P 500

DP 4 06/17/02 05/20/03 09/04/08 12/21/11
supLM 5 07/05/02 04/03/03 09/04/08 06/12/09 12/21/11
supWald 5 07/05/02 04/03/03 09/04/08 06/12/09 12/21/11

FTSE 100

DP 7 06/12/02 04/17/03 07/23/07 04/06/09 12/15/11 08/06/12 05/27/13
supLM 6 08/06/01 06/14/02 04/18/03 07/23/07 04/06/09 08/06/12
supWald 6 08/06/01 06/13/02 04/18/03 07/23/07 04/06/09 08/06/12

DAX 30

DP 7 08/30/01 06/14/02 06/17/03 01/21/08 07/16/09 08/01/11 08/06/12
supLM 6 08/30/01 06/14/02 05/20/03 01/15/08 04/03/09 08/06/12
supWald 6 08/30/01 06/14/02 05/20/03 01/15/08 04/03/09 08/06/12

NIKKEI 225

DP 3 12/18/03 01/04/08 05/20/09
supLM 3 12/18/03 01/04/08 12/16/08
supWald 3 12/18/03 01/04/08 12/16/08

$/e

DP 4 09/26/01 08/16/04 08/11/08 11/16/11
supLM 4 04/23/01 08/11/08 05/25/09 03/12/12
supWald 4 04/23/01 08/11/08 05/25/09 03/12/12

 L/$

DP 4 06/22/01 01/05/04 08/08/08 11/15/11
supLM 5 04/20/01 01/05/04 08/08/08 06/10/09 11/24/11
supWald 5 04/20/01 01/05/04 08/08/08 06/10/09 11/24/11

U/$

DP 3 08/07/07 08/17/09 05/02/11
supLM 4 06/07/06 08/07/07 04/01/09 02/21/13
supWald 4 06/07/06 08/07/07 04/01/09 02/21/13

Table 9: returns the estimated break dates for the 3 tests and 7 series. The dates were estimated conducting the ICSS
algorithm of Inclan and Tiao (1994) with α = 0.05 and ε = 0.15.

for the three tests over the seven series.

As one can clearly see the supLM and the supWald test yield (with very few exceptions) the

same results. Not only are the number of breaks identical for each series, also the estimated break

dates do almost not differ between the tests. This is, of course, not very surprising regarding

the similarity of the test statistics.6

The DP test however leads to different results in some situations. For the S&P 500 and two

exchange rates fewer breaks are found. On the other hand the DP test detects more breaks for

the DAX 30 and the Nikkei 225. If a break is found within some time period by all three tests

the estimated break dates do not differ much over the tests. There also seems to be a tendency

of (on average) fewer breaks in volatility in the currencies than in the equity series. Hence, the

number and the timing of the break does indeed differ considerably between the tests.

In order to get a more detailed look into the behavior of the tests, we consider rolling window

estimations for each test over the seven series. Hence, we determine the test statistics and the

corresponding p-value for each window for each test and series and are thus able to examine and

compare the distribution of the p-values over the different tests.

6We also reduced the window size to h = 100. The supLM and supWald tests still did not differ in the number

of detected breaks. The breakpoint estimation however varied much stronger.
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Figure 5: displays the boxplots for the p-values of the respective test on constant volatility for the S&P 500 with ε = 0.15.

Concretely we test for a single break within a window of size h = 200 with ε = 0.15. That is,

for each test and series we derive 3,408 p-values and are thus able to compare the distribution

of the latter between the different tests applied to real data. Figures 5 and 6 return boxplots

for the p-values of each volatility break test for the S&P 500 and the $/e series.7 Table 10

displays the rejection frequencies over the series and tests. That is, specifying α = 0.05 the table

returns for how many per cent of the 3,408 statistics the hypothesis of constant volatility has

been rejected.

The median of the p-value of the DP test is clearly higher for each series compared to the

other tests. Hence, the LM and Wald tests tend to reject more often than the DP test in this

environment. Furthermore the p-values of the DP test tend to vary more in between its lower

and upper quartile whereas the variation in the tails seems to be higher for the LM and Wald

tests. Hence, we observe more variation within the “core” of the distribution for the DP test

whilst a larger amount of outliers occurs for the LM and Wald tests.

Furthermore it seems noticeable that for the currency series the p-values of the tests are

substantially larger compared to the equity series. This also corresponds to the upper findings

that on average there are fewer breaks in the currency series than in the equity series. By

recalling Figure 4 we note that volatility shifts seem to be smoother in the currency data than

for the equity series, since for the latter a distinctive clustering effect in volatility can be observed.

Additionally the simulation study showed that for smooth transitions the power of detecting a

volatility shift is rather low which may be a possible explanation for these effect.

Hence, we can conclude that there may indeed be some severe differences between the tests

when it comes to break detection and estimation even in real data examples. First the DP test

tends to reject the hypothesis of constant volatility less often than LM and Wald tests for the

existing data. Regarding the e/$ series the range even amounts to 26%. Second all tests seem

7Results for the remaining series can be found in the appendix.
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Figure 6: displays the boxplots for the p-values of the respective test on constant volatility for the $/e exchange rate with
ε = 0.15.

Test

DP supLM meanLM expLM supWald meanWald expWald Range

S&P 500 0.44 0.54 0.54 0.59 0.61 0.57 0.63 0.19
FTSE 100 0.41 0.56 0.58 0.59 0.61 0.61 0.63 0.22
DAX 30 0.51 0.64 0.64 0.68 0.71 0.67 0.73 0.22
NIKKEI 225 0.40 0.46 0.44 0.50 0.52 0.47 0.53 0.13
e/$ 0.18 0.33 0.40 0.40 0.39 0.42 0.44 0.26
 L/$ 0.22 0.36 0.39 0.40 0.41 0.41 0.44 0.22
U/$ 0.17 0.24 0.26 0.28 0.31 0.29 0.33 0.16

Table 10: returns the rejection frequencies concerning the respective test on constant volatility with α = 0.05 and ε = 0.15.
The frequencies are calculated on the basis of 3,408 rolling window estimations for each test and series.

to exhibit less power for detecting a volatility shift when the break is rather smooth than abrupt.

This may be exemplified by the finding that in the currency series much fewer volatility shifts

are found than in the equity series.

3.5 Conclusion

In this paper we analyze volatility break tests by conducting a simulation analysis as well as

empirical examples using equity and exchange rate data. Concerning the simulations we find

that for some DGPs the difference over the tests is rather high whereas for other DGPs it does

not seem to play an important role which test is utilized.

In small samples the expWald test exhibits the highest power. However, it is slightly oversized.

In large samples the difference is not as distinct. Still, for double shifting DGPs the DP test

seems to be superior to the other tests. In case of DGP 3 non-monotonic power functions in large

samples are observed for all tests. In this process the ARCH coefficient switches in such a way

that for large breaks the kurtosis of the process is no longer finite. As a consistent estimation

of the long-run variance of the squared process depends on the finite assumption the power
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eventually drops once this assumption is no longer fulfilled.

Regarding the empirical example we find that less breaks are found in the exchange rate data

than in the equity data. This may be caused by the fact that we rather observe a smooth behavior

of volatility and not a distinct clustering behavior in the exchange rate data. Another reason

could be that the exchange rate data may have more outliers instead of clustering behavior.

As the simulations show in these situations the tests perform rather poorly. Additionally we

perform rolling window estimations in order to compare the p-values of the tests over a broad

range of window estimations. Hereby the results of the simulation study are confirmed. Further

we find a substantially lower amount of breaks in the currency data.

All in all perform the least squares tests in most of the situations fairly similar which is due

to the fact, that the test statistics are very akin. But in regard of the power we can state that

the Wald test can be slightly superior. Since it becomes more difficult to differentiate between

break and outlier when the volatility shift occurs rather smoothly than abrupt, all of the tests

seem to fail to appropriately detect breaks, cf. 4.4 and 3.4. Nevertheless, were we able to derive

slightly better results for the DP test especially when the least squares tests miscarry in case of

DGP 3, cf. 3.3.4. Hence, there is a point in choosing a particular test, depending on the tested

situation.

To conclude it could be of interest for future work to be able to state if the volatility break

happens in the conditional or unconditional variance or further to tell if the break occurs in

higher moments or yet in distribution.
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3.6 Appendix
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Figure 7: displays the density of the breakpoints in case of DGP 2-4 for T = 500, Σ = 2 and all τ .



Essays on Testing for Nonlinearity in Time Series 29

DP−Test, DGP2

0.1 0.3 0.5 0.7

Breakpoints for T=1000

supLM−Test, DGP2

0.1 0.3 0.5 0.7

supWald−Test, DGP2

0.1 0.3 0.5 0.7

DP−Test, DGP3

0.1 0.3 0.5 0.7 0.9

supLM−Test, DGP3

0.1 0.3 0.5 0.7 0.9

supWald−Test, DGP3

0.1 0.3 0.5 0.7 0.9

DP−Test, DGP4

0.1 0.3 0.5 0.7

supLM−Test, DGP4

0.1 0.3 0.5 0.7

supWald−Test, DGP4

0.1 0.3 0.5 0.7

f(τ∗)f(τ∗)f(τ∗)

f(τ∗)f(τ∗)f(τ∗)

f(τ∗)f(τ∗)f(τ∗)

τττ

τττ

τττ

τ∗→ 0.3

τ∗→ 0.5

τ∗→ 0.7

Figure 8: displays the density of the breakpoints in case of DGP 2-4 for T = 1000, Σ = 2 and all τ .
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DGP 1 DGP 2 DGP 3

LM Wald LM Wald LM Wald

Σ DP sup mean exp sup mean exp DP sup mean exp sup mean exp DP sup mean exp sup mean exp

1 6.06 6.54 7.20 7.60 8.30 8.20 8.30 5.50 5.50 6.12 6.42 6.40 6.00 7.40 5.36 5.50 6.12 6.42 6.40 6.00 7.40

1.1 20.07 17.28 22.90 21.50 20.30 24.60 23.30 20.10 17.38 22.50 21.70 22.30 25.20 25.90 17.44 16.16 19.80 19.08 21.00 22.20 23.20

1.2 58.12 50.62 59.24 57.76 54.40 60.00 60.30 58.28 50.96 59.36 58.22 54.70 60.00 59.30 38.86 34.76 41.46 40.26 38.50 42.20 42.70

1.3 88.04 83.68 87.70 88.00 88.40 89.90 90.60 88.26 83.54 88.00 88.04 86.00 89.10 89.40 58.28 52.42 61.10 60.56 58.90 65.00 64.60

1.5 99.78 99.58 99.80 99.78 99.70 99.80 99.80 99.82 99.50 99.78 99.82 99.60 99.80 99.80 74.96 69.54 78.10 77.70 74.60 81.10 81.20

2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 78.96 75.96 82.54 82.76 81.40 84.10 84.80

DGP 4 DGP 5 DGP 6

LM Wald LM Wald LM Wald

Σ DP sup mean exp sup mean exp DP sup mean exp sup mean exp DP sup mean exp sup mean exp

1 5.36 5.50 6.12 6.42 6.40 6.00 7.40 6.06 6.54 7.20 7.60 8.30 8.20 8.30 4.52 5.72 5.84 6.36 7.30 7.00 7.80

1.1 20.90 18.20 22.94 22.48 23.00 18.30 26.70 6.38 5.80 6.48 7.12 7.40 6.90 8.50 3.68 4.30 5.22 5.00 5.60 5.10 5.90

1.2 58.06 51.56 59.04 58.40 54.60 59.80 59.60 13.46 9.98 10.56 12.70 11.90 11.70 13.90 5.00 4.48 5.68 5.68 4.60 6.00 6.00

1.3 86.96 82.50 86.52 86.86 85.50 87.80 88.10 22.48 16.44 17.60 20.60 21.00 20.80 23.90 8.58 5.84 7.72 8.60 6.90 8.60 10.10

1.5 99.52 99.14 99.46 99.48 99.40 99.50 99.50 50.60 39.16 46.24 47.78 46.90 50.40 53.70 19.76 13.08 17.74 18.42 15.30 19.20 20.40

2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 94.08 87.46 95.74 94.84 89.20 96.20 95.90 54.68 40.98 56.30 54.02 46.90 59.00 58.20

DGP 7 DGP 8 DGP 9

LM Wald LM Wald LM Wald

Σ DP sup mean exp sup mean exp DP sup mean exp sup mean exp DP sup mean exp sup mean exp

1 5.70 5.70 6.38 6.62 7.30 7.80 8.00 5.70 5.70 6.38 6.62 7.30 7.80 8.00 5.70 5.70 6.38 6.62 7.30 7.80 8.00

1.1 11.14 11.00 13.42 13.26 11.80 13.60 14.60 8.76 8.28 10.58 10.16 8.60 10.90 10.30 11.70 12.16 14.26 14.16 13.80 14.70 14.70

1.2 26.00 25.50 31.14 30.30 30.00 32.90 33.30 17.38 16.58 21.58 20.50 21.40 22.60 24.00 28.62 29.16 33.58 33.44 33.70 35.00 36.10

1.3 44.88 43.46 53.52 50.74 46.80 54.10 51.90 28.70 27.24 34.92 33.12 29.70 35.50 35.90 51.06 51.12 58.68 57.10 53.30 59.30 58.30

1.5 78.44 76.70 86.02 83.90 80.80 87.00 85.80 52.90 52.02 62.58 60.10 58.50 65.60 63.70 85.22 84.82 90.72 89.44 87.80 90.70 90.90

2 99.62 99.34 99.92 99.88 99.70 100.0 100.0 90.38 89.68 95.36 94.64 91.10 95.60 95.40 99.90 99.92 100.0 100.0 100.0 100.0 100.0

Table 11: reports power results for nine DGPs according to the DP, LM- and Wald-type tests for τ = 0.5, ǫ = 0.15 and T = 200.

3
3
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Testing for Persistence Changes in the Presence of Time-varying

Conditional Volatility

4.1 Motivation

The detection of persistence changes has gained increasing attention, especially in regard of

effective model building. Previous publications on this subject, see e.g. Busetti and Taylor

(2004), Taylor (2005) or Taylor (2006), show that the ability to decompose a time series into

its stationary and nonstationary components seems to be very desirable. The knowledge of the

correct characteristics of the series contributes to more accurate model specifications and, hence,

improves effective model building, hypothesis testing and forecasting in both applied economics

and financial econometrics. Structural shifts in volatility processes have been studied for a long

time. However, the current matter of interest is to determine whether the series switches from

(trend) stationarity to difference stationarity. A rather recent development is the combination of

volatility shifting in combination with persistence changes. Hence, the question whether either

structural breaks or nonstationarity in the conditional volatility process may lead to a false

rejection of the null of no persistence change constitutes the main subject of this paper.

In the matter of persistence change tests there exist two complementary approaches which

differ in the behaviour of the process under the null hypothesis. The process is either of constant

I(0) or constant I(1) behaviour and tested against changing persistence from either I(0) to I(1)

or I(1) to I(0) or both, depending on the construction of the procedure. The most popular

approach was suggested by Kim (2000) and Kim et al. (2002) which is designed for a null hy-

pothesis of constant I(0) behaviour. They suggest a sub-sample based ratio test of the residuals

for which the idea originates from conventional stationarity tests as proposed by Nyblom and

Mäkeläinen (1983) and Kwiatkowski et al. (1992), among others. The second class presumes

a null hypothesis of constant I(1) behaviour. Former contributions concerning the latter are

based on conventional unit root testing procedures as proposed by DeJong et al. (1992a,b), for

instance. The main drawback of this class concerns the fact that these tests tend to spuriously

reject in the presence of the false null hypothesis - the behaviour which was not presumed un-

der the null, namely I(0). As a consequence, they suffer from low power and size properties

as pointed out by Haldrup and Jansson (2006). Better power results are for instance achieved

by Leybourne et al. (2003), where the procedure is derived from the Dickey Fuller unit root

statistic. The most prevailing approach though is proposed by Leybourne et al. (2007), who

seize the above mentioned shortcoming and introduce a test which avoids the spurious rejection

in favour of a persistence change when the series features in fact I(0) behaviour, even though it

is conceived under I(1) behavior.

Relating to volatility processes both conventional unit root tests as well as stationarity tests

suffer from potentially large size distortions in the presence of nonstationary unconditional
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volatility as reported by Busetti and Taylor (2003) and Cavaliere (2004, 2005). Generally, per-

sistence change tests assume unconditional volatility for the time series under consideration.

In order to overcome potential size distortions Cavaliere and Taylor (2008) suggest wild boot-

strap implementations for the ratio-based persistence change test proposed by Kim (2000). They

counter the difficulty of detecting changes in persistence successfully by allowing nonstationarity

in the unconditional volatility. Further results regarding nonstationary volatility in conjunction

with changing persistence are presented in the work by Cavaliere and Taylor (2006). Contribu-

tions to dealing with structural changes in conditional volatility models refer to Hansen (2000),

who employs and brings the fixed regressor bootstrap into prominence. Nevertheless, literature

lacks studies on changing persistence under (non-)stationary conditional volatility.

Therefore, this paper provides an investigation on a persistence change test when the condi-

tional volatility model of the underlying time series is subjected to structural breaks or non-

stationarity. Persistence changes occur in the parameters of the AR(1), while structural breaks

and nonstationarity in the volatility are induced by the scope of an GARCH(1,1), where the

GARCH parameters break and can even exhibit explosive behaviour. The matter of interest

is whether the properties or the behaviour of the conditional volatility impact the decision of

the persistence change test. A simulation study is conducted, in which the testing procedure

proposed by Leybourne et al. (2007) is combined with the fixed regressor wild bootstrap sug-

gested in Hansen (2000) in order to account for potential size distortions due to (nonstationary)

conditional volatility.

The rest of the paper is organised as follows: In section 4.2, the model setup and the conditional

volatility model is outlined. Section 4.3 gives a summary of the relevant testing procedures and

the testing problem of interest is motivated. Section 4.4 provides a simulation study including

a discussion of results. An empirical application to inflation rates is presented in section 4.5

before section 4.6 concludes the paper.
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4.2 The Model

4.2.1 Persistence Changes in Mean

The model for the following investigation has the scope of an AR(1) that contains a shift in

persistence in mean and features a conditional variance, introduced subsequently in section

4.2.2. The AR(1) equals

yt = φyt−1 + εt,

while the deterministic part yt−1 can either be a constant, zt−1 = 1, or a constant plus linear

trend, zt−1 = (1, t)′ with zt denoting the data. The autoregressive parameter φ is dependent on

τ which determines the change in persistence in mean. τ defines the change point proportion,

with τ ∈ Λ = [τL, τU ] which is an interval on (0, 1). Λ defines the grid for the search set later

on, including the lower, τL, and upper, τU , bound. Thus, a change occurs at ⌊τT ⌋, whereby ⌊·⌋
denote the integer parts of its arguments. The AR-parameter φ switches between stationarity

and nonstationarity at ⌊τT ⌋, meaning φ is ∈ [0, 1]. This leads to a two-regime AR(1), c.f.

section 4.2.3. Persistence changes are assumed to happen solely in the AR-parameter which is

why exclusively persistence changes in mean are regarded.

4.2.2 Conditional Volatility

The family of GARCH models constitutes a class of conditional variance models, in which the

variance of the process yt is modelled dependent on both the past shocks εt and the past values

of the variance itself, defined by σt. The GARCH(p, q) model extends the linear ARCH(p) model

by q lags of the conditional variance, introduced in Bollerslev (1986). The scope of this work is

a GARCH(1, 1) of the following form

εt = etσt with

V ar (yt|yt−1) = σ2
t = α0 + α1y2

t−1 + βσ2
t−1 ,

whereby α0 > 0, α1 ≥ 0 and β ≥ 0. It is assumed that et
iid∼ N (0, 1) with et being independent

of the process εt−j , j ≥ 1. Provided that α1 + β < 1, the model is second order stationary. The

unconditional variance equals V ar(εt) = σ2 = α0/(1 − α1 − β), cf. Bollerslev (1986) and exists

if 1 − α1 − β1 6= 0. As soon as the sum of the parameters α1 + β ≡ γ approaches one, the effects

of the past shocks on the current variance increase. Note, that only structural breaks in the

conditional error term will be considered in this paper, while structural breaks in the mean of

the process are disregarded. Nonstationarity in the conditional variance is induced by varying

the GARCH parameters such that α1 + β ≥ 1 at τT . The unconditional variance of the AR(1)

remains unaffected by the model setup.

One of the simplest models in this context is the integrated GARCH (IGARCH) model sug-

gested and investigated by Engle and Bollerslev (1986) and Lamoureux and Lastrapes (1990),

respectively. That means that the lag polynomial γ of the conditional variance features a unit

root and entails that shocks which impact the variance do not decay over time. Moreover, the

unconditional variance does not exist (Lamoureux and Lastrapes, 1990). In this testing setup
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the unconditional volatility is indirectly impacted because it is investigated how inter alia ex-

plosive behaviour of the conditional volatility (α1 + β ≥ 1) affects the testing decision of the

persistence change test.

4.2.3 Persistence Changes under Conditional Volatility

The model can be decomposed into two regimes such as yt = yt,1 + yt,2. Both of the latter

components are combined to a model with persistence changes under conditional volatility in

form of a GARCH(1,1). For i ∈ {1, 2} it is defined as

yt,i = φiyt−1 + etσt,i

⇒




yt,1 = φ1yt−1 + et
(
α0,1 + α1,1ε2

t−1 + β1σ2
t−1

)0.5
for i = 1

yt,2 = φ2yt−1 + et
(
α0,2 + α1,2ε2

t−1 + β2σ2
t−1

)0.5
for i = 2 .

(6)

yt,1 switches to yt,2 according to the break point parameter τ . The shifting parameters, φi and

{α0,i, α1,i, βi}, can change simultaneously at ⌊τT ⌋, leading to the two-regime AR(1) process

given in (6). It features either a change in persistence and/or exhibits a structural change in the

conditional volatility which may lead to a nonstationary conditional volatility. Regarding the

size, for instance, the AR(1) remains stationary and either outcome in the conditional volatility

is considered.

Four possible hypotheses can be considered employing this model setup. To be in accordance

with the persistence change literature, H0 and unconventionally H1 denote the null hypotheses

while H01 and H10 denote the alternatives. The first hypothesis is yt ∼ I(1) throughout, labeled

H1. This implies unit root behaviour in the form of φ = 1 for t = 1, . . . , T . The second possible

hypothesis includes a change from stationarity to nonstationarity, marked by H01, meaning yt

is I(0) and changes to I(1) at the time ⌊τT ⌋. This, on the other hand, implies φt = φ, |φ| < 1

for t ≤ ⌊τT ⌋ and φ = 1 for t > ⌊τT ⌋. The third hypothesis describes the opposite scenario of

the second hypothesis, when yt is I(1) and changes to I(0) at ⌊τT ⌋, termed H10. Precisely, this

means that φt = 1 for t ≤ ⌊τT ⌋ and |φ| < 1 for t > ⌊τT ⌋. At last, yt can exhibit stationary

behaviour throughout which is denoted by H0.
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4.3 Tests for Changes in Persistence

The following section outlines the two most frequently applied methods as well as the suggested

procedure for persistence changes from stationarity to nonstationarity or vice versa. The sec-

tion starts with the description of Kim (2000) while subsequently the procedure proposed by

Leybourne et al. (2007) is introduced. The first procedure accounts for nonstationary uncondi-

tional volatility and additional structural changes in the volatility, while the underlying process

is subjected to changes in the persistence of the mean. The second procedure constitutes the

initial test for the herein suggested method. Its test statistic is based on an augmented Dickey-

Fuller-type test statistic and, therefore, complements the variance ratio test given in Kim (2000)

in respect of the null hypothesis. In analogy to Cavaliere and Taylor (2008), a bootstrap-based

resampling technique is suggested and implemented to Leybourne et al. (2007). The penultimate

subsection motivates the testing problem and the last subsection features the applied bootstrap

algorithm.

4.3.1 Kim’s Variance Ratio Test

In order to test against changes in persistence, Kim (2000) proposes a residual-based test con-

sisting of ratios of sub-sample implementations. The sub-sample implementations are derived

from the KPSS test statistic for stationarity, which refers to Kwiatkowski et al. (1992). Under

the null hypothesis the test assumes that the DGP is stochastically stationary around a de-

terministic trend. Under the alternative the DGP is tested against a change from either I(0)

to I(1) or from I(1) to I(0). Since the original procedure is inconsistent, modifications have

independently been brought forward by Kim et al. (2002) and Busetti and Taylor (2004). Kim

et al. (2002) provide consistent tests and break point estimators under I(0) to I(1) changes,

while the Busetti and Taylor (2004) derive locally best invariant tests against either a shift from

I(0) to I(1) or vice versa. Generally, all of these sub-sample KPSS-type tests assume constant

I(0) behaviour throughout the null hypothesis. The difference between ordinary KPSS- and

sub-sample KPSS-test statistics consists in the fact that the latter needs to be scaled by the

long-run variance estimator, cf. Taylor (2005).

Within the work of Kim (2000), the break point τ ∈ (0, 1) is unknown and suspected to occur

at t = ⌊τT ⌋. The test consists of a ratio based on the partial sums of residuals before and after

the break point ⌊τT ⌋, which are given by

S0,t(τ) ≡
t∑

i=1

ε̂i,τ for t = 1, . . . , ⌊τT ⌋ and

S1,t(τ) ≡
t∑

i=⌊τT ⌋+1

ε̃i,τ for t = ⌊τT ⌋ + 1, . . . , T,

resulting from the ordinary least squares (OLS) regression of yt on either an intercept, zt = 1,

or an intercept plus linear trend, zt = (1, t)′. It is emphasised that ε̂t,τ and ε̃t,τ differ in their

time horizon in order to continue the corrigendum given in Kim et al. (2002). ε̂t,τ represent the
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residuals from regressing yt on the first t = 1, . . . , ⌊τT ⌋ observations,

ε̂t,τ = yt − ȳ(τ) with ȳ(τ) = ⌊τT ⌋−1
⌊τT ⌋∑

t=1

yt ,

whereas ε̃t,τ denote the OLS residuals from the above regression from t = ⌊τT ⌋ + 1, . . . , T .

Hence, the data is demeaned over t = 1, . . . , ⌊τT ⌋ and t = ⌊τT ⌋ + 1, . . . , T , respectively, which

leads to the residual-based ratio test statistic

K(τ) =
(T − ⌊τT ⌋)−2 ∑T

t=⌊τT ⌋+1 S1,t(τ)2

⌊τT ⌋−2
∑⌊τT ⌋

t=1 S0,t(τ)2
. (7)

Given that the change point τ∗ is known, the null is rejected in favour of a change in persistence

when the values of K (τ∗) become large. For the more realistic case that the change point is

unknown, Kim (2000) and Busetti and Taylor (2004) suggest the following three statistics based

on the sequence of statistics {K(τ), τ ∈ Λ}, which are given by

K1 := max
s∈{⌊τLT ⌋,...⌊τU T ⌋}

Kt (s/T ) ;

K2 := T −1
∗

⌊τU T ⌋∑

s=⌊τLT ⌋
Kt (s/T ) ;

K3 := ln



T −1

∗

⌊τU T ⌋∑

s=⌊τLT ⌋
exp

(
1

2
Kt (s/T )

)

 ,

whereat T∗ ≡ ⌊τLT ⌋ − ⌊τU T ⌋ + 1 holds. The first statistic K1 is a Chow-type-test following

Andrews (1993), which considers the maximum over the sequence, while the second statistic K2

was proposed by Hansen (1991) and describes a mean score statistic. The last test statistic K3

was suggested by Andrews and Ploberger (1994) and constitutes a mean-exponential test statis-

tic. In each case, the null is rejected for large values of these statistics. Corrected critical values

and the limiting distributions for the defined statistics for the case of constant unconditional

volatility, σt = σ ∀ t, are provided by Kim et al. (2002) and Busetti and Taylor (2004). More

recent considerations employing appropriate long-run variance estimators for the numerator as

well as the denominator can be found in Leybourne and Taylor (2004).

4.3.2 CUSUM of Squares-Based Test

Leybourne et al. (2007) employ standardized CUSUM of squared sub-sample OLS residuals in

order to test against a change in persistence, notably H01 or H10, while the null hypothesis is

constructed to be of constant I(1) behaviour. In comparison to the variance ratio in Kim (2000)

the sum of the sub-sampled residuals is denominated by an estimator for the long-run variance

(LRV) of the εt,τ , ω̂2(τ). The test statistic utilizes a ratio of OLS residuals from the forward

and reversed series (ε̂2
t,τ and ε̆2

t,τ ), which are weighted by the corresponding LRV. Firstly, the
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statistic of the forward series from t = 1, . . . , ⌊τT ⌋ is set up,

Kf (τ) =
⌊τT ⌋−2 ∑⌊τT ⌋

t=1 ε̂2
t,τ

ω̂2
f (τ)

(8)

in order to test H01. Accordingly, the variance estimator is calculated from

ω̂2
f (τ) = γ̂0 + 2

m∑

s=1

ws,mγ̂s , ws,m = 1 − sl−1 and

γ̂s = ⌊τT ⌋−1
⌊τT ⌋∑

t=1

∆ε̂t,τ ∆ε̂t−s,τ ,

whereat m indicates the lag truncation parameter and defines l = m + 1 the associated band-

width. ws,m denotes a weighting coefficient that assesses proportionally higher weights to the

more recent observations, while m is chosen to be ⌊4(T/100)1/4⌋ according to Leybourne et al.

(2007).

For the reversed case, the series is considered backwards, xt ≡ yT −t+1, so that the change is

assumed to occur at time (T −⌊τ∗T ⌋). By construction, the statistics Kf and Kr, which is given

below, complement each other. By the same arguments a change from I(0) to I(1) resembles

H10, wherefore H10 is calculated from

Kr(τ) =
(T − ⌊τT ⌋)−2 ∑(T −⌊τT ⌋)

t=1 ε̆2
t,τ

ω̂2
r (τ)

(9)

by taking the reversed series xt from t = 1, . . . , T − ⌊τT ⌋. In the case of a constant, zt = 1, the

OLS residual from the regression of xt on this constant zt = 1 is

ε̆t,τ = xt − x̄(1 − τ) with x̄(1 − τ) = (T − ⌊τT ⌋)−1
⌊τT ⌋∑

t=1

xt .

Besides the OLS residuals, ε̆2
t,τ , Kr(τ) contains also

ω̂2
r(τ) = γ̆0 + 2

m∑

s=1

ws,mγ̆s whereof γ̆s =
(
T − ⌊τT ⌋−1

) (T −⌊τT ⌋)∑

t=1

∆ε̆t,τ ∆ε̆t−s,τ

holds. The cumulation of the sum of squared OLS residuals up to the break point ⌊τT ⌋ distin-

guishes the work of Leybourne et al. (2007) from former CUSUMs of squared residual statistics

as proposed, for instance, by Brown et al. (1975) and McCabe and Harrison (1980) who utilize

recursive residuals or full-sample residuals, respectively. The distinction matters in so far that

Kf features different orders of magnitude for τ ≤ τ∗ and τ > τ∗, resulting in the desired ability

to identify H01 and τ∗ consistently under Kf , τ∗ being here the true and unknown break point

percentage. In particular, Kf (τ) converges in probability to zero under H01 for all τ ≤ τ∗, but is

of order Op(1) under H10 for all τ . The analogue is valid for Kr, which converges in probability

to zero under H10 for all τ > τ∗ but is of order Op(1) under H01 regardless of the value of τ , c.f.

Leybourne et al. (2007).
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Supposed that τ∗ is known and H1 is tested against a persistence change, namely H10 or

H01, then a positive by-product exists in the fact that the ratio of R(τ∗) = Kf (τ∗)
Kr(τ∗) converges to

infinity under H01 but collapses to zero for H10. For this reason Leybourne et al. (2007) suggest

a two-tailed test in order to test H1 against a change in persistence, following Zivot and Andrews

(2002). Assuming the change point to be unknown, this approach leads to an appropriate test

statistic rejecting for either small or large values. It is given by

R =
inf
τ∈Λ

Kf (τ)

inf
τ∈Λ

Kr(τ)
=:

N

D
, (10)

whereof the minimum of the CUSUM of squared sub-sample OLS residuals over the sequence of

τ ∈ Λ of the forward series is related to its counterpart of the reversed series. The consistency of

R results due to the properties of the sequences of statistics of Kf and Kr in conjunction with

a two-tailed test. The proof can be found in Theorem 2 in Leybourne et al. (2007) while the

limiting distribution of R which is given in Theorem 1. Notably, neither the limiting distribution

of the statistics provided by Leybourne et al. (2007) nor Kim et al. (2002) depends on the long-

run variance of the εt, ω2. The results of the limiting distribution for R even hold without

standardizing by the long-run variance ω2. Supposed that Λ is centered around 0.5, the limiting

marginal distribution of N and D is identical under H1 (Leybourne et al., 2007).

Based on these statistics, Leybourne et al. (2007) establish a consistent break point estimator

for τ∗ under H01, that is adapted from Busetti and Taylor (2004), and is given by

τ̂K = arg sup
τ∈Λ

Ξ(τ),

whereat

Ξ(τ) =
(T − ⌊τT ⌋)−2 ∑T

t=⌊τT ⌋+1 ε̃t,τ

⌊τT ⌋−2
∑⌊τT ⌋

t=1 ε̂t,τ

. (11)

Note that the denominator of Ξ equals the numerator of Kf (τ) in (8). In case of a break from

I(1) to I(0), Busetti and Taylor (2004) analogously suggest a consistent estimator for τ∗ under

H10 by

τ̂R
K = arg inf

τ∈Λ
Ξ(τ).

4.3.3 Testing Problem

It is examined whether the utilization of wild bootstrap implementations can further robustify

the test given in Leybourne et al. (2007) against structural changes in the conditional volatil-

ity in consideration of both stationary (H0) and nonstationary (H1) processes under the null

hypothesis. According to the authors the test is robust against spuriously rejecting the false

null hypothesis - false implies the process displays in fact I(0)-behaviour. As obtained by their

empirical results it has to be stated that the test is rather weak in small sample sizes but gains

power as T increases. The assumed model setup in this work is likely to lead to a non-pivotal

limiting distribution and, therefore, may lead to size distortion of the test. Hence, two issues

are surveyed. On the one hand, it is investigated if wild bootstrap implementations can lead
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to improved size properties, especially when the process is in fact I(0) and, hence, displays the

false behaviour. On the other hand, it is checked how well the test behaves in finite samples

with T = 100, 200. In terms of distributions it is investigated whether a break in the second

moment of the error process leads to a rejection of the null hypothesis while the test is build

against a break in mean, respectively the first moment of the process.

Formal Testing Problem In this testing setup a break in persistence implies exclusively changes

from I(1) to I(0), i.e. nonstationary to stationary - behaviour, and from I(0) to I(1), respec-

tively. Fractional breaks in persistence and any other values of the long memory parameter

remain disregarded. Formally, a change from φ1 ∈ [0, 1] to φ2 ∈ [1, 0] is assumed where φi with

i = 1, 2 denotes the autoregressive parameters in model (6). The hypotheses are the following:

H0 : No break in persistence vs. H1 : Break in persistence

⇔ H0 : φi < 1 ∀ i = 1, 2 vs. H01 : φ1 < 1 and φ2 = 1 or

⇔ H1 : φi = φ = 1 vs. H10 : φ1 = 1 and φ2 < 1.

Changes in the conditional variance are not considered as part of the testing problem but are

added as additional nuisance. It has to be checked whether the additional nuisance alters the

outcome of the testing procedure.

4.3.4 The Wild Bootstrap Algorithm

Bootstrapping is especially known for alleviating size distortions in small samples sizes. If the null

hypothesis allows conditional heteroskedasticity of unknown form, the normal bootstrap fails to

imitate the behavior of the original DGP and cannot project it correctly into the bootstrap DGP.

This is why wild bootstrapping qualifies, developped in Liu (1988). The following suggestions

refer to Wu (1986) and Beran (1986).

Under the null hypothesis of no change in persistence, nonstationary conditional volatility is

very likely to modify the limiting distribution of the test statistics in so far that they are no longer

pivotal. For the case of nonstationary unconditional volatility, Cavaliere and Taylor (2008) proof

that the residual-based test statistics introduced in 4.3.1 have no longer a pivotal limiting null

distribution due to violations of the normality assumption. This causes considerably over-sized

test results. Thus, it might hinder practitioners to correctly distinguish between plain persistence

changes occurring in the data and structural changes in the volatility that possibly leave the

volatility nonstationary. In order to overcome potential inference problems arising from a non-

pivotal limiting null distribution the wild bootstrap can help. Generally, wild bootstrapping is

conducted when the time series displays heteroskedastic variances.

The advantage of the wild bootstrap is that it can project the present pattern of the nonsta-

tionary volatility into the bootstrap sample which is why it is preferred over other re-sampling

schemes. The pairs bootstrap e.g. can also accommodate for heteroscedasticity while the resid-

ual bootstrap is invalidated by conditional heteroscedasticity since it works only for iid errors.

A shortcoming of the pairs bootstrap is that it does not condition on the original X matrix

unlike the residual and wild bootstrap. Another option would be the block bootstrap. Besides
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heteroscedasticity it accounts for serial correlation what leads to a loss of efficiency when serial

correlation is not present. The block bootstrap is also slightly sensitive about the right block

size which is to be chosen beforehand.

As a solution to all the mentioned shortcomings the wild bootstrap was introduced. It is a non-

parametric resampling technique that makes it unnecessary to specify a parametric model for

the volatility process and to run a pre-test for nonstationary volatility. Moreover, the approach

is robust which is why wild bootstrap-based implementations are adapted referring to Hansen

(2000). Precisely, a fixed-design wild bootstrap is employed, where the regressors are treated as

fixed.

In the following, the wild bootstrap algorithm is presented step-by-step in that manner it is

employed in the simulation in Section 4.4. The algorithm given below is already adapted to the

CUSUM of squares-based test by Leybourne et al. (2007).

The first step of the bootstrap algorithm is to generate the bootstrap DGP

yb
t =ub

t

with ub
t =f(ût)ηt , t = 1, . . . , T

(12)

whereby ût defines the full sample residuals from regressing yt on xt for t = 1, . . . , T . f(·) denotes

a transformation of the residuals. Usually, this is a heteroscedasticity consistent transformation.

f(·) is often chosen to be of the form HC3 introduced by White et al. (1980). It has repeatedly

been reported, c.f. Davidson and Flachaire (2008) e.g., that HC3 outperforms HC1 and in most

cases HC2 which is why it is so popular, f(ûi) = ûi/(1−hi), whereby the hii are the ith diagonal

elements of the hat matrix H = X (X ′X)−1 X ′. Here, the residuals remain unmodified, since

the significance gain is neglectable in this scenario.

The ub
t are multiplied by {ηt}T

t=1, an independent auxiliary distribution, for instance N (0, 1)

or any other two-point distribution given in (4.3.5). The essential bootstrap residuals, ε̂b
t and

ε̆b
t , are then obtained from regressing yb

t on zt via OLS. Analogously to the test statistics Kf

and Kr, the sums of bootstrap residuals differ in their time horizons and are generated from

utilising the last T − ⌊τT ⌋ and the first ⌊τT ⌋ observations for ε̂b
t and ε̆b

t , respectively. ε̂b
t and ε̆b

t

are mean independent of {yt, zt}T
t=1 and capture the pattern of heteroscedasticity of the original

sample. This property, as originally noted by Wu (1986), enables the wild bootstrap to remain

consistent even in the presence of heteroscedasticity or model misspecification. Based on the

pseudo-residuals, Kf
b and Kr

b can be straightforwardly computed from

Kf
b (τ) =

⌊τT ⌋−2 ∑⌊τT ⌋
t=1

(
ε̂b

t,τ

)2

ω̂2
f (τ)

and

Kr
b (τ) =

(T − ⌊τT ⌋)−2 ∑(T −⌊τT ⌋)
t=1

(
ε̆b

t,τ

)2

ω̂2
r (τ)

,

(13)

as described in section 4.3.2, whereby the LRVs ω̂2
f,b(τ) and ω̂2

r,b(τ) are also build on the pseudo-

residuals ε̂b
t and ε̆b

t . Note that yb
t is reversed before generating the pseudo-residuals ε̆b

t in Kr
b .

If the true change point τ∗ is known, the test statistic R(τ∗) = Kf (τ∗)/Kr(τ∗) is evaluated

at τ = τ∗, and again diverges to positive infinity when H1 is tested against H01. However, in
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case of H1 tested against a persistence change from I(1) to I(0), H10, the statistic collapses to

zero. For this reason, this test requires two tails for a possible rejection in the presence of either

large or small values. In case that the change point is a priori unknown, the following bootstrap

analogue is applied

Rb =
inf
τ∈Λ

Kf
b (τ)

inf
τ∈Λ

Kr
b (τ)

=
N b

Db
,

using the minimum of the particular statistics over the search set Λ. The corresponding empirical

bootstrap p-value for Rb(τ) can be computed by

pb(τ) = 1 − Gb
(
Rb(τ); t̂s

)
,

whereat Gb(·) denotes the cumulative distribution function of the bootstrap statistic Rb and t̂s,

the empirical test statistic of the compared testing procedure.

For the performance evaluation of the bootstrap, no critical values are needed. Bootstrap p-

values yield exactly the same test results and normally provide far more information. However,

B, the number of bootstrap replications, needs to be chosen such that α(B + 1) is an integer.

Provided this prerequisite is met, the critical value can be estimated depending on α. In case of

an upper tail test for example, the critical value is determined as the number (1−α)(B+1) in the

(ascending) sorted list of bootstrapped test statistics Rb
j. Hence, the equal-tail bootstrap p-value

is appropriate because the R test statistic rejects for either large or small values. Moreover, the

distribution of the R statistics is not symmetric around zero why it is recommended to use the

two-sided p-value. Correspondingly, B is chosen such that (1−α)(B +1)/2 is an integer, leading

to the general formula for the bootstrap p-value

pb = 2 min


 1

B

B∑

j=1

1

(
tsb

j ≤ t̂s
)

;
1

B

B∑

j=1

1

(
tsb

j > t̂s.
)


 (14)

A bootstrap test is said to be exact whenever α(B + 1) is an integer and the observed statistic

t̂s is pivotal, meaning that the distribution does not depend on any unknown parameters, cf.

MacKinnon (2009). Unfortunately, there is a proportional loss of of power of 1/B - the smaller

the size of bootstrap samples B is chosen, the less powerful is the test, cf. Davidson and

MacKinnon (2000) and Jockel (1986). The latter preferably apply B = 9999 as a sufficiently

large number in order to approximate infinity. According to Hansen (1996), pb is consistent for

the empirical p-value p̂ as T → ∞ by standard arguments.

4.3.5 Auxiliary Two-Point Distributions

Not every distribution is suitable to serve as an auxiliary distribution, here defined as {ηt}T
t=1. It

requires certain properties like E(η) = 0 and E(η2) = 1, which are essential for the validity of the

(wild) bootstrap procedure. The pseudo-data ηt in (12) can be drawn from another distribution

instead of the Gaussian distribution. The first and most popular alternative in order to gain an
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improved accuracy constitutes Mammen (1993), given by

ηA =





1+
√

5
2 with probability p =

√
5−1

2
√

5

1−
√

5
2 with probability 1 − p .

The Mammen distribution fulfills convenient properties in favor of the random draws, η, to be

generated from notably E(ηA) = 0, E(η2
A) = E(η3

A) = 1 and E(η4
A) = 2. In this context,

Pearson (1916) set up the following inequality which yields a desirable property for the choice

of an auxiliary distribution,

E(η4) ≥ 1 + E(η3)2 .

The two-point distribution proposed by Mammen (1993) meets the desirable property even with

equality.

The Rademacher distribution is anothter frequently applied distribution among the two-point

distributions that also meets the previous property with equality as discussed by Davidson et al.

(2007). The Rademacher distribution, given by

ηB =





−1 with probability p = 1
2

1 with probability 1 − p ,

features the properties E(ηB) = 0, E(η2
B) = 1, E(η3

B) = 0 and E(η4
B) = 1 and further offers

the possibility of higher-order improvements when the parent distribution is symmetric. Since

both ηA and ηB fulfill E(ηi) = 0 and E(η2
i ) = 1 for i = A, B and are independent of the full

sample residuals εt, the (pseudo-) distribution provides consistency for the sampling distribution

(Davidson et al., 2007).
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4.4 Monte Carlo Study

4.4.1 Simulation setup

For the performance evaluation in finite samples the sample sizes T = {100, 200} will be of

interest. Larger sample sizes are not regarded since the bootstrap has particularly power in

very finite samples and has its usage especially here. The break points are as mentioned before

τ ∈ {0.3, 0.5, 0.7} and the autoregressive parameter constellations for the break in persistence

will vary in φ ∈ {0.0, 0.5, 0.9, 1}. The additional changes in the conditional variance can happen

either in α1,i or βi and can be taken from Table 13, Table 14 and Table 15 containing the

empirical rejection frequencies for the size and power respectively. There will also be explosive

behaviour in the GARCH part, meaning that the conditional variance is not always second

order stationary and the condition α1 + β < 1 is not always met. Recall that the unconditional

variance remains unchanged by construction and is, therefore, supposed to be homoscedastic

and stationary at any time. However, it may be impacted by the explosive behaviour of the

GARCH parameters.

4.4.2 Numerical Results

Critical values were computed for the R test statistic given in (10) for the performance compar-

ison between the bootstrapped Leybourne, in the following abbreviated by bL, and its original

counterpart, in the following abbreviated by L. These are generated using pseudo-data based

upon a random-walk and 100,000 Monte Carlo replications

yt = yt−1 + εt , t = 1, . . . , T

with y0 = 0 and εt ∼ N (0, 1). In the following, Table 12 provides the lower and upper tail

critical values for the R test for finite samples and larger samples in the application,

T = {100, 200, 500, 1000}. Reported are the critical values for demeaned data, xt = 1, as well

as demeaned and detrended data, xt = (1, t)′ using T = 1000 as discrete approximation for ∞.

Table 12: Lower and upper tail critical values for the R test.

R

xt T 0.01 0.025 0.050 0.950 0.975 0.99

1 100 0.14 0.19 0.26 3.98 5.19 7.14
200 0.13 0.18 0.24 4.10 5.40 7.50
500 0.13 0.17 0.23 4.28 5.69 7.93
∞ 0.13 0.18 0.23 4.27 5.72 8.01

(1, t)′ 100 0.30 0.36 0.43 2.33 2.74 3.30
200 0.28 0.34 0.41 2.46 2.94 3.61
500 0.26 0.32 0.39 2.57 3.07 3.81
∞ 0.26 0.32 0.39 2.62 3.16 3.94

The simulation results suggest that both testing procedures, bL and L, perform nearly iden-

tically for τ = 0.3 and τ = 0.7. For efficiency reasons, the size and power results for τ = 0.7 are
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omitted, but are available upon request. When Λ is chosen symmetrically around τ = 0.5, Ley-

bourne et al. (2007) have shown that N and D, cf. eq.(10), have identical limiting distributions.

Not surprisingly, this first result is derived due to the construction of the test.

Comparing the results for the three auxiliary distributions for the bootstrap procedure, it

can be be stated that none of the three auxiliary distribution outperforms the other and rather

similar behaviors are observed: Even in the face of an increasing sample size, none auxiliary

distribution can be identified as superior. The performance of the bootstrapped test is obviously

strongly dependent on the GARCH parametrization.

For the different τ there is no distinct rule derivable. In some situations power gains are

observed in others a drop, what leads to no noteworthy finding.

As a matter of fact, the size properties worsen with increasing φ. Comparing for instance the

switch in φ from 0 → 0.5 for the corresponding first two of the three parameterizations over

both samples sizes, very ambiguous results are obtained. For the stationary GARCH process,

the size even gains power from T = 100 to T = 200 and for the GARCH process with explosive

behaviour a drop is assessed for an increasing T .

On the contrary, the L test performs almost in all situations very presentable. Exceptionally,

when the GARCH process features explosive behavior then, on the one hand, the size is not

met and a small oversizing is observed. On the other hand, adverse behaviour is observable

regarding the power properties, but only when the parameter φ switches from 1 → 0, the L test

features very low power when the GARCH process exhibits explosive behavior. In general, it

can be stated, that L shows severe power losses for switches from φ = 1 → φ = 0 and a cesura

is observable when the structural break in the conditional volatility is rendered explosive.

In regard of the power results, more specifically under the alternative H10, bL shows likewise

behaviour. When α breaks from 0.05 → 0.3, what leads to explosive behavior, bL shows compar-

atively low power. It is noteworthy, that he result for the same parametrization but T = 200 is

extraordinary bad for both test. This indicates, that there must be some effects on the limiting

distribution. It is possible, that this structural break in the volatility process leads to a break

in the distribution of the second moment, or higher and might even render it nonmonotonic.

However, it is definite that this break in α in combination with explosive behavior affects the

distribution of the moments somehow. To sum this up, a further investigation of how exactly

the limiting distributions of bL and L are affected is of great interest.



Table 13: Size on the 5% level for demeaned (zt = 1) and detrended (zt = (1, t)′) data of the bootstrapped Leybourne test (bL) and its original counterpart (L).

T=100 η = Gaussian η = Mammen η = Rademacher

φ α0 α1 β zt = 1 zt = (1, t)′ zt = 1 zt = (1, t)′ zt = 1 zt = (1, t)′

φ1 φ2 α0,1 α0,2 α1,1 α1,2 β1 β2 τ bL L bL L bL L bL L bL L bL L

0 0 1e-0.6 1e-0.6 0.5 0.5 0 0
0.3 0.017 0.000 0.022 0.000 0.016 0.000 0.015 0.000 0.029 0.000 0.030 0.000
0.5 0.017 0.000 0.020 0.000 0.013 0.000 0.019 0.000 0.027 0.000 0.027 0.000

0 0 1e-0.6 1e-0.6 0.05 0.15 0.94 0.94
0.3 0.033 0.000 0.021 0.000 0.023 0.000 0.028 0.000 0.031 0.000 0.032 0.000
0.5 0.033 0.000 0.033 0.000 0.024 0.000 0.025 0.000 0.028 0.000 0.031 0.001

0 0 1e-0.6 1e-0.6 0.1 0.3 0.65 0.65
0.3 0.018 0.000 0.020 0.000 0.016 0.000 0.018 0.000 0.028 0.000 0.031 0.000
0.5 0.017 0.000 0.021 0.000 0.015 0.000 0.019 0.000 0.026 0.000 0.027 0.000

0 0 1e-0.6 1e-0.6 0.3 0.3 0 0.65
0.3 0.022 0.000 0.024 0.000 0.016 0.000 0.018 0.000 0.030 0.000 0.029 0.000
0.5 0.024 0.000 0.026 0.000 0.015 0.000 0.018 0.000 0.031 0.000 0.033 0.000

0 0 1e-0.6 1e-0.6 0.3 0.3 0.65 0.65
0.3 0.020 0.000 0.021 0.000 0.016 0.000 0.016 0.000 0.028 0.000 0.030 0.000
0.5 0.016 0.000 0.020 0.000 0.015 0.000 0.018 0.000 0.027 0.000 0.031 0.000

0 0 1e-0.6 1e-0.6 0.2 0.2 0.79 0.79
0.3 0.017 0.000 0.015 0.000 0.012 0.000 0.017 0.000 0.023 0.000 0.027 0.000
0.5 0.017 0.000 0.019 0.000 0.015 0.000 0.017 0.000 0.026 0.000 0.027 0.000

0 0 1e-0.6 1e-0.6 0.2 0.2 0.79 0.89
0.3 0.032 0.000 0.032 0.001 0.019 0.000 0.022 0.000 0.032 0.000 0.031 0.001
0.5 0.029 0.000 0.031 0.001 0.021 0.000 0.023 0.000 0.026 0.000 0.033 0.001

0 0.5 1e-0.6 1e-0.6 0.1 0.2 0.4 0.4
0.3 0.354 0.000 0.383 0.000 0.331 0.000 0.371 0.001 0.423 0.000 0.450 0.000
0.5 0.353 0.000 0.376 0.000 0.328 0.000 0.367 0.001 0.426 0.000 0.451 0.001

0 0.5 1e-0.6 1e-0.6 0.05 0.15 0.94 0.94
0.3 0.262 0.001 0.283 0.020 0.220 0.001 0.240 0.020 0.245 0.001 0.267 0.023
0.5 0.268 0.001 0.280 0.021 0.223 0.001 0.245 0.022 0.235 0.001 0.260 0.021

0 0.5 1e-0.6 1e-0.6 0.1 0.3 0.65 0.65
0.3 0.372 0.001 0.386 0.004 0.347 0.000 0.375 0.004 0.406 0.001 0.439 0.004
0.5 0.362 0.000 0.386 0.004 0.337 0.000 0.382 0.005 0.417 0.000 0.428 0.004

0.9 0.9 1e-0.6 1e-0.6 0.05 0.05 0.94 0.94
0.3 0.551 0.001 0.512 0.020 0.500 0.001 0.528 0.019 0.538 0.002 0.560 0.020
0.5 0.518 0.002 0.517 0.018 0.504 0.001 0.518 0.022 0.526 0.001 0.546 0.021

0.9 0.9 1e-0.6 1e-0.6 0.1 0.2 0.69 0.79
0.3 0.486 0.006 0.474 0.038 0.463 0.005 0.458 0.040 0.481 0.005 0.477 0.038
0.5 0.486 0.006 0.463 0.038 0.459 0.006 0.453 0.041 0.473 0.004 0.485 0.043

1 1 1e-0.6 1e-0.6 0.3 0.3 0.65 0.65
0.3 0.651 0.056 0.605 0.076 0.646 0.055 0.593 0.074 0.669 0.060 0.630 0.081
0.5 0.661 0.060 0.596 0.074 0.647 0.058 0.591 0.074 0.668 0.059 0.620 0.070

1 1 1e-0.6 1e-0.6 0.1 0.3 0.45 0.65
0.3 0.643 0.062 0.585 0.079 0.631 0.059 0.561 0.074 0.644 0.061 0.592 0.077
0.5 0.646 0.058 0.580 0.076 0.640 0.061 0.567 0.077 0.643 0.064 0.591 0.080

1 1 1e-0.6 1e-0.6 0.2 0.2 0.79 0.89
0.3 0.589 0.082 0.498 0.111 0.556 0.080 0.474 0.110 0.555 0.081 0.494 0.110
0.5 0.580 0.078 0.497 0.109 0.557 0.080 0.476 0.111 0.569 0.075 0.496 0.105

Results obtained with M = 10, 000 replications and B = 999 bootstrap samples and additional random noise η for the bootstrap.



Table 14: Size on the 5% level for demeaned (zt = 1) and detrended (zt = (1, t)′) data of the bootstrapped Leybourne test (bL) and its original counterpart (L).

T=200 η = Gaussian η = Mammen η = Rademacher

φ α0 α1 β zt = 1 zt = (1, t)′ zt = 1 zt = (1, t)′ zt = 1 zt = (1, t)′

φ1 φ2 α0,1 α0,2 α1,1 α1,2 β1 β2 τ bL L bL L bL L bL L bL L bL L

0 0 1e-0.6 1e-0.6 0.5 0.5 0 0
0.3 0.018 0.000 0.021 0.000 0.015 0.000 0.018 0.000 0.026 0.000 0.029 0.000
0.5 0.019 0.000 0.018 0.000 0.015 0.000 0.015 0.000 0.031 0.000 0.028 0.000

0 0 1e-0.6 1e-0.6 0.05 0.15 0.94 0.94
0.3 0.038 0.000 0.042 0.001 0.028 0.000 0.033 0.001 0.031 0.000 0.033 0.001
0.5 0.034 0.000 0.037 0.001 0.028 0.000 0.027 0.001 0.032 0.000 0.030 0.001

0 0 1e-0.6 1e-0.6 0.1 0.3 0.65 0.65
0.3 0.018 0.000 0.021 0.000 0.018 0.000 0.017 0.000 0.028 0.000 0.025 0.000
0.5 0.021 0.000 0.022 0.000 0.018 0.000 0.018 0.000 0.024 0.000 0.027 0.000

0 0 1e-0.6 1e-0.6 0.3 0.3 0 0.65
0.3 0.022 0.000 0.025 0.000 0.021 0.000 0.020 0.000 0.027 0.000 0.030 0.000
0.5 0.022 0.000 0.025 0.000 0.018 0.000 0.018 0.000 0.027 0.000 0.029 0.000

0 0 1e-0.6 1e-0.6 0.3 0.3 0.65 0.65
0.3 0.019 0.000 0.019 0.000 0.015 0.000 0.018 0.000 0.030 0.000 0.030 0.000
0.5 0.019 0.000 0.019 0.000 0.015 0.000 0.019 0.000 0.026 0.000 0.030 0.000

0 0 1e-0.6 1e-0.6 0.2 0.2 0.79 0.79
0.3 0.019 0.000 0.018 0.000 0.015 0.000 0.016 0.000 0.025 0.000 0.030 0.000
0.5 0.017 0.000 0.019 0.000 0.017 0.000 0.017 0.000 0.027 0.000 0.026 0.000

0 0 1e-0.6 1e-0.6 0.2 0.2 0.79 0.89
0.3 0.035 0.000 0.036 0.000 0.025 0.000 0.031 0.001 0.027 0.000 0.031 0.001
0.5 0.036 0.000 0.037 0.001 0.028 0.000 0.028 0.001 0.029 0.000 0.034 0.001

0 0.5 1e-0.6 1e-0.6 0.1 0.2 0.4 0.4
0.3 0.571 0.000 0.591 0.000 0.546 0.000 0.589 0.000 0.641 0.000 0.027 0.000
0.5 0.538 0.000 0.591 0.000 0.548 0.000 0.590 0.000 0.642 0.000 0.661 0.000

0 0.5 1e-0.6 1e-0.6 0.05 0.15 0.94 0.94
0.3 0.233 0.001 0.241 0.020 0.178 0.001 0.191 0.019 0.180 0.000 0.205 0.020
0.5 0.230 0.001 0.235 0.018 0.180 0.001 0.189 0.019 0.190 0.000 0.196 0.022

0 0.5 1e-0.6 1e-0.6 0.1 0.3 0.65 0.65
0.3 0.531 0.001 0.547 0.001 0.507 0.000 0.523 0.001 0.563 0.000 0.590 0.001
0.5 0.527 0.000 0.546 0.001 0.494 0.000 0.523 0.001 0.558 0.000 0.577 0.001

0.9 0.9 1e-0.6 1e-0.6 0.05 0.05 0.94 0.94
0.3 0.514 0.000 0.544 0.003 0.511 0.000 0.545 0.003 0.535 0.001 0.569 0.002
0.5 0.516 0.002 0.548 0.003 0.504 0.000 0.541 0.003 0.535 0.001 0.574 0.004

0.9 0.9 1e-0.6 1e-0.6 0.1 0.2 0.69 0.79
0.3 0.510 0.002 0.525 0.023 0.491 0.001 0.510 0.025 0.503 0.001 0.525 0.023
0.5 0.502 0.002 0.523 0.021 0.494 0.001 0.509 0.021 0.506 0.002 0.530 0.022

1 1 1e-0.6 1e-0.6 0.3 0.3 0.65 0.65
0.3 0.769 0.060 0.739 0.082 0.770 0.065 0.735 0.080 0.770 0.060 0.740 0.083
0.5 0.773 0.061 0.742 0.081 0.764 0.060 0.732 0.086 0.775 0.060 0.743 0.080

1 1 1e-0.6 1e-0.6 0.1 0.3 0.45 0.65
0.3 0.769 0.063 0.712 0.084 0.755 0.060 0.710 0.083 0.760 0.060 0.722 0.081
0.5 0.757 0.063 0.715 0.082 0.758 0.060 0.707 0.083 0.764 0.062 0.728 0.077

1 1 1e-0.6 1e-0.6 0.2 0.2 0.79 0.89
0.3 0.659 0.120 0.586 0.178 0.623 0.115 0.581 0.184 0.614 0.115 0.572 0.179
0.5 0.648 0.108 0.600 0.184 0.630 0.118 0.574 0.184 0.627 0.113 0.726 0.074

Results obtained with M = 10, 000 replications and B = 999 bootstrap samples and additional random noise η for the bootstrap.



Table 15: Empirical rejection frequencies on the 5% level for demeaned (zt = 1) and detrended (zt = (1, t)′) data.

T=100 η = Gaussian η = Mammen η = Rademacher

φ α0 α1 β zt = 1 zt = (1, t)′ zt = 1 zt = (1, t)′ zt = 1 zt = (1, t)′

φ1 φ2 α0,1 α0,2 α1,1 α1,2 β1 β2 τ bL L bL L bL L bL L bL L bL L

0 1 1e-0.6 1e-0.6 0.05 0.05 0.94 0.94
0.3 0.995 0.505 0.981 0.539 0.996 0.500 0.982 0.546 0.997 0.487 0.988 0.540
0.5 0.995 0.497 0.980 0.545 0.995 0.492 0.982 0.546 0.997 0.496 0.987 0.547

0 1 1e-0.6 1e-0.6 0.05 0.3 0.94 0.94
0.3 0.830 0.490 0.797 0.646 0.771 0.483 0.750 0.651 0.776 0.487 0.782 0.654
0.5 0.834 0.488 0.803 0.648 0.772 0.490 0.755 0.655 0.781 0.494 0.775 0.645

0 1 1e-0.6 1e-0.6 0.1 0.3 0.45 0.65
0.3 0.995 0.595 0.989 0.715 0.993 0.591 0.986 0.709 0.995 0.598 0.989 0.711
0.5 0.994 0.608 0.986 0.710 0.995 0.593 0.980 0.663 0.995 0.603 0.987 0.704

0 1 1e-0.6 1e-0.6 0.2 0.2 0.79 0.89
0.3 0.978 0.597 0.962 0.721 0.972 0.603 0.951 0.718 0.976 0.612 0.965 0.717
0.5 0.978 0.606 0.961 0.720 0.972 0.591 0.954 0.727 0.976 0.595 0.960 0.723

1 0 1e-0.6 1e-0.6 0.05 0.05 0.94 0.94
0.3 0.998 0.332 0.993 0.461 0.998 0.319 0.993 0.457 0.999 0.326 0.996 0.459
0.5 0.998 0.325 0.993 0.458 0.998 0.324 0.994 0.456 0.999 0.333 0.995 0.459

1 0 1e-0.6 1e-0.6 0.05 0.3 0.94 0.94
0.3 0.666 0.085 0.523 0.181 0.652 0.081 0.523 0.191 0.664 0.087 0.528 0.189
0.5 0.660 0.083 0.528 0.185 0.649 0.080 0.510 0.183 0.664 0.081 0.531 0.183

1 0 1e-0.6 1e-0.6 0.1 0.3 0.45 0.65
0.3 0.979 0.195 0.942 0.277 0.979 0.196 0.941 0.276 0.979 0.195 0.946 0.272
0.5 0.977 0.194 0.940 0.278 0.980 0.194 0.928 0.281 0.980 0.200 0.954 0.285

1 0 1e-0.6 1e-0.6 0.2 0.2 0.79 0.89
0.3 0.940 0.183 0.900 0.287 0.948 0.184 0.893 0.291 0.953 0.185 0.907 0.285
0.5 0.952 0.182 0.904 0.285 0.952 0.191 0.900 0.290 0.952 0.180 0.904 0.295

T=200

0 1 1e-0.6 1e-0.6 0.05 0.05 0.94 0.94
0.3 1.000 0.872 1.000 0.872 1.000 0.788 1.000 0.871 1.000 0.783 1.000 0.869
0.5 1.000 0.785 1.000 0.875 1.000 0.780 1.000 0.865 1.000 0.785 1.000 0.875

0 1 1e-0.6 1e-0.6 0.05 0.3 0.94 0.94
0.3 0.828 0.500 0.820 0.710 0.765 0.498 0.776 0.715 0.775 0.500 0.794 0.717
0.5 0.836 0.500 0.830 0.714 0.757 0.490 0.769 0.709 0.778 0.500 0.789 0.787

0 1 1e-0.6 1e-0.6 0.1 0.3 0.45 0.65
0.3 1.000 0.870 1.000 0.956 1.000 0.863 1.000 0.957 1.000 0.863 1.000 0.952
0.5 1.000 0.866 1.000 0.956 1.000 0.870 1.000 0.956 1.000 0.864 1.000 0.952

0 1 1e-0.6 1e-0.6 0.2 0.2 0.79 0.89
0.3 0.993 0.789 0.987 0.914 0.989 0.789 0.985 0.916 0.987 0.794 0.988 0.911
0.5 0.991 0.790 0.987 0.913 0.988 0.794 0.984 0.911 0.988 0.787 0.986 0.913

1 0 1e-0.6 1e-0.6 0.05 0.05 0.94 0.94
0.3 1.000 0.781 1.000 0.928 1.000 0.771 1.000 0.926 1.000 0.787 1.000 0.932
0.5 1.000 0.768 1.000 0.929 1.000 0.780 1.000 0.928 1.000 0.781 1.000 0.928

1 0 1e-0.6 1e-0.6 0.05 0.3 0.94 0.94
0.3 0.173 0.010 0.128 0.021 0.152 0.006 0.116 0.023 0.170 0.009 0.127 0.024
0.5 0.168 0.008 0.125 0.022 0.158 0.008 0.124 0.022 0.178 0.008 0.124 0.023

1 0 1e-0.6 1e-0.6 0.1 0.3 0.45 0.65
0.3 0.995 0.543 0.984 0.673 0.995 0.556 0.987 0.674 0.996 0.534 0.987 0.674
0.5 0.996 0.546 0.985 0.672 0.996 0.543 0.986 0.676 0.997 0.530 0.987 0.677

1 0 1e-0.6 1e-0.6 0.2 0.2 0.79 0.89
0.3 0.895 0.340 0.834 0.485 0.899 0.341 0.835 0.483 0.896 0.336 0.833 0.485
0.5 0.901 0.347 0.834 0.494 0.890 0.343 0.835 0.495 0.901 0.341 0.835 0.482

Results obtained with M = 10, 000 replications and B = 999 bootstrap samples and additional random noise η for the bootstrap.
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Figure 14: Plots of the demeaned time series and its GARCH fit.

4.5 Empirical Application

4.5.1 Model Fitting

As an empirical example four financial time series are considered, specifically three inflation

rates and one stock data index. The stock data index, namely the S&P 500, is taken from Yahoo

Finance and shows no seasonality and is on a daily basis. The three inflation rates are obtained

from the homepage of the Federal Reserve Bank of St. Louis, the department of Economic

Research, called FRED. Two Consumer Price Indices (CPI) are obtained: the CPI for all Urban

Consumers: New Vehicles in US City Average, in the following abbreviated by CPI Newvec,

and the CPI for all Urban Consumers: Rent of Primary Residence in US City Average, in the

following abbreviated by CPI Rent. The third inflation rate is the real personal consumption

expenditure excluding food and energy, in the following abbreviated by Consumption. The

inflation rates are all seasonally adjusted, normed to 1982− 1984 = 100 and on a monthly basis.

Since the series are only indirectly comparable, their lengths are deliberately chosen differently,

which is summed in Table 16.

Table 16: Sums the information about the data.

Name Basis Start End # obs

CPI Newvec monthly 02/01/1953 10/01/2019 802
CPI Rent monthly 01/01/1981 11/01/2019 466
Consumption monthly 02/01/2002 10/01/2019 214
S&P 500 daily 11/19/1980 11/18/2019 9835

All series are measured as the first difference of the logarithm of its level values in order to ob-

tain stationarity. In the next step, a GARCH model is fitted. In accordance with the simulation

set up in Section 4.4, a GARCH(1,1) is predefined and the best ARMA(p,q) is determined on

the basis of the lowest AIC. Thus, in addition to the presumed AR(1)-GARCH(1,1) in Section
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Figure 15: Plots of the demeaned time series and its GARCH fit.

4.4 also the best ARMA(p,q)-GARCH(1,1) is fitted for a comparison.

As a first step of analyzing the data, the best ARIMA(p,d,q) model is searched and validated

by the lowest AIC. Whether the time series exhibits conditional heteroscedasticity or not is

checked by the investigation of the ACF plot of the residuals from the best ARIMA fit. If

the residuals of the fitted values seem to be a realization of a White Noise process, the ACF

plot of the squared residuals is examined. If the ACF plot of the squared residuals shows

conditional behaviour, meaning enduring correlated lags, a GARCH(1,1) for the conditional

variance process is fitted in accordance to the approach in Section 4.4. All four series show

conditional heteroscedasticity. Hence, for all four series the best ARMA(p,q)-GARCH(1,1) is

fitted as well as the presumed AR(1)-GARCH(1,1).

This procedure is applied to demeaned as well as detrended data. Note that, the ARIMA(p,d,q)

indicates that no further differencing is needed for the demeaned data in order to render them

stationary. For the detrended series the ARIMA(p,d,q) sometimes suggests a d = 1, but no fur-

ther differencing is applied here. After the GARCH check and the model specification, the fitted

models are applied to the bootstrapped Leybourne test and its original counterpart. Table 17

summarizes the model fits and test results for demeaned data and Table 18 for detrended data,

respectively. Furthermore, information about an existing trend are provided for the demeaned

data. For all four series a linear trend component is highly significant, which can visually be

assessed by the levels plots. Figure 14 - Figure 17 show the plots of the levels for demeaned data

as well as their returns of the best ARMA(p,q)-GARCH(1,1). Additionally, the linear trend is

plotted, as given in the legend. Figure 18 - Figure 21 show the plots of the detrended series and

likewise the plot of their returns of the best ARMA(p,q)-GARCH(1,1) process. Additionally,

Figure 22 plots the returns of the best ARMA(p,q)-GARCH(1,1) processes for adjusted limits

of the y-axis, in order to illustrate that there is still fluctuation around zero.
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Figure 16: Plots of the demeaned time series and its GARCH fit.

4.5.2 Testing results

Table 17 and Table 18 summarize the estimated model fits, providing information on the sig-

nificance of the estimated parameters, the goodness of fit and the testing results. For the boot-

strapped Leybourne test, the p-value, pb, is given along with the minimum and the maximum of

the 999 bootstrapped test statistics in column t̂s
b
. Analogously to the L test, bL rejects on the

lower bound, whenever significantly many bootstrapped test statistics fall below the reference

value, which is here the original L statistic. It is then concluded that the minimum of statistics

of the forwarded series, see (8), is the breakpoint. Respectively, the breakpoint is given as the

minimum of statistics of the reversed series, see (9), whenever the bootstrapped test statistics

exceed the L test statistic, i.e.

tsb < t̂s ⇒ BP = min(kf )

tsb > t̂s ⇒ BP = min(kr).

Remember, that pb is twice the relative amount of the minimum of the number of bootstrapped

statistics that fall either below t̂s or exceed it, i.e.

pb = 2 min
(

1
B

∑B
j=1 1

(
tsb

j ≤ t̂s
)

; 1
B

∑B
j=1 1

(
tsb

j > t̂s.
))

, see (14).

For the interpretation of the findings in the empirical application, recall the following: Under

the null hypothesis a constant instationary process is assumed (H1) and tested against the

alternative of a change in persistence, either from trend stationarity to difference stationarity,

i.e. H01, or vice versa, i.e. H10. Hereby, the direction of change is not investigated and,

hence, not determined. Pointing out a main in advance, only the bL finds breaks in persistence,

however, only for the case of demeaned data. One remark on the estimated GARCH models:

The parameterizations have illustrative character and serve rather as additional information on

the goodness of the model fit.

In the case of demeaned data, Table 17 lists the model fits and results for the persistence
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Figure 17: Plots of the demeaned time series and its GARCH fit.

change tests. It is noteworthy, that only the two longest series, i.e. the S&P and CPI Newvec,

find a break in persistence. Nevertheless, CPI Newvec finds even the same breakpoint for

both processes, the best parametrization ARMA(p,q)-GARCH(1,1) and the predefined AR(1)-

GARCH(1,1), while the S&P finds a break only for the best parametrization. CPI Newvec finds

the breakpoint in April 1966 at observation 160 and the S&P on the 08/26/1988 at observation

1966.

Regarding the breakpoint in CPI Newvec, c.f. the red vertical line in Figure 16, no obvious

shock can be observed around that point in time, whereby one should bear in mind, that a

CPI and not a stock index is considered. Referring to the plot of the levels and the plot of the

fitted returns, respectively, changes in the behaviour of the series are observable, which may

have caused the finding. The plot of the returns shows that the break occurs just after a period

of higher volatility when the series changes to a less volatile regime or, at least, to a period that

is less prone to many sequential peaks. Regarding the levels of the CPI Newvec, the breakpoint

seems to induce a period of increases, which may be a possible persistence change.

Hence, it leaves the question, why the Leybourne test does not find a break. A possible

explanation may be, that the time series is in fact stationary and, thus, the Leybourne test does

not spuriously reject in the presence of the false null hypothesis, i.e. H0.

Considering the break in the S&P, partly the same interpretation is applicable. The returns

plot in Figure 14 seems to enter a phase of less volatility after a cluster with huge peaks has

taken place, while in the levels a period of growth is introduced. Again, the Leybourne test may

have prevented from spurious rejection in the face of the wrong initial situation, i.e. H0.

It has to be stated, that in regard of the significance of parametrization, the GARCH param-

eters in the case of CPI Newvec and S&P are nearly all highly significant, while the GARCH

parametrization of Consumption lacks high significance. As a matter of fact, this series may

simply be too short in order to detect a persistence change.

In regard of the test statistics of bL and L, respectively, it is apparent that in the face of the

less effective parametrization, i.e. the presumed AR(1)-GARCH(1,1), L experiences a distinct
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Figure 18: Plots of the detrended time series and its GARCH fit.

increase, e.g. from 0.88 to 1.13 (CPI Rent) or 0.62 to 1.40 (S&P) but not in case of Consumption,

which is only 0.96 to 0.97. Again, this may be referred to the shortness of the series.

The distributions of the bootstrapped test statistics also shift to the right, but not as much

as L. This is why it is even more difficult to find a break in persistence in the face of a less

effective model specification, which is likewise underlined by the lower AICs, respectively. The

AICs of the S&P are slightly distinct, as the actual less efficient parametrization, i. e. AR(1)-

GARCH(1,1) has in fact the same AIC as the ARMA(3,1)-GARCH(1,1), which is probably

caused by the length of the series.

For the bounds of the bootstrapped test statistics, a rule which explains the behavior can-

not distinctly be derived. In the face of the seemingly less efficient parametrization, the ex-

trema become narrower in case of CPI Rent and CPI Newvec, i.e. [0.62; 1.39] → [0.72; 1.33]

and [0.71, 1.53] → [0.72, 1.50]. In case of the S&P, the bounds shift to the right, i.e. from

[0.72; 1.61] → [0.95; 1.88]. A potential explanation is that the financial stock index underlies in

fact different interdependencies than the CPIs, which is why the behaviour of the test statistics

of bl and L are distinct as well as the finding of breakpoints.

Figure 22 depicts the returns of the series of detrended data. It is obvious that the returns

exhibit enormous single peaks which is significantally different relative to the returns of the

demeaned data. In levels, one peak has a value of -400, cf. Figure 18. This might indicate that

the detrended data are not as well specified with ARMA(p,q)-GARCH(1,1) as the demeaned

data. The finding is not directly supported by the significance of the parameters, but may

hinted at by the higher AICs. The boundaries of the bL interval have become more extreme, cf.

CPI Rent and CPI Newvec, respectively [0.37; 1.48] → [0.85; 1.33] and [0.45, 2.01] → [0.72, 1.01].

Again, the behaviour of the bootstrap distribution of the S&P differs from the behavior of the

other series. It is noteworthy that all test statistics of L peak around 1 and remain unaffected

for the best ARMA(p,q)-GARCH(1,1) fit and the presumed AR(1)-GARCH(1,1).

Here, attention has to be drawn on the sum of GARCH parameters, which often indicate

explosive behaviour. If the sum of α1 + β is greater than one, the model is unstable. This is
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Figure 19: Plots of the detrended time series and its GARCH fit.

an indication that a stationary GARCH(1,1) model may not be adequate to fit the detrended

data well - moreover, some estimators for the GARCH constant could not be computed due to

singularity of the Hessian which also indicates explosive behaviour.
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Figure 20: Plots of the detrended time series and its GARCH fit.
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Figure 21: Plots of the detrended time series and its GARCH fit.



Table 17: Fitted GARCH-models for demeaned data, including information on: significance for trend & fit, goodness of fit, rejection behaviour of bL and L as
well as the breakpoint.

MODEL SPECIFICATION Trend AR MA GARCH G.O.F. bL L

levels φ θ α0 α1 β AIC BIC rej. tsb BP rej. t̂s BP

CONSUMPTION 214 data

ARMA(2,2)-GARCH(1,1)
Est 16.83 0.37 0.61 -0.39 -0.45 1.2e-06 0.15 0.73 -8.62 -8.52 pb [0.77 - - 0.96 -
SE 0.11 0.25 0.28 0.30 0.30 6.6e-07 0.07 = ;
sig *** * . . * *** 0.32 1.35]

AR(1)-GARCH(1,1)
Est 16.83 0.27 1.1e-06 0.12 0.80 -8.34 -8.27 pb [0.79 - - 0.97 -
SE 0.11 0.07 8.0e-07 0.06 0.10 = ;
sig *** *** . *** 0.37 1.39]

PRIMARY RENT 466 data

ARMA(3,5)-GARCH(1,1)
Est 0.49 0.28 -0.08 0.80 -0.11 0.38 -0.72 0.20 -0.12 2.e-08 0.14 0.85 -11.14 -11.04 pb [0.62 - 0.88 -
SE 2.6e-03 0.06 0.07 0.05 0.08 0.09 0.04 0.05 0.07 8.8e-09 0.03 0.03 = ;
sig *** *** *** *** *** *** . * *** *** 0.24 1.39

AR(1)-GARCH(1,1)
Est 0.49 0.98 7.2e-08 0.4 0.57 -10.69 -10.65 pb [0.72 - - 1.13 -
SE 2.6e-03 0.01 2.7e-08 0.10 0.07 = ;
sig *** *** ** *** *** 0.16 1.33]

NEW VEHICLES 802 data

ARMA(5,5)-GARCH(1,1)
Est 0.16 1.00 -0.50 0.90 -0.01 -0.40 -0.79 0.23 -0.68 -0.25 0.53 1.3e-07 0.16 0.86 -8.01 -7.93 pb [0.71 160 - 0.33 -
SE 1.8e-03 0.15 0.16 0.13 0.16 0.15 0.14 0.12 0.10 0.12 0.12 4.8e-08 0.02 0.01 = ;
sig *** *** * *** ** *** . *** * *** ** *** *** 0.00 1.53]

AR(1)-GARCH(1,1)
Est 0.16 0.37 1.3e-07 0.14 0.87 -7.87 -7.85 pb [0.72 160 - 0.53 -
SE 1.8e-03 0.04 5.7e-08 0.02 0.01 = ;
sig *** *** * *** *** 0.00 1.50]

S&P 500 9835 data

ARMA(3,1)-GARCH(1,1)
Est 0.24 0.71 -0.01 -0.02 -0.70 1.6e-06 0.09 0.90 -6.56 -6.56 pb [0.72 1966 - 0.62 -
SE 9.8-04 0.10 0.01 0.01 0.10 2.1e-07 0.01 0.01 = ;
sig *** *** *** *** *** *** 0.00 1.61]

AR(1)-GARCH(1,1)
Est 0.24 0.004 1.6e-06 0.09 0.90 -6.56 -6.55 pb [0.95 - - 1.40 -
SE 9.8e-04 0.01 2.1e-07 0.01 0.01 = ;
sig *** *** *** *** 0.56 1.88]

Significance codes: ∗ ∗ ∗ = 0.000 ; ∗∗ = 0.001 ; ∗ = 0.01 ; . = 0.05 ; white space implies it is insignificant (p ≥ 0.1). pb denotes the bootstrapped p-value and by
tsb the minimum and maximum of the 999 bootstrapped test statistics are given. The auxiliary residuals are normally distributed.



E
ssa

y
s

o
n

T
e
stin

g
fo

r
N

o
n

lin
e
a
rity

in
T

im
e

S
e
rie

s
6
0

Table 18: Table with fitted GARCH-models for detrended data, including information on: significance for fit, goodness of fit, rejection behaviour of bL and L as
well as the breakpoint.

MODEL SPECIFICATION AR MA GARCH G.O.F. bL L

φ θ α0 α1 β AIC BIC rej. tsb BP rej. t̂s BP

CONSUMPTION 214 data

ARMA(1,1)-GARCH(1,1)
Est -0.95 0.95 9.1e-03 1.00 0.33 0.20 0.32 pb [0.61 - - 1.00 -
SE 0.03 0.03 NA 0.20 0.10 = ;
sig ** *** *** ** 0.52 2.80]

AR(1)-GARCH(1,1)
Est -3.4e-03 0.01 1.00 0.36 0.20 0.30 pb [0.79 - - 1.19 -
SE 0.07 NA 0.3 0.10 = ;
sig ** *** 0.53 2.50]

PRIMARY RENT 466 data

ARMA(1,1)-GARCH(1,1)
Est 0.89 -0.52 4.0e-04 1.00 0.21 -3.17 -3.11 pb [0.37 - - 0.99 -
SE 0.02 0.05 2.1e-03 0.22 0.04 = ;
sig *** *** *** *** 0.61 1.48]

AR(1)-GARCH(1,1)
Est 0.66 8.9e-04 1.00 0.07 -2.99 -2.94 pb [0.85 - - 1.00 -
SE 0.05 1.6e-03 0.19 0.05 = ;
sig *** *** 0.99 1.13]

NEW VEHICLES 802 data

ARMA(2,2)-GARCH(1,1)
Est 0.69 0.26 -0.16 -0.58 1.0e-04 1.00 0.53 -2.51 -2.47 pb [0.45 - - 1.00 -
SE 0.05 0.04 0.03 0.02 NA 0.09 0.02 = ;
sig *** *** *** *** *** *** 0.94 2.01]

AR(1)-GARCH(1,1)
Est 0.52 8.2e-05 0.89 0.60 -2.43 -2.41 pb [0.72 - - 1.00 -
SE 0.04 5.7e-08 0.01 0.01 = ;
sig *** *** *** 0.98 1.11]

S&P 500 9835 data

ARMA(1,1)-GARCH(1,1)
Est -0.26 0.26 1.8e-05 0.56 0.07 -3.09 -3.08 pb [0.46 - - 1.00 -
SE 0.78 0.78 2.6e-04 0.04 8.3e-03 = ;
sig *** *** 0.97 2.10]

AR(1)-GARCH(1,1)
Est 1.7e-03 1.9e-05 0.56 0.70 -3.08 -3.09 pb [0.44 - - 1.00 -
SE 0.01 3.4e-04 0.06 8.6e-03 = ;
sig *** *** 0.98 2.11]

Significance codes: ∗ ∗ ∗ = 0.000 ; ∗∗ = 0.001 ; ∗ = 0.01 ; . = 0.05 ; white space implies it is insignificant (p ≥ 0.1). pb denotes the bootstrapped p-value and by
tsb the minimum and maximum of the 999 bootstrapped test statistics are given. The auxiliary residuals are normally distributed.
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4.6 Conclusion

In this work it is investigated whether structural changes in the conditional volatility may

render the persistence change test proposed by Leybourne et al. (2007) to falsely reject the

null hypothesis of no persistence change. For robustification purposes the Leybourne test is

bootstrapped and three different auxiliary distributions are employed. Within a simulation

study, power and size results are derived for various GARCH processes and compared to its

original counterpart. The main finding is that the bootstrapped test is heavily oversized as soon

as φ increases. Due to the oversizement the power results are questionable. The L test seems to

meet the size very well in most cases, although it is very conservative in the face of the false null

hypothesis, meaning constantly stationary behavior. Nevertheless, explosive behavior leads to

extremely low power results in case of a switch from H10. It is pointed out that the Leybourne

test seems heavily impacted when there are additional changes in the conditional volatility in

especially very finite sample sizes, what justifies the purpose of this investigation. Nevertheless,

the proposed bootstrapped version of the Leybourne test is incapable to alleviate size distortions

or to improve the testing outcomes of the L test.

Within an empirical application both versions of the Leybourne et al. (2007) test are applied

to three inflation rates and one stock market index. The finding is that the bootstrapped test

succeeds to detect breaks in the demeaned but not in the detrended data, whereas the original

Leybourne et al. (2007) test never rejects in favour of a break in persistence. This may be

referred to the fact that the Leybourne test is very conservative in the face of the wrong null

hypothesis as suggested by the authors. The Leybourne test does not spuriously reject in favour

of a persistence change, which can be concluded from both the simulation study and the empirical

application. Different conclusions have to be drawn for very short time series horizons, e.g. for

the Consumption inflation rate. As a result, it is questionable whether the presumed AR(1)-

GARCH(1,1) or other ARMA(p,q)-GARCH(1,1) models are suitable to model the properties of

the detrended time series. Furthermore, the results of the empirical investigation suggest that

inflation rates behave differently than stock market indices. However, it has not been clarified

yet in how far the additional nuisance parameters affect the limiting distribution of the tests,

which is left for future investigations.
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