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Abstract

Spin chains with a symmetry-protected edge zero modes can be seen as prototypical
systems for exploring topological signatures in quantum systems. However in an ex-
perimental realization of such a system, spurious interactions may cause the edge zero
modes to delocalize. To combat this influence beyond simply increasing the bulk gap, it
has been proposed to harness disorder which does not drive the system out of a topolog-
ical phase. Equipped with numerical tools for constructing locally conserved operators
that we introduce, we comprehensively explore the interplay of local interactions and
disorder on localized edge modes in such systems. Contrary to established heuristic rea-
soning, we find that disorder has no effect on the edge mode localization length in the
non-interacting regime. Moreover, disorder helps localize only a subset of edge modes
in the truly interacting regime. We identify one edge mode operator that behaves as if
subjected to a non-interacting perturbation, i.e., shows no disorder dependence. This
implies that in finite systems, edge mode operators effectively delocalize at distinct in-
teraction strengths despite the presence of disorder. In essence, our findings suggest
that the ability to identify and control the best localized edge mode trumps any gains
from introducing disorder.
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1 Introduction

Topological states of matter have been the focus of intense research over the past 30 years.
Within systems of condensed matter physics, topological effects are known to occur in quantum
Hall systems of the electron gas [1] and topological insulators [2]. Experiments on wires with
proximity induced superconductors gave compelling evidence for Majorana zero modes [3].
Cold atomic gases and photonic devices offer possibilities of creating synthetic topological
properties [4]. These new phases of matter by definition have no local order parameter
but can be detected via their entanglement properties [5] and are classified by topological
invariants [6]. When considering one-dimensional spin chains, these invariants give rise to
protected gapless edge modes [7–14], which survive only if perturbations do not break the
symmetries of the Hamiltonian.

Such edge modes are interesting from the perspective of quantum information science as
well: They are one of many proposed candidates to encode quantum information robustly
using topology [6,9,15]. However, the localization of the edge modes can be compromised by
the onset of interactions allowing them to delocalize by hybridizing with delocalized bulk
states. This will have deleterious effects on ones ability to encode and faithfully extract
quantum information well before the topologtical to trivial phase transition. As we can
only expect to operate on a finite number of edge qubits to operate the quantum memory,
the likelihood that a read-in/read-out procedure introduces errors increases with localization
length, as more and more of the protected quantum information leaks into the bulk of the
chain. To counteract this effect, it has been suggested that topological quantum information
can be stabilized by disorder [16–18], which is supposed to inhibit transport by localizing
the bulk. These works have given rise to the narrative that disorder is expected to always be
beneficial when it comes to enhancing the localisation of the edge states.

The interplay of topological features, interactions and disorder is far from being fully
understood. While there is evidence that disorder can drive a system into a topologically
insulating phase [19–21], these do not in and of themselves support that any logical qubit
is further localized by disorder. What is known rigorously is that, for topologically ordered
systems, sufficiently weak local perturbations do not lift the ground-state degeneracy [22–24]
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– but this kind of statement shows that small noise levels do not drive a phase transition, rather
than making explicit constructive use of them. While this implicitly defines a coherence length
for the edge modes, it is far from clear how the local structure of these operators is deformed in
the presence of interactions and disorder. These seemingly basic questions should be addressed
before more sophisticated scenarios can be meaningfully studied. This work sets out to do
exactly that by studying the deformation of edge modes under disorder in a comprehensive
fashion, laying the ground for a more general picture of the interplay of topological features
and disorder.

In this work, we study the XZX cluster Hamiltonian, a topological chain which hosts one
qubit at each edge and analyze if disorder can help localize them [17, 18] in the presence
of weak interactions. We devise algorithms capable of calculating the support of the edge
operators of the disordered XZX cluster Hamiltonian perturbed by either XX or XXZ type
interactions. Equipped with this tool, we are in a position to determine the sensitivity of the
edge mode localization length to each perturbation type. Contrary to previous expectations,
we find that disorder only aids localization slightly, and only in the presence of interaction
terms which are non-quadratic in the fermionic dual. Furthermore, and surprisingly, we also
find that some edge modes are completely insensitive to disorder. Building on these findings,
we elaborate on the lessons to be learned on the interplay of disorder and topological features.

2 SPT chains with spatial disorder

Our main focus is on the interplay of disorder, interactions and SPT order. Take for example a
spin chain hosting a XZX cluster Hamiltonian

H0(h) =−
N−1
∑

j=2

(1+ h j)X j−1Z jX j+1, (1)

where the h j are drawn uniformly from
�

−∆2 , ∆2
�

and X j , Yj , Z j are the Pauli operators acting at
site j. This system is known to be in a symmetry protected topological (SPT) phase, and thus
supports localized, spin 1/2, edge zero modes. The choice of disorder model here may seem
unphysical to readers familiar with many-body localization, where a disordered local magnetic
field is commonplace. Such a field competes with the SPT order, driving a transition to a
topologically trivial phase. By disordering the cluster terms directly, we are implementing an
ideal version of disorder, in that it breaks the degeneracies in the excited state spectrum while
preserving the ground state manifold. Thus, if we should fail to observe increased localization
in this circumstance we do not expect any improvement by moving to a more physical model
of disorder.

Without any extra interaction terms, the two edge zero modes enforce a four-fold degen-
eracy at every energy level in the spectrum, and are perfectly localized on the two sites nearest
to the boundary. By inspection, we can find local operators which exactly commute with the
Hamiltonian (1)

E0 =







XL = X1, XR = X L ,
YL = Y1X2, YR = XN−1YN ,
ZL = Z1X2, ZR = XN−1ZN







, (2)

that are located at the left and right edge. Apart from these local conserved quantities, the
Hamiltonian in (1) also commutes with the time reversal operator

T =
N
∏

j=1

Z jK , (3)
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where K is complex conjugation. Note that all local edge operators fail to commute with
time reversal and thus cannot be used to split the degeneracy without breaking the symmetry.
Each set of these operators describe a spin-1/2 Hilbert space. Although T 2 = 1 on the full
Hilbert space, T 2 = −1 when restricted to these spin-1/2 Hilbert spaces, i.e. these edge states
transform projectively under the global time reversal (see Appendix A).

To perturb H0, we will introduce a translationally invariant XXZ-coupling to our spin chain
of the form

Hint(J ,η) = −J
N−1
∑

j=1

�

X jX j+1 + YjYj+1 +ηZ j Z j+1

�

, (4)

which, for J � 1, is representative of interactions typically found in real solid-state material
where Heisenberg-type interactions are ubiquitously present as a result of exchange interac-
tions. Since we will only be investigating the effects of either an XX or a Heisenberg perturba-
tion, we have included a parameter η which interpolates between the two, and leave J as the
overall interaction strength. Specifically, we consider the following Hamiltonian defined on N
lattice sites

H(h, J ,η) =H0(h) +Hint(J ,η) , (5)

where we choose η = 0 or η = 1. By choosing ∆ 6= 0 we can switch on the presence of local
disorder that can have the effect of diminishing the influence of the perturbation added to the
exact Hamiltonian.

Note that Hint(J ,η) commutes with the time reversal operator for any values of J and η, so
if it is sufficiently weak it will only lift the degeneracy by an amount exponentially suppressed
in system size [7–9,25]. This occurs because, as soon as J 6= 0, the edge modes will no longer
be perfectly localized at the edges and are in fact expected to be smeared within an exponential
envelope [7–14]. With the degeneracy lifted, the edge mode operators will no longer commute
exactly with the Hamiltonian, since the existence of operators which anticommute with T
(a feature of the edge modes in (2)) and commute with Hamiltonian would require exact
degeneracies due to Kramer’s theorem. The failure of the edge mode operators to commute
exactly with play an important role in informing our algorithm in Section 3.2.

From here, we set out to understand this interplay of topology, interactions and disorder by
explicitly constructing edge modes for this perturbed XZX cluster Hamiltonian. For Anderson
and many-body localized systems, the localization length of all local conserved quantities
depends on the disorder strength. Thus, one would expect that localizing the bulk of the SPT
chain should stabilize the edge modes as excitations cannot traverse the full system to allow the
hybridization of opposite edges [17, 18]. We devise methods capable of computing the edge
mode support in presence of both non-interacting and many-body interacting perturbations.
Contrary to the previously stated heuristic argument, we find numerous cases where the edge
modes are completely insensitive to disorder.

3 Edge mode construction

In this section, we describe two methods employed to construct the edge mode operators E
in the perturbed XZX cluster Hamiltonian. Computing the broadening of the edge modes is a
particularly daunting task, precisely because the operator encodes information about states
throughout the entire spectrum, and thus cannot be studied using low energy techniques
such as DMRG. The first method assumes that the perturbed Hamiltonian represents non-
interacting fermions and yields an efficient solution in terms of Majorana eigenmodes, which
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allows for a direct computation of the edge modes. The second approach tackles the generic
interacting case, where no Bogoliubov transformation will suffice and hence the construction
of the edge modes becomes more intricate. In this case we rely on a method developed to
construct conserved operators called "l-bits" for a many-body localized system [26, 27]. The
construction of these conserved quantities from first principles is difficult, but algorithms which
can construct them using various methods do exist [28–40].

3.1 Edge modes under free fermion perturbations

After a Jordan-Wigner transformation, the choice of η = 0 is equivalent to a non-interacting
fermionic problem whereas η 6= 0 maps to an interacting fermionic model with quartic
interactions. Introducing the Majorana operators γ̄ j ,γ j for j = 1, . . . , N as

γ j = Z1 . . . Z j−1X j and γ̄ j = Z1 . . . Z j−1Yj , (6)

with

{γ j ,γk}= {γ̄ j , γ̄k}= 2δ j,k, {γ̄ j ,γk}= 0 , (7)

the Hamiltonian (5) becomes

H(h, J ,η) = −i
N−1
∑

j=2

(1+ h j)γ̄ j−1γ j+1 − J
N−1
∑

j=1

�

iγ̄ jγ j+1 + iγ jγ̄ j+1 −ηγ jγ̄ jγ j+1γ̄ j+1

�

, (8)

which is non-interacting if and only if η = 0. Written in terms of the Majorana operators, the
edge modes for J = 0 take the form

XL = γ1, YL = iγ1γ2, ZL = γ2,

XR = −iPγ̄N , YR = −iγ̄N−1γ̄N , ZR = −iPγ̄N−1, (9)

with P = Z1 · · · ZN being the global parity operator which commutes with H. For this we note
that (8) can be written as

H(h, J ,η= 0) = i
N
∑

j,k=1

γ jC j,kγ̄k, (10)

with the coupling matrix

Ci, j =











J if i = j + 1

−J if i = j − 1

−(1+ hi+1) if i = j − 2.

(11)

As C ∈ RN×N is real, the singular value decomposition of C takes the specialized form
C = QTΣQ̄ with two orthogonal Q, Q̄ ∈ O(N) and Σ ∈ RN×N a diagonal matrix with real non-
negative entries. Using the two orthogonal matrices Q, Q̄ ∈ O(N) we introduce new modes

m j =
n
∑

k=1

Q j,kγk, m̄ j =
N
∑

k=1

Q̄ j,kγ̄k, (12)

which again fulfill the Majorana anti-commutation relations (7) and the Hamiltonian (10)
becomes diagonal taking the form

H(h, J ,η= 0) = i
N
∑

l=1

σ jm jm̄ j , (13)
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where we have defined the single particle energies σ j = Σ j, j and assume without loss of
generality that they are in increasing order.

For J = 0, we find that σ1 = σ2 = 0 with m1 = γ1, m2 = γ2, m̄1 = γ̄n, m̄2 = γ̄n−1 being
the corresponding localized edge mode operators. At finite J > 0, σ1 ∼ σ2 ∼ e−n/n0 are not
exactly zero anymore but decay exponentially with increasing system size [9] and hence much
smaller compared to the next largest value σ3. Thus an approximate four-fold degenerate
ground-state sector remains well defined. The operators m1, m2, m̄1, m̄2 hence correspond to
perturbed edge mode operators which can be individually studied in the free fermionic setting
via their single particle wavefunctions. Note however, that only their products m1m̄1 and
m2m̄2, which are supported at both ends of the chain, are exact constants of motions of the
Hamiltonian. This will also be a main difference to the interacting relaxation algorithm which
from the outset seeks operators that exactly commute with the Hamiltonian.

3.2 Edge modes under perturbative many-body interactions

The intuition behind our approach to constructing edge modes of a system with many-body
interactions is as follows: the edge modes E0 of the unperturbed model H0 should deform
smoothly to those of the full interacting Hamiltonian. Indeed, they turn out to be good starting
points to obtain the actual edge mode operator E which commutes with H exponentially well
in the system size whilst remaining local to some degree.

The method requires an ansatz which is expected to resemble the conserved operators.
Since we are perturbing away from a solvable point, we employ a natural choice, the exact
edge modes obtained in the unperturbed fixed-point model. One might be inclined to use
a single edge mode as an ansatz for finding the perturbed operators, but this approach will
fail in general as the operators produced with this method necessarily commute exactly with
the Hamiltonian by construction. This is not the case for single edge modes as they cannot
commute with Hamiltonian, as discussed in Section 2. We can circumvent this problem by
instead using products of edge modes supported on both the left and right ends of the chain
which we call B0 = E L

0 ⊗E
R
0 . Such products respect the time reversal symmetry and thus are not

prevented from commuting exactly with the Hamiltonian. Due to the topological degeneracies
present in our model, we have to make sure that the basis in any subspace also diagonalizes
our edge mode guess E0 if we want to obtain the form in Eq. (15). This is reminiscent of
standard degenerate perturbation theory and in fact requires by far the most ressources of the
total algorithm as we need to rediagonalize 2N−2 many 4× 4 matrices.

We will now detail how to construct the quasi-local conserved operators. By definition,
these have a compact representation in the energy basis. This basis, which we label by {|k〉},
is obtained from full exact diagonalization. Consider a basis for diagonal operators in energy
space fulfilling the Pauli-algebra. The minimal elements of this basis may take the following
form

Ξi := 12i−1 ⊗ Z ⊗ 12N−i =
2N
∑

k=1

(−1)b(k−1)/2N−ic |k〉〈k| , (14)

where Z is a Pauli-operator. This might look complicated at first glance, but it is really nothing
but Pauli-operators defined in energy space. The full basis can be obtained by calculating
all products of these N -many operators. These operators by construction exactly commute
with the Hamiltonian. Hence, any constant of motion can be brought into the form of the
Ξ operators. Their real space representation UDΞiU

†
D will however in general not be local.

Their locality is completely dependent on the ordering of the eigenstates in the unitary UD
as this is the only freedom left. Due to the immense number of possible permutations – the
order of the symmetric group S2N is 2N ! – a brute force approach is out of scope. We instead
rely on a heuristic algorithm which dynamically relaxes an ansatz operator to obtain a good
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permutation. Abstractly speaking, we bank on the time independent or equilibrium part of B0
to resemble the product of the perturbed edge modes B already quite well. In cases where this
is not given, the algorithm will fail to produce a local edge mode.

The unperturbed operator B0 and a diagonalization unitary UD serve as inputs to our
method. This unitary has an arbitrary ordering of eigenvectors at the start (for ED, usually
determined by the size of the energies of the Hamiltonian). Upon mappingB0 to its equilibrium
representation, we use it to obtain an ordering of the eigenstates that resembles the Pauli
structure well. This representation is obtained by calculating the infinite time average of B0,
which stems from equilibration theory

E(B0) := lim
T→∞

1
T

∫ T

0

d tB0(t) =
∑

k

〈k|B0|k〉 |k〉〈k| , (15)

the time average will hence be diagonal in the energy eigenbasis for non-degenerate spectra
and is thus a constant of motion. However, since the infinite time average is not trace
preserving, it in general causes B0 to lose its algebraic structure. We would like to point out
that while localizing systems are in general not expected to thermalize, they do equilibrate
which makes this ansatz meaningful [41].

Due to the topological degeneracies present in our model, we have to make sure that the
basis in any subspace also diagonalizes our edge mode guess E0 if we want to obtain the form
in Eq. (15). This is reminiscent of standard degenerate perturbation theory and in fact requires
by far the most resources of the total algorithm as we need to rediagonalize 2N−2 many 4× 4
matrices.

We then set out to find a permutation of the eigenvectors of H such that the time average
of the B0 best resembles Ξ1 which can be done by a sorting of the eigenvalues of E(B0). This
permutation P also gives rise to a new diagonalization unitary ÝUD = PUD. Upon conjugating
Ξ1 with ÝUD, we obtain an edge mode which fulfills all algebraic properties and commutes with
the Hamiltonian. Since our sorting method is heuristic, we cannot rule out the existence of
better localized edge modes. Nevertheless, the support that we find serves as a robust upper
bound. Because of this, we note that a breakdown of our method, i.e. finding a non-local
operator, does not necessarily imply that there are no localized edge modes.

The following pseudocode describes a possible way to implement this procedure numeri-
cally. We use a notation close to python.

1 input: diagonalizing unitary ÝUD (as obtained from ED and
2 rediagonalization in degenerate subspaces)
3 input: edge modes of the unperturbed system E L

0 ,ER
0

4 output: quasi -local diagonalization unitary UD
5

6 define infinite_time_average(V , O):
7 return diag(VOV †)
8

9 spec = infinite_time_average(ÝUD, E L
0 ⊗ ER

0)
10 perm = argsort(spec)
11

12 return ÝUD[:,perm]

This algorithm builds on a previously introduced method used in the context of many-
body localized systems [40]. In this problem, the authors designed operators which commute
exactly with the given Hamiltonian and are quasi-local. In a many-body localized system,
one searches for extensively many quasi-local constants of motion and the system features
a fully non-degenerate spectrum caused by the disordered potential landscape. In contrast,
the SPT model is characterized by only constantly many edge mode operators which enforce
degeneracies throughout the spectrum. These differences necessitated major modifications to
the method from Ref. [40].
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Figure 1: Left, Center: Logarithmic support log10supp(B, S) of the edge modes m1
and m2 for η= 0 on N = 32 sites, where S is a region starting from the left end of the
system where sites starting from the right end have been removed. Color encodes
the interaction (or hopping) strength J and markers indicate the disorder strength
∆. Each data point is an average over 100 realizations with error bars indicating the
standard deviation of the data (smaller than symbols). Dotted lines are guides to
the eye. Solid lines show linear fits of the data for ∆ = 0.1 , which allow to extract
the localization length ξ. Right: Interaction dependence of the inverse localization
length 1/ξ for the edge modes. Here, color encodes the two modes and disorder
strength ∆. Data for all interaction strengths and modes overlaps strongly. The lines
shown have been extrapolated by using 100 values of interaction strengths in the
shown interval. We also include data without disorder. Here, the errorbars show the
quality of the fit in form of the least-squares error.

3.3 Measure of locality

In the following analysis we set out to assess the locality of the constructed edge mode
operators. Therefore, we want to compare the action of the full operator to a itself truncated
to a local region only. As a first step, we will need to specify a reduction map, which reduces
our operators to such operators with local support in a region S

ΓS(A) :=
1

2SC tr SC (A)⊗ 1SC , (16)

where support is defined using site indices. This map truncates an operator down to its local
support on S and afterwards embeds it into the full real space again by tensoring identities on
SC . This operator can now be compared to the original operator supported on the full system.
The difference between the two will be a measure of the support

supp(A, S) = ‖A− ΓS(A)‖∞ . (17)

Due to the interacting procedure yielding products of edge modes, we expect their support to
be mainly on both edges of the system. To assess their locality, we hence use an S which is
centered in the middle of the chain and extends by increasing this block on its both ends by
one site. We note that the norm used here is most sensitiveand in many other applications
operators which are expected to be local are so only in weaker norms than in operator norm
[39,40,42,43].

In the non-interacting case η = 0 we have access to the individual edge mode operators
m1, m2, m̄1, m̄2 and we hence consider the sets SL,k = [k] and SR,k = [N − k]C oriented
at the left and right boundary of the system. The larger system size considered in this case,
prohibits to use the full Hilbert-space representation of the operators. However, as we show in
the appendix, one can exploit the algebraic properties of the non-interacting fermions in order
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Figure 2: (Left, center) Logarithmic support log10supp(B, S) of the edge modes YLYR
and ZLXR for η = 1 on N = 12 sites, where S is the left and right part of the
system where blocks of even size centred around the middle of the chain have been
removed. Colour encodes the used interaction strength J and markers encode the
disorder strength ∆. Each data point is an average over 100 realizations with error
bars indicating the standard deviation of the data. Dotted lines are a guide to the
eye. Solid lines show linear fits of the data for ∆ = 0.1, which allow to extract the
localization length ξ. Right: Interaction dependence of the localization length ξ for
all three edge modes. Here, color encodes the three modes and markers again encode
disorder strength∆. The data for ZLXR and ZRXL overlaps completely which is why
it is hard to spot the orange markers indicated in the legend. Again, the errorbars
show the least-squares errors of the fit. The grey line is taken from the non-interacting
results as a comparison.

to directly compute the reduction and norm of it within the fermionic picture which yields for
p = 1,2

‖mp − ΓSL,k
(mp)‖=

√

√

√

√

N
∑

l=k+1

Q2
l,p , (18)

‖Pm̄p − ΓSR,k
(Pm̄p)‖=

√

√

√

√

N−k
∑

l=1

Q
2
l,p . (19)

4 Numerical Results

In this section, we show and discuss the resulting operators for both models. We have
worked with at least four interaction strengths J ∈ {10−2, 10−3, 10−4, 10−5} and three disorder
strengths ∆ ∈ {0.1,0.3, 0.5}. For a clearer presentation, we only picked a subset of these
results but the calculations not shown behave analogously.

4.1 Free fermionic perturbation

For η = 0, as described above, we show the support of the single edge modes supported on
the left part of the chain. The system has a total size of N = 32 sites. While much larger
systems are treatable and have been investigated by us with this algorithm, we find that this
system size suffices to properly display the edge mode decay. For a system size scaling of this
method, we refer interested reader to the Appendix D. Results can be found in Fig. 1. Left
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and center plots show the logarithmic support log10supp(E , S) of the edge modes m1, m2. We
use the data of these plots to extract a localization length ξ, shown in the right plot. The
errorbars indicating the least-sqares error of the fit for small interactions stem from the fact
that in these systems, the support of the edge mode falls of very strongly yielding only few
non-zero points and therefore less accurate fits. We find that the inverse localization length ξ
depends logarithmically on the interaction strength J .

The different modes m1 and m2 show the same qualitative behaviour. The support falls
off in exponential fashion with the size of the support region. This aligns nicely with the
intuition that additional interaction terms should only dress the original modes. Furthermore,
the observed plateaus can be derived for the infinite system size limit as shown in Appendix C.
With increasing interaction strength J , the edge modes become less local, as expected from
perturbation theory.

A feature of particular note in these results is the insensitivity of the edge mode locality
to the disorder strength ∆. As a comparison, we also show data without any disorder. This
is surprising when contrasted with the intuition that disorder should help localize the edge
modes [17, 18]. This suggests that the edge modes of this SPT do not couple to the bulk
operators in circumstances of Anderson localization.

4.2 Many-body interacting perturbation

Now we resort to the calculations performed for η = 1, corresponding to the interacting
system. Due to the size of the Hilbert space and the effort of the re-diagonalization of the
topologically degenerate subspaces, we had to resort to system size N = 12. Fig. 2 again
shows the logarithmic support log10supp(E , S) for E ∈ {YLYR,XLZR} on the left and center
panel. The right panel shows the extracted localization length. A more detailed discussion
on the fitting procedure and cross validation of the code can be found in Appendix D. The
symmetry of the plot is due to the choice of the system S as laid out in section 3.3.

The support again shows an exponential decay of operator support into the bulk. Moreover,
this localization length ξ grows with increasing the interaction strength J as expected. The
localization length observed for all edge modes is of the same order as the one found in much
larger system sizes for the non-interacting perturbation (cp. gray dash-dotted line). However,
when increasing the interaction strength to J = 10−2 there is a sharp drop in the localization
length for some operators which might be ascribed to a transition towards a topologically trivial
phase. This transition point is far lower than the expected value of J ∼ 1. This is an expected
finite size effect as the edge modes are a priori closer together and thus able to hybridize more
easily. Furthermore, the fit errors shown in this plot stem can also be ascribed to the finite
size of the interacting system, since we are effectively fitting very few points. Nevertheless,
the fit errors allow for distinguishing the different behavior of the modes. Nevertheless, the
compatibility between non-interacting and many-body interacting localization lengths away
from this transition indicates that the signal of SPT behaviour can still be reliably observed in
system sizes tractable by exact diagonalization.

For the ZLXR mode we find that the heuristic picture is recovered as increasing disorder
strength aids localization. This contrasts strongly with our findings in the non-interacting
case, indicating that many-body interactions are necessary to couple the edge modes to the
bulk operators. Moreover, the localization length is generically longer than in the free fermion
case with disorder strength pushing the length down towards the free fermion value. This
suggests that the free fermion value represents the best localization of the edge modes for
fixed interaction strength. The same behaviour is found for XLZR (cp. see appendix).

An exception to the behaviour reported above is displayed in the localization length of
the YLYR edge mode. Despite the presence of many-body interactions, it shows a disorder
insensitivity akin to that of the non-interacting regime. This goes beyond mere analogy as
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the value of the localization length of the YLYR operator overlaps perfectly with the non-
interacting results. We computed the localization behaviour for all six possible edge mode
hybridization patterns and found that only theYLYR operator displays free fermion localization
behaviour. This suggests that this mode is subject to a selection rule which precludes the many-
body interaction effects which delocalize the ZLXR mode. The source of this selection rule is
at this point mysterious, but we note that the YLYR operator is unique among the choices of
edge mode products in being local to the edges in both spin and fermionic variables, i.e. it
does not feature a parity string across the whole chain. The absence of such a non-local feature
in the fermionic picture may explain the reduced sensitivity to bulk localization behaviour.

Put succinctly, our results suggest that in the presence of many-body interactions, there
may be a splitting of the modes into those which delocalize faster, i.e. ZLXR and XLZR and
are sensitive to disorder and one mode YLYR, which is insensitive to disorder and shows a
stronger localization comparable to the one of non-interacting edge modes. We would like to
point out, that since our method can only provide upper bounds to the localization behaviour,
it is still conceivable that all three modes behave the same. Also, it is possible that the disorder
sensitivity observed in all other products vanishes in larger systems than we are able to treat.
However even if a finite size effect, this splitting constitutes an interesting result as it would
be relevant for short synthetic chains or cold ion systems. In such circumstances where one
seeks to improve edge mode locality in presence of many-body interactions to encode quantum
information, the gains from disorder potentials are marginal compared to those from picking
“better” edge modes.

5 Conclusions

In this work, we investigated the localization behavior of topological edge mode operators
upon introducing both non-interacting and many-body interacting perturbations as well as
disorder. Specifically, we started out from the disordered XZX cluster Hamiltonian which as a
fixed-point model is exactly soluble and added XX and XXZ interactions which are expected
to drive the transition towards a topologically trivial model. We introduce different methods
of finding the topological edge mode operators, one based on the Majorana description which
yields the lowest lying eigenmodes for non-interacting systems and a second one, which uses
the relaxation of the fixed-point edge modes as an ansatz to heuristically find local edge modes
for many-body interacting chains. While the support of the obtained edge operators with the
interacting method is only an upper bound, the commutation with the Hamiltonian is exact.

Both perturbations considered delocalize as their strength is increased. However, the
non-interacting model displays no disorder dependence whereas the interacting system does.
Curiously, a single edge mode combination which in the fermionic language corresponds to the
two density operators at both ends, namely YLYR, shows no disorder dependence even when
adding many-body interactions. Our results suggest that for a finite size chain, one might find
different localization behavior for different edge mode operators. Specifically, we find one
edge mode that is most stable and completely insensitive to disorder, picking it out as the one
best-suited to encode a logical qubit.

Since we fully diagonalize the Hamiltonian we are limited to small system sizes even for
this one-dimensional problem. We hope to extend the method to larger systems by truncating
to the ground state sector, which would possibly allow a tensor network implementation as
well. The interacting method used in this work relies only on guessing a suitable ansatz
edge mode operator. Hence, we plan to apply it to more physical models and other types
of perturbations such as open dynamics. Here, one might hope to overcome the thermal
instability of topological systems [44] with the help of disorder [45].
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A Fractionalization

To see this, we must rewrite the time-reversal operator in a way that makes the edge action
explicit. We can do this by re-expressing our time reversal operator using the cluster operators
of our Hamiltonian,

N−1
∏

j=2

X j−1Z jX j+1 = (−1)N X1X2

 

N−1
∏

j=2

Z j

!

XN−1XN (20)

= (−1)N Y1X2

 

N
∏

j=1

Z j

!

XN−1YN (21)

= YL

 

(−1)N
N
∏

j=1

Z j

!

YR, (22)

which lets us recast T as

T = YL

 

N−1
∏

j=2

X j−1Z jX j+1

!

YRK. (23)

If we decompose our Hilbert space into edge and bulk tensor factors, we can identify the
emergent edge action

T = YLKL ⊗

 

N−1
∏

j=2

X j−1Z jX j+1Kbulk

!

⊗YRKR (24)

and so we can see that the localized operators of time reversal on the edge states are

TL/R = YL/RKL/R (25)

which, curiously, these operators do not square to 1. Instead,

T 2
L/R = YL/RKYL/RKL/R, (26)

= YL/R(−YL/R)K
2
L/R = −1, (27)

which demonstrates the symmetry fractionalization expected in an SPT phase.

B Operator norm decay of edge modes for η= 0

In the following we explicitly compute the norm of the edge mode operators mp and Pm̄p with
p = 1,2 obtained in the case η= 0. Here, it is important to keep in mind, that we want to study
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the effect of the reduction map on the level of the qubits in which the original Hamiltonian in
(1) is defined. All following norms and traces are hence evaluated by reversing the Jordan-
Wigner transformation and relating the fermionic operators to the Pauli operators. The results
are then mapped again to the fermionic level as the expressions take a more compact form
here.

Due to the non-interacting structure of the problem, the edge mode operators are linear
combinations of the initial Majorana operators γ j , γ̄ j . In this case the result of the reduction
map can be studied in detail. We find

tr SC
L,k
(mp) =

k
∑

l=1

Qp,lγl ,

tr SC
R,k
(Pm̄p) =

N
∑

l=N−k+1

Qp,l Pγ̄l , (28)

where, as explained above, the trace is evaluated on the level of the qubits. The differences
A− Γ (A) are then given by

mp − ΓSL,k
(mp) =

N
∑

l=k+1

Qp,lγl ,

Pm̄p − ΓSR,k
(Pm̄p) =

N−k
∑

l=1

Qp,l Pγ̄l , (29)

and again essentially only linear combinations of γ j and γ̄ j .
We can however compute easily the norm of any linear combination of Majorana operators.

Let S ⊂ [N] and define

A=
∑

j∈S

a jγ j (30)

to be any linear combination of the γ j operators with a j ∈ R for j ∈ S. One finds that the
square of A is given by

A2 =
∑

j,k∈S

a jakγ jγk

=
∑

j∈S

a ja j1+
∑

j,k∈S: j<k

a jakγ jγk +
∑

j,k∈S:k< j

a jakγ jγk

=
∑

j∈S

a2
j 1. (31)

From this we can directly conclude, that A has only two degenerate eigenvalues ±(
∑

j∈S a2
j )

1/2

such that

‖A‖2 =
∑

j∈S

a2
j (32)

can be directly computed. The same argument holds for the operators Pγ j . Hence, we obtain

‖mp − ΓSL,k
(mp)‖2 =

N
∑

l=k+1

Q2
p,l ,

‖Pm̄p − ΓSR,k
(Pm̄p)‖2 =

N−k
∑

l=1

Q
2
p,l . (33)
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C Scaling behaviour of support results for η= 0

Some features of the edge mode support can be inferred from analytical results computed for
N →∞. Starting with

H = −i
N−1
∑

j=2

∆ jγ̄ j−1γ j+1 − J
N−1
∑

j=1

�

iγ̄ jγ j+1 + iγ jγ̄ j+1

�

, (34)

we can attempt to construct the edge modes iteratively. We can infer from the structure of the
Hamiltonian that the left edge modes will be of the form

mp =
N
∑

j=1

αp, jγ j . (35)

In the thermodynamic limit, the edge zero modes are expected to be exact. This imposes a
condition on the coefficients of the zero modes via the commutator

1
2i

�

mp, H
�

= γ̄1

�

Jαp,2 +∆2αp,3

�

+
∞
∑

j=2

γ̄ j

�

Jαp, j+1 +∆ j+1αp, j+2 − Jαp, j−1

�

= 0, (36)

from which we can construct a recurrence relation

αp, j+1 = −
J
∆ j

�

αp, j −αp, j−2

�

, (37)

that willl allow us to produce two linearly independant edge mode operators. Since we assume
that these should be smoothly related to the perfectly localised operators when J = 0, we
choose to begin the recurrance relation with either α1 = 1 and α2 = 0, which we identify with
m1, or vice versa, which we identify with m2. In the case of m1, a clear scaling behaviour
emerges from j = 4 onward

α1,3k+1 ∼ J−k, α1,3k+2 ∼ J−(k+1), α1,3k+3 ∼ J−(k+2), k ∈ N, (38)

while the coefficients of m2 exhibit a similar scaling behaviour from j = 3 onward

α2,3k ∼ J−k, α2,3k+1 ∼ J−(k+1), α2,3k+2 ∼ J−(k+2), k ∈ N, (39)

which predicts a significant amount of structure in our support measure plots. Since we can
compute our support measure exactly in the free fermion context, we see that

supp
�

m1, SL, j

�

∼ J−
�

j−1
3

�

, (40)

supp
�

m2, SL, j

�

∼ J−
�

j
3

�

, (41)

from which we infer that the support measure should have decending plateaus of width 3, all
of which fall within an exponential envelope, which is precisely what is observed in Figure 1.
The analysis for the right edge modes is identical, and we expect these to also show a plateau
structure, which is also seen.
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D Finite size scaling and cross validation

In this appendix, we discuss the finite size scaling of the non-interacting code and also explain
the cross validation between the two methods.

The data for the finite size scaling for the non-interacting (η = 0) code is shown in Fig. 3.
The color encodes support data of m0 for different different system sizes and the gray line is
machine precision. Each point is an average over 100 realizations for interaction and disorder
values similar to the main text. We find that the different system sizes agree quite well in the
parameter regime investigated here. Moreover, the data indicates that at a size of 24 sites the
support decays to the machine precision, which is why we settled for a system size of that
order for the main text material despite the availability of even larger systems.

For the interacting code things are quite different, as here 12 sites is the maximal system
size that can be reached due to the effort needed for the sorting procedure. Furthermore,
the emergent plateau structure which can be demonstrated in the infinite system limit for the
non-interacting case (see App.,C) still persists in the interacting model. Thus, we are forced
to effectively fit the exponential envelope to only three points, which unfortunately renders
a system size scaling towards smaller systems meaningless. Nevertheless, the interacting
procedure naturally also works if the Hamiltonian is actually non-interacting so we used this
to at least cross validate results between both algorithms for small systems where they agree.
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Figure 3: Finite size scaling for the non-interacting (η = 0) algorithm and the m0
mode. Color encodes system size, the gray line indicates machine precision. Each
point is an average over 100 realizations. The different panels show interaction
strength J = 10−2, 10−3, 10−5 from left to right. The three values of disorder
∆ = 0.1,0.3, 0.5 are indicated by markers and either lie on top of one another or
are below machine precision.

E Additional numerical data

In this appendix, we show additional numerical data obtained for the XLZR edge mode and a
bulk operator. Fig. 4a shows the support of XLZR edge mode on the same scale as in the main
text. It shows the same disorder dependence and has the same localization length as ZLXR.
Fig. 4b shows the localization behaviour of a bulk operator in a chain of length N = 11. Here
again, the disorder strength decreases the localization length.
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Figure 4: Additional numerical data.
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