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Abstract

This work presents an experimental analysis and analytical modeling of cell to module
losses for passivated emitter and rear cells (PERC), which enables to build a PERC
solar module with a record efficiency of 20.2 %. Further, it examines the ultraviolet
radiation hardness of solar modules employing crystalline silicon (c¢-Si) solar cells
featuring dielectric passivation layers.

Today, PERC are on the transition to mass production and expected to become
the dominating c¢-Si solar cell technology in terms of market share in the next few
years. Thus, it is of major importance to implement these high efficiency PERC
into high efficiency solar modules. When transferring solar cells into a solar module
additional recombination, optical, and resistive losses reduce the power of the solar
module compared to the power of the solar cell, termed cell to module losses. In this
work we study the individual recombination, optical, and resistive characteristics of
various cell and module test samples. Based on our experimental results we develop
an analytical model that allows to simulate the cell to module losses and reproduces
the measurement results of test modules within the measurement uncertainty. We
show that a reduction of the cell to module losses requires an adaptation of both, the
solar cell as well as the solar module components. We employ the analytical model
to improve the cell’s front metalization, cell interconnection, light harvesting and
cell spacing to reduce the cell to module losses for passivated emitter and rear cells
and build an industrial like 60-cell sized solar module with a record power conversion
efficiency of 20.2 % in 2017.

Besides the efficiency, the long-term reliability of solar modules is crucial and a
performance degradation of new promising technologies can impair their importance
for the industry. The application of new metalization pastes that enable to contact
lowly doped emitters, increases the spectral response of a PERC in the UV wavelength
range. This requires the application of new encapsulation materials with enhanced
UV transmittance for PERC solar modules. Thus, we investigate the effect of ultra
violet (UV) radiation on PERC modules in this work. In general, accelerated UV
aging tests on solar modules focus on testing the polymer materials of the module,
but neglect effects on the cell level. However, previous studies also showed that UV
radiation affects the silicon nitride passivation of diffused silicon wafers.

We report on the UV radiation hardness of solar modules featuring PERC with various
silicone nitride passivation layers and employing different encapsulation polymers.
Our results reveal that employing polymers with increased UV transparency results
in a solar module power loss of 6 % after a UV dose of 497 kW hm—2. We show that
the degradation in module power is due to a reduction of the module’s open circuit



voltage. This loss is related to an increased charge carrier recombination in the cell,
which we ascribe to a degradation of the amorphous silicon nitride (SiN,) surface
passivation. With ray tracing simulations we determine for the first time the critical
photon flux reaching the SiN, /silicon interface. We develop a novel analytical model
to describe the effect of high energetic photons on the solar module performance.
The modeling of the experimental results reveals that all photons with energies above
3.5eV deteriorate the surface passivation.

We test our physical model for another crystalline silicon cell technology employing
dielectric passivation layers, a Passivated Emitter and Rear Totally-diffused (PERT)
cell. We process solar modules with bifacial n-type silicon PERT cells that are
embedded in an encapsulation polymer with increased UV transparency. Modules
with front junction cells featuring an aluminum oxide (AlO,) surface passivation at
the illuminated side are stable for a UV dose of 598 kW hm™—2. In contrast, irradiating
modules with back junction cells featuring a SiN, passivation layer at the illuminated
side reduces the output power by 15 %. Modeling the measured external quantum
efficiency of the solar modules with numerical device simulations shows that high
energetic photons increase the surface saturation current density by a factor of 18.
Modeling the same solar module with the physical analytical model reveals a similar
increase of the surface saturation current density by a factor of 17.

Key words: passivated emitter and rear solar cells, solar modules, UV degradation
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Zusammenfassung

Diese Arbeit présentiert eine Analyse und analytische Modellierung von Zell-zu-
Modul-Verlusten von Passivated Emitter and Rear Cell (PERC) Solarzellen, welche
ein Solarmodul mit einem Rekordwirkungsgrad von 20.2 % ermoglichen. Ferner wird
ein physikalisches Modell fiir die Modellierung der Leistungsverluste in einem Solar-
modul mit kristalline Silizium (c-Si) Solarzellen und dielektrischen Passivierschichten
durch ultraviolette (UV) Strahlung présentiert.

Die Solarindustrie ist gegenwértig dabei, das Konzept der PERC-Solarzelle in die
Massenproduktion zu iiberfithren. Es ist zu erwarten, dass diese Zelltechnologie den
Markt fiir c-Si Solarzellen in den kommenden Jahren dominieren wird. Daher ist es
besonders wichtig, diese hocheffizienten PERC Zellen in hocheffiziente Solarmodule
zu integrieren. Beim Transfer von Solarzellen in ein Solarmodul reduzieren zusétzliche
optische, Rekombinations-, und Widerstandsverluste die Leistung des Solarmoduls im
Vergleich zur Leistung der Solarzelle, Zell-zu-Modul-Verluste genannt. In dieser Arbeit
untersuchen wir die jeweiligen Zell-zu-Modul-Verluste und zeigen, dass die Reduzie-
rung dieser Verluste eine Anpassung sowohl von der Solarzelle als auch des Moduls
erfordert. Wir stellen verschiedene Probenkorper aus PERC Solarzellen, Solarmodule
und einzelnen Modulkomponenten her, um sowohl deren Rekombination als auch
die elektrischen und optischen Eigenschaften zu charakterisieren. Wir entwickeln ein
analytisches Modell basierend auf den experimentellen Ergebnissen und modellieren
die Zell-zu-Modul-Verluste der Probenkorper innerhalb der Messgenauigkeit. Wir
optimieren die Zellmetallisierung, die Zellverschaltung, das Lichtmanagement und
die Zellabstéande und stellen ein industrietypisches 60-Zellen-Solarmodul her, mit
einem Rekordwirkungsgrad von 20.2 %.

Neben dem Wirkungsgrad ist auch die Langzeitstabilitdt von Solarmodulen essenziell
und eine Leistungsdegradation von neuen, vielversprechenden Technologien kann
deren industrielle Relevanz beeintréchtigen. Wir untersuchen die Bestdndigkeit von
PERC Solarmodulen mit verschiedenen Siliziumnitrid (SiN) Passivierschichten und
unterschiedlichen Einkapselungsmaterialien unter dem Einfluss von Ultraviolettstrah-
lung (UV-Strahlung). Unsere Ergebnisse zeigen, dass UV-lichtdurchléssige Polymere
nach einer UV-Dosis von 497kWhm™2 zu einer Reduzierung der Modulleistung
von bis zu 6 % fithren. Wir zeigen, dass die Minderung der Modulleistung durch
eine Reduzierung der Leerlaufspannung bedingt ist. Diese Reduzierung ist auf ei-
ne erhohte Rekombination in der Solarzelle zuriickzufithren, welche wir durch eine
Erhéhung der Grenzflichenzustandsdichte zwischen der amorphen Siliziumnitrid
(SiN,) Oberflichenpassivierung und dem n*-Typ Silizium (Si) erkldren. Wir be-
stimmen mittels optischer Simulationen den kritischen Photonenfluss, welcher die



SiNy/Silizium Grenzfliche erreicht. Darauf basierend entwickeln wir ein neues physi-
kalisches Modell, um den Einfluss von hoch energetischen Photonen auf die Leistung
des Solarmoduls zu beschreiben. Die Modellierung der experimentellen Ergebnisse
zeigt, dass Photonen mit einer Energie von mehr als 3.5eV die Grenzfliche zwischen
der Oberflachenpassivierung und dem Siliziums verschlechtern.

Wir iiberpriifen unser Modell mit einer weiteren kristallinen Silizium Zelltechnologie,
der Passivated Emitter and Rear Totally-diffused (PERT) Solarzelle. Wir stellen
bifaziale n-Typ PERT Solarzellen her und machen aus diesen Solarmodule mit UV
durchlissigem Einkapselungsmaterial. Die Module mit pn-Ubergang auf der Zellvor-
derseite und Aluminiumoxid (AlO,)/p*-Typ Silizium Oberflichenpassivierung sind
stabil nach der Bestrahlung mit UV Licht und einer UV-Dosis von 598 kW hm™—2.
Im Gegensatz dazu, fithrt die Beleuchtung von Modulen mit pn-Ubergang auf der
Zellriickseite und SiN,/n*-Typ Silizium Oberflichenpassivierung zu einer Verschlech-
terung der Modulleistung von 15 %. Die Modellierung der Quanteneffizienzmessungen
mittels numerischer Simulationen zeigt, dass hochenergetische Photonen die Oberfla-
chenrekombination um einen Faktor von 18 erhéhen. Mit dem physikalischen Modell
erhalten wir ein dhnliches Ergebnis, welches eine Erhohung der Oberflichenrekombi-
nation um einen Faktor von 17 zeigt.

Stichworter: Solarzellen, Solarmodule, UV Degradation
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CHAPTER 1

Introduction

In 2017 the Kaneka company presented a record-breaking crystalline silicon (c-Si)
solar cell with a power conversion efficiency of 26.6 % [1]. This further closed the gap
to the theoretical maximum efficiency limit of 29.4 % for single junction c-Si solar
cells [2]. The same company also holds the efficiency record for photovoltaic (PV)
modules with 24.4 % [3], which indicates the higher potential for the improvement
of modules compared to cells. Both records were achieved utilizing laboratory scale
production equipment.

Employing mass production techniques the modules with the highest efficiencies that
are commercially available are produced by SunPower with an efficiency of about
22.8% [4]. However, these modules use interdigitated back contact solar cells (IBC),
which are more expensive than aluminum (Al) back surface field (BSF) solar cells.
Figure 1.1 (a) shows the average PV-system price per installed capacity in the United
States for six solar module manufacturers. The data is taken from Ref. [5]. Here, we
advice the reader that the data in Fig. 1.1 (a) needs to be regarded with care, since
the PV modules make up only a fraction of about 30 % of the total system price and
components like the mounting system, installation, cables etc. scale with the size
of the PV system [7]. We consider only the years from 2012 to 2016 and filter the
top six ¢-Si solar module manufacturers according to the number of installed PV
systems. The dark bars represent data for manufacturers producing solar modules
with AI-BSF solar cells. The orange bar denotes the data for SunPower’s modules
employing high efficiency IBC. For the solar modules from REC Solar, the average
system price per watt is 3.8 $/W. In contrast, utilizing SunPower’s modules increases
the PV system price by about 35 %.

However, besides the solar module’s efficiency the module prize is of major importance
for the costumer. Thus, in 2017 the majority of solar modules comprise of Al-BSF ¢-Si
solar cells, covering a market share of over 70 % [8]. This cell type has been optimized
in the last decades and cell efficiencies of 20.3 % with industrial production equipment
have been reported [9]. Interconnecting and encapsulating the cells in a solar module
further reduces their efficiency due to optical, recombination, and resistive cell to
module (CTM) losses. Thus, the solar modules featuring Al-BSF cells with the
highest module efficiency have an efficiency of about 18.4 % [10], a loss in efficiency of
1.9 %ans compared to the solar cell. Obviously, there is a huge gap between state of
the art low cost industrial manufactured solar cells and modules. Thus, a reduction
of the CTM losses is highly attractive for solar module manufacturers.
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Figure 1.1: (a) Price for PV systems in the U.S. between 2012 and 2016 employing
solar modules from various manufacturers. The data has been taken from Ref. [5].
(b) Frequency of the efficiency from 2326 commercially available solar modules featuring
c-Si cells. The mean module efficiency is 15.59 %. The data was taken from Ref. [6]

Due to the cell architecture the efficiency of Al-BSF cells is limited to about 20 % [11].
Considering fluctuations in the production processes, the average module efficiency
is even lower. Figure 1.1 (b) shows a histogram of 2326 commercial available c-Si PV
modules. For the plot we take the data from Ref. [6] and filter all solar modules with
60 c-Si solar cells. The average module conversion efficiency of the 2326 modules is
15.6 %. Thus, besides a reduction of CTM losses further developed cell technologies
are required for high efficiency modules.

An interesting alternative with similar production costs as the Al-BSF cell is the
passivated emitter and rear cell (PERC). Many studies predict that the PERC
technology has the potential for solar cells with conversion efficiencies of over 24 %
[12, 13] and solar modules with 22 % [12]. Hence, the PERC technology may lead to
a new era of industrial high efficiency solar cells and modules. At the beginning of
this work there have been only a few reports regarding CTM losses for this cell type.
Before this work the highest reported efficiency for an industrial type solar module
with 60 PERC was 19.5 %, with an independently confirmed module power of 294 W
[14]. Despite this outstanding result the authors report a CTM loss in module power
of 2%.

The purpose of this work is to further investigate the CTM losses for PERC modules,
with focus on understanding the coupling of the losses on the cell and module level.
This requires to study the optical, recombination, and resistive losses of the solar
cell as well as the solar module in carefully designed experiments. Based on the
experimental results we develop an analytical model to simulate and reduce the
CTM losses on the cell and module level. The optimizations on the cell and module
level allow to build a high efficiency PERC module with a conversion efficiency over
20 %.

Besides a high module efficiency and low production costs, the solar module’s relia-
bility is of major importance for the manufacturers and customers. The materials for
solar modules are precious and therefore solar modules should produce a constant
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power output for a long service life under various weather conditions. Thus, intro-
ducing a cutting-edge technology into mass production may fail if it lacks long-term
stability. Industrial solar modules have to pass various accelerated aging tests to
allow manufacturers to issue a product warranty that guarantees a constant module
power output for many years of outdoor exposure [15, 16, 17, 18, 19]. Further, the
modules need to pass these tests to fulfill various standards and get certificated for
their installation. There are many accelerated test methods to stress the cell and
module components, which are well established procedures for module manufacturers,
e.g. humidity freeze cycles, damp heat tests or mechanical loading (see Refs. [15, 16,
17, 18, 19)).

A test that generally mainly focuses on the reliability of the module’s encapsulation
materials is the accelerated aging with ultraviolet (UV) light. Several publications
imply that UV light may influence the dielectric passivation layers at the cell’s
surface. The PERC cell architecture and the development of new metalization
pastes increase the spectral response of PERC in the UV wavelength range. Thus,
module manufacturers increasingly apply encapsulation polymers with enhanced UV
transparency to exploit this improved spectral response in PERC solar modules. This
increases the power output of the solar module and the annual yield. However, there
are few reports regarding the UV stability of PERC modules in the literature. Thus,
we also examine the UV radiation hardness of PERC solar modules in this work.

In chapter 2, we introduce the PERC solar cell and module concepts as well as the
theoretical background for the modeling of the CTM losses and the degradation
mechanisms due to UV radiation.

Chapter 3 describes the experimental test structures and characterization techniques
to determine the material properties as input parameters for the CTM and the
UV aging model. Furthermore, we build experimental test modules to verify the
simulation results.

In chapter 4 and 5 we analyse the optical, recombination, and resistive CTM losses
for PERC solar modules. We present an analytical model based on our experimental
results to simulate these CTM losses. We verify the model by comparing the
simulation with experimental results of six test modules. After verification, we
apply the model to simulate the effect of changes in the front metalization, cell
interconnection and cell spacing on the optical, recombination, and resistive CTM
losses for a PERC module. We employ the analytical model to optimize the cell front
metalization and the cell interconnection to build two modules, one aiming for an
enhanced power output and one aiming for an improved module efficiency.

In chapter 6, we examine the UV radiation hardness of solar modules featuring
PERC. From the literature it is known that UV light may affect the cell’s surface
passivation layers [20]. However, an analysis of the UV stability of PERC in a
solar module is missing. Moreover, there exist only phenomenological models and a
physical model to describe and understand the degradation mechanism due to UV
radiation is missing. Hence, we investigate the UV radiation hardness of various
PERC. Additionally, we examine the UV radiation hardness of passivated emitter,
rear totally-diffused (PERT) cells and develop a physical model to understand the
UV light induced degradation mechanisms.

Finally, chapter 7 summarizes all the results of this work.



CHAPTER 2

State of the art industrial cells and
modules

In this chapter we introduce the passivated emitter and rear cell (PERC) as the
central cell technology of this work and highlight the differences to the currently
market-dominating Al-BSF cell. We focus on the silicon nitride layer and the front
metalization, since their influence on the optics, the recombination and resistive
properties of the solar cell is vital for this thesis. The second part of the chapter
introduces the solar module structure and gives an overview of the cell to modules
losses as well as UV aging processes for solar cells and modules.

2.1 Passivated emitter and rear cells

In 1972 Mandelkorn et al. [21] presented a c-Si solar cell concept with a full area
aluminum (Al) rear contact. They reported unusual high voltages due to an electric
field at the rear side of the cell, created by the Al-silicon eutectic alloy that forms
within a rapid thermal process step. This electric back surface field (BSF) was the
patron for the name of this cell concept that is nowadays known as full area Al-BSF
solar cell. In 2017, this cell type is dominating the solar cell industry with a market
share of over 70 % [8].

Figure 2.1 (a) schematically shows the cross section scheme of an Al-BSF cell. It
consists of a p-type base with an n*-type front emitter. An amorphous silicon nitride
(a-SiN,:H abbreviated with SiN, in this work) layer covers the front side of the
emitter. At the front side silver (Ag) fingers and busbars contact the n™-type emitter
to extract the cell’s current. On the rear side, an Al layer covers the p-type base.
The thin Al-silicon (Si) eutectic alloy forms the p™ BSF region. This BSF reduces
the recombination of charge carriers at the rear surface and enables the formation
of an Ohmic contact between the Si and the Al metal layer [21, 22]. However, the
absorption of near infra red (IR) light in the Al is detrimental and realizing rear
saturation current densities below 200 fA cm~2 is challenging [23, 11]. This limits
the efficiency of Al-BSF cells to about 20 %, which is far below the theoretical limit
for single junction c-Si solar cells of 29.4 % [2].

In 1989 Blakers et al. [24] presented a cell concept with a conversion efficiency of
22.8 %. Besides the dielectric layer at the front, they also applied a dielectric layer at
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Figure 2.1: (a) Scheme of an Al-BSF cell. (b) Scheme of a PERC.

the rear side. This layer overcomes the drawbacks of the AI-BSF cell by increasing
the reflection of light at the cell’s rear side. Further, the dielectric layers reduce the
recombination of charge carriers at the cell’s surfaces, termed passivation. Hence,
Blakers et al. named this cell concept a passivated emitter and rear cell (PERC).
Three decades later, PERCs are on the transition to industrial mass production and
predicted to be the successor of the AI-BSF cell concept in terms of market share [8,
25]. In the literature record efficiencies for industrial like mono c-Si PERC of 22.6 %
have been reported [26].

Figure 2.1 (b) schematically depicts the cross section of a PERC. It consists of a
p-type base with an n*-type front emitter. At the front side Ag fingers and busbars
contact the n™-type emitter to extract the cell’s current. As for the Al-BSF, a SiN,,
layer covers the front side of the emitter. On the rear side, a stack of aluminum
oxide (AlO;) and SiN, covers the rear side of the base. On the rear side laser contact
openings (LCOs) in the AlO,/SiN, stack enable the local contact formation of the
full area Al rear metalization with the base. The contact formation is realized in a
rapid thermal firing process, where the Al also creates a local BSF within the LCOs.

2.2 Role of the SiN, layer

The requirements for the dielectric amorphous silicon nitride (SiN,) layer of a PERC
are threefold. On the front side it acts as an anti-reflection coating (ARC), while on
the rear side it increases the reflection of light back into the cell. Further, it acts
as a passivation layer that reduces the recombination of charge carriers at the cell’s
surfaces. In 1981 Hezel et al. [20] first reported about the passivation capabilities
and one year later Sexton [27] reported about the ARC properties of SiN,, for solar
cells.

Other conceivable dielectric passivation layers for solar cells are, e.g. aluminum oxide
(AlO,), amorphous silicon (a-Si), silicon dioxide (SiO2) or titanium dioxide (TiO3).
However, for an industrial PERC a passivation layer also has to meet additional
requirements regarding costs, processing steps and long term stability.

For the primordial PERC Blakers et al. applied a silicon dioxide (SiO3) layer at the
PERC’s front and rear side. For a long time the highest reported efficiencies for
single junction silicon solar cells had been achieved with a thermal SiOy [28, 29].
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A drawback of thermal oxides is the high deposition temperature of about 1000 °C,
which is cost intensive for industrial mass production. Plasma enhanced chemical
vapour deposition (PECVD) is a deposition technique that reduces the production
costs. However, PECVD deposited SiO2 lacks thermal stability within the high
temperature contact firing step, when it is coated with an Al layer, which is required
for industrial PERC [30, 31, 32, 33]. Similar problems regarding firing stability
have been reported for amorphous silicon (a-Si), since it starts to crystallize at high
temperatures [30, 34]. Furthermore, such passivation layers suffer from parasitic
absorption [35]. The ARC properties of titanium dioxide (TiO2) were already known
from its application in the glass industry and first concepts for solar cells have been
reported in the 1970’s [36, 37]. Yet, the passivation quality of a single layer is not
satisfying for the application in solar cells [38]. AlO, provides excellent passivation
qualities, but generally only for p-type silicon and may also suffer from thermal
stability problems, when deposited as a single layer [39, 40].

SiN, meets all these requirements for an anti-reflection coating (ARC) and a pas-
sivation layer. In the mass production as well as in this work it is deposited in a
PECVD process at low temperatures of 350 °C to 400 °C. Furthermore, it creates a
surface passivation that is stable after the contact firing step [41, 42]. This enables
the application of screen-printing technology for printing the metal contacts and
employing metal pastes with glass frits that etch through the dielectric layer during
the fast firing step for the contact formation.

Covering an AlO, with a SiN, layer also results in a thermal stable passivation layer
stack [39, 40]. For this combination of SiN, and AlO, the best passivation qualities
on p-type silicon have been reported with effective surface recombination velocities
below 10cms™! [43, 44, 39].

Due to the excellent passivation quality, low temperature deposition and an over a
wide range adjustable refractive index, SiN, is commonly used for the application in
industrial PERC manufacturing [45, 38, 46, 47].

2.2.1 The SiN, anti-reflection coating

There are several approaches to reduce the unintended reflection properties of
surfaces, but the most widely used is the application of a quarter-wave optical
thickness (QWOT) layer. The principle is based on destructive interference, which
minimizes the reflectivity of a surface for a certain wavelength and angle of incidence.
Bare silicon reflects on average 35 % of the incident light in the wavelength range of
300nm to 1200nm [27]. On a planar surface an anti-reflection coating potentially
reduces this reflection loss to 11 % [27]. A textured cell surface further improves the
light trapping, resulting in an average reflection below 3 % with an ARC [48, 49].

The key parameters for an optimal ARC are the complex refractive index 7 and the
thickness tgijn. The complex refractive index is defined as

n =n+ ik, (2.1)

where the real part n is the refractive index and the imaginary part k the extinction
coefficient. Both, n and k vary with the wavelength of the light [50, 51]. Within this
work we always report n and k for a wavelength of 633 nm.
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Figure 2.2: Two media layer systems illustrating Snell’s law. Media 1 has a refractive
index n; and media 2 has a refractive index ns.

Figure 2.2 schematically shows a light ray with complex amplitude Z incident on the
interface of two media under the angle #;. The light ray splits into a part that is
transmitted 7 with angle 6; into the second media and a part R that is reflected
with angle #,. The characteristic angles relate according to Snell’s law to [50, 51]

0y = 6; arcsin <n1> . (2.2)

n2

The ratio of the reflected complex amplitude R and the transmitted complex ampli-
tude T to the incident complex amplitude Z is termed the reflection coefficient 7.
and the transmission coefficient . [50]:

== and te = —. 2.3
e =7 n ¢ =7 (2.3)
The complex amplitude of the incident wave consists of two independent components
that are parallel (]|) and perpendicular (L) to the plane of incidence. Solving
Maxwell’s equations for both components results in the well known Fresnel equations
for the corresponding 7. and ¢. [50]:

~ macos B —njcos by
Tell = ng cos 0; + nq cos Oy’ (2.4)
_ mycos b — nacos by ’
el = ny cos B + no cos by’
- 2n1 cos b;
ol = ng cos 0; + nq cos Oy’ (2.5)
. 2n1 cos 6; ’
ok = ny cos 0; + ng cos Oy

These equations are crucial for the later ray tracing simulations and the optical
measurements.

We define the reflectance R and transmittance T as the ratio of the reflected I. and
transmitted intensity I; to the incident intensity [; of the light

_ L _IRP

Loz

I; |7‘|2 ng cos Oy
d T =—= = =
an I; ’I’Q nq cos 6;

2
c

C

2. (2.6)
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Figure 2.3: A dielectric layer with refractive index ny and thickness hs situated between
two media with refractive index n; and nz. One part of the incident light ray 7 is
reflected at the interfaces resulting in reflections R12 and Rs3, while the other part is
transmitted resulting in a light ray 7.

By the law of conservation of energy R+T1'=1, if there is no absorption in the media.

Figure 2.3 shows a homogeneous dielectric layer with refractive index ny and thickness
ha, situated between two homogeneous media with refractive index ny and n3. This
is generally the case for a solar cell, where media 1 may represent the atmosphere
or the encapsulation polymer, the dielectric layer the ARC and media 3 the silicon.
The angles 61, 62, and 03 indicate the angle between the light ray and the surface
normal of each layer. A part of the incident light ray Z is reflected at the interfaces
of the layers, resulting in reflections R12 and Ro3, while the other part is transmitted
resulting in a light ray 7.

In the special case of normal incident light, 6;=0 and the reflectance relates to [51,

52]
mng —nd\’
R=|—2_22) . (2.7)
ning + nj
For a minimum in reflectance of the dielectric layer the refractive index relates to

ny = y/mims. (2.8)

This relation is crucial for optimizing the optics of the solar cell’s anti-reflection
coating for a measurement in a cell tester or within a solar module. As an example,
considering a c¢-Si solar cell with n3=3.87 in air with n1=1, the reflectance will be a
minimum for an ARC with no ~1.97, while for a solar cell encapsulated in a polymer
with n1=1.5, an ny ~2.41 reduces the reflection.

The position of the reflection minimum as a function of the wavelength depends on
the thickness of the ARC. The optimal thickness of the ARC for a certain wavelength
Ao is obtained by [51]

Ao

tARC = . 2.9
ARC Ang ( )
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The refractive index of SiN, is adjustable within a range of 1.85 to 2.62 [47]. Varying
the SiH4/NH3/Hy gas flow in the PECVD tool changes the stoichiometry and
consequently, the refractive index of the SiN, layer. Therefore, SiN, is suitable as an
ARC for solar cells in air as well as for solar cells within a module.

However, changing the stoichiometry and increasing the silicon fraction also increases
the imaginary part of the complex refractive index and thus, the absorption of the
ARC [47, 53]. Hence, an optimization of the anti-reflection coating requires a careful
balancing of 7 and tgiN-.

2.2.2 The SiN, surface passivation layer

Besides reducing the reflection of incident light, SiN, also acts as a surface passivation
layer on silicon. Illuminating a solar cell generates excess charge carriers. These
photo-generated excess charge carriers decay after their lifetime by a process termed
recombination. We distinguish between three fundamental recombination processes:
(i) radiative recombination, (ii) Auger recombination, and (iii) recombination via
defect states, also termed Shockley-Read-Hall (SRH) recombination [54, 55]. The
latter describes the recombination via defect states in the band gap of the semicon-
ductor. The surface of the solar cell is an abrupt termination of the silicon crystal
lattice resulting in defects due to unsaturated dangling bonds. These defects act as
recombination states in the band gap and thus, cause SRH recombination.

A passivation layer reduces the recombination of electrons and holes at the surface.
Numerous studies showed that SiN, provides excellent passivation qualities [20, 56,
46, 38, 57, 45]. The origin of the passivation by SiN, is twofold: (i) It reduces the
number of dangling bonds and thus, the density of recombination active interface
trap states Dj; at the silicon surface, termed chemical passivation. (ii) It reduces the
concentration of minority charge carriers at the surface due to a fixed charge density
Qt, termed field effect passivation. A recombination process requires the presence of
both, electrons and holes, and thus, reducing the number of one charge carrier type
reduces the surface recombination.

The chemical passivation is attributed to the large amount of hydrogen in the SiN,
layer, which passivates the dangling bonds [58]. The fixed charge density is a result
of dangling bonds in the SiN, layer known as K-centers. These K-centers act as
traps for holes and create a positive fixed charge in the SiN, layer [59, 60, 61, 62, 63].
In phosphorous doped silicon, holes are the minority charge carriers and in boron
doped silicon, electrons are the minority charge carriers. When depositing SiN, on
a phosphorous doped n-type emitter the positive charge induces an accumulation
layer. On boron doped p-type silicon the positive charge creates an inversion layer.
Both layers reduce the concentration of minority charge carriers near the surface and
hence, reduce the surface recombination [20]. However, for PERC various research
groups showed that an accumulation layer passivates the boron doped base more
efficacious than a SiN, inversion layer [44, 43, 64]. Thus, AlO, with a negative fixed
charge is applied to the p-type surfaces and SiN, with the positive fixed charge is
applied to the n-type surfaces of a PERC .
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2.2.3 Modeling recombination

The modeling of the recombination of charge carriers in silicon has been extensively
studied in transistors and solar cells since the 1950’s [65, 66, 67, 68, 69, 70, 71, 72,
73, 74, 75, 76, 77]. In the following, we will focus on the surface recombination of
the phosphorous emitter.

For a single trap or defect state at energy level E, charge carriers recombine at the
surface according to the SRH recombination theory with the rate [65]

2
PsTs — ni

1 (ps+p1+ns+n1 ’
7JthDit On Op

Uy = (2.10)

where vy, is the thermal velocity, n; is the effective intrinsic carrier concentration,
on and o}, are the electron and hole capture cross section coefficients, and ng and
ps are the surface carrier concentrations of electrons and holes, respectively. The
parameters ny and p; incorporate the thermal emission of charge carriers from a
defect state and Dj; is the density of defects states whose Fermi level coincides with
E; [54, 78, 79]. Upon integration over the whole band gap Ej, we calculate the total
recombination rate as

Ey )
— PsNs — 1§
Ve = 1 (ps+p1(E) + ns+n1(E)) dE. (2.11)
0 wvnDig(E) on(E) op(E)

Close to the band edges the recombination through defects is negligible [80, 81, 82,
83, 84] and thus, n; and p; are negligible in Eq. 2.11. Assuming low level-injection
and a heavily doped emitter, i.e. ng > pg, further simplifies Eq. 2.11 and the surface
recombination rate is given by [71, 85, 72, 83]

Eg
2
U, = Dls = / v DitopdE. (2.12)
U
0

Vice versa, for a p-type surface this assumption results in a surface recombination
rate of

E.
2
U, = Pms = / v DisondE. (2.13)
Ps
0

The integrals denote the surface recombination velocities for electrons and holes Sy
and Spo that follow the relation

Eg
Spo = /UpvthDitdE

0

£, (2.14)
S0 = / owvn DidE.

0
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2.3 The PERC front and rear metalization

Following the approach of Del Alamo et al. [85], we can express the recombination
rate of a PERC with an n-type emitter as a surface saturation current density Jog

qUs _ qn?SpO

DPsTs 1
2 Ny
i

Jos = (2.15)

Since the saturation current density affects the open circuit voltage of a solar cell
(see Eq. 2.19), Eq. 2.15 allows to relate effects on the surface passivation to the
current-voltage characteristics of the solar cell.

2.3 The PERC front and rear metalization

Figure 2.4 (a) shows a typical state of the art front side and (b) a rear side metalization
grid of a pseudo-squared PERC. The front side consists of three vertical Ag busbars
and 88 horizontal Ag fingers. These fingers have to provide a low contact resistance
to the emitter and a high conductivity to transport the current to the busbars. At
the same time the shading of the active cell area by the fingers has to be small, which
requires a high aspect ratio (height to width ratio). The busbars collect the current
from the fingers and are important for the subsequent cell interconnection as well as
the measurement of the cell’s current-voltage I(V') characteristic. We distinguish
between two cell shapes: (i) a pseudo-square shape, a square with rounded corners
as depicted in Fig. 2.4 and (ii) a full-square shape. Monocrystalline cells often have
a pseudo-square shape due to the cylindrical form of the ingot from the pulling in
the Czochralski (Cz) process. Multi crystalline cells often have a full-square shape
[86].

There are many techniques to form the metal contacts for a solar cell like stencil-
printing, pad-printing, ink-jet printing, dispensing, laser micro-sintering, evaporation
or plating. Reference [87] provides an overview for the processes and application of
the various techniques. All have their drawbacks when it comes to costs, production
throughput rate, reliability, process complexity and finger aspect ratio.

In this work, we focus on the single screen-printing technology, since it is an in-
dustrially established metalization technique for the mass production of solar cells
[8]. The width and the uniformity of the front fingers and busbars depend on the
printing screen, the mesh and the Ag paste. A single screen-printing process creates
the fingers and busbars in one printing step. This restricts this printing technique
to the application of one metalization paste for fingers and busbars. Typical finger
widths for single print go down to 45 pm.

The cell’s rear side in Fig. 2.4 (b) features a full area Al layer with three rows of Ag
solder pads. Each row consists of ten equidistantly spaced solder pads. These are
crucial for the subsequent cell interconnection, since Al is not solderable due to the
formation of a native oxide [88]. The bright horizontal lines in Fig. 2.4 (b) indicate
the laser contact openings (LCOs) of the rear dielectric.

For the contact formation we perform a fast firing step in a conveyor belt furnace.
The furnace comprises various zones of different temperature and during the firing
process the cells reach a peak temperature of about 900 °C. During the fast firing
step the Al layer at the rear side liquefies at lower temperatures than the silicon. In
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(a) (b)

Figure 2.4: Scheme of the front and rear metalization of a pseudo-squared PERC.
(a) Front metalization of a solar cell with three Ag busbars (vertical) and 88 Ag fingers
(horizontal). The blue color indicates the SiN, surface. (b) Al rear metalization of a
PERC with three rows of Ag solder pads. Each row consists of ten solder pads. The
horizontal lines in the magnification indicate the LCOs.

areas with LCOs, where the Al is in direct contact to the silicon, the solid silicon
dissolves into the liquid Al. After the peak temperature point the liquid solidifies
again and forms an eutectic layer that creates the local BSF in the LCOs [89]. In
areas without LCOs the SiN,, layer blocks the liquid Al from the silicon and no alloy
is formed [90]. For the front side the Ag paste contains lead borosilicate glass frits
that enable the contact formation. During the fast firing step the glass frits etch
through the SiN, layer and allow the Ag particles to form a contact with the emitter
[91]. In case of single screen-printing technology the busbars employ the same Ag
paste and also contact the emitter.

2.4 Recombination below metal contacts

On the one hand, the contact formation is essential to extract and transport charge
carriers from the cell to the terminals. On the other hand, the metal also creates
defect states for recombination processes (pp. 10). Thus, it is necessary to distinguish
between passivated and metalized surfaces. We assign each passivated and metalized
surface a saturation current density Jos pass and Jos met, respectively. For a PERC we
distinguish the passivated surface saturation current densities for the emitter Joe pass
and rear side Jor pass as well as the metalized surface saturation current densities for
the metalized emitter Jye met and the metalized rear side Jop pst [92]. We also assign
a saturation current density Jgp, for the base. Adding all saturation current densities
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Figure 2.5: (a) Illuminated J(V') characteristics for different illumination intensities
of 0.8 and 1 sun. The green circles indicate the characteristic operation points of a solar
cell. (b) Dark J(V) and Js. (Vo) characteristics.

we obtain the saturation current density for the cell [93]

Jo1 = Jos,pass T Jos,met + Job
= Joe,pass (1 — femet)
+ Jor,pass (1 = frmet)
+ Joe,met fe,met T Jor,bst fr,met + Job,

(2.16)

where femet and frmet are the metal area fractions of the front and rear side,
respectively.

At the rear side the Al contacts the base only in the vicinity of the LCOs of the rear
dielectric and contributes to frmet [94]. All saturation current densities affect the
J(V') characteristics of the solar cell. Thus, varying the metalization, bulk material
or passivation layer of the solar cell influences the J(V') characteristics of the solar
module.

2.5 Current density and voltage characteristics of a
solar cell and a solar module

Figure 2.5 shows the current density J as a function of the voltage V' of a solar cell
and a solar module, respectively. For the J(V') characteristic, we measure the current
I as a function of V' and normalize the current to the device area Agey, which is
either the solar cell or the solar module area, to obtain the current density

V)

= . 2.1
Adev ( 7)

J(V)
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This allows a comparison of the current-voltage characteristics for devices of different
size, e.g. solar cells and solar modules.

Figure 2.5 shows the four J(V) characteristics that are important for this work.
Figure 2.5 (a) shows the J(V') characteristics for two different illumination intensities
of 1 sun and 0.8 sun. The terminology 1 sun denotes an illumination intensity of
1000 Wm~2 with an AM1.5G spectrum [95]. The three characteristic operation
points are the maximum power point (MPP), the short circuit current density Js
and the open circuit voltage V.. At the MPP we denote the current density with
Jmpp and the voltage with Vy,p,. Likewise, we denote the power output of the solar
cell or the solar module at this point with Py,,. The Py, is calculated by

Pmpp = VmpmeppAdev = Vmpp[mppa (218)
where Ip,pp is the current of the device at the MPP.

Figure 2.5 (b) shows the dark J(V') and the J(Voe) characteristics. The dark J(V')
characteristic is measured without any illumination. For the Jy. (Vo) characteristic
the Js. and V. are measured for various illumination intensities. Both characteristics
are similar except for the high voltage range above 0.6 V. Here, the specific series
resistance R influences the dark J(V') characteristic, while there is no influence on
the Jgo(Voc) characteristics.

For the modeling of the J(V') characteristics of a solar cell or module we employ the
two-diode or double-diode model (DDM) [96, 97, 98, 99]. According to this model
the current density relates to

J = Jor [exp (WD) 1] 4 oo [exp (W) 1] 4 Y5 — g, (219)

where Jy; and Jyo are saturation current densities, Ry is a lumped series resistance
and Ry, is a lumped parallel resistance [100]. Joz describes the recombination within
the depletion region [98, 99]. The shunt resistance originates from an unintended
current flow between emitter and base and is ideally infinitely high to avoid any
additional currents than the current flow to the terminals. The series resistance
consists of contributions by the cell interconnection, metalization, emitter and base
and thus, is of major importance when optimizing the solar cell interconnection
or metalization. Ideally Ry is zero allowing for optimal current transport to the
terminals of the solar cell or module.

Varying the illumination intensity affects the current generation in the cell and the
Jse scales linearly with the illumination intensity. Thus, illuminating the solar cell
or module with different illumination intensities results in different voltage drops
at the series resistance and in turn, affects the Viup,. Thus, measuring the J(V)
characteristics for various illumination intensities allows to determine the R of a
solar cell or module [100]. The ratio between the product of current density and
voltage at MPP and the product of Jg. and V.

Jmpp Vi
FF = =P8 2.20
JSC‘/;)C ( )

is termed fill factor. At Vi, when no current flows and .Js., when there is no potential
difference between the terminals, the cell is unaffected by any series resistance. Hence,
a deterioration of either the Ry or the R}, always results in a reduction of the F'F.
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2.6 General structure of a solar module

The conversion efficiency 7 relates the Py,pp, to the illumination intensity E. and the
device area:

Pmpp
= —. 2.21
1 EeAdev ( )

2.6 General structure of a solar module

Figure 2.6 schematically shows the top view of a section of two strings of a solar
module. The inset indicates the cross sectional view at the position of the red
rectangle.

In the top view four cell interconnection ribbons (CIRs) connect two PERCs in series
in each string. ween and heep indicate the width and height of a PERC, respectively.
At the end of the string a string interconnection ribbon (SIR) of width wgj, creates
the connection between adjacent strings. Between the cells of a string is a gap of
distance deo.. The distance between strings is denoted as dgos. At the edge, a metal
frame borders the solar module.

The cross sectional view at the bottom of Fig. 2.6 indicates the encapsulation by
two layers of poly ethylene-vinyl acetate (EVA) of thickness teya, One covering the
front and the other covering the rear side of the cells. The thickness of the cell is
denoted with t.. A white colored backsheet covers the rear EVA, while the front
poly ethylene-vinyl acetate (EVA) is covered with a glass of thickness tgjass.

Today, the majority of solar modules consist of 60 cells in series connection [8]. Cell
interconnectors (CIs) typically connect ten cells that form a string. Most of the
module manufacturers employ cell interconnection ribbons (CIRs) as CI. Soldering
the CIRs to the busbars at the front side of one cell and to the rear Ag pads of
the adjacent cell creates the series interconnection. This interconnection creates an
unavoidable gap between two cells deoc, which is in the range from 3 mm to 4 mm
for industrial manufactured solar modules. A string interconnection ribbon (SIR)
interconnects the end joints of each string.

After establishing the cell interconnection, the panel of cells is embedded between
two polymer layers. Most module manufacturers employ EVA as encapsulation
polymer. Alternative materials are silicone, polyolefin (PO), polyvinyl butyral (PVB)
or polyurethane (PU). Regarding long term stability and optical parameters some
are superior to EVA [101]. However, the costs of EVA are much lower compared
to the other materials and thus, it is predicted to dominate the market in the next
decades [8].

A low iron glass covers the front side EVA. Most glass manufacturers also apply
an anti-reflection coating to the glass. On the rear side a backsheet is applied to
rear EVA layer. Such backsheets consist of a mixture of various polymer layers,
e.g. polyvinyl fluoride (PVF), poly ethylene terephthalate (PET), polyvinylidene
fluoride (PVDF), and ethylene-methyl acrylate copolymer (EMA) [102]. When
targeting a high module power, a white colored backsheet is a natural choice to
increase reflections. Other backsheet colors are generally used due to aesthetic
aspects, e.g. for building integrated PV.

A lamination process joins all compounds together to form the module. For this
process the lamination chamber is evacuated to prevent any trapped air in between
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2.6 General structure of a solar module
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which creates the interconnection between two adjacent strings. The inset at the bottom
indicates the cross sectional view at the position of the red rectangle. On the illuminated

side the front glass and the top EVA layer cover the cells and on the rear side the bottom

the end of the string the CIRs are soldered to a string interconnection ribbon (SIR),
EVA and the backsheet cover the cells.

Figure 2.6: Scheme of a solar module showing a section of two strings. Each string
contains two PERCs interconnected with four cell interconnection ribbons (CIRs).
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2.7 Cell interconnection wires

the polymers. A heating step melts the EVA that then bonds with the front glass and
the rear backsheet. Afterwards the EVA cross-linking starts to join all components
together [103].

A frame made out of Al or stainless steel borders the solar module and serves for the
protection against mechanical loads, handling, storage, mounting or grounding of
the module.

2.7 Cell interconnection wires

Soldering cell interconnection ribbons (CIRs) to the cell’s busbars has been inves-
tigated since the 1970’s and thus, is a well established process in solar module
manufacturing [104]. However, recently another type of cell interconnector (CI)
became of great interest. It completely omits the busbars and applies a dense mesh
of cell interconnection wires (CIWs) that directly contact the front metal fingers. For
the contact formation two approaches are currently pursued: (i) Employing wires
with a low melting point alloy coating and embedding the wires in a transparent
polymer with an adhesive layer to form the contact within the lamination process
[105]. (ii) Soldering the wires to the fingers employing infrared soldering technology
[106, 107]. These concepts are known as smart wire or multi busbar technology [105,
108, 109, 110, 106, 107]. A typical mesh of CIWs consists of 12 to 40 wires with a
diameter of 100 pm to 400 pm. The advantage of the smart wire technology is that it
combines the soldering of the cell interconnection and the lamination process in one
step. A disadvantage of the smart wire approach is the additional polymer, which
absorbs light and thus, reduces the module current. The soldering of all wires to
each front metal finger makes the multi busbar approach more elaborate than the
standard cell interconnection process.

2.8 Cell to module losses

There are three major loss channels for solar cells and modules: optical, recombination,
and resistive losses. All loss channels are coupled with each other and affect the 1(V')
characteristics of a solar cell and a solar module. Encapsulating a solar cell into a
solar module changes the quantity of these three loss channels for the cell, i.e. the
same solar cell measured in air shows different optical, recombination, and resistive
losses within a solar module. The relative change of the cell’s power output Py
measured in air and within a module Py is termed cell to module (CTM) factor.
The CTM factor is defined as

——mod 2.22)
N ; (
Zi:f Pcell,i

where Nepm is the number of cells per solar module and P is the power of the
i-th cell in the module.

An increased recombination mainly manifests in a reduction of the open circuit
voltage. Resistive power losses originate from the various series resistances of the
solar cell and the solar module. Each current conducting path to the terminals
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2.8 Cell to module losses

contributes to the lumped series resistance of the solar module and reduces the fill
factor. Optical losses are due to the reflection and absorption of the front glass,
EVAs, cell, metalization, cell interconnection and backsheet. These losses manifest
in a reduction of the Jg..

In the past, many authors focused on resistive and optical cell to module loss analysis.
Blakers [111] gave special attention to the optics of the front metalization. He
presented analytical calculations and measurements of the effective optical width
of plated front metal fingers. For the measurement they coupled a quartz glass
with 2-propanol to the cell and measured an effective shading of 0.7 for the fingers
in air and 0.4 for the fingers under the glass-propanol stack. Krauter et al. [112]
focused on the encapsulation material and optimized it for the annual yield to
gain 3 % additional daily energy output. McIntosh et al. [101] compared EVA and
various silicones for the PV module encapsulation within ray tracing simulations.
They found that silicone outperforms EVA by up to 1.2% in Iy and concluded
that silicone is most preferable to EVA. However, they considered an EVA with
a rather high absorption for wavelengths below 400 nm, which is not the case for
all types of EVA (see section 6.1.2, pp. 87). J. Schneider et al. [113] presented
detailed analysis of the effect of light harvesting, anti-reflection coating, thin glass,
and encapsulation materials with enhanced UV transparency. They showed that a
combined improvement of these components results in a gain in Iy, and 7 of 5%.
Further, they determined the effective optical width of standard and structured cell
interconnection ribbons with light beam induced current measurements. 1. Peters
et al. [114] presented a detailed analysis of optical losses due to module components
as well as optical losses of the cell within the module.

In contrast, Caballero et al. [115] presented an analytical series resistance model
including the emitter, base, finger, busbar, and cell interconnects. They validated
their model by experimental series resistance measurements. Their model allows to
optimize the series resistance of screen-printed cells within a solar module. Guo et al.
[116] presented a detailed theoretical and experimental analysis of series resistance
losses for half cells within a solar module. Jung et al. [117] investigated CTM losses
due to the series resistance of the cell interconnection and the cell mismatch.

Detailed investigation of combined optical and resistive losses were carried out by
Haedrich et al. [118]. They considered optical properties of the glass, encapsulation
polymers, backsheet and account for the cell spacing in the module. Further, their
model includes series resistance losses of the cell interconnection.

The mentioned studies allow to optimize the solar module power output due to
reduced individual optical, recombination, and resistive CTM losses. However, all
three loss channels are coupled. For instance, reducing the absorption in the front
encapsulation results in a higher Js. that requires an increased number of front
metal fingers to transport the current without additional series resistance losses.
This increase in front metalization fraction in turn increases the cell’s recombination
saturation current density. Hence, reducing the cell to module losses requires to
address all loss mechanisms and optimize the cell as well as the module components.

In our model we account for the combined optical, recombination, and resistive
CTM losses. For the modeling of the CTM losses we utilize the double diode model.
Therefore, we employ Eq. 2.16 to account for the recombination parameter Jy;. Joo
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2.8 Cell to module losses

we extract from the cell measurements. The consideration of the resistive and optical
losses are described in the following.

2.8.1 Resistive cell to module losses

Charge carriers experience various series resistances on the path from the origin of
generation within the cell to the terminals. Thus, the series resistance we obtain
from the I(V) characteristics is a lumped series resistance. The symmetry of the
front metalization allows to split the cell into various unit cells, an approach first
presented by Wolf et al. [100]. Many authors adopted and extended this approach
[119, 120, 121, 122, 123, 124, 87]. It is based on the calculation of the Joule power
loss for each unit cell. Accumulating the Joule power losses of the whole solar cell
Pioss allows to determine the solar cell’s specific series resistance Ry with [125]

o Ploss

Ry = TAcelly (2'23)
IL

where Acep is the cell area and It is the light generated current.

We distinguish the series resistance of the cell and the module. For the cell we
consider contributions of the front metal fingers, busbars, emitter, base and rear
metalization. At the module level we additionally take the contributions of the cell
interconnector and string interconnection ribbon into account for the series resistance
calculation. For the calculation of the Joule power loss within each unit cell we adopt
the approach of Deb et al. [123]. They split the emitter area in various triangles and
squares, which allows an analytical calculation of the series resistance. Méckel et al.
[125] already demonstrated the applicability of the model for the emitter and fingers
and extended it for selective emitters. In this work we will apply the approach of
Deb et al. and extend it to a simple analytical model to calculate the series resistance
losses of a PERC module.

2.8.2 Optical cell to module losses

Optical cell to module losses originate from the additional reflection and absorption
of the front glass, EVAs, and cell interconnection. Tracing a photon incident to a
solar module with a structure according to Fig. 2.6, the photon has to pass the glass
ARC, glass, encapsulation polymer, cell interconnection, and front metalization to
eventually reach the cell surface. Further, the encapsulation changes the optic of
the cell due to the difference in the refractive index between air and the module
encapsulation. On the other hand, according to Eq. 2.2 total internal reflection
at the module’s glass-air interface may occur and reflect the light back and forth
within the module, increasing the probability that it is absorbed by the cell. Thus,
the encapsulation environment also creates optical gains. Various authors applied
analytical models to investigate optical cell to module losses [111, 112, 126, 118].
However, analytical modeling of a complete module including all encapsulation
materials, cell interconnection and cell gaps, down to the cell texture and ARC with
the light ray reflected back and forth in the materials is cumbersome.

In this work we utilize two approaches to consider the optical cell to module losses:
(i) We employ the ray tracing software Daidalos [127]. (ii) We measure the Jg. of the
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2.9 Accelerated aging with UV light

cell before and after encapsulation and determine empirical optical reduction and
enhancement factors.

Simulating a solar cell in a complete module is challenging due to the large scale
size differences between cell and module structures. For instance, the size of the
pyramid texture is in the micrometer range, while the dimensions of the module are
in the meter range. Tracing a light ray incident to a module, thus is time consuming
and demands rather high computation resources. Daidalos circumvents these issues
combing a multi-domain approach with Monte-Carlo based particle tracing [128]. We
split the module and cell components into various unit cells exploiting the symmetries
of the cell interconnection, metalization and cell texture. Each unit cell corresponds
to a simulation domain. The ray tracing tool generates photons of random wavelength
and angle of incidents and calculates the interaction of the photons with the elements
of each simulation domain. By shifting the photon between the various simulation
domains Daidalos bypasses the large scale differences of cell and module domains.
This allows for fast simulations that agree well with measurement results [129, 128,
130, 131].

From the ray tracing simulation we determine the wavelength dependent absorption
of a PERC module Aperc(A). Multiplying the absorption with the photon flux of
the spectrum @ and the collection efficiency of a PERC npere and integrating for all
wavelengths yields the Jg

Jee = g / Apere (V) B (A) flpere (1) dA. (2.24)

2.9 Accelerated aging with UV light

Solar modules may suffer from various power degradation mechanisms due to exposure
to harsh environmental conditions, which decreases the energy yield of the PV
system. Investigating the degradation under real circumstances is time consuming.
Accelerated aging is a possibility to investigate degradation mechanisms within a
couple of months. There are several accelerated aging setups, e.g. humidity freeze,
damp heat or intense exposure to UV light. The International Electrotechnical
Commission (IEC) regulates the settings and requirements each test sequence has to
fulfill [16].

In this work we will focus on the degradation induced by exposing the solar module to
UV light. The stability of PV modules exposed to UV radiation has been extensively
investigated back in the 90s, especially for modules encapsulated with poly ethylene-
vinyl acetate (EVA) [132, 133, 134, 135]. These studies showed that UV light was
responsible for a discoloration of the polymer. UV radiation can also result in
an embrittlement of the PET coated backsheet material, which may result in less
weathering resistant solar modules [136, 137]. Today, the UV stability of EVA and
other polymers has been remarkably improved by adding UV absorbing agents to
the polymers [134, 138, 139, 140]. EVA is used by the vast majority of solar module
manufacturers and it is predicted to stay the dominating encapsulation material in
the next years [8]. Thus, we consider EVA as the reference encapsulation polymers
in our UV experiments.
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Figure 2.7: External quantum efficiency of three PERC with a varying emitter sheet
resistance of 90 /01, 103Q/0] and 124 Q/07.

During the last decade, the progress in development of metalization pastes improved
the formation of the Ohmic contact. This allows to decrease the doping concentration
of the cell’s emitter, which increases the emitter sheet resistance. Figure 2.7 shows the
external quantum efficiency (EQE) of three PERC with an emitter sheet resistance
of 90/0, 103Q2/0 and 124 Q/00. With increasing emitter sheet resistance the EQE
in the wavelength range from 300 nm to 380 nm increases, termed blue response in
the following. Hence, a lower emitter doping increases the blue response and in turn
improves the energy conversion efficiency of the solar cell.

The exploitation of this enhancement in blue response requires encapsulation materials
with an increased UV transparency for a solar module. Vogt et al. [131] showed
that UV transparent EVA results in a gain in Js. of up to 1.9% for a location in
Germany.

However, several studies showed that the UV radiation affects the SiN, passivation
layer. References [141, 62, 142] showed that a thermal treatment and UV light
changes the fixed charge ()¢ and decreases the surface passivation. However, this
effect was only observed for photons with energies above 4.9 eV, which are unlikely
to pass the glass and polymer encapsulation. Spectroscopic investigations with
H-terminated Si-surfaces showed a wavelength-dependent photo desorption of surface
hydrogen by UV light [143]. Hence, the origin of UV degradation may be related to
the chemical passivation attitudes of SiN,.

Gruenbaum et al. [144] reported stability problems for point concentrator cells with
SiO9/Si interface. They observed that the degradation is due to the absorption
of UV light with sufficient energy to inject electrons from the Si conduction band

21



2.9 Accelerated aging with UV light

100 e
Halogen
80 | lamp
)
= 60 = 4
5
et
5 40 = .
(%]
20 | 395 .
385 .I . ’ l.
0 | U RPUR VS R N SR S T PN B ST Y
0 50 100 150 5000 10000

No. of photons with A < 600 nm at interface [1018 cm'2]

Figure 2.8: Measured differential SRV Segq of SiN,/p-type Si passivations as a
function of the number of UV photons reaching the Si/SiN, interface and the UV cut-off
wavelength. Graphic taken from Ref. [46]

into the SiOy. However, Black et al. [145] showed that this effect is unlikely for
non-concentrator cells.

Jager et al. [146] and Blumenstock et al. [147] showed for metal insulator semiconduc-
tor (MIS) inversion layer solar cells that UV light generates states at the SiN, /p-type
Si interface. This significantly reduced the Vi, as well as the Iy, within 3h of UV
illumination with a 200 W mercury lamp. They applied optical filters with varying
UV cut-off wavelength to MIS solar cells. From the experimental results they derived
that the interface states are formed due to the breaking of Si-H or Si-OH bonds by
photons with energies above 3.7¢eV [56, 146, 147, 148|.

Lauinger et al. [46] performed similar experiments by illuminating SiN, on p-type Si
lifetime samples with a 400 W metal halide UV lamp for 120 h and applying optical
filters with varying UV cut-off wavelength. Their results showed that light with
wavelengths below 400 nm increases the surface recombination velocity (SRV) of
the lifetime samples [46, 149]. Figure 2.8 shows their measured effective SRV as a
function of UV photons reaching the SiN,/p-type Si interface. Their results indicate
that the degradation rate increases with increasing photon energy and that the
degradation process is still not finished after 120h UV exposure.

Blumenstock et al. [147] indicated that the plasma damage during the PECVD
deposition creates interface states, that are initially passivated by hydrogen. During
the UV illumination these hydrogen bonds break, which increased the SRV for the
MIS cells. Kamioka et al. [150] and Tachibana et al. [151] also reported similar results
for SiN, on non-fired n*-type Si surfaces, which degrade under UV light due to
plasma induced surface damage during the PECVD deposition of the SiN,. Lauinger
[152] showed that employing a remote plasma may circumvent this problem and
presented UV stable solar cells with SiN, on an n*-type emitter. However, applying
the same passivation layer for lifetime samples showed a degradation after UV
exposure. Hence, he assumed that for solar cells the recombination below the metal
contacts was the dominant recombination loss, which prevented the measurement of
UV induced losses for the solar cells.
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2.9 Accelerated aging with UV light

Although UV degradation has been studied for many years, a detailed analysis of
the effect of UV radiation on solar modules with varying encapsulation material and
containing solar cells with varying passivation layer is missing. The majority of the
reported publications either investigated SiN, /p-type Si interfaces or non-fired lifetime
samples. This is not representative for industrial type PERC with an SiN,/n™-type
Si interface. Furthermore, the contact firing (see section 3.1, pp. 24) changes the
properties of the SiN, passivation layer and hence, affects the passivation quality
[153, 154]. The results of Lauinger [152] suggest that for solar cells with improved
metalization pastes and less recombination below the the contacts a degradation of
the surface passivation due to UV light is conceivable. Thus, we investigate the effect
of UV radiation on cell and module level in this work and present a new model to
describe the UV degradation of the solar module performance.

23



CHAPTER 3

Sample preparation and
characterization techniques

In the first part of this chapter we describe the process flow for the various samples,
solar cells and modules we investigate in this work. The second part introduces the
characterization techniques and methods. Figure 3.1 shows a flow chart with the
PERC baseline process as the center branch. The upper part shows the cell and
the lower part the module processes. We describe all samples that vary from this
baseline process in the branches next to it.

The branch on the left hand side shows the processes for the n-type PERT cells that
is similar to the PERC baseline process. In this branch we only indicate processes
that distinguish significantly from the PERC baseline. The major differences are the
n-type base material, the doping process by ion implantation, and the stencil-printing
of the bifacial front and rear metalization. Those cells serve as a reference for the
UV aging experiments (see section 3.2, pp. 26).

The branch on the right hand side indicates the variations of the PERC baseline
process. Here, we vary the refractive index and thickness of the front SiN, layer (see
section 3.2.1, pp. 27) as well as the front and rear metalization (see section 3.2.2,
pp. 27 and section 3.2.3, pp. 28) of the PERC. Until the point of the variation in the
branch, these samples will always follow the PERC baseline process.

On the module level we produce test modules employing various cell interconnections
(see section 4.2, pp. 45) and prepare samples for the optical characterization of various
encapsulation polymers (see section 3.3.2, pp. 31).

A detailed description of all processes is given in the following sections.

3.1 PERC baseline process

In this work, we process all PERCs according to an industrial like process flow
as presented in Fig. 3.1 [155]. The base material is a boron-doped, (100)-oriented
Cz-grown mono crystalline (156 x 156) mm? silicon wafer with a specific resistance
pp of 2Q cm. First, we remove the saw damage in a potassium hydroxide (KOH) etch
and perform an RCA (Radio Corporation of America) cleaning step [156]. For the
pyramidal-texturing and the diffusion process we coat the rear side with a protection
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Figure 3.1: Process flow for the various samples in the experimental section.

SiN, layer. The average wafer thickness after texturing is 170 pm. We create the
phosphorous-doped front emitter with a POCIl3 diffusion, resulting in an average
sheet resistance of 87/ and a surface doping concentration of 2.2 x 10% cm=3.
We remove the protection SiN, layer and the phosphorous silicate glass from the
diffusion in a hydrofluoric acid (HF) dip and clean the wafer in an RCA step.
For the passivation of the rear side we deposit a 5nm thick AlO, layer employing
spatial atomic layer deposition (SALD). Subsequently, we deposit a SiN, layer in
a PECVD tool with a thickness of 100 nm at the front side and 200 nm at the rear
side, measured on a planar surface. For the contact formation we locally ablate
the rear side AlO,/SiN, stack with a picosecond pulsed laser. The laser contact
openings (LCOs) extend as parallel lines along the wafer with a pitch of a few
hundred micrometer. We realize the front and rear metalization employing single
print screen-printing technology. In the baseline process we print 3 busbars and 88
front metal fingers. The rear side consists of 3 rows with 10 equidistantly spaced
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Figure 3.2: Scheme of a bifacial PERT solar cell.

solder pads for each row. The cell process ends with a belt-firing process with a peak
firing temperature of 800 °C to 900 °C.

3.2 PERT cell process

Another cell technology employing dielectric passivation layers is the passivated
emitter, rear totally-diffused (PERT) solar cell. Figure 3.2 shows a scheme of a
bifacial PERT cell. For the n-type base we process (156 x 156) mm? pseudo-square
textured Cz grown silicon wafers to bifacial PERT solar cells following the process
flow reported in Ref. [157]. After cleaning and texturing we form the p*-type emitter
at the front and the n™-type back surface field (BSF) layer at the rear side employing
ion implantation and subsequent anneal. The implant dose is 2.00 x 10 cm™3 for
the boron-doped emitter and 1.25 x 10 cm™ for the phosphorous-doped BSF layer.
Subsequently, we deposit a stack of AlO,/SiN, on the p-type emitter and a SiN,,
layer on the n™-type BSF layer for the surface passivation. We deposit the 10 nm
thick AlO, layer by SALD. Both SiN, layers are 100 nm thick (measured on a planar
reference) and deposited by plasma enhanced chemical vapor deposition. We employ
stencil printing technology for the front and rear side metalization, applying a Ag
paste for the n*-type BSF and a Ag/Al paste for p™-type emitter. Subsequently, we
form the contacts in a fast firing process in a conveyor belt furnace.

In this work, the average PERT cell efficiency is 20.7 % when illuminating the p*-type
emitter side with an AM1.5G spectrum at 1000 W m~2 and when measured at 25°C
on a reflective and conductive brass chuck. The bifacial factor is the ratio of the
conversion efficiencies of the cell’s front side to the rear side. These cells have bifacial
factors of up to 99 % [158]. This allows to investigate the properties of the SiN,
and AlO,/SiN, passivation layers for equivalent processed cells with similar I(V)
characteristics. Thus, this cell concept is not the main focus of this work, but serves
as reference for the UV degradation experiments, when illuminating the SiN, or
AlO,/SiN, side of a cell.
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3.2 PERT cell process

3.2.1 Variation of the silicon nitride layer

We process a batch of 20 solar cells according to the baseline process in sec-
tion 3.1 (pp. 24). In the PECVD tool we vary the gas flow rates of Si:N:H to
obtain SiN, layers with various refractive indexes. For each SiN, variation we process
five PERC and a float-zone (FZ) silicon sample. The FZ silicon samples are without
texture and diffusion. These samples serve for the optical characterization of the SiN,
layer. We adjust the deposition time to obtain coatings with equal optical thicknesses
and thus have the minimum reflectance at similar wavelengths (see Eq. 2.9, p. 8).
Subsequently, the FZ silicon samples skip all the remaining processing steps of the
baseline process except the fast firing step in the conveyor belt furnace. For the
measurement of the thickness and refractive index we employ an ellipsometer with a
He:Ne gas laser with a center wavelength of 633 nm. In the following we denote these
samples with SiN,,, where the index indicates the corresponding refractive index n
at 633nm. Table 3.1 lists the four groups with the various SiN, layers.

Table 3.1: Variation of the SiN, layers. For each group we process a planar FZ wafer
for the optical characterization of the SiN, and five PERC.

group refractive index n SiN,, thickness tgin [nm)]
SiN1 99 1.99 94.8
SiNs o7 2.07 91.4
SiNs 29 2.29 81.6
SiNs 53 2.53 76.5

3.2.2 Adaptations of the front and rear metalization

Besides full cells, we also investigate half cells. Therefor, we adjust the single screen-
printing step in the baseline process and interrupt the busbars in the center of the
cell. Figure 3.3 indicates these adaptations. For symmetry reasons and to prevent
cell cracks when soldering a cell interconnection ribbon to the busbar, the front metal
grid has a gap of 1 mm in the center of the solar cell. We adjust the ends of the
busbars in the center to be equal to the busbar’s end at the cell edges (see inset in
Fig. 3.3). This reduces the risk of crack formation due to thermo mechanical stress
during the soldering process [159, 160].

We modify the number and location of the rear solder pads to equidistantly distribute
them on the half cell’s rear side. Instead of 10 solder pads we print 6. We apply a
laser process to create a notch and break the cell into two halves.

We also vary the number of front metal fingers and busbars. Besides 3 busbars, we
process 4 and 5 busbar cells and vary the number of front metal fingers between 88
and 120. The width of the busbars varies from 0.8 mm to 1.3 mm.
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(a) (b)

Figure 3.3: (a) Front metalization of a half PERC with three Ag busbars (vertical)
and 88 Ag fingers (horizontal). The interruption of the metalization in the center of
the cell is for the half cell laser cutting. (b) Al rear metalization of a half PERC with
three rows of Ag solder pads. In comparison to Fig. 2.4 we adjust the number and the
spacing of the solder pads.

3.2.3 Sample preparation and determination of optical finger and
busbar properties

We process a PERC corresponding to the process flow in section 3.1 (pp. 24) and vary
the front metalization. The cell features 104 front metal fingers and 4 busbars. We
also print a (21 x 21) mm? square of the Ag paste in between two busbars. With the
printed square we determine the reflectance of the Ag paste. For the determination
of the busbar and finger geometries we employ an optical microscope. We capture
images of 934 fingers and 20 busbars. We cut the cell perpendicular to the fingers
and prepare samples for the scanning electron miscroscope (SEM) to measure the
cross section area and shape of the fingers.
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3.3 Test module baseline process

Figure 3.4: Test module containing two half PERCs connected in series. For the
cell interconnection we solder 4 standard cell interconnection ribbons (CIRs) onto the
busbars. We establish the series interconnection by connecting the busbars from the cell
on the right hand side to the solder pads at rear side of the cell on the left hand side.
At the end of the string we solder string interconnection ribbons (SIRs) to the CIRs to
contact the cell with crocodile clips. We laminate the cells between two layers of EVA
with a low iron soda lime glass at the front and a white colored backsheet at the rear
side.

3.3 Test module baseline process

The number of cells in a test module varies between 1 and 5 cells and is different
compared to a typical industrial 60-cell solar module. However, the structure of the
test modules is identical to that of a typical industrial solar module as described in
section 2.6 (see pp. 15). Thus, the experimental results are comparable to a full 60 cell
industrial solar module, but require less resources and allow the application of more
characterization tools since a 60 cell module is too large for many measuring devices,
e.g. LOANA (see section 3.4.6, pp. 39). Figure 3.4 shows a photography of a test
module with two half cells. We interconnect the cells employing 4 cell interconnection
ribbons (CIRs). At the end of each CIR we apply a string interconnection ribbon
(SIR) for the I(V') measurements.

We manually solder CIRs onto the busbars of the one cell and onto the solder pads
at the rear side of the adjacent cell. The CIR is a copper ribbon with a SnPbAg
alloy, which we denote as the standard CIR in the following. The gap between two
cells is 3mm. For the soldering we place the cell on a 5mm thick silicone sheet on
a hot plate. The temperature of the hot plate is set to 110°C. This setup reduces
the thermal stress of the cell within the soldering process since it decreases the
temperature difference to the soldering tip. Prior the soldering process, we dip the
CIR into soldering flux to remove metal oxides [161]. For the soldering process we
employ a soldering iron with a tip temperature of 300 °C. At the end of the string
we solder an SIR to contact the module with crocodile clips.
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E 1 Nominal
#l  0.2mm

1.5mm

Figure 3.5: Microscope cross section image of a groove-structured cell interconnection
ribbon [130].

For the encapsulation process we place the cells between two layers of EVA, each
with a thickness teya of 450 um. We cover the top EVA with a low iron soda lime
glass of thickness t4lass = 3.2 mm and the rear EVA with a white colored backsheet.
We laminate all test modules with a laboratory laminator for 10 minutes and a peak
lamination temperature of 155 °C.

3.3.1 Samples for optical interconnector properties

We produce six one-cell test modules and apply various cell interconnectors (Cls) to
the PERCs. We denote these modules as M-StdCIR, M-Lasertext, M-Col, M-CIW,
M-LRF, and M-LHS. For the modules M-StdCIR,, M-Lasertext, M-Col, and M-LRF
we solder standard cell interconnection ribbons (CIRs) onto the four busbars. The
width wei of these CIRs varies for each busbar between 1 mm, 1.3 mm, 1.5 mm and
2 mm.

M-StdCIR is the reference module employing only the standard CIR. In module
M-Lasertext we texture the CIR surface after the soldering process with a laser. For
the module M-Col we apply a white colored film on each CIR. The module M-CIW
features cell interconnection wires (CIWs) instead of CIRs. For module M-LRF we
apply a film with an Al coated groove structure onto the standard CIR. For test
module M-LHS we solder a groove-structured CIR with Ag coating onto the busbars.
Figure 3.5 shows a microscope cross section images of such a groove-structured
CIR. The geometrical width of the CIR in the test modules M-LRF and M-LHS
varies between 1mm, 1.5mm and 2.5mm. The thickness of all CIR ¢, as well as
the diameter of the CIW is 200 pm, since thicker Cls result in mechanical stability
problems [162]. Table 3.2 lists all test modules and differences of the Cls.

Table 3.2: Overview of the six one-cell test modules with PERCs and varying cell
interconnectors.

module CI width [mm] CI surface

M-StdCIR 1,1.3,1.5,2 standard CIR
M-Lasertext 1, 1.3, 1.5, 2 laser texture

M-Col 1,1.3,15,2 white colored film
M-CIW 0.2 round wires

M-LRF 1, 1.5, 2.5 groove-structured Al foil
M-LHS 1, 1.5, 2.5 groove-structured CIR
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Figure 3.6: The photography shows the test module M6. The module consists of five
half PERCs. Only the five cells in the middle contribute to the performance of the
module. A passepartout of inactive cells surrounds the active string to create conditions
similar to a 60 cell solar module.

3.3.2 Samples for the optical characterization of the encapsulation
polymers

We prepare glass-polymer-glass samples with silicone and poly ethylene-vinyl acetate
(EVA) encapsulation materials. Here, we chose two different silicones termed SIL
and SILyy as well as two different EVAs termed EVA and EVAyy. The index UV
indicates that the materials have an enhanced transmittance in the UV wavelength
range. All polymers have a thickness of 450 pm. We laminate each encapsulation
polymer between two glasses in a laboratory laminator. The lamination process is
equal to the lamination process of a solar module and takes 10 minutes with a peak
lamination temperature of 155 °C.

3.3.3 Test modules for the verification of the analytical cell to module
loss model

We produce six test modules M1 through M6 with various optical and electrical
properties. Each test module consists of a string with five half PERCs. We surround
these five PERCs with a passepartout of electrically isolated quarter cells to create
conditions as in a 60 cell solar module. Only the central string consisting of the five
half PERCs contributes the module performance. Figure 3.6 shows a photography of
test module M6.

The modules M1 through M6 vary in the cell to cell distance dco. as well as the
string to string distance ds2s and employ various cell interconnection ribbons (CIRs).
Test module M1 has a cell to cell deoe and string to string spacing dgas of 2 mm and
standard CIRs. Test module M2 has the same cell spacing as test module M1, but
instead of the standard CIRs we apply white colored CIRs. For test module M3
through M6 we increase the cell spacing to examine the current enhancement by
the backsheet. Test module M3 features an unequal cell spacing of d.o. =2 mm and
dgos = 40 mm.

For the test modules M4 and M5 we increase the cell to cell and string to string
distance to deo. = dsos =40 mm. Besides the standard backsheet we apply an inter-
mediate reflector (IMR) between the two EVA layers for test module M5 to avoid
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reflections below the cell, as shown in Fig. 4.8 (see p. 57). This IMR is a thin white
colored foil, which we apply to the rear EVA.

For M6 we apply the same IMR, but consider an unequal cell spacing of dco. =5 mm
and dgos = 13 mm. These distances are the maximum of the available module lamina-
tor for a 120 half cells module. Table 3.3 gives an overview of the fabricated test
modules.

Table 3.3: Overview of the 5x1 test modules with various CIR and cell spacing. IMR,
indicates the application of an intermediate reflector.

module deac ds2s CIR IMR
[mm] [mm]

M1 2 2 Std. -

M2 2 2 White -

M3 2 40 White -

M4 40 40 White -

M5 40 40 White v
M6 5 13 White v

3.3.4 Test modules for accelerated UV testing

From the batch of PERC with varying SiN, (see section 3.2.1, pp. 27) and the PERT
cells, we build ten one-cell test modules. In all test modules with PERC cells, the
n'-type emitter side with the SiN, passivation layer faces the illuminated side. All
PERC test modules are covered with a low iron soda lime glass on the top and a
white colored backsheet on the rear side. For the bifacial PERT cells we also employ
a low iron soda lime glass on the top but a black colored backsheet on the rear side.
Each test module is laminated in a laboratory laminator for 10 minutes and a peak
lamination temperature of 155°C. Table 3.4 gives an overview of the test modules.

The test module M-Ref is our reference module with a PERC featuring the reference
SiN, coating with refractive index n=2.07. Here we encapsulate the PERC with
two layers of a typical industrial EVA. In section 6.1.2 (pp. 87), we determine the
cut-off wavelength . of the encapsulation polymers according to Ref. [163], where the
transmittance of the encapsulation polymer is equal to 10 %. The cut-off wavelength
of the EVA in test module M-Ref is A\ = 364 nm

For the test modules M-UVEVA, M-UVSIL, and M-SIL we vary the material of the
encapsulation polymer. We encapsulate PERCs with the reference SiN, coating with
n =2.07 between the various polymers from section 3.3.2. For test module M-UVEVA
we employ the EVA with an enhanced UV transparency and a cut-off wavelength
of A\c =320nm, denoted as EVAyy. For the other two test modules we use two
different silicones. For test module M-UVSIL we utilize a silicone with enhanced UV
transparency and a cut-off wavelength of Ac =312nm, denoted as SILyy. For M-SIL
we employ a silicone with cut-off wavelength of A\; =368 nm, denoted as SIL.

For the test modules M-SIN7 g9, M-SINs g7, M-SINs o9, and M-SIN5 53 we encapsulate
PERCs with varying refractive index of the SiN, layer between two layers of EVAyy.
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For test module M-SIN{ g9 we employ a PERC with n=1.99, for test module M-
SINs o7 we utilize a PERC with n =2.07, for test module M-SINs o9 we encapsulate
a PERC with n=2.29, and for test module M-SINs 53 we employ a PERC with
n=2.53.

For the test modules M-PERT 510 and M-PERTg;n we encapsulate the bifacial PERT
cells with the EVAyy and vary the orientation of the cells. In test module M-
PERTaj0 the pT-type emitter side with the AlO,/SiN, passivation layer faces the
illuminated side. In test module M-PERTg;N the cell’s n™-type BSF side with the
SiN, passivation layer faces the illuminated side. Note that in the latter case the cell
is in a back junction configuration.

Table 3.4 shows an overview of all test modules indicating the SiN, refractive
index, cell orientation and the encapsulation polymer with the corresponding cut-off
wavelength.

Table 3.4: Overview of the test modules for the UV aging test.

illuminated . lati
test module SiNy n assivation encapsulation encapswation
Y ipnter face material Ac [nm]
. +_
M-Ref 07  SiNy/nT-type gy, 364
emitter
. +_
M.UVEVA 207  SiNy/mtype gy o 320
emitter
. +_
M-SIL 2.07 SiNy/n-type  gpp 368
emitter
. +_
M-UVSIL 2.07 SiNy/m™-type  gypy 312
emitter
: +
M—SINl.gg 1.99 SlNy/H _type EVAUV 320
emitter
: +
M-SINyg; 207 ONg/mTtype gy 320
emitter
: +
M-SIN2_29 2.29 SlNy/n “type EVAUV 320
emitter
: +
M-SINps3 253 SiNw/ni-type  pya 320
emitter
. +_
M-PERTgiy ~ 2.07 %lé\ig/ nt-type  EvAyy 320
+
M-PERT o0 - AlO:/pT-type  pya 320
emitter
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Figure 3.7: Principle of spectroscopic ellipsometry. A light source generates a light
beam that is directed through a linear polarizer to the sample. The sample reflects the
light that passes a rotating compensator and an analyzer before it hits the detector.

3.4 Characterization techniques

3.4.1 Variable angle spectroscopic ellipsometry

Variable angle spectroscopic ellispometry (VASE) measures the change in the polar-
ization state of light due to a reflection at the sample surface and allows to determine
the complex refractive index and the thickness of a dielectric layer on a Si sample [164].
In this work we employ a Woollam M-2000UI rotating-compensator ellipsometer
(RCE) [165]. Figure 3.7 depicts the principal of a VASE measurement.

A xenon lamp generates a light beam that is directed through a linear polarizer to
the sample. The polarization state of the incident light can be decomposed in a
component that is parallel ||(p) and perpendicular L (s) to the plane of incidence.
The sample reflects the light that passes a rotating compensator and an analyzer
before it hits the detector, which measures the polarization state of the reflected
light. In particular it measures the phase difference

A=5—6, (3.1)

and the ratio of the Fresnel reflection coefficients (see Eq. 2.4, p. 7)[164]

il

tan¥ = (3.2)

res]’
where ¢; is the phase difference before and d, the phase difference after the reflection.

The quantities A and ¥ yield the fundamental equation of ellipsometry [166, 167,
164]
r
pr = o tan ¥ exp(iA). (3.3)
Tl
For a detailed description of the principle of ellipsometry measurements we refer to
Ref. [164].

The employed ellipsometer measures A and ¥ as a function of the wavelength
for various angles of incidence #;. We measure the reflection close to the pseudo
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integrating sphere

lamp chopper wheel sample (T) sample (R)

monochromator
detector

AN 7

Figure 3.8: Scheme of the reflection and transmission measurement. A lamp in
combination with a monochromator creates monochromatic light that is split by a
chopper wheel into a sample and monitor beam. Both beams enter an integrating
sphere with a detector. The sample is mounted at the entrance port of the sphere for a
transmission measurement (sample T) and at the exit port for a reflection measurement
(sample R).

Brewster angle for the substrate in air (=75° for Si) at 50°, 55°, 60°, 65° and 75° in
a wavelength range from 240nm to 1700nm. A measurement with various angles
increases the amount of measurement data, which improves the modeling of the
data [165]. The software Wwvase32 controls the measurement device, models the
acquired data and determines the complex refractive index 7. For the fit of the optical
model to the data a Levenberg-Marquardt regression algorithm is implemented in
the software [166].

3.4.2 Reflection and transmission measurement

We conduct reflection and transmission measurements with a Varian Cary 5000 two-
channel spectrophotometer [168]. Figure 3.8 shows a schematic of the measurement
principle of the two-channel spectrophotometer. A deuterium (185 nm to 350 nm) and
a halogen lamp (350 nm to 3300 nm) in combination with a monochromator create
monochromatic light that is either blocked, passed or reflected by a chopper wheel
to create a sample or monitor beam. The chopper wheel rotates with a frequency of
30 Hz. If the chopper wheel blocks the light, the internal dark signal is measured.
The monitor beam is coupled to the pre-amplifier of the detector’s A/D converter and
adjusts the signal at the A/D converter’s input channel to compensate variations in
the irradiance. The sample beam directs the monochromatic light to the sample that
is placed at the entrance of the integrating sphere for the transmission measurement
(sample T) or at the exit of the integrating sphere for the reflection measurement
(sample R). The integrating sphere collects all the transmitted and reflected light
that is than measured by a photomultiplier or a PbS detector. The photomultiplier
is sensitive in the wavelength range from 185 nm to 900 nm and the PbS detector is
sensitive in the wavelength range from 900 nm to 3000 nm.

The transmission and reflection measurements base on a relative measurement
principle. The transmission measurement requires a signal without sample in the
sample beam S99, which serves as a 100 % baseline. For the evaluation of the
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sample’s transmission, we compare the measurement signal with a sample in the
sample beam Sgample to the 100 % measurement signal according to

Ssample ()\)

T = S100(A)

(3.4)

For the reflection measurement the signal of a reference calibration standard Sigg
with a known reflection R, serves as the 100 % baseline. Further, a signal with
open ports of the integrating sphere Sy serves as a 0% baseline. This correction is
necessary, since a part of the light entering the integrating sphere is reflected from
the edge of the sample port, which depends on the measurement setup [169]. The
sample’s reflection is calculated according to

Ssample()\) - SO()‘)

R()\) = Rref()‘) SlOO()‘) — SO()‘)

(3.5)

3.4.3 Quasi steady state photoconductance decay measurements

The quasi-steady-state photoconductance (QSSPC) decay measurement technique is
a contactless and fast method to measure the effective charge carrier lifetime 7. in
a semiconductor for a varying excess charge carrier concentration An [170, 171]. In
this work we employ a Sinton Instruments WCT-120 lifetime tester for the QSSPC
measurements. For the measurement a sample is placed on a temperature controlled
stage. A coil operating in a resonant circuit induces eddy-currents into the sample
to measure the conductance. A flash pulse of light generates excess charge carriers
in the sample, which increases the sample’s conductivity. The light intensity is
measured with a reference cell to derive the generated charge carriers in the sample.
Due to the recombination of charge carriers according to their effective lifetime, the
conductivity of the sample reduces. The effective lifetime can be determined from
the time dependent conductivity and the decay of the charge carriers, respectively.

For a diffused sample with different recombination rates in the emitter and base
the method of Kane et al. [172] allows to determine the surface saturation current
density Jos from the slope of a fit to the Auger corrected 1/7.g(An) function. For
all samples we evaluate the slope according to the method of Kane et al. [172] for an
excess carrier concentration An of 7 x 105 cm™3.

3.4.4 Determination of the specific finger, busbar and cell
interconnector resistances

We employ four point probe measurements to determine the specific resistances of
fingers, busbars and cell interconnectors (CIs).

We contact the busbars of a PERC with a frame consisting of bars, each holding 19
spring-loaded pogo pins (see Fig. 3.10, p 39). For each busbar the frame has one
bar. Applying a constant current we measure the voltage drop between two busbars
to determine the resistance for all fingers between the two busbars R,,. The line
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resistance of a front metal finger ps depends on the number of front metal fingers NVt
and the distance dy}, between the two busbars and is given by

Rung

pr = (3.6)

dpp

For the measurement of the specific resistance of a busbar we laser cut a 1cm cell
stripe out of a PERC with a busbar in the center of the stripe. We contact the
busbar with needle point probes and measure the resistance for various distances
between the probes.

Similar we determine the specific resistance of the cell interconnection ribbon (CIR)
and the cell interconnection wire (CIW). We contact each CI with four crocodile
clips and measure the resistance while varying the distance between the clips.

3.4.5 Determination of the contact resistance

For the determination of contact resistances we employ the transmission line method
(TLM) [173, 174, 175]. Figure 3.9 (a) shows a test structure to determine the finger
to emitter contact resistance R.f. We cut a PERC into 9 stripes of equal width
employing a laser. The width W, of each stripe is 1 cm. A measurement head with
16 spring-loaded pogo pins contacts eight fingers simultaneously and measures the
potential difference for a constant current. Then the measurement head moves to
the next eight fingers and the measurement procedure is repeated.

Similarly, we determine the contact resistance between CIR and busbar as well
as CIW and finger. Figure 3.9 (b) shows a scheme of the test structure for the
measurement of the contact resistance of a CIR to the busbar. We laser cut a stripe
with a width of 1cm out of a PERC with a busbar in the center of the stripe. The
width of the busbar is W.. Subsequently, we solder CIRs to the busbar with a
distance d. =1 cm and laminate the stripe according to the module process between a
stack of glass, EVA and a backsheet. We measure the voltage drop between two CIRs
applying a constant current. Figure 3.9 (b) depicts the way we apply the current and
voltage probes.

Figure 3.9(c) shows data for a TLM measurement of a sample with front metal fingers
as in Fig. 3.9 (a). The measured resistance Ry, increases linearly with the contact
distance d., which is for this sample the finger distance d¢. We fit the measurement
data with a linear regression model

Bsn

Ry, =2R.¢ + W

dr, (3.7)
where R. is the contact resistance and Rg, the emitter sheet resistance. We fit the
model to the data with a least-square Levenberg-Marquardt fit algorithm. The
slope of the linear model contains information regarding the sheet resistance of the
emitter. The current has to flow through two contacts. Thus, the intercept with
the ordinate axis is twice the contact resistance R.. Analogously, we evaluate the
contact resistance for the cell interconnectors in Fig. 3.9 (b).
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Figure 3.9: (a) and (b) schematically show sample structures for the measurement of
the contact resistance according to the transmission line method (TLM). W, is the width
of the contact area and d. the distance between two contacts. We measure the potential
difference for a defined current to calculate the corresponding resistance between two
contacts. Permuting between all possible contacts we measure the resistance R, between
various contact combinations of multiple distances d.. (a) schematically shows a sample
for the finger contact resistance. We contact the fingers with pogo pins. (b) schematically
shows a sample for cell interconnection ribbons (CIRs). We solder CIRs to the busbar
in the center of a cell stripe. Subsequently, we laminate the cell stripe with glass, EVA
and a transparent backsheet (BS) as in a module. We extend the CIRs outside of the
encapsulation and contact them with crocodile clips to measure the resistance for various
contacts distances d.. (c) shows example TLM measurement data for 4 front metal
fingers of a sample as in (a). The black dots represent the measurement data and the red
line represents the linear regression to the data. The slope of the linear regression line
contains information about the sheet resistance Rg,. The intercept with the ordinate
axis is twice the contact resistance R, [173]

]
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Figure 3.10: Measurement setup for the various (V') characteristics of a solar cell. A
PERC is placed on a temperature controlled brass chuck that contacts the cell’s rear side.
On the front side a contact frame with three pin-bars, each containing 19 spring-loaded
pogo pins contacts the busbars of the cell.

For the determination of the specific contact resistance p. of a front metal finger
with width ws we employ [174]

Pc wf
cf = th _— s .
Rt I co <2Lt> (3.8)
with the transfer length
Pc
Ly = . .
t osh (3.9)

We apply Newton’s method to solve the transcendental equation Eq. 3.8 and extract
Pec-

3.4.6 Determining cell and minimodule current-voltage characteristics

We employ a PVtools LOANA solar cell analysis system to determine the (V)
characteristics of solar cells and one-cell test modules [176]. We measure the dark
I(V), Isc(Voc), and illuminated (V') characteristics according to the standard testing
conditions (STC). The STC demand a cell temperature of 25°C and an irradiation
intensity corresponding to 1000 Wm~—2 under an air mass of AM1.5G [177]. Fig-
ure 3.10 shows the measurements setup. The solar cell is placed on the brass chuck.
This temperature controlled chuck contains a PT1000 temperature sensor and a sense
pin in the center. A contact frame containing three pin-bars contacts the busbars
at the cell’s front side with 19 spring-loaded pogo pins for the current and voltage
measurement.

In a first step, we determine the I, of the sample cell at an illumination intensity of
1000 W m—2. The measurement system contains a calibrated reference cell with known
I at 1000 W m™2. A filtered Xenon arc lamp simultaneously flashes the reference
and sample cell to measure the Is.. In a second step an LED array illuminates the
sample cell with an intensity that is necessary to reach the I,.. We apply a voltage
sweep from —0.50 V to 0.68 V and measure the current I to determine the illuminated
I(V) characteristics of the cell. We also measure the illuminated I(V') characteristics
for an intensity of 800 W m~2. For the I (V) characteristics we vary the intensity
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of the LED array and measure the I, and V. for various illumination intensities.
For the dark I(V') we perform voltage sweep from —0.5V to 0.7V and measure the
current without illumination [176]. With the cell area we calculate the J(V') from
the I(V) characteristic.

For the extraction of the characteristic cell properties we perform a first order
and a second order interpolation to determine Jg. and V., respectively. We fit
the measurement data with Eq. 2.19 according to the double-diode model (DDM).
However, Eq. 2.19 is a transcendental equation and difficult to evaluate. Considering
the Jse(Voc) characteristic, we only measure Vo, and Jg. for varying illumination,
which simplifies Eq. 2.19. The assumption that V=V,. implies J=0 and Eq. 2.19
simplifies to

Jse = Jo1 exp (%) + Joo exp (g‘lfji) + ‘]/;: (3.10)
Thus, we first fit Eq. 3.10 to the Ji(Voe) and extract the first and second diode
saturation current densities Jo; and Jyz. The shunt resistance I, we obtain from the
dark J(V') measurements. Subsequently, we fit the illuminated J(V') with Eq. 2.19
to determine the Pp,p,. We extract the series resistance from the two illuminated
J (V) characteristics with varying intensities of 800 W m~2 and 1000 W m~2 [100].

Modules containing more than one solar cell do not fit into the LOANA system. Here,
we employ a halm module flasher to determine the illuminated I(V') characteristics.
The module flasher employs an 80 ms light flash instead of an LED for the illumi-
nation. A drawback of this transient measurement technique is that capacitance
induced hysteresis effects may occur. We reduce this effect by measuring the I(V')
characteristics from I, to Vi (forward) and Vi to Is. (backward) [178]. Another
drawback of the module flasher is that it can not measure the dark (V) and Is.(Voc)
characteristics.
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Figure 3.11: Scheme of the EQE measurement. A lamp generates a light beam that
enters via a chopper wheel a grating monochromator. The monochromatic light is
focused on the sample placed on a brass chuck. The brass chuck is mounted on a XY
table that can move in the x and y direction. A white bias light superimposes the
monochromatic light.

3.4.7 Quantum efficiency and reflection measurements

Figure 3.11 shows the measurement principle of the external quantum efficiency
(EQE) measurement. A tungsten halogen and a xenon arc lamp generate a light
beam that enters via a chopper wheel a grating monochromator. We illuminate
an area of (20 x 20) cm? with monochromatic light. The EQE is a small signal
measurement method and the intensity of the monochromatic light is too weak to
establish an injection level similar to the operation conditions of a solar cell. Thus,
we superimpose the monochromatic light with a white bias light. We measure the
I of the solar cell with needle point probes. For modules we contact the string
interconnection ribbons with four crocodile clips. Modulating the monochromatic
light with a chopper wheel and filtering the current signal in a lock-in amplifier allows
to separately measure the spectral short circuit current of the cell [176, 179].

The EQFE is the ratio of the Jy to incident photon flux per wavelength

1 (V)

EQE(N) = 20

(3.11)

With the same setup we also measure the reflection of the cell by placing an integrating
sphere in the monochromatic beam. The measurement principle is similar to the Cary
measurement in section 3.4.2 (see pp. 35). The monochromatic light beam passes
an integrating sphere under an angle of 8° to the samples surface. The integrating
sphere is coated with diffuse reflecting BaSO,. Light reflected by the sample surface
reenters the sphere, where it is reflected back and forth and eventually detected by a
silicon and a germanium detector [176].
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3.4.8 Light beam induced current measurements

The minimal spot size of (1 x 3)mm? limits the resolution of the EQE measure-
ment. For high resolution mappings we employ light beam induced current (LBIC)
measurements with six diode lasers with a wavelength of 405 nm, 532nm, 670 nm,
830nm, 925nm and 980nm. The spot diameter of the lasers varies from 60 pm to
100 pm. We place the cell on a brass chuck and contact the cell’s busbars with
needle point probes to measure the ;.. For module measurements we contact the
string interconnection ribbon with crocodile clips. Modulating the six diode lasers at
different frequencies allows to simultaneously evaluate the current signal for all six
laser wavelengths [176]. Thus, we can measure the local spectral short circuit current
of the cell and module with a lateral resolution of a few hundred micrometer.

3.5 Accelerated aging with ultraviolet light

Before the accelerated ultraviolet (UV) aging test, all PERC are illuminated for
96 h by halogen lamps with an intensity of 1-sun to stabilize the cells regarding
light induced degradation [180]. For the accelerated UV aging test we illuminate
the samples with mercury lamps. We employ Hoenle UVASpot lamps with a broad
spectral irradiance from 300 nm to 450 nm and Philips TL20W /01 UVB313 with a
peak in the spectral irradiance at 313nm. We measure the spectrum of the light
sources with an Avantes AvaSpec-2048 fiber optic spectrometer [181]. Figure 3.12
shows the normalized spectral irradiance Ey, of the UVASpot and UVB313 UV
lamps in the center of the UV chamber.

For the UVASpot lamps the illumination intensity at the module surface is

(331 £15) Wm~2 in the UV wavelength range from 300 nm to 400 nm [182]. At the
same location in the UV chamber we measure the UV intensity with a Kipp und
Zonen CUVS8 UV radiometer [183]. The metal plate that holds the test samples in
the UV chamber has a controlled temperature of 40 °C. We subdivide the metal plate
into squares, each with an area of (10 x 10) cm? and measure the average distributed
illumination intensity with the CUV3 UV radiometer at the test samples locations.
This procedure we repeat every time when we take the test samples out of the UV
chamber for their characterization. This light source we employ for the accelerated
aging test according to IEC61345 [19] for all experimental test modules.

For the UVB313 lamps the illumination intensity at the module surface is (83 4= 6) W m 2
in the UV wavelength range from 300 nm to 400 nm. For the measurement of the
illumination intensity we employ an Opsytec Dr. Goebel Radiometer [184]. This
light source we employ for the accelerated aging tests of the samples for the QSSPC
measurements.

For a better comparison to outdoor irradiance data we report the time ¢, the samples
are in the UV chamber in terms of a UV dose, which is calculated by

400 nm 400 nm h
Duv = / Euv()‘)tuvdA = / 45()‘)tuvjcd)\7 (3'12)
300 nm 300nm
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Figure 3.12: Normalized spectral irradiance Ey,(A) of the UVASpot and UVB313
light sources. The lines are a guide to the eye.

where @ is the photon flux at the module surface, h is Planck’s constant and c the
speed of light. For the UVASpot lamps, a UV exposure time t,, of 1500 h equals a
UV dose of about 500 kW hm™2. This D, corresponds to approximately 14.7 years
outdoor exposure for a moderate climate (Potsdam, Germany, 34 kW hm~2a~! [185])
and 5.3 years for desert climate (Arizona, USA, 93kWhm~2a~! [186]).

43



CHAPTER 4

Determining the cell and module
model parameters from the
experimental results for the modeling
of cell to module losses

In this chapter we analyse test samples from the previous chapter to extract the
parameters for the analytical model of the cell to module losses. At the end we
summarize all results in a table.

4.1 Current voltage analysis of the passivated emitter
and rear cells

For the determination of the characteristic J(V') parameters we employ the cells
of the PERC batch from section 3.1. We measure the J(V') characteristics with
the LOANA solar cell analysis system and extract the cell efficiency 7, short circuit
current density Jy, open circuit voltage Vi, fill factor F'F, first diode saturation
current density Jp, and second diode saturation current density Jo2 (see section
3.4.6, pp. 39). Table 4.1 lists the average values and the standard deviation of 272
PERCs.

Table 4.1: Characteristic J(V) parameters of a PERC batch showing the average
values and the standard deviation.

n e Voc v Jo1 Jo2
%] [mA cm™2] [V] [%0] [fA cm™2] [nA cm™2]
20.6+0.3 39.4£0.25 660£0.3 79.2£0.8 242432 11+£5
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4.2 Optical properties of cell interconnectors
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Figure 4.1: (a) LBIC measurement with a 980 nm laser for test module M-StdCIR with
a cell interconnector (CI) width we; of 1.5 mm. The black circles (@) show a measurement
for the active cell area and the red triangles (4) show a measurement across the CI, which
is a cell interconnection ribbon (CIR) for test module M-StdCIR. (b) Scheme of an LBIC
scan for the determination of the k¢; value. The area on the left hand side incorporating
only active module areas At is equal to the sum of the area A,ct i adjacent to the CI
and the area covered with CI A on the right hand side. The red arrow indicates the
direction of the LBIC measurement

4.2 Optical properties of cell interconnectors

4.2.1 Results of the measurement of the optical properties of the cell
interconnectors

We conduct light beam induced current (LBIC) measurements on the test modules M-
StdCIR, M-Lasertext, M-Col, M-CIW, M-LRF, and M-LHS from section 3.3.1 (pp. 30)
and compare areas with and without a cell interconnector (CI). Figure 4.1 (a) shows
the LBIC current I, as a function of the laser position for the test module M-StdCIR.
The measurement in Fig. 4.1 (a) is for the 980 nm laser. The black data represents a
measurement on the active cell area for the test module. The red data shows the
measurement for a position with cell interconnector. At the position of the CI the I
is reduced due the shading of the active cell area by the CI. The geometrical width
we; of the cell interconnector for this test module is 1.5 mm.
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4.2 Optical properties of cell interconnectors

Figure 4.1 (b) schematically shows two such LBIC measurements. Both LBIC
measurements cover the same area of width wi;. and height Api.. The scheme on
the left hand side depicts an area consisting of only active area A,c;. The scheme on
the right hand side depicts an area consisting of an active area with size A, i and
an area covered with a CI with area A¢. This can be any kind of cell interconnector,
either a cell interconnection ribbon or a cell interconnection wire. Since the areas of
the LBIC measurements are equal, we obtain the relation

Aact = Aaot,ci + Aciy
Aact = AtOt,Cia (41)

PbicWibic = AbicWibic-

From the LBIC measurement, we obtain a current I, for the area on the left hand
side, and ¢t ¢ for the area on the right hand side. Assuming that only the active
areas generate a current during the LBIC scan and that the current densities for
both active areas are equal we obtain the relation

Lot o Iact,ci
- )
Aact Aact,ci
Lot o Iact,ci
- )
Aact Atot,ci - Aci (4 2)
Iact ci '
Aci = Aact (1 - : )
Iact
Iact,ci
Wei,eff = Wibic 1—— )
Iact

where we; e is the effective optical width of the CI.

Similar, we determine we; of of the cell interconnectors in the test modules M-StdCIR,
M-Lasertext, M-Col, M-CIW, M-LRF, and M-LHS. We define the optical factor
ke as the ratio of the effective optical width we e to the geometrical width we; to
compare the various cell interconnectors

ko = ekl (4.3)
Wei
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4.2 Optical properties of cell interconnectors
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Figure 4.2: Optical factor k; for the various CI optics. We measure wg; g with six
different lasers and determine k¢; for each wavelength A\. The symbols represent the
average k. values and the error bars represent the standard deviation.

Figure 4.2 shows k; for the various cell interconnectors in the test modules M-StdCIR,
M-Lasertext, M-Col, M-CIW, M-LRF, and M-LHS as function of the six LBIC laser
wavelengths. The symbols indicate the mean k¢ and the error bars indicate the
standard deviation of 40 LBIC scans for each of the various CIs with a width varying
from 1 mm to 2.5 mm.

We measure the highest k; values of 0.89 for the test module M-StdCIR employing
the standard cell interconnection ribbon (CIR). Texturing the surface of the standard
CIR decreases k¢; in test module M-Lasertext by 0.1. Employing a cell interconnection
wire (CIW) further decreases the optical ratio as well as applying a white color to
the CIR surface. Here, we also observe spectral dependencies. The k.; of the test
module M-CIW increases with increasing wavelength. For both test modules M-Col
and M-CIW k. increases at 405 nm. We measure the lowest k¢ values for the test
modules M-LRF and M-LHS with the structured Cls. The k.; for the test module
M-LRF is slightly lower in the range from 405 nm to 532 nm, while it is higher from
830nm to 925 nm.

We calculate an average k¢ value for each CI considering the AM1.5G spectrum.
Table 4.2 summarizes these spectral weighted k¢; values.
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4.2 Optical properties of cell interconnectors

Table 4.2: Spectral weighted k; values for the various Cls.

M- M-
StdCIR Lasertext
0.8940.05 0.794+0.01  0.544+0.05 0.32+0.06 0.31+£0.06 0.67+0.01

M-Col M-LHS M-LRF M-CIW

4.2.2 Discussion of the optical properties of the cell interconnectors

We measure the highest optical factor for the test module M-StdCIR with the
standard cell interconnection ribbon (CIR). Here, the specular reflecting and flat
rectangular shaped cross section of the CIR are detrimental since they reflect most
of the light out of the module and less light under the critical angle for total internal
reflection. Increasing the surface roughness or applying white colored CIRs increases
the fraction of diffuse reflections. Here, the effect of total internal reflection is
beneficial for the cell interconnector (CI) and reduces the geometrical width by 50 %
in the test module M-Col. This is in agreement with values extracted from EQE
measurements in Ref. [187]. Applying a groove-structure to the CIR as for test
module M-LHS and M-LRF, further increases the amount of total internal reflected
light and reduces the geometrical CIR width by 70 %. This agrees with values in
Ref.[113], although they neglected spectral effects by employing only one laser with
a wavelength of 980 nm. The round shape of the cell interconnection wire (CIW) has
a similar effect and reduces the geometrical width of the CIW by 33 %.

We also observe spectral variations for k¢ in Fig. 4.2. The EVA absorbs light
with wavelengths below 410 nm. Thus, for the laser with a central wavelength of
405 nm, k; increases for the modules M-Col, M-LHS and M-LRF since their reflection
characteristics increase the path of light in the EVA. Further, the k¢; for test module
M-LRF employing the Al coated grooves is significantly higher at 830 nm compared
to test module M-LHS with the Ag coated grooves. We attribute this increase in k¢
to an absorption peak of Al centered at 833 nm [88].

The average k. values in Table 4.2 are in good agreement with values from the
literature, where values of k; = 0.97 for a standard CIR, k. = 0.55 for a white
colored CIR, k¢ = 0.25 for structured CIR, and k¢ = 0.6 to 0.7 for a CIW have
been reported [188, 189, 187, 113, 190].
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4.3 Geometrical and optical properties of front metal fingers
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Figure 4.3: (a) SEM image of a cross section of a front metal finger with a magnification
factor of 1000. The red line in the superimposed graph indicates an approximation to
the finger shape, which is a combination of a Gaussian and a second order polynomial
function. (b) Top view micrograph of a front metal finger with a magnification factor of
100. We employ our image processing tool to extract the area of the finger. The red line
indicates the perimeter of the extracted area. From the area we calculate the average
finger width wy of the front metal fingers.

4.3 Geometrical and optical properties of front metal
fingers

4.3.1 Results of the finger geometry measurements

Figure 4.3 (a) shows the SEM image of a cross section of a front metal finger with a
magnification factor of 1000. The red line in the superimposed graph indicates an
approximation to the finger shape. We approximate the shape of the finger by a
combination of a Gaussian and a second order polynomial function

2

a exp (—;22) for |w¢| > 54 pm,
tf(wf) =

A —w?

d

(4.4)
for |w| < 54 pm,
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4.3 Geometrical and optical properties of front metal fingers

160 rr»rrrr,rrrrrrr1rroro1.01
140 F N=934 -
5 mean=>57 nm .
120 F -
100 -
>
O 3 -
g
=) 80 -
o I 4
=
60 -
40 F -
20F -
0 1 n L} - = 1 M [}

46 48 50 52 H4 56 58 60 62 64
Finger width w [pm)]

Figure 4.4: Frequency of finger widths wt for a PERC. We measure a number of 934
fingers and determine a mean finger width of (57 + 2) pm.

where t¢ is the thickness of the finger, wy is the width of the finger, and a, b, ¢ and d
are free fit parameters. Using a=70pm, b=151nm, ¢=30pm and d = 14 pm fits our
experimental data.

The micrograph in Fig. 4.3 (b) shows the top view of a front metal finger with a
magnification factor of 100. Our image processing tool increases the contrast and
creates a binary image to extract the finger area. For the binary image we convert
the darkest 30 % of all pixels to 0 and the remaining pixels to 1 in each image. In
this way, we distinguish the finger from the background. A finger always extends
across the total width of a micrograph. Integrating the area of all pixels and dividing
by the width of the micrograph image, we obtain the mean width of a finger. The
red contour line surrounding the finger in Fig. 4.3 (b) indicates the perimeter of such
an extracted area. The average width of the finger wy in Fig. 4.3 (b) is 56 pm.

Figure 4.4 shows a histogram of the width for 934 finger measurements on a PERC
(see section 3.2.3, pp. 3.2.3). The mean finger width is 57 pm with a standard
deviation of 2 pm.
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4.3 Geometrical and optical properties of front metal fingers
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Figure 4.5: The black circles (—e—) show the EQFE..; and the red squares (—8—)
the reflection R measurement data for a (2 x 2) cm? area between two busbars,
containing only front metal fingers. The green triangles (——) show the reflection of the
intermediate cell area between the front metal fingers Rj,; as determined by Eq. 4.5.
The blue diamonds (——) show the reflection measurement Ra, for a (2.1 x 2.1) cm?
area consisting of the Ag paste of the fingers.

4.3.2 Results of the measurement of the optical properties of the front
metal fingers

Figure 4.5 shows the external quantum efficiency EQ FEce and reflectance Reep of a
PERC measured on a (2 x 2) cm? area between two busbars, containing only front
metal fingers. Figure 4.5 also shows the reflectance Rag of an (2.1 x 2.1) cm? square
consisting only of the Ag paste for the front metal fingers. From the reflectance of
the silver paste and the cell we determine the effective optical width wyeg of the
fingers according to a method presented in Refs. [191, 192]. The reflectance of the
cell

Rcell ()\) = fmet,optRAg ()\) + (1 - fmet,opt)Rint ()\) ) (45)

comprises the reflectance of the front metal fingers R, as well as the reflectance of
the silicon and the anti-reflection coating (ARC) from areas in between the fingers
Rint. The effective optical fraction of the front metalization is denoted fret,opt-
Recalling Eq. 2.9 (see section 2.2.1, pp. 8) the reflectance from areas in between
the fingers Rj, is approximately zero for a certain wavelength \g due to the ARC.
Thus, we can attribute the remaining reflectance to the front side metalization and
determine fietopt- Assuming that fretopt is independent of the spectrum, Eq. 4.5
allows to determine Rj,; for all wavelengths. We iterate this procedure until fiet,opt
converges, since the minimum of R and Rj,¢ are not necessarily found for the same
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4.3 Geometrical and optical properties of front metal fingers

Ao due to the spectral dependence of Rag. Solving the minimization problem we
determine the corrected reflectance Riyy and fiet,opt Of the fingers.

From the reflection measurement in Fig. 4.5 and the deduced fraction of the front
metalization fiet,opt, We determine the effective optical width of a front metal finger
wreff for a cell in air. We introduce an optical factor kg . as the ratio between the
effective optical width for a finger on a cell in air and the geometrical width of the

finger
WE off Df

N
wt

kf,cell = = fmet,opt (4'6)

where pr is the pitch of the fingers. We measure optical factors for the front metal
fingers of a cell in air from 0.87 to 0.91.

4.3.3 Modeling the effective optical finger width in a module

In section 4.3.2 we deduced the optical factor of a front metal finger for a cell in
air K cenn from reflection measurements. However, measuring the optical factor for
a finger within a module is challenging, since not all the light of the measurement
spot is reflected back into the integrating sphere due to total internal reflection at
the glass-air interface (see section 3.4.7, pp. 41). Thus, we employ the ray tracing
program Daidalos to determine an optical factor for the fingers of a cell within a
module kf7mod [127].

We apply the same method from section 4.2 for the LBIC measurement to determine
the optical factor from the simulations. First, we simulate a cell in air. The simulation
domain extends over an area A, that is equal in length to the length of the finger
and equal in width to the pitch of the front metal fingers of the measured cell. This
simulation only comprises the cell without any front metalization.

Then we perform a second simulation of the same area, but including one front metal
finger, denoted as A, ¢. For the finger shape we apply the function of the profile
in Fig. 4.3 (a) and assume a uniform spatial expansion of the profile in the length
dimension of the simulation domain.

We introduce a Lambertian factor A to account for a specular or diffuse reflecting
finger. A=0 represents a specular reflecting finger and A =1 assumes a perfect
diffuse Lambertian reflector. Values between 0 and 1 comprise fractions of specular
and diffuse reflection.

Simulating the current for an area with finger I, f and the current for an area
without a finger I,., we calculate the effective optical finger width wr ¢ according
to the method in section 4.2 (pp. 45) with

I
W off = Wact <1 - 1‘_”:) . (4.7)
ac

Applying Eq. 4.6 we determine the optical factor for the finger kfcen from the
simulated wy ¢fr. Then we perform the same simulations for a cell in a module and
likewise determine the optical factor kf mod-
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Figure 4.6: Simulated optical factor for the front metal fingers for different Lambertian
factors. We distinguish between fingers for a cell in air k¢ c.n and in a module k¢ mod-
The dashed lines represent the linear regression. The blue area marks the range for
kf,cen from the measurement. The dotted lines indicate the range of the corresponding
Lambertian factor for this range and the red area marks the range for k¢ moq.

Figure 4.6 shows the simulation results for k¢ cenn and kg oq for various Lambertian
factors A. The dashed lines represent a linear regression fit. The blue areas indicate
the range of the measured optical factor for a cell in air from section 4.3.2 (pp. 51).
From the measurement results we deduce the range of A. For a A from 0.6 to 0.89
the ke from the simulation is similar to the experimental determined values. We
assume that A does not change due to the transition of a cell from air into a module
and determine the red area indicating the range for the optical factor for the fingers
within a module k¢ 1,04. The range for k¢ 1,04 is between 0.42 and 0.45.

4.3.4 Discussion of the cell to module losses for the front metal fingers

We deduce a homogeneous finger width of 57 pm across the cell with a standard
deviation of only 2 um from the measurements of the front metal finger width. Thus,
we conclude that using a single finger shape with a profile as in Fig 4.3 (a) in the ray
tracing simulation domain is representative for all front metal fingers of the whole
cell.

We approximate the profile of the finger with a combination of a Gaussian and a
second order polynomial function in Eq. 4.4. Two functions are necessary since after
the screen-printing, when the Ag paste is still wet, the fingers tend to smear at
the edges. For the finger in Fig. 4.3 (a) this transition is visible at 54 pm. With
both functions we achieve reasonable approximations of the finger shape. Describing
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4.3 Geometrical and optical properties of front metal fingers

the wetting properties with a physical model is rather complex and requires the
determination of additional attributes of the Ag paste (e.g. viscosity, liquid-solid
interfacial tensions) and is out of the scope of this work [193].

The micrographs in Fig. 4.3 (a) and (b) show that the fingers have a surface roughness.
Measuring the optical factors for the fingers of a cell in air reveals that k¢ o varies
from 0.87 to 0.91. Thus, we conclude that these variations are due to inhomogeneities
of the individual finger shape and surface roughness. Our values are higher than the
value measured by Blakers [111] of 0.7 for plated fingers. Blakers [111] indicated that
the plated fingers reflect specular, which reduces the effective optical width of the
fingers according to our results from the ray tracing simulations and explains the
different values for kf e

In the ray tracing simulations we account for the inhomogeneities of the individual
finger shape and surface roughness by introducing a Lambertian factor. This allows
to determine the optical factor of the front metal fingers for a cell in a module,
since determining k¢ moq from reflection measurements is challenging due to the total
internal reflection. Recalling Snell’s law (see section 2.2, pp. 7), under a certain
angle total internal reflection can occur for light on the transition from one media to
another. In fact, this is the case for the glass/air interface in a module due to the
higher refractive index of glass compared to air. Thus, only a fraction of the light
from the measurement spot is reflected back into the integrating sphere.

However, this effect is beneficial for the cells operating in a module, since it increases
the probability of absorption for the light reflected back and forth between the cell
and the glass/air interface. We find that encapsulating a cell into a module reduces
the effective optical width of a front metal finger, resulting in optical factors kf moqd
from 0.42 to 0.45. Hence, a finger with a geometrical width of 60 pm reduces to
an effective optical width of 25 pm within a module. A reduction of the effective
optical width decreases the optical shading by the fingers and improves the module
current. Our values are lower than the values for screen-printed fingers presented
in Ref. [194] of 0.52 for k¢ moq. They examined fingers with a geometrical width of
125 pm, which might explain the difference to the values in this work due to different
finger profile.

Figure 4.6 shows that decreasing the Lambertian factor results in a reduction of
the optical factor. If the Lambertian factor decreases, the fraction of the specular
reflection by the finger increases. Due to the parabola like shape of the finger, a
specular reflecting finger increases the fraction of total internal reflected light. If the
Lambertian factor increases the fraction of diffuse reflections increases and more light
is scattered out of the module. Thus, for a cell in a module environment, specular
reflecting front metal fingers with a parabola like shape and low surface roughness
are beneficial. This explains the lower values of 0.36 to 0.38 for the plated fingers of
Blakers and Stuckings [111]. Applying stencil printing allows fingers with a rather
high aspect ratio but a rectangular like shape, which increases the optical factor
within the module for this fingers.
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4.4 Finger-emitter contact resistance
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Figure 4.7: Specific finger - emitter contact resistance p. measured on 9 cell stripes of
1 em width from a PERC with half cell grid. Each cell stripe contains 104 front metal
fingers. For the representation in the figure the data in between the measurement points
is interpolated. We measure a mean p. of (12 £ 6) mQ cm?. The dashed line indicates
the half cell gap of the metal grid and the red arrow the orientation in the conveyor belt
furnace for the contact firing.

4.4 Finger-emitter contact resistance

4.4.1 Results of the finger-emitter contact resistance measurements

Figure 4.7 shows a surface plot of the specific contact resistance p. for nine cell
stripes from a PERC with half cell metalization grid (see section. 3.4.5, pp. 37). Each
cell stripe contains 104 front metal fingers. The data in between the measurement
points is interpolated. The horizontal dashed line in the center of the graph indicates
the gap for the half cell metalization grid. The red arrow at the top points in the
moving direction of the cell in the conveyor belt furnace during the contact firing.

We measure a mean p. of 12m€ cm? with a standard deviation of of 6 m§ cm? for
the complete cell. We observe an increase in p. from the top side to the center of
the PERC. On the average of all stripes p. increases from 8 m{) cm? for finger 97 to
25 m€ cm? for finger 52.

4.4.2 Discussion of the finger-emitter contact resistance measurements

In contrast to the finger width the contact resistance of the fingers to the emitter is
inhomogeneous across the cell. This is evident due to the average p. of 12m cm?
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4.5 Optical properties of the backsheet within a solar module

and the rather high standard deviation of 6 m€Q cm?. The surface plot in Fig. 4.7
indicates a peak in the center of the cell, exactly above the gap for the half cell
metalization grid. In this region the contact resistance is three times higher than
the cell’s average. Considering only the lower half of the cell, the average contact
resistance is 10 m€ cm?, while for the upper half it is 14 m cm?.

We find correlations between regions with increased contact resistance and the cell
orientation in the conveyor belt furnace (see Appendix A.2). The cell side first
entering the furnace always shows an increased contact resistance. A hypotheses is
that the interruption of the metal grid suppresses the exchange of heat or charge
between the two halves. Rotating the cell 90°, such that the cell edge perpendicular
to the front metal fingers enters the furnace first, also results in a deterioration of the
contact resistance close to the cell edge first entering the furnace. This we ascribe
to the lower conductivity of the front metal fingers that have a 15-20 times smaller
cross section area than the busbars. Further, applying a conductive connection to
the half cell metal grid interruption by manually printing Ag paste with a tiny brush
to the gap between the busbars in the center of the cell, shows no local increase in
contact resistance at the metal grid interruption after the contact firing.

A work around to solve this issue is to dry the screen-printing paste in a furnace at
200 °C, cut the cells with the laser and then perform the contact firing step. Initially,
we introduced this gap for symmetry reasons when cutting the cells into halves and
to prevent cell cracks when soldering a cell interconnection ribbon to the busbar.

4.5 Optical properties of the backsheet within a solar
module

4.5.1 Modeling the effect of the backsheet reflection on the module
current

We simulate a module with Daidalos and vary the cell spacing in the simulation
to evaluate the contribution by total internal reflections from the backsheet to the
module’s short circuit current. The module simulation domain incorporates a center
cell with periodic boundary conditions. For the simulation we consider a white
colored backsheet. We vary the cell spacing d.o. as well as the string spacing dgos
and calculate the Js.. For all variations we set d.o. equal to dgos. In addition to the
white backsheet, we simulate an intermediate reflector (IMR). This IMR is a white
foil located on top of the rear EVA and at the same level as the cell (see Fig 4.8).
Further, we simulate a half cell. We introduce an optical enhancement factor kyg for
the backsheet as

Jsc,d
9
Jsc,O

kps = (4.8)

where Jyc 4 is the simulated short circuit current density for a module with varying
cell and string spacing and Js. is the simulated short circuit current density for a
module with no gaps between the cells.
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Figure 4.8: Simulated backsheet enhancement factor kps for a module containing a
center cell with periodic boundary conditions. Symbols indicate the data from the ray
tracing simulations. Dashed lines indicate an exponential fit according to Eq. 4.9. We
simulate a module with full cells and a white backsheet, with full cells and an IMR, and
with half cells and a white backsheets. The inset indicates the principle of the IMR.

Figure 4.8 shows the simulated kps as a function of the cell spacing. The dashed
lines indicate an exponential fit to the simulation data

dc2c + dsZs) + c,

kps = aexp (— 2 (4.9)

where a,b and ¢ are free fit parameters.

The kps increases for all cells with increasing cell spacing and saturates at 50 mm.
Applying an IMR at cell level results in slightly higher k¢ in the range from 0 mm
to 30mm. The kps of both full cell modules saturate at 50 mm at a kps=1.07.
Employing half cells results in higher ks that saturate at 50 mm with kpg=1.1.

4.5.2 Discussion of the current enhancement by the backsheet

Figure 4.8 shows that increasing the cell distance, increases the current and in turn
the power output of the module. The backsheet reflects light below the cell, where it
is absorbed by the cell’s rear metalization. Thus an intermediate reflector increases
the current enhancement compared to a backsheet by a maximum of 0.4 % especially
for small cell distances.

Fitting kps with Eq. 4.9 is useful for the modeling of cell to module losses. Determining
the optical enhancement factor for a specific backsheet with ray tracing simulations
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4.6 Parameters from literature

and fitting with Eq. 4.9 once, enables to determine ks for any cell and string spacing.
This allows the simple implementation of the optical enhancement factors in an
analytical model.

Half cells result in higher ks and thus, increase the module current with increasing
cell gap. In Ref. [195] the authors report an experimentally determined increase
of the module current by 3 %, when employing half cells. Applying the simulated
kps to their cell distances we calculate a current enhancement of 2.8 % for a module
consisting of half instead of full cells. The values are in good agreement, considering
tolerances of the cell spacing and different optical properties of the backsheet and
encapsulation materials. Employing half cells increases the fraction of the backsheet
area compared to the fraction of the cell area in a module. In fact, this effect is the
reason for the increased current enhancement by the backsheet when employing half
cells.

Similar as for the white colored cell interconnection ribbon (CIR), the total internal
reflection governs the current enhancement by diffuse reflections from the backsheet
and the intermediate reflector (IMR). Thus, a natural choice is to replace the diffuse
reflecting IMR with the groove-structured foil we applied to the CIR in test module
M-LRF. The measurements of the optical factor of the CIR for the test module
M-LRF reveal a k¢ of 0.31. This implies that the groove-structured foil reflects about
70 % of the light impinging on the CIR onto the cell. Considering the same effect
when applying the groove-structured foil in the cell gaps, the optical enhancement
factor kyg is equivalent to 1-k.. This increases the kpg in a half cells module with a
2mm cell spacing from a kpg of 1.0167 for a white backsheet to a kpg of 1.027 for a
groove-structured foil in the cell gaps, which increases the module current by 1%. In
Ref [130], we show with ray tracing simulations that this gain is also achieved for
different global locations considering realistic irradiation conditions.

4.6 Parameters from literature

Measuring all required cell and module parameters to model the cell to module
losses, is beyond the scope of this work. Hence, we also adopt parameters from the
literature. Most of the data was published by the Institute for Solar Energy Research
Hamelin (ISFH) for similar cell processes as in this work.

For the contact resistance for the rear side of a PERC, we adopt pc rear values provided
in reference [196].

A method to measure the surface recombination at the metal contacts was proposed
by Fellmeth et al. [93]. They measured the Joys for cells with various metalization
fractions. Hannebauer et al. [197] performed similar measurements for passivated
emitter and rear cell. In this work we apply values from Hannebauer et al. since they
measured the saturation current densities for similar cells and metalization pastes as
in this work.

Vogt investigated the complex refractive index of various front glasses and encap-
sulation polymers for solar modules [198, 199]. We use his optical data for the low
iron soda lime glass, the conventional EVA as well as the EVA with enhanced UV
transmittance for the optical simulation.
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4.7 Parameter overview

The evaluation of the ray tracing results requires the collection efficiency nperc of the
PERC according to Eq. 2.24 (see pp. 20). We use 7perc as determined in Ref. [131].

We consider a reduction of the short circuit current density Jg. due to the front glass
and EVA of kieq =3 % to 4% as determined in Refs. [49, 118]. All parameters are
listed in Table 4.3 and Table 4.4.

4.7 Parameter overview

Table 4.3 lists all PERC and Table 4.4 lists all module parameters for the simulation
of the PERC cell to module losses in this work.

Table 4.4: Summarized module simulation parameters. Parameters marked with an
Asterisk have been measured within this work.

parameter symbol value unit source
SCR thickness Lsir 200 pm *
SCR width Wsir 6 mm *
number of CIR N 3-7 &
number of CIW Ngi 10-55 *

CIR thickness teir 200 pm *

CIR width Weir 1-2.5 pm *
CIW diameter ety 200 pm &

line resistance CIR Peir 0.56-0.57 mQcm~t  *

line resistance SCR PSIR 0.14 mQcm—! ¥

line resistance CIW Pciw 5.33-544 mQem—t *
distance between cells de2c 1.9-2.1 mm *
distance between strings dsos 1.9-2.1 mm *
EVA thickness leva 440-460 pm &
glass thickness Lglass 3.1-3.3 mm *

opt. factor finger (module) kf mod 0.42-0.45 .
optical factor CIR ke 0.84-0.94 *

opt. fact. white CIR Kei 0.49-0.59 o

opt. fact. LHS CIR ki 0.26-0.38 *

opt. fact. LRS CIR ke 0.25-0.37 i3

opt. fact. CIW kwire 0.60-0.71 *.[190]
current reduction glass/EVA Ered 0.03-0.04 [49],[118]
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4.7 Parameter overview

Table 4.3: Summarized range of the cell parameters for this work. Parameters marked
with an Asterisk have been measured within this work.

parameter symbol  value unit source
cell area Acen 240.5 cm? *
base resistance Pb 1.5-2.5 Qcm *
cell thickness Leell 160-170 pm *
emitter sheet resistance Rgn 83-90 Q/0 *
cell efficiency U] 20.3-20.9 % *
current density non-metalized area  Jsc act 40.75-41.0 mAcm—2 *
shunt resistance R, 25-242 kO cm? *
Z(Z(;OS?S, diode saturation current Jos 8515 DAem-?
first diode ideality factor no1 1 &
second diode ideality factor 102 2 *
base and rear contribution Job 100-200 fAcm™2 %
emitter contribution Joe,pass  80-120 fA cm—2 [197]
metal contribution Joe,met  350-550 fA cm—2 [197]
number of fingers Ng 80-130 *
finger width (single print) we 55-59 pm *
finger thickness tf 15-20 pm *
optical factor finger (cell) Kt cell 0.87-0.91 *
optical factor busbar K cenn 0.97-0.99 *
line resistance finger Pt 3.1-4.1 mQem—t ¥
busbar thickness tbb 10-15 pm *
busbar width Whh 0.8-1.3 mm *
line resistance busbar Pbb 23-40 mQcm~!  *
line resistance metal rear side Prear 34-43 mQcm~!  *
contact resistance front Pec 6-18 m(2 cm? *
contact resistance back Pc,rear 8 mS2 cm? [196]
soldering joints Nsp 6 *
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CHAPTER 5

Modeling cell to module losses

Within this chapter we present an analytical model to simulate the optical, recombi-
nation and resistive cell to module (CTM) losses based on our experimental results.
For the resistive losses we extend an existing model for the the cell and string inter-
connection in a solar module. After verification of the model we optimize the cell’s
front metalization and the cell interconnection to build two modules, one aiming for
an enhanced power output and one aiming for an improved module efficiency.

5.1 Analytical series resistance model

The symmetry of the front metalization allows to split the cell into various unit
cells. We distinguish contributions of the emitter, base, front metal fingers, busbars,
rear metalization, cell interconnector (CI), and string interconnection ribbon (SIR).
Figure 5.1 depicts the partition of a PERC into three unit cells.

Unit cell 1 represents the area adjacent to a front metal finger. Thus, it comprises
the contribution of the finger, busbar, and emitter to the series resistance of the
solar cell. Unit cell 2 represents the area next to the CI that collects the current
from the busbar and rear metalization. Unit cell 3 represents a solar cell within a
module, which takes the base and the SIR into account. We apply the convention to
normalize all resistive power losses to the area of a solar cell, e.g. for a solar cell
unit cell 1 occurs two times for each cell interconnector and once per finger.

In this work, we apply the two dimensional analytical series resistance model of
Deb et al. and extend the model for the cell and string interconnection with cell
interconnection ribbons and cell interconnection wires. With the analytical model
we calculate the series resistance of the solar cell and module, which we will derive
in more detail in the following.

The resistive power loss Pjoss given in units of W due to a constant current I traversing
a material of length [,,¢ and cross section area Ap,¢ follows the relation

Tmatlmat
]Dloss = I2 T

1
Amat 7 (5 )

where rmat is the specific resistance of the material. We assign a resistive power
loss to each unit cell Pogsuci, where the index ¢ indicates the considered unit cell
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5.1 Analytical series resistance model

unit cell 3

B unit cell 1

Figure 5.1: Unit cell approach to determine the cell to module power losses. Unit cell
1 accounts for the finger domain. Unit cell 2 contains the cell interconnector for the cell
interconnection unit cell 3 represents a solar cell within a module.

in Fig. 5.1. The total resistive power loss P, for the whole cell is the sum of the
resistive power losses of all unit cells 1 through 3

3
Ptot = Z Nuciljloss,ucia (5'2)
i=1

where Nyc; is the number and Ploggs uci is the resistive power loss of each unit cell per
solar cell in a module. From the total resistive power loss we calculate the specific
series resistance Ry of the solar cell by

o Ptot

Rs = I_QAcelb (5'3)
L

where Iy, is the light generated current and Aoy the cell area.

Unit cell 1

The number of unit cells 1 is determined by the number of front metal fingers Ny
and the number of cell interconnectors N¢; of the cell and given by

Nucl = 2-]Vci]\ff- (54)
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5.1 Analytical series resistance model

<~ |wr
} dy
Y
Wyc

Figure 5.2: Unit cell 1 comprising a finger of length Iy and width w as well as half a
busbar of width wpyy,. The height of the unit cell h,. is equal to the finger pitch and the
width w,. is equal to half the busbar pitch. The distance between two fingers is d¢. The
red arrows indicate the current direction in the emitter, finger and busbar.

A solar cell generates current in all active areas (blue areas in Fig. 5.1) and the current
in the emitter region increases incrementally on the path to the metal contacts. We
assume a spatially homogeneous emitter sheet resistance Ry}, spatially homogeneous
generation of charge carriers, and that the current flows perpendicular into the metal
components.

Figure 5.2 shows a magnification of unit cell 1. It comprises a finger of length /¢y and
half a busbar of width wyy. The height of the unit cell Ay is equal to the finger
pitch and the width w, is equal to half the busbar pitch. The distance between two
fingers df contains only the active cell area and the emitter, respectively. The red
arrows indicate the direction of the current flow.

For the cell interconnection we distinguish between a cell interconnection ribbon
(CIR) and a cell interconnection wire (CIW). For the CIR we split the emitter into
two rectangular (3 and 4) and four triangular (1, 2, 5, and 6) areas. The current
flows from the rectangles 3 and 4 as well as the adjacent triangles 2 and 5 into the
finger. From the triangles 1 and 6 the current flows into the busbar. From the finger
and the busbars the current flows into the CIR.

For the green rectangle in Fig. 5.2 with the width of rectangle 4 and height dy, the
differential sheet resistance is [200]

dRsh,rect4 = (l}iShdf) dy (55)

Within rectangle 4 the current flows perpendicular into the metal finger. For the
green rectangle the current increases incrementally in the y direction with

/ d d
Loial) = [ 7 (1= 5 ) ai =7 (- 5 ) (56)
0

where J is the current density per area. We select §j as integration variable to avoid
labeling the integration boundary with the same symbol.
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5.1 Analytical series resistance model

According to Eq. 5.1 the incremental resistive power loss for the green rectangle is

d
dPe,rect4 = Irect4(y)2 dRsh,rect4 = J2Rsh (lf - 2f> ?/2 dy (57)

The total resistive power loss for the rectangle 4 is
de

2
J?R
2 sh
Pe,rect = /Irect4 dRsh,rect4 =
0

48

d? (2l — dy) . (5.8)

Due to the symmetry P ;ect is also the resistive power loss for rectangle 3.

In the triangular areas the sheet resistance and the current depend on x and y. Here,
we utilize that all triangles are equal sided triangles and consider x = y. For triangle
5 the differential sheet resistance is given by

R,
dRsh,tri5 = TSh dy’ (59)

For the current we integrate with respect to the z and the y direction
Yy x
J 2
Towis = //Jda? dg = Ty (5.10)
00

Combining Egs. 5.9 and 5.10 yields the resistive power loss in the triangle

dg

/ 2 2 d?
Pe,tri = /Itrj5 dRsh,tri5 =J Rsh%- (5'11)
0

Likewise, we calculate the resistive power dissipation in the triangles 1,2, and 6.

The total resistive power loss in the emitter sheet for unit cell 1 is

3 _
Pe = 4Pe,tri + 2Pe,rect = J2Rshdf(16115f925df)- (512)

Similar we calculate the resistive power loss for a finger with a specific resistance
r¢ and cross section area Ar. We intersect the finger in a segment adjacent to the
rectangular and the triangular areas. The rectangular area can be either rectangle 3
or 4 and the triangular area can be either triangle 2 or 5 in Fig. 5.2. The resistive
power loss in a finger segment adjacent to a rectangular area is

dZ (215 — di)?

Pf,rect = J2Tf ARA;

(5.13)

For the finger segment adjacent to triangle 2 it is necessary to consider the current
from rectangle 3 as well. Likewise, the finger segment adjacent to triangle 5 carries
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5.1 Analytical series resistance model

the current from rectangle 4. Therefore, the power dissipation in the finger segment
adjacent to a triangle is

d} (7d? — 40dl; + 6012)

P = J? 5.14
f tri e 240 A ( )

The total resistive power loss for a finger is
Py = 2F)f,tri + 2Pf,rect- (515)

For the resistive power loss in a busbar we take into account that the current increases
from the start to the end of the busbar and the busbar collects the current from each
finger. Considering the j-th unit cell 1 of a busbar, the index j runs from 1 to the
number of front metal fingers Ny.

For the upper busbar segment before the jth finger in Fig. 5.2, we take the current of
the adjacent triangular area 1 and the sum of the currents from the previous (j — 1)
unit cells 1 into account. Thus, the resistive power loss in all upper busbar segments
is

J 2ppp Nid}
N 120tppwpp

—6OIZN; + 2053) ,

Py (d? + 10d¢l¢ N¢ — 10d¢l; + 4Olf2Nf2

(5.16)

where 71, denotes the specific resistance, wyy, the width, and ¢y, the thickness of the
busbar. Here, we utilize [201]

z”: 12— n(n + 1)6(2n +1) (5.17)
k=1

for the series expansion of the sum in Eq. 5.16.

The lower busbar segment after the jth finger in Fig. 5.2 collects the current from
the adjacent triangle 6, the j-th finger, the upper busbar segment and the sum of
the currents from the previous (j — 1) unit cells 1. Therefore, the resistive power
loss of all lower busbar segments is

d? J2Nf7'bb

960tbbwbb
2 2

+17 (320NF + 480N; +160))] .

Py = [3d7 — 40dl; (Nt +1)

(5.18)

Note that Py, and Py already take the number of front metal fingers into account.
Thus, the total resistive power loss in the busbar for the whole solar cell is

Pop, = 2N¢i(Pybb + Pibb)- (5.19)

The total power loss of a solar cell with single screen-print metalization for all unit
cells 1 is

Ploss,ucl = Nucl (Pe + Pf) + Pbb~ (5.20)

A cell interconnection wire (CIW) only contacts the finger but not the emitter. In
this case we omit all triangular areas in Fig. 5.2 and consider only the rectangular
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chc Y

huc2

I
|
-~

Wy c2

Figure 5.3: Scheme of unit cell 2 with a cell interconnector in the center. The width
of the unit cell is wyco and the height is hyco. At the end of the cell the CI extends to
the next cell over the cell spacing dcoc.

areas. Then rectangles 3 and 4 in Fig. 5.2 extend over the entire finger length l¢ and
the current flows only from the emitter into the front metal finger. Therefore, we
obtain for the resistive power loss in the emitter

d3l
Prciw = J2Rsh1f—2f (5.21)
and in the finger
o dil}
Priw = Jore——. 5.22
X, 34 (5.22)

Note that Egs. 5.21 and 5.22 are equivalent to the formulas in Green [200] and
Serreze [122]

The total power loss for unit cell 1 with a CIW is

Ploss,ucl - Nucl (Pe,ciw + Pf,ciw) . (523)

Unit cell 2

Figure 5.3 schematically shows unit cell 2 that represents the area next to a cell
interconnector (CI). The CI collects the current over the height of unit cell 2 hyea.
The width of unit cell 2 is wyeo. At the ends of a cell the CI extends to the next cell
over the cell to cell distance deo.. The number of unit cells 2 is determined by the
number of CIs N; and given by

Nuc2 = 2]Vci‘ (524)
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5.1 Analytical series resistance model

Concerning the CI, we distinguish between cell interconnection ribbon (CIR) and
cell interconnection wire (CIW). As described in section 2.6 a CIR is soldered onto
the busbar. We assume that the CIR contacts the busbar over its full length and
thus, the specific resistance of the busbar rp;, in Eq. 5.16 and Eq. 5.18 is replaced by
a parallel specific resistance of the busbar and the CIR

TbbTcir (tbb + tcir)wcir
)
TeirlbbWhbb + TbbleirWeir

Tbb||cir = (525)
where we set the length of the busbar equal to the length of the CIR. The width of
the parallel connection of busbar and CIR we set equal to the width of the CIR.

A cell interconnection wire (CIW) only contacts the finger and thus, collects the
current only from the fingers. For the CIW segment before the j-th finger we have
to consider the sum of the current of the (j — 1) fingers. Thus, for this CIW segment
the resistive power loss reads

Ned312 (2N? — 3N; + 1)

Puciw = J2rciw >
6félciw

(5.26)

where Ay is the cross section area and r.y the specific resistance of the cell
interconnection wire.

For the CIW segment after the j-th finger, we consider the sum of the currents of all
(7 — 1) fingers and the current of the j-th finger. Thus, the resistive power loss for
this CIW segment is

Ned?l? (2NE + 3N; + 1)

Pieiw = JQTciW
6ACiW

(5.27)

Combining Eqgs. 5.26 and 5.27 yields the resistive power loss in the cell interconnection

wire

Ned3i2 (2NF +1)
314ciw .

Note that this equation is equivalent to the relation found by A. R. Burgers [202] for

a CIR with multiple solder joints.

2
Piw = J rciw

(5.28)

For the rear side we assume that each cell interconnector (CI) contacts the Al rear
metalization at every point and collects the current. The series resistance contribution
of a rear CI then is

Lol g w? (5.29)

2
Prear - §J2 Aci uc2 “uc2»

where r; is the specific resistance and Ac; the cross section area of the CI. Note that

in this case a CI is either a cell interconnection ribbon (CIR) or a cell interconnection
wire (CIW).

In between two cells a CI conducts the current to the next cell over the distance
deoc. Similarly, at the ends of each string the CI conducts the current to the string
interconnection ribbon (SIR). The resistive power loss in the CI extension is

Py = 2J2%wﬁc2hﬁ02dcgc. (5.30)
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The total power loss for unit cell 2 with CIRs is
Ploss,uc? = Nuc2 (Prear + Pc2c) (5.31)

and with CIWs
Ploss,uc2 = Nuc2 (Prear + Pc2c + Pciw) . (532)

Unit cell 3

Unit cell 3 occurs once per cell. We assume that the current flow through the wafer
of thickness t.. and with base resistance py, is normal to the rear Al. Then, the
resistive power loss contribution of the base is

Poase = J2,0bAu03tw- (5.33)

At the end of each cell string of the solar module, the string interconnection ribbon
(SIR) collects the current from the CI. Thus, the current in the SIR increases with
the j-th CI, with j running from the 1 to the number of CI N;. The power loss in
the SIR of all (j — 1) segments is

Nci

. T i
Psirl = Z(JQquZhuCZ(] - 1))2t - Slr. W2
].2:1 sir Wsir (534)
Tsir
- §J2t ] ZU ] w131c2hﬁc2NCi(2chi — 3Nei + 1)’
sir Wsir

where wyco is the width of unit cell 2, rg;, is the specific resistance, wsg;, the width and
tsir the thickness of the SIR. For the series expansion in Eq. 5.34 we utilize [201]

- 1)(2 1

Zk?:”(wr )6( ntl) (5.35)
k=1

Analogously, the power loss in the SIR of the j-th segment is

2 sir
Pao = 2J2- 150 3 B2 NG (2N2 + 3N + 1). (5.36)

3 sirWsir

Further we have to consider the contribution of the connection between two strings
by an SIR over the distance dsos to the resistive power loss, which is given by

T'sir
Pz = J? —"4AN2w? oh? odsos. (5.37)

sirWsir

Therefore, the total resistive power loss in the SIR for a single solar cell is

4 Tsi
Py, = J2h12102w2 Nci(3ds2chi + Wye2 + 2 (;2iwu02)a (538)

uc2

3]chs Lsir Wiy

where Ny is the number of cells per string.
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&
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Figure 5.4: Schematic current flow (red) from the emitter (blue) into a front metal
finger.

The total power loss for unit cell 3 with CIRs or CIWs is

-Ploss,uc3 = Pbase + Psir- (539)

Calculating the total resistive power loss according to Eq. 5.2 we can determine the
series resistance for the solar cell in the module with Eq. 5.3.

Contact resistance

The resistive power loss due to the contact between the front metal finger and the
emitter depends on the specific contact resistance p. of the finger to the emitter, the
emitter sheet resistance Ry, and the contact area. The same holds for the busbar to
emitter contact in case of single screen-printing. We determine their contribution to
the resistive power loss of a solar cell according to the model of Berger [174].

Figure 5.4 shows the current I flowing from the emitter into half a finger of width wy
and length . The current flow is perpendicular to If and reduces below the finger in
the x direction with

dI  V(x)lg

dz pe

(5.40)

In the emitter, the voltage drop due to the emitter sheet resistance below the finger
is

dV I(x)Rg,

— = 5.41
dx lg ( )
Combining Eq. 5.40 and 5.41 and rearranging results in
d?rI Rgn
— =1 . 5.42
T 1) (5.42)

Solving the second order differential equation yields the contribution of the finger-
emitter contact to the series resistance

Pc wr
= lid ih (2 4
T P f2lth co <2Lt> (5.43)

L= ,/gsc . (5.44)

A detailed solution of Eq. 5.42 is in the appendix (see A.1).

with the transfer length
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Figure 5.5: Resistive power loss in the emitter, finger and busbar for a varying finger
number of front metal fingers N; according to the analytical model of Deb et al., the
analytical mode derived in this work and numerical FEM simulations. The inset shows
the electric potential distribution of the simulation domain of the FEM model indicating
one front metal finger and a busbar.

5.1.1 Comparing the analytical series resistance model to finite element
simulations

We conduct three dimensional (3D) numerical simulations based on the finite element
method (FEM) employing Comsol Multiphysics [203] and compare the results to
the analytical model of Deb et al. [123] and the extended model in this work. In all
simulations we employ the parameters given in Table 4.3 and Table 4.4. We simulate
a unit cell consisting of a finger and a busbar segment as indicated in the inset in
Fig. 5.5 and vary the number of front metal fingers Ns.

Figure 5.5 shows the total resistive power loss Pogs in the emitter, fingers and busbar
calculated according to the model of Deb et al., the numerical FEM simulations
and the analytical model in this work for a varying finger number N¢. We vary N
from 50 to 110 front metal fingers. At Ny =110, the finger pitch is the smallest for
all simulation parameters, which reduces the current path in the busbar segment
and thus, series resistance losses in the finger and emitter region dominate. Here,
the deviations between the three models are small and only 8 uW. Decreasing N
increases the finger pitch and thus, the power loss in the busbar segment dominates.
Figure 5.5 shows that with decreasing Nt the model of Deb et al. deviates by 125 pW
for Ny =50 from the FEM simulations. The extended analytical model in this work
shows a three times better agreement with the FEM simulations than the model of
Deb et al., with a maximum deviation of 40 pW.
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5.1 Analytical series resistance model

5.1.2 Applying the optical factors

For a solar cell in air only the front metal fingers and the busbars shade the active
cell area. This reduces the short circuit current density of the solar cell by

B Nrwekg cenWeell — NbbWhbEpbhcell
Jsc - Jsc,act 1- )

5.45
Acell ( )

where Jycact is the short circuit current density of the active cell area, Nt is the
number of the front metal fingers, wy the geometrical width of the front metal fingers,
Kt cen is the optical factor for a finger on a cell in air, Ny, is the number of busbars,
wpp the geometrical width of the busbars, ki1, the optical factor for a busbar, ween
the width and hce the height of the solar cell.

For a solar cell in a solar module we consider the current reduction by the glass and
encapsulation kyeq, the current reduction by the shading of the cell interconnector
ke and the current enhancement by the backsheet kg

Newekt modWeell — Neiweikciheen
Jsc = kstsc,act (1 - : - kred )

5.46
Accll ( )

where kf moq is the optical factor for a front metal finger for a solar cell in a solar
module, N the number of cell interconnectors and we; the geometrical width of the
cell interconnector. The cell interconnector is either a cell interconnection ribbon or
a cell interconnection wire.

5.1.3 Recombination losses for varying front metalization

For the loss due to recombination of the front metalization we employ Eq. 2.16. We
combine the saturation current densities for the base and rear in a lumped Jg, and
assume that the influence of transferring the cell into the module and changes of the
front metalization on Jy, is negligible [93]. Thus, Jy is given by

JOI = J()e,pass (1 - fe,met) + J()e,metfe,met + J0b7 (547)

where Joe,pass and Joe,met are the passivated and metalized emitter saturation current
density, respectively. The metalization fraction of the emitter is

fomet = Nrwsween + szwib (heell — waf)' (5.48)
ce

Note that in case of CIWs the number of busbars is Ny, =0 in Eq. 5.48. We assume
that the influence of the front metalization on Jyy is negligible and smaller than the
deviation in Jpo for the PERC batch in Table 4.1. This agrees with measurements of
Joz in Ref. [204] for a varying front metalization fraction on a similar emitter as in
this work.

5.1.4 Applying the analytical model to experimental test modules

For the full analytical model describing the cell to module (CTM) losses we combine
the unit cell approach for the series resistance, the saturation current densities and the
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Figure 5.6: Relative deviation of the simulation and measurement of the experimental
modules (see Table 5.1).

optical factors with the double-diode model (DDM) (see section 2.5, pp. 13). When
modeling experimental results of one-cell test modules we first simulate a PERC with
the parameters from Table 4.3 and adjust the Js act until the simulated Jg. matches
the measured Jg. of the cell. Subsequently, we vary the parameters in Table 4.3
confined to their measured ranges until the simulated cell’s I(V') characteristic fits
the measurement data. For the transfer of the cell into the module we account for
the optical and resistive losses employing the parameters listed in Table 4.4.

When connecting multiple solar cells in series we have to account for the different
operating points of each cell. We express the voltage of the individual cell I(V')
characteristics as a function of the current V (/) and add up the voltage values
for equal current values to obtain the I(V') characteristics of the module. This
requires extrapolating the I(V') characteristics of cells with different Jg. in the reverse
direction. The cell with the lowest Js. dominates the I(V) characteristics of the
module.

Following this approach we simulate modules with input parameters equal to the
experimental test modules in section 3.3.3 to verify the model with the measurement
results. Table 5.1 represents an overview of the fabricated modules and their measured
I(V) characteristics.

Figure 5.6 shows the relative deviation between the simulation and the measurement
data of the modules M1 through M6 for the Pyp,, F'F, Jsc and Vie. A negative
deviation indicates that the simulation overestimates the measurement data. For all
parameters the deviation between simulation and measurement is less than 1.1 %.
The V. shows the smallest deviations of all parameters and is less than 0.5 %. For a
small cell spacing of d.oc =2 mm the Jg. deviates marginally and discrepancies are
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Table 5.1: Overview of the most relevant measured I(V) parameters for the six
5x1 experimental test modules with various CIR and cell spacing. IMR denotes the
intermediate reflector.

deae dss P, FF I V.
I I A S
M1 2 2 Std. - 11.85 76.82 4.68 3.30
M2 2 2 White - 12.03 77.27 4.72 3.30
M3 2 40 White - 12.22 76.18 4.87  3.29
M4 40 40 White - 12.90 74.90 5.21 3.30
M5 40 40 White v 12.84 74.42 5.23  3.30
M6 5 13 White v 12.29 76.24 4.89 3.30

below 0.5 %. When increasing the cell spacing we observe higher deviations of up to
0.8% for a cell gap of 40mm. For the F'F the simulation generally overestimates
the measurement due to the negative deviation between —0.1 % and —0.8 % and for
the power between 0.3 % and 1.1 %.

5.1.5 Discussion of the analytical model presented in this work

We extended Deb’s model considering the cell and the string interconnection to
calculate the series resistance losses of a solar module. The comparison of Deb’s
analytical series resistance model with 3D numerical FEM simulations shows that
with increasing finger pitch, deviations between both models increase from 10 % to
26 %. We ascribe these discrepancies to different series resistance losses in the busbar
segments, since the current path increases in these parts with increasing finger pitch.
In contrast, the analytical series resistance model derived in this work shows a three
times better agreement with the 3D FEM simulations, showing a maximum deviation
of 8% for the largest simulated finger pitch. This is in agreement with the results in
Ref. [205], where the analytical model of this work is compared to FEM simulations
of solar modules employing five cell interconnection ribbons and cell interconnection
wires.

The analytical model for the simulation of cell to module (CTM) losses considers
the influence of cell as well as module components on the optical, recombination,
and resistive losses. Both, the cell and the module are coupled and an optimization
of the module power requires an adaptation of the cell, e.g. the front metalization.
Hence, the simple analytical model and the direct implementation of measurement
data allow a reduction of the CTM losses, while also considering changes of the cell’s
front metalization. This distinguishes the model from existing CTM models, which
focus on the analysis of CTM losses for fixed cell parameters, considering optical and
resistive losses [118, 206].

We demonstrate that the analytical model enables to describe the experimental
data of PERC that are interconnected and encapsulated into a module. The six
experimental test modules vary by up to 8% in measured Pp,pp, which is higher
than the maximum deviation between model and experiment of 1.1 % for the Ppypp.
With increasing cell spacing the deviations between model and experiment increase
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d) e)

Figure 5.7: Investigated module configurations in this work. For a) we consider std.
CIR and full cells. In b) we employ the same CIR with half cells. In ¢) we apply
white-colored CIR to half cells. In configuration d) and e) we apply CIW instead of CIR,
while employing full cells in d) and half cells in e). In f) we apply the groove-structured
CIR to half cells.

especially in the Jg.. If the cell spacing grows, the fraction of backsheet covered area
in the module increases and measurement uncertainties of the material properties
have a bigger effect. Reflections from the backsheet to the cell may also result in
inhomogeneous illumination conditions, which increases the effect of a distributed
series resistance and thus, affects the F'F'. Nonetheless, all deviations are within the
uncertainty of our module flasher of 4.2 % for Py,pp and thus, the analytical model is
sufficient for the purpose of this work.

5.2 Modeling the module power output for variations of
the front metalization and cell interconnection

In this section we apply the model to simulate the effect of variations of the front
metalization and the cell interconnection on the module power output P, to
determine the optimum parameters for the high power and the high efficiency
module.

We simulate a PERC module consisting of 60 (156 x 156) mm? cells. In all simulations
we employ the parameters listed in Table 4.3 and Table 4.4. For the simulation we
consider six module configurations. Figure 5.7 schematically shows the six state of
the art cell interconnection configurations that we model in this work. For module a)

74



5.2 Modeling the module power output for variations of the front metalization and cell
interconnection

290 1 LJ | ] L L L L L L ¥ ] ¥
285 -
E
g 280 | -
m - -
g
= 275F -
&)
&
° L .
1: 210 maximum |
..
265F o N, =3 i
| Q06 kei = 0.89 |
deoe = dg2s =2 mm
260 [ ' [ ' [ ' [ ' [ ' [ '

60 80 100 120 140 160 180
Finger number N

Figure 5.8: Simulated module power output Pypp as function of the number of front
metal fingers Nt for a varying CIR widths wci,. We simulate module (a) with full pseudo
squared cells featuring three standard CIRs with k.; =0.89. The CIR width varies from
0.6 mm to 2.5mm. The red stars (——) indicate the maximum for each we;,.

we consider the standard cell interconnection ribbons (CIRs) and full cells as our
reference module configuration. In b) we employ the same CIRs with half cells. In
c¢) we apply white colored CIRs to half cells. In configurations d) and e) we apply
cell interconnection wires (CIWs) to full and half cells. In f) we apply the optical
enhanced groove-structured CIRs to half cells.

5.2.1 Influence of the number of front fingers

Figure 5.8 shows the simulated maximum power output Pypp, as a function of the
number of front metal finger N; for a varying CIR width wci,. In all simulations we
consider full cells and a number of N, =3 CIRs with an optical factor k¢ =0.89.
The cell to cell deo. and string to string dsog spacing is 2mm in all directions. For
each number of fingers we vary the width we of the CIRs from 0.6 mm to 2.5 mm.
The red stars in Figure 5.8 indicate the maximum FPyp, for each CIR width.

We observe that the module power enhances with increasing we;, ranging from 0.6 mm
to 2mm. For the range from 2mm to 2.5 mm Pp,p;, starts to decrease with increasing
weir- Narrower CIRs require more front metal fingers to achieve the maximum module
power output. For instance the maximum for weiy = 0.6 mm is at Ny =138 and for
Weir = L.hmm it is at Ny =132. We calculate the highest module power output for
Weir = 2mm and Ny =132.
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Figure 5.9: Simulated module power output Py, as function of the number of cell
interconnectors N;. We simulate module a) with standard cell interconnection ribbons
(CIRs) and an optical factor k. of 0.89. We vary the CIR widths wcj, from 0.6 mm
to 2.5 mm. In each simulation we optimize the number of front metal fingers Nt for a
maximum module power output.

5.2.2 Influence of the number of cell interconnectors

Figure 5.9 shows the maximum module power as a function of the number of the cell
interconnectors N;. We simulate module a) with full cells and standard CIRs with
an optical factor ke =0.89. Most state of the art stringers are limited to five CIRs.
Assuming further progress in technology in the next years we consider up to seven
CIRs in our simulations. We vary the width w;, of the CIR from 0.6 mm to 2.5 mm.
In each simulation we optimize the number of front metal fingers for a maximum
module power output.

In Fig. 5.9 the module power increases with increasing CIR number to reach a
maximum and decrease again. With increasing CIR width it requires less CIRs to
achieve this maximum. For instance, when employing w¢i; = 2.5 mm the maximum
output power is achieved for 3 CIRs, while it requires 6 CIRs for we; =1 mm. Our
simulations show an optimum for a module with 7 CIRs and w¢j; = 0.8 mm with a
power output of 286.2 W.

5.2.3 Module power output for various module configurations
Figure 5.10 shows the module power output for the various module configurations a)

through f) from Fig. 5.7. In each simulation we consider a cell spacing of 2 mm and
vary the number of the cell interconnector (CI)s Ng. We adjust the number of front
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Figure 5.10: Simulated maximum module power output for the various module
configuration in Fig 5.7. The cell spacing is 2 mm. For each module we optimize the CIR
width for a maximum module power output. In all simulations we adjust the number of
front metal fingers for a maximum module power output. The total CI cross sectional
area Aice; equals the number of CI times the individual CI cross section area.

metal fingers and the width of the CIR with regard to a maximum module power
output. The thickness of the CIRs is fixed to 200 pm since thicker CIRs increase
the probability for mechanical issues and cell cracks [207]. Thus, we also limit the
diameter of the cell interconnection wires (CIWs) dciy to 200 pm.

In Fig. 5.10 we report the simulated Pypp, as a function of the total cross section
area Agcci of all cell interconnectors (CIs). This area equals the number of CI times
their individual cross section area and allows to compare the different CI techniques
with each other. Figure 5.10 shows the data for the CIRs width we;, that results in
the highest power output for each module configuration a) through f). For instance,
module a) generates the highest module power with seven CIRs and wei; = 0.8 mm.
Thus, Fig. 5.10 shows the power output for module a) as function of the total cross
section area for 2 to 7 CIRs of widths wci = 0.8 mm. The numbers in Fig. 5.10 for
module a) denote the number of CIRs, which is equal for modules b), ¢), and f). The
numbers for module d) and e) denote the number of CIWs.

According to our simulations, module a) with full cells and standard CIRs generates
the lowest module power output of 286 W. Module b) uses half cells and the standard
CIRs, which increases the Pp,pp by 6 W compared to module a). For module d) with
full cells and CIWs we calculate a gain of 8 W. Combining half cells with white
colored CIRs in module c¢) results in an increase in module power by 10 W. The
highest module power we calculate for modules e) using half cells with CIWs and
f) using half cells with groove-structured CIRs. For both modules we simulate a
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Figure 5.11: Simulated maximum module power output for different interconnection
technologies. The number of front metal fingers is optimized to reach maximum module
power output while the cell spacing is limited to 30 mm. The numbers in parentheses
for module a) indicate the cell to cell and the string to string distances (deac/dsos). All
other modules b) through f) exploit the maximum cell spacing of 30 mm.

maximum module power of 301 W, which is a gain of 15 W compared to reference
module a).

5.2.4 Effect of the cell spacing

Figure 5.11 shows the module power output for the various module configurations a)
through f) as a function of the total cross section area Ay..; with a varying cell spacing.
We vary the gap between the cells deo. and the strings dgos in our simulations and
consider 30 mm as an upper limit, since for larger cell gaps the current enhancement
by the backsheet increases only marginally according to Fig. 4.8. In each simulation
we optimize N, weir and the cell spacing deo. as well as the string spacing dgos for
a maximum power output. The numbers in parentheses for module a) indicate the
cell to cell and the string to string distances (dcac/ds2s). For all other modules b)
through f) the maximum module power is achieved for the maximum cell spacing of
30 mm.

We simulate an increased module power for all modules a) through f). As in Fig 5.10
module a) consisting of full cells featuring the standard CIRs produces the lowest
power output. However, the maximum module power for module a) is 298 W, which
is an increase of 12 W compared to Fig. 5.10. In contrast to Fig. 5.10, module d)
with full cells and CIWs has a lower maximum module power than module b) with
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half cells and CIRs. For modules e) and f) we calculate an equal maximum Py,pp, of
323 W, which is the highest module power for this scenario.

5.2.5 Discussion of the simulated finger number, CI number and CI
width

At the beginning of this work, the state of the art front metal grid at our research
institution employed 88 front metal fingers and 3 busbars. A reduction of the effective
optical finger width allows more fingers for an encapsulated cell compared to a cell in
air. Thus, the optimum for the number of front metal fingers shifts in Fig. 5.8 from
88 to more than 132, depending on the cell interconnector width. Our computations
reveal a broad maximum and a deviation from the optimum finger number has only
a marginal impact on the module power output. For instance, for the simulation of
the module with a CIRs width of 1 mm, a deviation of 10 fingers from the optimum
at 134 fingers results in a loss in module power output of less than 0.1 %. The red
stars indicate that the number of fingers for a maximum module power is slightly
different for the various cell interconnection ribbon widths.

Figure 5.9 shows that increasing the number and reducing the width of the Cls
increases the module power output. Increasing the number of Cls reduces the current
path in the fingers. According to Eq. 5.13 and Eq. 5.22 the resistive power loss in
the finger scales with the length of the finger to the power of 3. Thus, increasing
the number of Cls significantly reduces the series resistance losses and improves the
module power output.

Reducing the series resistance losses in the front metal fingers allows to reduce
the number of front metal fingers, which reduces the silver consumption and the
recombination below the metal contacts.

Figure 5.10 shows that employing full cells and 10 to 70 CIWs in module d) increases
the module power by about 6 W compared to the reference module a) with 3 to 7
CIRs. Due to the mesh of CIWs the current path in the fingers is reduced. The
round shape of the CIWs decreases their geometrical width in a module by 33 %.

Utilizing half cells reduces series resistance losses since the cell current scales linearly
with the cell area and resistive power losses depend on the current squared (see
Eq. 5.1, p. 61) [208, 209]. This results in a similar increase in Py,pp, for module b)
and module d) of about 6 W.

Module e) employing cell interconnection wires with half cells results in a module
power output of about 301 W with 18 CIWs. The same Py, we obtain for the
module with half cells and groove-structured CIRs. This shows that reducing the
effective optical width due to the groove-structured CIRs and employing half cells to
reduce series resistance losses leads to similar module powers as with CIWs.

Fig. 5.10 shows that the current enhancement by the backsheet increases the module
power by approximately 12 W for module a). The increased cell to cell spacing
increases the CI length and internal reflections by the backsheet. This increases the
resistive power losses, which results in a larger total cell interconnector cross section
area for all modules in Fig. 5.10.
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Figure 5.12: Photography of the 294.8 W high power module.

In contrast to Fig. 5.10 CIWs in module d) are inferior to the half cells with CIRs in
modules b) and c¢). Due to the threshold of 200 pm for the wire diameter, the CIWs
can not compensate the enhanced module current.

Combining CIWs or the groove-structured CIRs and half cells delivers the highest
module performance with a maximum power output of about 323 W. Both approaches,
utilizing the dense mesh of CIWs or improving the optics with the groove-structured
CIRs, are suitable to enhance the module power output.

5.3 Application of the analytical model to full-sized
modules

In this section we apply the analytical model to optimize the front metalization,
cell interconnection and cell spacing of a 60 full cell PERC module. The PV
industry currently pursues two approaches: (i) Manufacturing solar modules with a
maximum power output since the price of a solar module is sold per Watt peak. (ii)
Manufacturing solar modules with a maximum module efficiency, since the levelized
cost of electricity (LCOE) scale with the size of the PV-system [210]. We consider
both approaches and build a high power module as well as a high efficiency module
in the following. Our production equipment constrains both modules to a maximum
size of (175 x 105) cm? and the application of 4 CIRs with a width ranging from
0.8 mm to 2.5 mm and a thickness of 200 pm.

5.3.1 Building a high power module

We produce a batch of PERCs according to the baseline process in section 3.1 and
vary the front metalization in order to produce a high power module. We adjust
the number of front metal fingers and the number of busbars. Instead of 3 busbars
and 88 front metal fingers the cells have 4 busbars and 120 fingers as a result of
the simulations with the analytical model. For the module process we employ 60
PERC and halve the cells with a laser process. We apply the white colored cell
interconnection ribbons to the busbars for the cell interconnection and encapsulate
the cells with the EVAyy with an enhanced UV transparency. We increase the
cell spacing of the module to increase the amount of internal reflected light by the
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Figure 5.13: Breakdown of the potential gain mechanisms of the 295 W module. We
use green bars for optical, red bars for recombination and blue bars for resistive module
power gains.

backsheet. Table 5.2 gives an overview of the optimized cell and module parameters
compared to the baseline process.

Figure 5.12 shows a photography of the high power module. We measure a module
power of 294.8 W, which is a cell to module gain of 5.1 W.

5.3.2 Breakdown of the cell to module losses

We perform a synergistic gain analysis [211, 212] with the analytical model to
determine the limiting parameters that restrict a further improved module power
output. Figure 5.13 shows the simulation results of this synergistic gain analysis.
The green bars denote optical, red bars recombination and blue bars resistive power
gains.

We start with the simulation of the experimental test module from section 5.3.1. It
produces an output power of 295.2 W and is represented by the left black bar in
Fig. 5.13. The module suffers from various optical, recombination, and resistive losses.
This is our reference simulation. Then we disable one loss channel at a time in the
simulation and calculate the corresponding module power enhancement. The gain in
power compared to the reference is then added as a new bar in Fig. 5.13. For the next
step this loss mechanism is enabled again and another loss mechanism is disabled.
As an example, avoiding the extrinsic contribution of the base recombination and the
rear side Jyp, in the simulation, enhances the simulated power of the reference case
by the length of the first red bar (7.9 W) in Fig. 5.13. For the next bar in Fig. 5.13
we re-enable these base and rear recombination losses and disable the reflection and
absorption losses in the front glass cover.
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_

Figure 5.14: Photography of the high efficiency module.

k

Following this procedure we stepwise disable the various loss mechanisms and sort
them by the size of their gains. Accumulating all individual power gains results in a
maximum module power of 350.1 W. This power corresponds to a module efficiency
of 20.2 % instead of 17.1 % for the reference case. Note that we have not changed the
cell spacing in the simulation and hence, the module area is fixed. If we disable all
power loss mechanisms simultaneously we obtain a maximum module power output
of 374.1 W due to additional synergistic effects.

5.3.3 Building a high efficiency module

We produce a batch of PERCs according to the baseline process in section 3.1 and
vary the front metalization in order to produce a high efficiency module. Instead of
3 busbars and 88 front metal fingers the cells have 4 busbars and 104 fingers. We
apply a half cell grid for the screen printing of the front and rear metalization. After
the contact firing we halve the cells in a laser process. The average cell efficiency of
the 120 half cells is 20.8 %.

For the module process we apply groove-structured cell interconnection ribbons
(CIRs) for the cell interconnection. We decrease the cell to cell spacing to 1.5 mm
and the string to string distance to 1 mm to reduce the module’s aperture area.
Additionally, we move the string interconnection ribbons at the end of each string
below the last cell to increase the fraction of active cell area in the module. Further,
we apply the EVAyy with an enhanced UV transparency. In the cell gaps between
the two layers of EVA we place the groove-structured foil on top of the rear EVA.
Figure 5.14 shows a photography of the high efficiency module.

Table 5.2 gives an overview of the adjusted cell and module parameters for the high
power module and the high efficiency module compared to the standard module.
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Table 5.2: Changes in cell and module design after optimization according to the

analytical model.

changes standard module high power mod- high  efficiency
ule module

number of fingers 88 120 104

number of CIR 3 4 4

cell area

cell to cell dis-
tance

string to string
distance

Encapsulation
CIR

cell gap reflector

(156 x 156) mm?

3mm

3 mm

EVA
std. CIR
std. backsheet

(78 x 156) mm?

4.7 mm

12.8 mm

EVAyvy
colored
IMR

CIR

(78 x 156) mm?

1.5mm

1mm

EVAyvy
structured CIR

structured foil

We measure a module power output of 303 W, which corresponds to a CTM factor
of 1 and a solar module efficiency of 20.2 %. Table 5.3 lists all measured cell and
module I (V') characteristics. The rows two to four also show simulation results to
analyze the CTM losses. Row two shows the simulated module without any optical
and resistive losses, representing the module I(V') characteristic of all interconnected
cells. In row three we take only resistive losses due to the cell interconnection into
account and in row four we also include optical losses in the simulation.

Table 5.3: The first and the last row show the measured cell and module I(V)
characteristics. Rows in between show the simulated I(V') characteristics to analyze the
CTM losses.

Device Voc I FF Propp 7
measured cells 79.4%  4.809 79.6° 303* 20.8¢
cells interconnected (no losses) 79.4 4.78 79.9 303

cells interconnected (el. losses) 79.4 4.78 78.7 299

cells interconnected (opt.&el. losses)  79.4 4.86 78.7 304
measured module 79.1*%  4.86* 79.1*  303*  20.2

*independently confirmed by TUV Rheinland, Cologne, Germany.

5.3.4 Discussion of the application of the analytical model to full-sized
modules

We apply the analytical model to improve the cell’s front metalization as well as
the cell interconnection to produce a high power module with a power output of
295 W. The gain analysis reveals that the biggest potential for an improved module
power output is a reduction of the recombination in the base and the rear side. For
the module components the largest improvement is from reducing the reflection and
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absorption in the glass. This is in agreement with results from Haedrich et al. [118].
The series resistance losses of 2.8 W (blue bar, emitter resist.) play only a minor role
due to the improved front metalization. The total internal reflection of light within
the module allows to apply more fingers to the cell without significantly reducing
the module power due to optical shading.

With the high efficiency module we demonstrate a record in PERC module efficiency
of 20.2% in 2017 and an independently confirmed module power of 303 W. This
improves the previous record efficiency for a 60-cell PERC module by 0.7 % [23].
Additionally, we obtain a CTM factor of 1, i.e. the sum of the cell powers is equal to
the module power in Table 5.3. Compared to the standard and the high power module,
we reduced the cell spacing, which reduced the module area by 2.6 % compared to a
standard module. The smaller cell spacing reduces the module’s current and requires
less front metal fingers, which in turn reduces recombination losses. Further, the
smaller cell gaps decrease series resistance losses due to shorter cell interconnection
ribbons. The application of the groove-structured CIR enables to use wider CIRs,
which results in a F'F loss of only 0.5 %,1,s compared to the average F'I' of the cells
in Table 5.3.

The major driving force for the improvement in module efficiency is the application
of the groove-structured cell interconnection ribbon and the groove-structured foil in
the cell gaps for the high efficiency module. This further decreases the optical losses
and even overcompensates the losses due to absorption in the encapsulation, which
results in a current gain of 60 mA compared to the cell’s average. In Holst et al.
[130] we also demonstrated in simulations and experiments that this will improve
the annual yield of the module.
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CHAPTER 6

Accelerated aging with ultraviolet
light

In this chapter we investigate the ultraviolet (UV) radiation hardness of solar modules
featuring solar cells with dielectric passivation layers. At first, we determine the opti-
cal characteristics of the dielectric passivation layers and the module materials. Then
we expose experimental test modules employing different encapsulation polymers
and containing solar cells with varying passivation layers to UV light and measure
their I(V') characteristics. In the end we present a model to describe the degradation
of the solar module’s I(V') characteristic after the UV aging test.
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Figure 6.1: Extracted refractive index n and extinction coefficient k from the VASE
measurement of the FZ samples with varying SiN,, layer.

6.1 Measurement results of test samples and modules

6.1.1 Results of the ellipsometer measurements on planar test samples
with varying passivation layer

We fit the ¥ and A data from the variable angle spectroscopic ellispometry measure-
ment of the various SiN, layers on the FZ samples. For the fit we chose a Tauc-Lorenz
oscillator model [213]. As initial fitting parameter for the thickness we adopt the
values from the He:Ne laser ellipsometer measurements.

Figure 6.1 (a) shows the extracted refractive index n and Fig. 6.1 (b) shows the
extinction coefficient k for the various SiN, samples. For all samples k decreases with
increasing wavelength. Further, the extinction coefficient increases with increasing
refractive index. The ellipsometer is sensitive to k values above 1 x 1075, Sample
SiN7 g9 shows the lowest k£ values that approach 0 for a wavelength of 326 nm. For
the other samples k approaches zero at 358 nm for the sample SiNs g7, 571 nm for
the sample SiNs o9, and 684 nm for the sample SiNs 53.
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Figure 6.2: Transmittance of the four encapsulation materials laminated between two
glasses and the spectral irradiance Fyy of the UVASpot UV light source. The lines are
a guide to the eye. Each A. value in the parentheses denotes the cut-off wavelength at a
transmittance equal to 10 % [163].

6.1.2 Results of the transmittance measurement of test samples with
varying encapsulation materials

Figure 6.2 shows the measured transmittance of the glass-polymer-glass samples with
the different encapsulation materials. The sample with the silicone with enhanced UV
transparency SlLyy shows the highest transmittance in the UV wavelength range,
starting with the transition from absorbing to transmitting at 300 nm. We define
the cut-off wavelength A, as the longest wavelength in the UV range (below 400 nm),
where the transmittance is equal to 10 % [163]. For SILyy we measure a A =312 nm.
The transmittance of the EVA with enhanced UV transparency EVAyy is lower
with a A\c =320 nm. For the samples EVA and SIL we observe cut-off wavelengths of
Ac =364 nm and A, =368 nm, respectively.

Figure 6.2 also shows the measured spectral irradiance E\, of the UVAspot lamps
for the accelerated UV aging test (see section 3.5, pp. 42), indicating that the sample
SILyy is transparent for most photons of the spectrum. In the samples EVA and
SIL a significant amount of UV light is absorbed in the encapsulation materials.
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Figure 6.3: Doping concentration as a function of the depth from the surface measured
with electrochemical capacitance voltage measurements. The black data (—e—) is for the
POCI; diffusion of the PERC emitter. The red (—#-) and blue (—e—) function are for
the BFy and P implanted PERT cells, reprinted with permission of Kiefer [157].

6.1.3 Results of the electrochemical capacitance voltage measurement

Electrochemical capacitance voltage (ECV) measurement is a technique to determine
the doping profile within a semiconductor. For further details regarding ECV profiling
we refer to Ref. [170]. Figure 6.3 shows the doping concentration Ny as a function of
the depth d from the surface for the two ion implanted PERT cells, reprinted with
permission from Kiefer [157]. As a comparison Fig. 6.3 also shows the phosphorous
emitter profile of the PERC from the POCI3 diffusion. Figure 6.3 shows, that the
doping concentration of the phosphorous emitter of the PERC has a high surface
concentration of 2.2 x 102* cm™3. In comparison the surface concentration for the
boron and phosphorous implanted sides of the PERT cells is about one order of
magnitude lower.
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6.1.4 Results of the current-voltage measurement of test modules

Table 6.1 summarizes the open circuit voltage V.., short circuit current Iy, and
power output Py, from the I(V) measurements of the test modules for the UV
aging experiments.

Table 6.1: PERC test modules employing the reference refractive index of n=2.07
and different materials for the encapsulation polymer (1-4), various refractive indexes n
and thicknesses tgin for the front side SiN, layer with EVAyy (5-8), and PERT cell test
modules with EVAyy prior UV exposure (9-10). The characteristic I(V') parameters
are extracted from illuminated I(V') measurements.

row test module Voc Isc Prpp
1 M-Ref 1.296 4.65 4.60
2 M-EVAyvy 1.304 4.73 4.70
3 M-SIL 1.300 4.47 4.40
4 M-SILyv 1.306 4.65 4.61
) M-SiNy 53 0.646 9.20 4.16
6 M-SiNjs o9 0.649 9.44 4.30
7 M-SiN3 o7 0.650 9.53 4.37
8 M-SiNj g9 0.645 9.44 4.32
9 M-PERTg;N 0.657 9.746 4.70
10 M-PERT a10 0.658 10.085 4.83

For the variations of the encapsulation material in rows 1 through 4 we employ two
half cells in one test module, while for the test modules in rows 5 through 10 we
employ full cells. Thus, the current for the test modules in rows 1 through 4 is about
half the current compared to the test modules in rows 5 through 10. Due to the
reduced series resistance losses for half cells, the Py,p;, of these test modules is higher
than for the full cell test modules.

Applying EVA instead of silicone results in higher module currents. We observe
an increase in Iy for the test modules M-SILyy and M-EVAyy employing the UV
transparent silicone and EVA compared to the test modules M-SIL and M-Ref with
the UV blocking silicone and EVA.

For the test modules with PERC and varying SiN, layer, test module M-SiNs o7
with the reference SiN, of n=2.07 shows the highest Py, as well as I and V..
Increasing the refractive index to 2.29 and 2.53 results in a deterioration of all I(V)
parameters with increasing n. Reducing n to 1.99 also results in a deterioration of
all I(V') parameters.

We measure the highest module powers for the test modules with bifacial PERT
cells. Here, we observe a strong increase in Iy of about 6 % when comparing the test
modules M-PERTg;n and M-SiNs g7 with equal front glass, encapsulation material
and SiN, layer at the illuminated side. The deviation in P, of both test modules
with PERT cells is 3 %, which is equal to the measured bifacial factor of 0.97 for the
cells.
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6.2 UV degradation of solar modules featuring passivated emitter and rear cells

6.1.5 Discussion of optical and current-voltage measurement results

The encapsulation materials with enhanced UV transparency result in higher test
module power outputs due to an increase in Iy of 2% to 4%. Applying EVA
or silicone with similar A\, as for the test modules M-Ref and M-SIL, the EVA
outperforms the silicone due to the lower refractive index of the silicone. The
refractive index of silicone at 633 nm is 1.42 and the refractive index of EVA is 1.49
[198]. The larger deviation in n between silicone and glass (n=1.51) increases the
reflection at the glass/polymer interface, which reduces the I, of the solar module
(see section 2.2.1, pp. 6).

For the modules with cells of varying SiN, passivation layer the Py, also decreases
with increasing refractive index from 2.07 to 2.53, although according to the theory
the optimal n should be around 2.42 for the Si/EVA interface (see section 2.2.1,
pp. 6). This has two reasons: (i) When increasing the refractive index the fraction of
silicon in the SiN, increases [53], which increases the absorption of the SiN, layer
(see Fig 6.1 (b)). (ii) The surface texture of the solar cells increases the light trapping
compared to a solar cell with a planar surface. However, this also increases the surface
area of the solar cell, which increases the surface recombination and deteriorates
the cell’s I(V') characteristics. Hence, for textured solar cells the passivation quality
of the SiN, layer is of greater importance than the anti-reflection properties. Both
effects shift the optimum refractive index to a SiN, layer with n=2.07.

For the two test modules with PERT cells the deviation in Py, is only 3 %, although
in test module M-PERTg;y the SiN,/ nt-type emitter interface and in M-PERT 10
the AlO,/pT-type emitter interface faces the module’s illuminated side. This is due
to the high bifacial factor of this cell type of up to 0.99 as reported by Kiefer et al.
[158]. Thus, they are well suited for investigations of the UV radiation hardness of
the SiN, and AlO, surface passivation.

The increase in Iy, by 6 % for the test modules with PERT cells compared to the
test modules with PERC we ascribe to the better collection efficiency of the PERT
cells compared to PERC and the improved optics of the PERT cell’s rear side. Here,
the SiN,/EVA interface of the PERT cells reflects light more efficiently than the
SiN, /Al interface of the PERC [214]. Light reflected at the interface of the cell’s
rear side is reflected back into the cell and contributes to the current generation.

6.2 UV degradation of solar modules featuring
passivated emitter and rear cells

6.2.1 Results of UV degradation of PERC test modules with varying
encapsulation material

Figure 6.4 shows the relative change of the initial Pypp, s, and Vi during UV
exposure for the test modules with varying encapsulation material and with PERC
employing the reference SiN, with n=2.07. For the accelerated UV aging test we
utilize the UVASpot lamps (see section 3.5, pp. 42). We measure a power loss of
6 % for the test module M-SILyy and 4 % for the test module M-EVAyy after a UV
dose of 497 kW hm—2. Both test modules employ the encapsulation polymers with
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Figure 6.4: Relative change in module power Py, short circuit current /s, and open
circuit voltage Vi for the four test modules with PERCs and varying encapsulation
polymer during UV exposure. All PERC have the reference SiN, with a refractive index
of 2.07.

enhanced UV transparency. In contrast, the two test modules with the UV absorbing
polymers show a smaller degradation of 2% for the test module M-SIL and 1% for
the test module M-Ref.

We observe a reduction of less than 0.6 % in Iy for the test module M-Ref within the
full test period of the UV aging experiment. The test modules M-SIL and M-EVAyy
show a similar degradation in Iy of 1.4 %. For test module M-SILyy we observe the
highest current loss with a decrease in I of 4%

We also measure a loss in V. for all test modules after the UV aging experiment.
The lowest degradation in V. of 0.8 % we measure for the test modules M-Ref and
M-SIL with the UV absorbing encapsulation. The highest loss of 2 % we observe for
the test modules M-EVAyy and M-SILyy, employing the encapsulation materials
with enhanced UV transparency.
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Figure 6.5: Relative change in module power Py, short circuit current I;. and open
circuit voltage Vo for the four test modules with PERCs and varying SiN, coatings
during UV exposure. All test modules have the EVAyy with enhanced UV transparency

6.2.2 Results of UV degradation of PERC test modules with varying
SiN, refractive index

Figure 6.5 shows the relative degradation of Pupp, Isc, and Ve during UV exposure
for the test modules comprising of PERCs with varying SiN, passivation layer. For
the accelerated UV aging test we utilize the UVASpot lamps (see section 3.5, pp. 42).
Similarly to the test modules with varying encapsulation materials, the test module
featuring a PERC with a SiN, layer with n=2.07 and the EVAyy with enhanced
UV transparency degrades by 4% in Pppp after a UV dose of 497 kW hm—2. With
decreasing SiN, refractive index, the degradation in module power increases. The
highest degradation in P, we measure for the test module M-SiNy g9 with a SiN,
layer of n=1.99, which degrades by 6 % in Pypp. In contrast, for the test modules
M-SiNy 29 and M-SiNj 53 with a SiN, layer of n>2.29, we observe a deterioration in
Pipp of less than 1% within the full test period of the UV aging experiment.

We measure a similar change after the UV aging experiment for the test module’s
I and V,.. For both, the loss due to UV degradation increases with decreasing n.
The test modules with a SiN, of n <2.29 show a degradation of up to 1.6 % in I
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and up to 3% in V.. In contrast, we observe a degradation of less than 0.8 % for
the test modules with n > 2.29.

6.2.3 Discussion of UV aging experiments of PERC test modules

Regarding the UV aging experiments, we observe a correlation between the absorption
of high energetic photons and the degradation of the cell’s I(V) parameters. The
test modules with PERC and encapsulation polymers with A; > 364 nm degrade less
in the module power than the test modules with the UV transparent encapsulation
materials with A, <320nm. Similarly, increasing the refractive index of the PERC’s
SiN,, layer increases the absorption in the short wavelength range, which also improves
the UV stability. The higher the absorption of the UV light in the encapsulation
material and SiN,, passivation layer, the less the test modules degrade in Pyyp.

Thus, the initial advantage in transmittance of the UV transparent encapsulation
polymers vanishes during the UV aging. According to the measurement results in
Table 6.1 the test module M-EVAyy has a 1.7% higher I, than the test module
M-Ref under standard testing conditions (STC). Considering a spectral irradiance
for a location in Potsdam (Germany), this advantage even increases to 1.9 % due to
a higher fraction of UV light compared to the illumination spectrum for the I(V')
measurement according to the STC [131]. We determine the break-even point, when
the module power of the test module M-EVAyy is equal to the module power of the
test module M-Ref due to UV aging. After a UV dose of 342kW hm~2 the module
power of both test modules is equal, which corresponds to about 10 years of outdoor
exposure in Potsdam [185].

In the literature, we find two possible reasons for the degradation under UV light: (i)
due to a yellowing of the encapsulation polymer [132] and (ii) a degradation of the
surface passivation [148]. There are various types of UV blocking agents mixed into
the encapsulation polymer and some are known to decompose during UV exposure.
For the EVA this decomposition induces the formation of chromophores, which results
in a yellowing or browning effect [132, 215]. This yellowing reduces the transparency
of the polymer and hence, primarily affects the I . of the test modules. However, we
observe no reduction in the transmittance of the glass-polymer-glass samples and
the loss in I for the test modules explains only partly their degradation in Pppp.
Recalling the Shockley equation [96], the V;. is given by

Voe= "Ly (" + 1) | (6.1)

q Jo

where Jy is the saturation current density of the test module. A loss of 1.4 % in Iy
for the test module M-EVAyy results in a V. reduction of 0.05 % considering that
Jo is constant. Consequently, we explain the measured loss of 2.9 % in V. by an
increase in charge carrier recombination that manifests in an increase in Jy. Applying
Eq. 6.1 we find an increase in Jy by a factor of 2 for the test module M-EVAyy;.
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6.3 Analytical modeling of UV degradation

We assume that the V. reduction and the increased Jy of the test modules with
PERC is related to an increased surface recombination, since most of the UV light is
absorbed close to the cell’s front surface. Bulk effects due to light induced degradation
are excluded by stabilizing the cells prior UV exposure [180]. We assume that a
passivation by a fixed surface charge can be neglected for an emitter with such a high
surface doping concentration [216]. Blumenstock et al. [147] proposed the hypotheses
that light with a wavelength smaller than a critical value may reach the SiN,/Si
interface and affect the surface passivation, e.g. by bond breaking.

We employ the ray tracer Daidalos to simulate a complete test module with the
standard EVA as well as the EVAyy and determine the number of photons Npp(A)
that reach the SiN, /Si interface for the various SiN, coatings. For the simulation we
employ the complex refractive index of the various SiN, coatings from Fig. 6.1. The
optical parameters for the glass ARC, glass, encapsulation material and backsheet we
take from Ref. [198]. We weight the simulated number of photons with the spectral
irradiance of the UV light source and integrate the bond breaking photon flux @y,
reaching the SiN,/Si interface as

Ap
Non(A) By (A
qsb:/ &’h( ) hc( Jax. (6.2)
total by
290

Here, Nigta is the total number of ray-traced photons and the upper integration
boundary Ap is the wavelength of photons with energy F > Fj,, where Ej, is a
threshold bond energy to break Si-H bonds.

When a photon with energy E > Fj, reaches the interface the number of interactions
Ngr with the Si-H bonds is related to

N = 0w NpDy. (6.3)

Here, Np denotes the number of passivated bonds that could break and cause an
interface state and o, is the capture cross section area coefficient of a passivated
bond for energies E > Ey. Thus, for an infinitesimal time step d¢ the number of
interface states changes with

dNp

S8R Npdy (L), 4
T ouww NpPy(t) (6.4)

Solving the differential equation we obtain
NP = NPO exp [_UuV@bt] 5 (65)

where the integration constant Npg represents the number of passivated and breakable
bonds at ty, =0. Assuming that not all bonds are initially passivated, the total
number of bonds is

Nt = Np + Nyp, (66)
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where Nyxp denotes the number of not passivated or dangling bonds prior UV exposure.
During the UV exposure the number of dangling bonds increases with

NNP = NT — NPO exp [—qu@bt] . (67)

We suppose that a single dangling bond acts like a single defect state in the midgap and
hence, can be described in terms of the SRH recombination theory (see section 2.2.2,
pp. 9). When integrating the density of defect states Dy, over the band gap energy
E,; we obtain the number of defects Nj;, which we consider to correspond to Nyp.
Recalling the expression for the surface saturation current density Jos (see 2.2.2
pp. 9) we obtain

E
£ 2 2 2

Jos = / 0™ DiyvinopdE = ¢"E Nxpomop = ¢ So, (6.8)
Ng Ng Ng

where Sy is the surface recombination velocity (SRV) (see Eq. 2.14, p. 10).

On substitution of Eq. 6.7 and Eq. 6.8 in Eq. 6.1, we find a relation for the V. and
the bond breaking photon flux &y,

Voc = ka In Jac

— +1], (6.9)
q Joi + ¢ vmnop (N1 — Npo exp [—ouPpt])

where Jy; is the initial diode saturation current density prior UV degradation. Jg
and Jo; we extract from the (V') measurements prior UV exposure. This Jy; consists
of a contribution of the surface Jys and all remaining saturation current densities
Jorem of the cell

JOi = JOrem + JOS- (610)

We assume that the UV light does not affect Jyrem, since the emitter absorbs all
photons in the UV wavelength range. The Jyg increases according to Eq. 6.8.

We utilize Eq. 6.9 to model the V. during the UV aging experiments. We extract ng
from the emitter doping profiles. For o}, we employ 7.5 x 107 cm? from Refs. [76,
77], who achieved a good agreement between simulated and measured Jys values for
various surface recombination velocities. For the determination of the bond breaking
photon flux @, we employ the ray tracing results and Eq. 6.2, where the upper
bound for the integral Ay, is a free fit parameter. The parameters o, and Np( are
constrained fit parameters in Eq. 6.9.

For t =0 we rewrite the denominator of Eq. 6.9 to:
n2
Joi + qnflvthap (N1 — Npg) = Joi + Adpi. (6.11)
S
During the fit we constrain Npg such that 3fA cm™2 > AJg > 0fA cm 2.

In the limit of ¢, as ¢ approaches infinity and considering a bond breaking photon
flux &}, the number of not passivated bonds is equal to the number of total bonds in
Eq. 6.7
lim NNP = NT (612)
t—o0
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Figure 6.6: Sum of squared residuals of a least-square fit with Equation 6.9 with
Ouv = 1x1072% cm? to the data of the M-SiNg o7 for various Ap. The best fit is achieved
when the sum of squared residuals has a minimum.

and the surface saturation current density approaches a maximum surface recombi-
nation velocity Somax in Eq. 6.8

n? n?
lim Jos = ¢— N1vehop = ¢— Somax- (6.13)
t—o0 Ng Ng
The recombination of charge carriers is limited by the thermal velocity. Hence, Sy
in Eq. 6.8 approaches a maximum SRV Sp max, which we set equal to the thermal
velocity vt,. This also limits Nyp and thus, Nt in Eq. 6.9.

We fit Eq. 6.9 to the measured open circuit voltages in two steps. In the first step,
we constrain oyy, since in Eq. 6.9 oy, and @, may countervail. According to Barbé
et al. [217] oy varies for the considered wavelength range between 1x10~20
1x1072%cm?. We create a list with oy, varying from 1x1072° cm? and 1x1072% cm
to fit Eq. 6.9 with a fixed oy from this list.

cm? and
2

The second step is to find a Ay, where Eq. 6.9 fits best to the experimental data of
each test module. We perform a least-square fit with a fixed oy, and vary Ay from
300 nm to 1000 nm in each fit.

For the evaluation of the goodness of the fit we assess the sum of squared resid-
uals (SSR). Figure 6.6 shows the SSR of a least-square fit with Eq. 6.9 and
ouy = 1x1072 cm? to the measurement data of test module M-SiNs 7. The best fit
is achieved when the SSR has a minimum, which is at A\ =352 nm for the data in
Fig. 6.6. In the same manner we fit Eq. 6.9 to the experimental data of all samples
and determine the corresponding Ap.
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Figure 6.7: Obtained A\, by fitting all measurement data with Equation 6.9 for various
0uv- The colorbar indicates the standard deviation in A, for the various experimental
data (e.g. fitting experimental data with 0., =1x10722 cm? results in A\, =323 nm for

the module with SiN, n=2.07 and A, =319nm for the module with SiN, n=2.29. The

smallest deviation in \p is obtained for o, =9x1072% cm?.

Further, we perform this fit procedure for all oy in the list. Thus, we obtain different
\p for each test module and oy,. For instance, choosing o, = 1x10722 cm? results
in A\p, =323 nm for the test module with a SiN, of n=2.07 and A, =319 nm for the
test module with a SiN, of n=2.29.

We expect that a certain energy is necessary to affect the surface passivation and
thus, Ay is similar for all samples. Further, we consider oy to be equal for all samples.
For the evaluation of the best A, we determine an average A, and the corresponding
standard deviation, for all oy, in the list. Figure 6.7 shows the average Ay, for the fit
of Eq. 6.9 to the experimental data of all test modules for the elements in the oy
list. The color bar indicates the standard deviation of \p.

Our model fits best to the experimental data for oy, =9x 10724 cm? and A\, =(353 £ 8) nm.
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Figure 6.8: Measured V. during UV exposure for the various SiN, coatings and UV
transparent EVA. Additionally, the sample with UV absorbing EVA M-Ref is shown.
The lines indicate the fit according to Equation 6.9

Figure 6.8 shows the measured and modeled V. data for the various EVA and SiN,
samples. The symbols indicate the measurement data denoted as Viem and lines
indicate the corresponding fits according to Eq. 6.9. For all fits we utilize a capture
cross section coefficient of oyy =9 x 10724 cm? and A\, =353 nm. Measurement and
model are in good agreement and the maximum relative deviation (AVye/Voem) is
less than 0.5 %.

The A, of 353 nm is equivalent to a photon energy of 3.5¢eV, which is in accordance
with the bond energy of Si-H that is in the range from 3.34¢V to 3.5eV [143, 217,
218, 219, 220]. Hence, we suppose that the UV radiation induces the breaking of Si-H
bonds, which results in dangling bonds at the SiN,/n*-type emitter interface. These
dangling bonds increase the cell’s surface recombination, which consequently results
in a degradation of the open circuit voltage and eventually reduces the maximum
power output of the solar module.
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Figure 6.9: Module power Py, short circuit current density Js. and open circuit
voltage V,. for the two test modules with PERT cells during UV illumination. In test
module M-PERT z10 the pT-type emitter side with the AlO, passivation and in test
module M-PERTg;x the n't-type BSF side with the SiN,, passivation faces the UV light.
The dashed lines indicate a fit according to Eq. 6.9.

6.4 UV aging of test modules featuring PERT cells

The high bifacial factor of 0.97 of the PERT cells enables to compare the effect of UV
radiation on solar modules with equal I(V') characteristics and different passivation
layers facing the UV lamps in the accelerated aging test. In M-PERTg;n the SiN,/n*-
type Si interface and in M-PERT z10 the AlO,/p*-type Si interface faces the UV
lamps.

6.4.1 Results of UV aging experiments

Figure 6.9 shows the module power output Pp,pp of the test modules M-PERTsin
and M-PERT 40 as function of the UV dose D,,. For the accelerated UV aging test
we utilize the UVASpot lamps (see section 3.5, pp. 42). Test module M-PERT »10
shows no significant degradation within the measurement accuracy after a UV dose
Dy of 598 kW hm™2. In contrast, the test module M-PERTg;y degrades during the
UV illumination and we measure a decrease in Py, of 15%. Note that the module
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Figure 6.10: External quantum efficiency for the two test modules with PERT cells
before and after 598 kW hm~—2 UV exposure.

power of both test modules increases for a Dy, from 0kW hm™2 to 8 kW hm~—2. For
test module M-PERT Aj0 we observe a gain in module power of 0.15 W, while for
test module M-PERTg;n the gain is only 0.04 W.

Figure 6.9 also shows the short circuit current density Js. and the open circuit voltage
Ve as function of the UV dose for both test modules. Test module M-PERT 510
shows no degradation in Jg.. For test module M-PERTg;n we observe a loss in Jg. of
15 % after the full test period.

The Vo of test module M-PERT 510 increases by 6 mV (1 %), while the V5 of test
module M-PERTg;n decreases by 28 mV (4 %) within the full test period. The initial
increase in V. of test module M-PERT z10 for a Dy, from 0kWhm™2 to 8 kW hm ™2
correlates with the measured increase in Pppp. The dashed lines indicate a fit
according to Eq. 6.9.

Figure 6.10 shows the measured external quantum efficiency (EQE) for both test
modules before and after UV exposure. We observe that the EQE degradation of
test module M-PERTg;y is particularly strong in the spectral range from 300 nm
to 400 nm. The degradation of the EQE corresponds to the degradation in Jg. in
Fig. 6.9. We exclude a degradation of the encapsulant, since the EQE of test module
M-PERT z10 employing the same encapsulation material shows no reduction after
598 kW hm~2 UV radiance.
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6.5 Numerical modeling the UV degradation of the external quantum efficiency

6.4.2 Discussion of UV aging experiments

Due to their high bifacial factor, the PERT cells enable to compare the UV aging of
AlO, and SiN, passivation layers for cells from the same production process and with
similar I(V') characteristics. Exposing test modules with PERT cells to UV light
reveals that the AlO,/pT-type emitter interface is stable, while the SiN,/n*-type
BSF interface degrades by 15 % in Pypp. The EQE of test module M-PERT 510 has
not significantly changed indicating that the cell and the passivation is not affected
by UV light. This further endorses that the degradation of test module M-PERTg;N
is not due to a yellowing effect of the encapsulant, since both test modules employ
the same encapsulation materials. For test module M-PERT 410 we measure a gain
in V. of 4mV at a Dy, of 16 kWhm™?2 increasing to 6 mV at a Dy, of 598 kW hm™2.
This might be related to an increase in fixed charge Q¢ of the AlO, layer under
illumination as it was observed in several studies [221, 222, 223, 224, 225, 226].

We find that the EQE degradation of test module M-PERTg;y is particularly strong
in the spectral range from 300 nm to 400 nm. This supports the hypotheses of an
increased surface recombination for test module M-PERTgin due to UV degradation.
The penetration depth of light below 400 nm is only a few nanometers in silicon. For
instance more than 99 % of the light with wavelengths below 400 nm are absorbed
within the first 500nm of silicon [227]. Further, about 40% of the light with
wavelengths below 400 nm are absorbed in a 100nm SiN, layer with n=2.53 and
will not reach the SiN,/Si interface (see Fig. 6.1, pp. 86). Our hypotheses is that
the UV aging manifests as a reduction of collected charge carriers close to the cell’s
surface due to a deterioration of the SiN, surface passivation. This also reduces the
EQE, which depends on the collection efficiency according to Eq. 3.11 [191].

6.5 Numerical modeling the UV degradation of the
external quantum efficiency

We perform numerical simulations to further support the hypotheses of an increasing
surface recombination due to UV radiation. We simulate the external quantum
efficiency (EQE) of test module M-PERTg;N prior and after UV exposure with
Sentaurus Device [228] using the most recent device models and silicon parameters
[229, 230, 231]. For the charge carrier mobility we apply the model of Klaassen
[232], for the radiative recombination the model of Nguyen et al. [233], for the Auger
recombination the model of Richter et al. [234], and for the band gap narrowing the
model of Schenk [235]. We employ our ray tracer Daidalos including all optical effects
of the glass, EVA, SiN, and front metal fingers [127] to simulate the carrier generation
profiles. We include the optical constants of the SiN, from the VASE measurements
and the optical parameters for the test module materials from Ref. [198]. The
simulation considers a monochromatic illumination and a bias light for an area of
2x2cm? as in the EQE measurement.

In the transport simulation we employ the doping profiles from the ECV measurements
of Kiefer [157] for the pT-type emitter and the n™-type BSF (see Fig. 6.3). We
assume a fixed charge of —4 x 10 cm™? [236] for the p*-type emitter with AlO,/SiN,
passivation and 2.5 x 1012 em™2 for the n™-type BSF with SiN, passivation [237].
Note that all charges are given in elementary charges per cm?. For the base we consider
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Figure 6.11: External quantum efficiency for the two investigated modules before
and after 598 kWhm ™2 UV exposure. The lines indicate results of numerical device
simulations with Sentaurus Device.

a doping concentration of 7.5 x 10 cm™3. We vary the surface recombination

velocity (SRV) Spo to fit the simulated to the measured EQE before and after UV
degradation.

Figure 6.11 shows the measured and simulated external quantum efficiency for
the module M-PERTg;n prior and after UV exposure. The lines represent the
simulated EQE results. For a comparison we also include the EQEs of M-PERT p10
prior and after UV exposure. We find Spp =5 x 103 cms™! for the initial EQE and
Spo=1.1 x 10°cms~! for the EQE after UV degradation. This corresponds to an
increase in Jys by a factor of 18 from 31fA cm™2 to 559 fA cm™2. This is in good
agreement with the increase in Jps determined with the analytical model. Here, we
employ an initial Jos of 35fA cm~2 from Kiefer [157] in Eq. 6.10 for the n*-type BSF
layer with SiN, passivation. Due to the UV aging this Jys increases to 585fA cm ™2
at a Dy, of 598 kW hm™2, which is a factor of 17.

6.6 Modeling variations of the fixed charge

Our previous results show that a pT-type emitter with AlO, passivation is stable,
while an n-type emitter with SiN, passivation degrades within the accelerated UV
aging tests. The theory of the passivation layer in section 2.2.2 shows that there are
two possibilities to reduce the recombination at the silicon surface: (i) by a chemical
passivation, reducing the dangling bonds at the surface, which reduces the interface
states and thus, the surface recombination velocity (SRV). (ii) by a fixed charge
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6.6 Modeling variations of the fixed charge

density Q¢ in the passivation layer, which reduces the number of minority charge
carriers at the silicon surface and thus, the effective SRV. In the analytical model for
the UV degradation we neglect charge effects and assume that the recombination
increases due to the deterioration of the chemical passivation by UV radiation. We
perform numerical device simulations employing the EDNA 2 simulation tool [238]
to test whether a change of the charge density explains the increase in Jps due to
UV light.

In the simulation we utilize the most recent device models and silicon parameters
[229, 230, 231]. For the charge carrier mobility we apply the model of Klaassen
[232], for the radiative recombination the model of Nguyen et al. [233], for the Auger
recombination the model of Richter et al. [234], and for the band gap narrowing the
model of Schenk [235].

We model the SiN,/n"-type emitter interface with the parameters of the PERC
with a base doping concentration of 5.7 x 10" cm™ and the emitter profile of the
POCI;3 diffusion in Fig. 6.3. For the AlO,/p™-type emitter interface we utilize the
parameters of the PERT cell, with a base doping concentration of 7.5 x 10 cm™3
and the emitter profile of the BF9 ion implantation in Fig. 6.3 [157].

In the simulations for the n-type emitter with SiN,, passivation layer we simulate a
positive fixed charge density Qf of 2.5 x 102 cm™? as reported in Ref. [237]. Addi-
tionally, we assume a reduction of the charge density and simulate a charge density of
Ocm 2 and —2.5 x 102 cm™2. For the p*-type emitter with AlO, passivation layer
we simulate a negative Q¢ of —4 x 102 cm™2 as reported in Ref. [236]. In Ref. [239]
we showed that UV light increases the Qf at the AlO, interface to —1 x 10 cm™2.
Thus, we also simulate a fixed charge density of —1 x 10'3 cm™2. Additionally, we
consider a reduction of the charge density to 0 cm™2 for the p*-type emitter with
AlO, passivation layer. Note that all charge densities are given in elementary charges

per cm?.

Figure 6.12 shows the surface saturation current density Jps as a function of the
surface recombination velocity (SRV). In Fig. 6.12 (a) the black horizontal dashed
lines indicate the Jos of the nT-type emitter with a SiN, passivation layer prior
and after UV exposure. For the Jos prior UV exposure we assume 80 fA cm ™2 (see
Table 4.3). For the Jys after UV exposure we assume that Jp; in Eq. 6.10 equals
80 fA cm ™2, which increases to 361 fA cm 2 after a UV dose of 497kW hm™2 for a
SiN, layer with n=2.07. In Fig. 6.12 (b) the black horizontal dashed line indicates
the Jos of 42fA cm™2 for the pT-type emitter with an AlQO, passivation layer for the
PERT cell according to Kiefer [157].

For the heavily doped n™-type emitter with SiN, passivation layer in Fig. 6.12 (a)
a variation of the fixed charge density has only a minor effect on Jys, which is in
agreement with results reported in Ref. [216]. Even if the fixed charge vanishes
or becomes negative, this can not account for the increase in Jps due to the UV
degradation. This further endorses the hypotheses that the increase in surface
saturation current density during the UV aging experiments is due to a deterioration
of the chemical passivation and the formation of dangling bonds, which is proportional
to Spo according to Eq. 6.8.

For the pT-type emitter with AlO, passivation in Fig. 6.12 (b) the change in Qf can
compensate a deterioration of the chemical passivation. In Ref. [226] we reported
that UV light also increases the density of defect states Dy by a factor of 7 at the
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Figure 6.12: Surface saturation current density Jps as a function of the surface
recombination velocity (SRV) for: (a) an n'-type emitter with SiN,, passivation interface
and (b) a p*-type emitter with AlO, passivation interface. For each simulation we
vary the fixed charge density Q¢. The dashed lines in (a) indicate a Jos of 80 fA cm—2
[197] prior and 361 fA cm™2 after UV exposure for the n*-type emitter assuming a SiN,,
passivation layer with n=2.07. The black horizontal dashed line in (b) indicates a Jos
of 42fA cm~2 for a p*-type emitter of a PERT cell [157].

AlO, /p-type Si interface. However, we also observed an increase of the fixed charge
density to —1 x 10 em™2, which is in accordance with other studies [221, 240]. This
may partly compensate the increased Dj;. For instance, in our simulations an increase
in SRV from 1 x 10*cms™" to 5 x 10* cms~* does not change the surface saturation
current density of 42fA cm™2 due to the increase in Q¢ from —4 x 102 cm™2 to
—1 x 1013 em™2.

6.7 Improved UV stability of silicon nitride passivation
layers

The results of the accelerated UV aging tests with AlO, passivation layers indicate
that an AlO,/SiN, stack is stable for UV radiation. However, AlO, is commonly
applied for p-type Si surfaces due to the negative fixed charge. A conceivable
passivation for n-type Si surfaces are silicon oxide (SiO,)/SiN, stacks [241]. Thus,
we also test the UV radiation hardness of SiO,/SiN, passivation stacks.

6.7.1 Results of quasi-steady state measurements on silcon oxide and
silicon nitride passivation stacks

We process a batch similar to the PERC process flow in section 3.1 for QSSPC

measurements. The bulk material is phosphorous doped n-type silicon with a sheet
resistance of 4 Q2 /[J. We create the phosphorous-doped regions with a POCl3 diffusion
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Figure 6.13: Surface saturation current density Jys as a function of the UV dose for a
SiN,/n*-type and a SiN,/SiO,/n*-type sample.

process and apply a texture on both sides of the samples. For group I we apply a
thermal SiO, with a thickness of 6 nm and subsequently deposit the SiN, layer as in
the reference PERC process. For group II we only deposit the SiN, layer as in the
reference PERC process. After the deposition of the passivation layer we fire the
samples in a conveyor belt furnace according to the reference PERC process.

For the accelerated UV aging test we utilize the UVB313 lamps (see section 3.5,
pp. 42). We illuminate a sample of group I and group II with a UV dose of
80kW hm™2 and measure Jos. We determine Jos from QSSPC measurements (see
section 3.4.3, pp. 36) prior and after accelerated UV aging.

Figure 6.13 shows Jys as a function of the UV dose. The Jys for the sample of group
IT with the SiN,/n"-type emitter interface increases from 67 fA cm™=2 to 289 fA cm 2.
In contrast, for the samples of group I with the SiO,/n"-type emitter interface, Jys
only increases from 36 fA cm™2 to 43 fA cm 2.

6.7.2 Discussion of the quasi-steady state measurements

In the literature various authors reported that a single SiO, layer degrades under
UV exposure [144, 147, 242, 145]. However, the application of a SiO,/SiN, stack
on n"-type Si significantly improves the UV radiation hardness of the passivation
for our test samples. Hence, the application of a SiO,/SiN, stack could significantly
improve the UV stability of PERC solar modules.

Lauinger [152] assumed that the ion bombardment during the plasma enhanced
chemical vapour deposition (PECVD) of the SiN, layer, damages the silicon surface
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and increases the number of dangling bonds, which are initially passivated by
hydrogen. This is also indicated in transmission electron miscroscope (TEM) images
published by Kamioka et al. [150]. One hypotheses is that the thermal SiO, layer
protects the silicon surface during the subsequent PECVD process. The same effect
might explain the enhanced UV stability of the PERT cells with the AlO,/p™-type
emitter interface, where the spatial atomic layer deposition (SALD) of an AlO,
layer protects the silicon surface during the subsequent PECVD process for the SiN,
deposition.

Another hypotheses is that the oxide decreases the number of dangling bonds at
the silicon surface [243]. The bond energy of Si-O is 4.8eV. This energy is beyond
the energy of photons from the employed light source for the accelerated UV aging.
Thus, Ny is not affected at the SiO,/n"-type emitter interface. Several studies
reported a thin 1nm to 2nm SiO, layer between the AlO, passivation layer and the
silicon surface that is crucial for the passivation quality [44, 236]. However, TEM
investigations of SiN, interfaces also indicate the formation of a thin 1nm to 2nm
SiO, layer during the cleaning process before the PECVD deposition [244]. Hence,
the thickness and deposition technique of the SiO, layer may be important.
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CHAPTER 7

Summary

The goal of this work was to analyse and reduce the cell to module (CTM) losses for
solar modules featuring passivated emitter and rear cells (PERCs) and to improve
their long-term reliability. In terms of reliability, we specifically examined the
ultraviolet (UV) radiation hardness of PERC modules.

7.1 Analysis and reduction of cell to module losses

We developed an analytical model for the analysis of CTM losses of PERC solar
modules, which considers the optical, recombination, and resistive losses. The
analytical model enables to predict the power output of the solar module from the
cell parameters. Further, the model allows to reduce the cell to modules losses by
optimizing the cell and the module. For the model parameters, we measured the
optical, recombination, and resistive characteristics of cell and module test samples.
When an experimental determination was not possible or out of the scope of this
work, we derived the parameters with the support of simulation tools or took them
from the literature.

In the model we account for the optical losses by employing optical factors. We
presented a method to derive the effective optical width of the front metalization
and the cell interconnection in a photovoltaic module. For the front metal fingers
we combined reflection measurements with ray tracing simulations and for the cell
interconnection we applied light beam induced current measurements to determine
the effective optical width.

The effective optical width of single screen-printed front metal fingers is reduced
by 48 % for a cell in a module compared to a cell in air. We demonstrated that a
specular reflecting front metal finger is beneficial within a module due to its parabola
like shape, which enables a further optimization of future cell metalizations.

We determined the effective optical width for cell interconnection ribbons with
different reflective surfaces and cell interconnection wires. A typical industrial cell
interconnection ribbon has an effective optical width of 90 % of the geometrical
width. In contrast, a diffuse reflecting cell interconnection ribbon surface reduces the
geometrical width by 50 %. The geometrical width of cell interconnection wires is
reduced by 33 % due to their round shape. For groove-structured cell interconnection
ribbons we measured the highest optical reduction of 30 % of the geometrical width.
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7.2 Ultraviolet radiation hardness of solar modules

The optical factors for the current enhancement by internal backsheet reflections we
determined with ray tracing simulations. We derived the optical factors for a typical
industrial backsheet and an intermediate reflector for a solar module employing full
cells and half cells. Half cells result in higher current enhancement factors within a
module compared to full cells, which we attributed to an increased fraction of the
backsheet area within the module.

For the modeling of series resistance losses we adopted the analytical model of
Deb et al. We extended their model by the cell interconnection considering cell
interconnection ribbons and cell interconnection wires. The comparison of the
extended analytical model to finite element simulations revealed a maximum deviation
of 8%. We successfully validated the analytical model by simulating the I(V)-
parameters of experimental test modules. The simulated and the measured power
output of the modules agreed within the uncertainty of our measurement equipment.

After the verification, we applied the analytical model to investigate six state of
the art cell interconnection configurations. The simulation results revealed that the
combination of half cells with cell interconnection wires or groove-structured cell
interconnections ribbons are the most promising approaches for a reduction of the
cell to module losses and an improvement of the module power output. Both result in
a power gain of 15 W for a module with 2 mm cell spacing compared to the reference
cell interconnection. The dense mesh of cell interconnection wires reduces series
resistance losses and allows to reduce the number of front metal fingers, which reduces
the cell’s front metal recombination. A groove-structure improves the optics of the
cell interconnection ribbon and allows to increase the number and the application of
wider cell interconnections ribbons, which reduces series resistance losses.

From the manufacturers point of view, the application of cell interconnection wires
allow to omit the busbars and requires less front metal fingers, which reduces the
Ag paste consumption and thus, the production costs. Though, this technology
requires new manufacturing tools. In contrast, applying a groove-structured cell
interconnection ribbon requires only an upgrade of the current stringer technology.

Enlarging the cell spacing enhances the module current due to an increased fraction
of internal reflections within the module and results in the highest module power
output of 323 W in our simulations. However, using a larger cell spacing reduces the
module efficiency and the fill factor. For instance the efficiency for the simulated
323 W module is only 13 % due to the enlarged module area, despite a cell efficiency
of 20.8 %. This increases the material consumption and has a negative impact on
the system costs.

From the simulation results we derived the optimal parameters for the PERC front
metalization and the cell interconnection to build a 60-cell sized high efficiency solar
module. With this solar module we set a new world record for PERC modules in 2017
with an efficiency of 20.2% on the aperture area and an independently confirmed
module power of 303 W.

7.2 Ultraviolet radiation hardness of solar modules

Besides a high power output or efficiency, the performance reliability is crucial
for industrial photovoltaic modules. Hence, the application of UV transparent
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encapsulation polymers requires to test the solar module’s ultraviolet (UV) radiation
hardness. We measured the effect of a UV radiation dose of 497 kW hm™2 on solar
modules with passivated emitter and rear cells (PERCs) featuring various amorphous
silicon nitride (SiN,) passivation layers and encapsulated with different polymers.
We showed that the power output of solar modules featuring encapsulation materials
with an improved UV transmittance and solar cells with SiN, passivation layer
degrades after accelerated UV aging.

The initially enhanced power output due to an improved exploitation of the solar
spectrum by photovoltaic modules employing UV transparent encapsulation polymers
vanishes after approximately 10 years for a moderate climate location in Germany.

All test modules with a UV transparent encapsulation polymer and the cell’s n*-type
emitter featuring a SiN, layer with varying refractive index facing to the UV lamps
degraded in module power. We related this loss in module power to a decreased
open circuit voltage V,.. With increasing SiN, refractive index the degradation rate
of the PERC test modules decreased due to an increased absorption of UV light in
the SiN, layer. The module power of the test module with a typical industrial SiN,
passivation layer with a refractive index of 2.07 degraded by 4 %.

We also examined the effect of UV radiation on test modules with ion-implanted
bifacial n-type passivated emitter, rear totally-diffused (PERT) cells encapsulated
in polymers with enhanced UV transmittance. The power of the module with the
n*-type BSF featuring a SiN, passivation layer at the illuminated side degraded
by 15 % after a UV dose of 598 kW hm~2. We related this loss in module power to
a decrease in V. and Jg.. Due to the back junction configuration the test module
degraded by 15 % in Js.. External quantum efficiency (EQE) measurements prior
and after UV degradation revealed a degradation in the spectral range from 300 nm
to 400 nm. The degradation of the EQE corresponds to the degradation in Jg.

We explain the UV induced degradation in module power with a degradation of the
cell’s SiN, surface passivation. We assume that photons with sufficient energy to
break the Si-H bond reach the interface between SiN, and silicon. The breaking
of Si-H bonds increases the number of dangling bonds at the silicon surface, which
results in an increased surface recombination. We presented a novel physical model
that connects the incident photon flux at the silicon surface with the recombination
in the cell. The model was successfully tested for modules with varying SiN,
passivation layer and encapsulation materials with different UV transmittance. We
found that photons with wavelengths below a critical wavelength of 353 nm result
in a degradation of the module power. This critical wavelength is equivalent to the
Si-H bond energy of 3.5¢eV.

We also modeled the UV degradation of the external quantum efficiency of the PERT
test modules with numerical simulations. A comparison of the simulated EQE prior
and after a UV dose of 598 kW hm™2 revealed that the surface saturation current
density Jys increased by a factor of 18 from 31 fA cm™2 to 599 fA cm—2. This was in
agreement with the analytical model, which revealed an increase in Jog by a factor of
15 from 40fA cm ™2 to 603 fA cm—2.

In contrast, the module with the PERT cell’s p*-type emitter with an AlO,/SiN,
passivation stack at the illuminated side was stable during accelerated UV aging for
a UV dose of 598 kW hm~2. We also observed no significant changes of the measured
EQE before and after UV exposure. This implies, that the applied encapsulation
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materials is stable under UV exposure and that the decrease in module performance
of the test modules with SiN,/n™-type Si interface facing the illuminated module side,
resulted from the degradation of the surface passivation. We showed for the first time
that solar modules containing cells with A1O, /pT-type silicon interface facing the
illuminated module side show no degradation after UV exposure and even observed
an increase in module efficiency due to an enhanced V,.. This effect we related
to an increased fixed charge at the AlO,/pT-type Si interface. Simulations with a
varying fixed charge density for the SiN,/n"-type Si interface showed that changes
of the fixed charge by UV light can not explain the increased surface recombination
after accelerated UV aging. This further endorsed our hypotheses that UV light
deteriorates the chemical surface passivation.

We assume that the UV stability of the AlO, passivation layer is due to a thin silicon
oxide (SiO,) layer at the AlO,/silicon interface. The application of a SiO,/SiN,
passivation stack to an n™-type emitter sample showed a significant reduction of the
degradation of the surface recombination during accelerated UV aging.

The results in this work may help to reduce the CTM losses and improve the UV
radiation hardness of solar modules with passivated emitter and rear cells and solar
cells featuring SiN,, passivation layers. An extension of the presented analytical CTM
model enables to reduce the CTM losses of the next generation bifacial PERC—+
solar cells and modules or other cell interconnection techniques, e.g. shingling of
the solar cells. Improved UV stable passivation layers are required to benefit of UV
transparent encapsulation materials for solar modules and increase their annual yield
and long-term stability. This requires additional studies of multi-layer passivation
stacks on cell and module level and investigations of different deposition techniques
for the SiO, passivation layers. Moreover, the change of the charge density and
microscopic analysis of the passivation interface require further examinations in
future works.
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APPENDIX A

Appendix A

A.1 Contact resistance

Figure 5.4 shows the current I flowing from the emitter into half a finger of width wy
and length lf. Recalling that the current reduces below the finger in the = direction
with

ar_ Ve (A1)
dz Pe
and the voltage drops due to emitter sheet resistance below the finger with
dV I(z)Rgn
— = . A2
dx ls (A-2)
Substituting Eq. A.1 in A.2 and rearranging results in
d?I Rgn
— =1 : A3
2 =17 (4.3
For the sake of brevity we introduce
1 Ry, wr
= — = d L=— A4
o I o an 5 (A.4)

where Lt is known as the transfer length. Solving the differential equation yields
I(z) = Aexp (;i) + Bexp (;:) , (A.5)
where A and B are unknown constants.

For the boundary conditions we assume that the current is at it’s maximum Iy,
when it enters the metal finger and that the metal contact extracts all the current
from the emitter, such that the current approaches zero at the end of the metal
contact. With these boundary condition

0 , for x=0,
I(z) = { wp (A.6)

Inax , for xz= 5 =1L,
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we obtain

0=A+B=A=-B (A7)

o = 4 (05 (1) —exp (1) ) =245 (7). (A.8)

This allows to determine the unknown constants as

and

A — -[Inax
. L\’
o QSI_HZ%) (A.9)

a 2 sinh (L%) '

Substituting the solution for the constants in Eq. A.5 yields

_ Iiax x Inax —T\ sinh (Li)
I(z) = @ exp (Lt) - @ exp <Lt> = Imaxsinh(LL:) (A.10)

Rearranging Eq. A.1 and taking the derivative of Eq. A.10 yields

dr l I pe cosh (- ) p,
AL _ V@l gy 2 e ImaX(L”) Pe . (A.11)
dx Pe dz l¢ sinh (L%) leLy

Recalling Ohm’s law and Ij,ax = I(L) the contact resistance R, for the full contact
geometry of length L is

Pc L
. = th [ — ). A.12
Re=71, <Lt) (A.12)

A.2 Half cell contact firing

In section 4.4 we show that the contact resistance increases for a specific region of
the cells with a half cell metalization grid as in this work. We observe correlations
between the increased contact resistance and the orientation of the solar cell within the
conveyor belt furnace for the contact firing. Figure A.1 shows the electroluminescence
images of four PERCs with a different orientation during contact firing process. The
four vertical black lines are the cell’s busbars. The red arrow indicates the orientation
of the cell in the conveyor belt furnace. All cells are processed equally and the
cell side labeled with "top" faces in the same direction in the other production
processes. In the electroluminescence images we observe the formation of dark areas,
which depend on the orientation of the cell during the contact firing. These dark
areas correlate with the increased contact resistance. In the upper two images the
busbars are parallel to the orientation in the belt furnace. Here the dark areas in
the electroluminescence image form in the center of the cell, at the interruption of
the half cell metalization grid on the cell side first entering the belt furnace. For the
lower two images the busbars are perpendicular to the firing direction. Here, the
formation of the dark areas also form at the cell side first entering the belt furnace

112



A.2 Half cell contact firing

Half cell grid

Figure A.1: Electroluminescence image of four PERCs. The photography on the right
hand side show the front metalization of a PERC with a magnification of the half cell
grid interruption. The arrow indicates the orientation of a cell during the contact firing.

and the dark areas are enlarged compared to the upper two images. For the lower
two images the fingers are parallel to the firing direction. We assume that due to the
small cross section of the fingers and the lower heat conductance this changes the
local temperature of the cell, which deteriorates the contact firing process.

Applying a conductive connection to the half cell metal grid interruption by manually
printing Ag paste with a tiny brush to the gap between the busbars in the center of
the cell, shows no local increase in contact resistance at the metal grid interruption
after the contact firing as shown in Fig. A.2.

Connected grid

Figure A.2: Electroluminescence image of a PERC without interruption of the front
metalization grid. The arrow indicates the orientation of a cell during the contact firing.
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