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The resource theory of thermal operations, an established model for small-scale thermodynam-
ics, provides an extension of equilibrium thermodynamics to nonequilibrium situations. On a lat-
tice of any dimension with any translation-invariant local Hamiltonian, we identify a large set of
translation-invariant states that can be reversibly converted to and from the thermal state with
thermal operations and a small amount of coherence. These are the spatially ergodic states, i.e.,
states that have sharp statistics for any translation-invariant observable, and mixtures of such states
with the same thermodynamic potential. As an intermediate result, we show for a general state
that if the min- and the max-relative entropy to the thermal state coincide approximately, this
implies the approximately reversible interconvertibility to and from the thermal state with thermal
operations and a small source of coherence. Our results provide a strong link between the abstract
resource theory of thermodynamics and more realistic physical systems, as we achieve a robust and
operational characterization of the emergence of a thermodynamic potential in translation-invariant
lattice systems.

Introduction.—The quantum information approach to
thermodynamics has allowed thermodynamic concepts,
such as work, to be successfully extended into regimes
of small-scale systems that store and process quantum
information [1]. Notably, formulating thermodynamics
as a resource theory [2–5] allows for a precise charac-
terization of the resources that are required in single-
instance state transformations, for instance thermody-
namic work [6–8] and quantum coherence [9–12]. This
is done by establishing a set of natural rules such as
energy conservation, characterizing which possible evo-
lutions a quantum state can undergo under these rules,
and studying which external resources allows the system
to undergo otherwise forbidden state transformations. A
simple such framework is the resource theory of thermal
operations, where one allows any energy-conserving uni-
tary interaction with a heat bath at a fixed background
temperature [4, 8, 13], and can be extended to more gen-
eral types of reservoirs [14–17]. This approach has strong
connections with information-theoretic entropy measures
and quantum Shannon theory [18, 19]. More generally,
information-theoretic approaches have provided new de-
scriptions of nonequilibrium states and dynamics in sta-
tistical mechanics and thermodynamics, both in the clas-
sical and quantum regimes [20–24]. The resource the-
ory connects to standard macroscopic thermodynamics
in several ways. This approach is equivalent [25–27] to an
established abstract and axiomatic formulation of ther-
modynamics by Lieb and Yngvason [28–31]. Second, one
recovers the usual laws of thermodynamics in regimes of
many identically and independently distributed (i.i.d.)
copies of a state, such as for an ideal gas, or if the states
considered are quantum statistical ensembles [4, 8, 32–

34].
The resource theory of thermodynamics extends equi-

librium thermodynamics to non-equilibrium situations.
In standard macroscopic thermodynamics, a system is
defined to be in thermodynamic equilibrium if it no
longer presents macroscopic changes or currents, and if
it has lost memory of its initial, possibly non-equilibrium
state [35]. The purpose of this definition is to ensure
that the thermodynamic behavior of the system is en-
tirely specified by a thermodynamic potential : The op-
timal work required to transform one equilibrium state
into another by a reversible thermodynamic process is
given by the difference of the potentials for the initial
and final states, and does not depend on any further
details of the process. In the resource theory, this can
be verified directly: Is the amount of work required to
transform a state A into a state B equal to the amount
of work that can be extracted in the reverse process? If
so, the resource theory is said to be reversible. Crucially,
reversibility of a resource theory—i.e., the emergence of
a thermodynamic potential—can happen for states that
are not necessarily in thermodynamic equilibrium, as we
show in this paper.

A natural question is whether the notion of resource-
theoretic reversibility can be leveraged to show the emer-
gence of a thermodynamic potential for new classes of
states that are physically relevant, such as interacting
particles on a lattice, which go beyond idealized macro-
scopic settings such as i.i.d. states.

Here, we show that on a translation-invariant lattice
of any spatial dimension with a local Hamiltonian, all
ergodic states—i.e., states for which macroscopic quan-
tities have sharply peaked statistics—can be reversibly
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converted to and from the thermal state. Furthermore,
mixtures of ergodic states with the same thermodynamic
potential also have this property. This ensures the emer-
gence of a thermodynamic potential for this class of states
even if some of these states are far out of equilibrium.

In the following, we first introduce the resource the-
ory of thermodynamics and show that for general states,
an equipartition property implies the emergence of a
thermodynamic potential. We then consider translation-
invariant lattices and explain our main result illustrated
with an example of a 1-D Ising spin chain, before con-
cluding with a discussion.
Resource theory of thermal operations.— In this re-

source theory, one is allowed to (i) bring in any an-
cilla systems in their thermal state, (ii) to carry out any
energy-conserving unitaries, and (iii) to trace out any
systems. We may then quantify the amount of work re-
quired to transform ρ into another state ρ′ by including
an explicit battery system, initialized in a pure energy
eigenstate |E〉 and which we require to transition into
another energy eigenstate |E′〉 at the end of the process.
That is, if the transformation ρ⊗|E〉〈E| → ρ′⊗|E′〉〈E′| is
possible with the operations (i)–(iii), then we define this
process as consuming E − E′ work [8, 34, 36] (negative
work consumption corresponds to work extraction).

We refer to the class of states which are block-diagonal
in the energy eigenspaces as semiclassical states. For
these states, transformations under thermal operations
are fully characterized by thermo-majorization [8], a gen-
eralized notion of matrix majorization [37–39]. Let’s
consider two natural tasks associated with a semiclas-
sical state ρ: state formation and work distillation
(Fig. 1a). State formation consists in preparing the
state ρ starting from the thermal state of the system,
γ = e−βH/ tr(e−βH). The optimal amount of work that
needs to be invested, if we allow an inaccuracy ε > 0 in
the final state and if ρ is semiclassical, is [7, 8]

Wformation(ρ) = β−1Sεmax(ρ ‖ γ) , (1)

with the max-relative entropy defined as Sεmax(ρ ‖σ) =
minρ̃≈ερ ln

∥∥σ−1/2 ρ̃ σ−1/2∥∥∞ with the optimization rang-
ing over all states ρ̃ that are ε-close to ρ in trace dis-
tance [40]. On the other hand, work distillation consists
in extracting as much work as possible from a given state
ρ, resulting in the thermal state γ on the system. The
optimal amount of work that can be extracted from a
semiclassical state ρ is [7, 8]

Wdistillable(ρ) = β−1Sεmin(ρ ‖ γ) , (2)

with the min-relative entropy defined as Sεmin(ρ ‖σ) =
maxρ̃≈ερ

{
− ln tr

(
Πρ̃ σ

)}
where Πρ̃ is the projector onto

the support of ρ̃ [40]. The min- and max-relative
entropies are special cases of the Rényi relative en-
tropies [41–43].

a. b.

c.

FIG. 1. A thermodynamic potential emerges when the un-
derlying resource theory is reversible. a. For a state ρ̄ that
is block-diagonal in energy, the work that can be extracted
is given by the min-relative entropy Wdist. = β−1Sεmin(ρ̄ ‖ γ),
leaving the system in the thermal state γ = e−βH/ tr(e−βH).
Conversely, the work required to prepare ρ̄ from the thermal
state is Wform. = β−1Sεmax(ρ̄ ‖ γ). b. Suppose a state ρ (re-
spectively ρ′) can be reversibly converted to and from the
thermal state with work F (ρ) − F (γ) (respectively F (ρ′) −
F (γ)). Then ρ and ρ′ can be reversely interconverted. In
this case the resource theory is said to be reversible, and the
thermodynamic potential F (ρ) fully characterizes the work
required for state transformations. c. As an intermediate re-
sult, we show that if the min- and the max-relative entropies
of any arbitrary quantum state ρ coincide approximately, then
coherences in the state are suppressed, making it nearly block-
diagonal in energy. The state is then approximately reversibly
convertible to and from the thermal state with thermal oper-
ations and a small source of coherence.

There are no known necessary and sufficient conditions
for transformations of arbitrary states under thermal op-
erations. The reason is that thermal operations can-
not generate any coherent superposition of energy levels,
underscoring the role of time asymmetry in thermody-
namics [9–12, 44–47]. It is thus necessary to account
for coherence as a separate resource that enable opera-
tions that cannot be performed with thermal operations
alone [48–52].

We resort to a very rudimentary way of accounting for
coherence. We allow a system C with a bounded range
of energy, which can be prepared in any pure state of our
choosing and which we must dispose of in any state that
is close to a pure state. This energy range is what we re-
fer to as amount of coherence when such a system is used
in a thermodynamic process. This crude approach is suf-
ficient for our purposes, since our protocols only require
such a system with an energy range that is negligibly
small compared to the overall work cost of the trans-
formation, thus forbidding any noticeable embezzling of
work [13].
Emergence of a thermodynamic potential.—A resource

theory is reversible for a class of states if the optimal
work cost of any transition between two such states is
equal to the optimal work extracted in the corresponding
reverse process. This class of states then has a total
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order, and we can assign a “thermodynamic value” to each
state—this is the thermodynamic potential. A sufficient
condition for reversibility is to check whether the work
required for state formation can fully be recovered in the
reverse task of work distillation [8]; any transformation
between two such states is then reversible (Fig. 1b). In
well-behaved cases, such as in the i.i.d. regime [4] or for
statistical ensembles [27], the thermodynamic potential
is given by the Kullback-Leibler divergence or Umegaki
relative entropy S(ρ ‖ γ), defined as

S(ρ ‖σ) = tr
(
ρ
(
ln ρ− lnσ

))
. (3)

Equipartition implies reversibility with thermal
operations.—We first present an intermediate result:
If the min- and max-relative entropies coincide ap-
proximately, a condition which can be interpreted as a
form of equipartition, then the state can approximately
be reversibly converted to and from the thermal state
(Fig. 1c). Our physical explanations are comple-
mented by a fully rigorous proof that will be published
elsewhere [53].

Theorem I. For any ρ and for ε > 0, suppose that

Sεmin(ρ ‖ γ) > S −∆ ; Sεmax(ρ ‖ γ) 6 S + ∆ ,

for some S ∈ R,∆ > 0. Then ρ can be approximately
converted to and from the thermal state at a work cost
(resp. work yield) of approximately β−1[S+O(∆)] (resp.
β−1[S − O(∆)]), with an amount of coherence of ap-
proximately O(∆), and with arbitrarily good precision as
ε→ 0.

For a system of n particles, if we have ∆/n → 0 as
n → ∞, then the extractable work per system and the
work of formation per system both converge to s∞(ρ) :=
limn→∞ S/n, and the amount of coherence used per copy
goes to zero. In this case s∞(ρ) becomes the thermody-
namic potential in the thermodynamic limit n→∞.

To prove Theorem I, we first show that a state ρ
for which the min-entropy and the max-entropy differ
by at most O(∆) have off-diagonal elements 〈Ek |ρ |Ek′〉
that are exponentially suppressed in β|Ek − Ek′ | if
β|Ek − Ek′ | & O(∆). In this sense, such a state may not
harbor a large amount of coherence. Theorem I is then
proven by exhibiting protocols for work distillation and
state formation with the claimed properties. For both
protocols, we first replace the Hamiltonian by one where
the energy levels are integer multiples of some elemen-
tary spacing O(∆), which can be done by investing an
amount of coherence of order O(∆). The work distilla-
tion protocol is then executed as follows. One dephases
ρ in the new energy basis. Then we apply the known
protocol for work extraction of semiclassical states. Be-
cause ρ has little coherence, the work that was wasted
by the dephasing is small and the min-entropy does not
change by much, so we can still recover S −O(∆) work.

FIG. 2. Ergodic state on a lattice. An ergodic state is one
that is translation-invariant and that produces sharp statis-
tics for any translation-invariant observable. Our main result
is to show that any two ergodic states can be reversibly inter-
converted with thermal operations and a sublinear amount
of coherence, with the reversible work cost deriving from a
thermodynamic potential given by the Kullback-Leibler di-
vergence. Furthermore, a translation-invariant state has a
thermodynamic potential if and only if it is a mixture of er-
godic states of equal potential, providing a robust and oper-
ational understanding of the emergence of a thermodynamic
potential in lattice systems.

For the second protocol, we use the notion of an internal
reference frame: The state ρ is equivalently described
by a completely incoherent state ρ̃ = D[ρ ⊗ η], where
η is a special state called a reference frame, and where
D[·] is the joint dephasing operation on the system and
the reference frame [54, 55]. Because ρ has only little
coherence, a small reference frame η suffices to achieve
an accurate description of ρ. Our protocol consists in
first preparing the incoherent state ρ̃ using the known
protocol for semiclassical states, and then “shifting” the
coherence from η to ρ, a process known as “externalizing”
the reference frame [55].
Ergodic states on a lattice.—We now consider a d-

dimensional square lattice with a local Hamiltonian that
is translation-invariant:

H =
∑
z∈Zd

hz , (4)

where each term hz is a lattice-translated version of a
term h0 that acts on a constant number of sites neigh-
boring the origin. Each site is a quantum system of some
finite dimension. Our calculations will be performed for
finite lattice sizes, where the total number of sites is de-
noted by n. For finite n, the Hamiltonian is truncated at
the boundary by ignoring any terms that have support
outside of the finite region considered.

In statistical mechanics, thermodynamic behavior is of-
ten captured in the notion of ergodicity (Fig. 2). Ergodic
states are defined on the infinite lattice in two equivalent
ways [56–60]. First, they are exactly those states that
self-average over space translations. I.e., an ergodic state
ρ satisfies the following property: For any local observ-
able a0, we have Varρ

(
1
n

∑
az
)
→ 0 as n→∞. Equiva-

lently, ergodic states are the extremal points of the set of
states that are translation-invariant on the infinite lat-
tice. Consequently, any translation-invariant state can
be written as a mixture of ergodic states.

Ergodic states are the natural quantum analogue of
classically ergodic probability distributions [61, 62] for
spatial translations instead of time evolution. Examples
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of ergodic states include Gibbs states of a local Hamilto-
nian at sufficiently high temperature, where the correla-
tion functions of local observables decay exponentially in
space (see for example Ref. [63] and references therein).
Also, any i.i.d. state is ergodic, being the Gibbs state of
a noninteracting Hamiltonian. In contrast, a mixed state
of macroscopically different sectors (e.g., different mag-
netization sectors in a symmetry-broken phase) is not
ergodic, as spatial fluctuations do not vanish.
Ergodicity and reversibility under thermal

operations.—Our main contribution is to prove that on
a lattice of any dimension with a translation-invariant
local Hamiltonian, all ergodic states fall into the setting
of Theorem I and are thus reversibly interconvertible:

Theorem II. In the thermodynamic limit n → ∞, any
two ergodic states can be reversibly converted into one
another using thermal operations and a sublinear amount
of coherence, and the corresponding reversible work cost
rate is given by the thermodynamic potential

s(ρ) = lim
n→∞

1

n
S(ρn ‖ γn) , (5)

where ρn is the reduced state of ρ on a finite sublattice
of size n and γn = e−βHn/ tr(e−βHn) is the Gibbs state
with the truncated Hamiltonian Hn on the sublattice.

The proof of Theorem II proceeds via the hypothesis
testing relative entropy [64–69], which interpolates be-
tween the min- and max-relative entropies [69] and can
be formulated as a semidefinite program [70]. Inspired
by the proof techniques of [59, 60, 71–73], we construct
a quantum relative typical projector for an ergodic state
relative to a Gibbs state associated with a truncated local
Hamiltonian. This allows us to prove a generalized ver-
sion of Stein’s lemma for hypothesis testing [59, 71, 74–
76] from which it follows that the min- and max-relative
entropies must coincide up to sublinear terms in n, and
where the limiting value converges to s(ρ). We are then
in the setting of Theorem I: Any ergodic state can be re-
versibly converted to and from the thermal state with
the reversible work deriving from the thermodynamic
potential s(ρ). A rigorous proof will be published else-
where [53].
Translation-invariant states and reversibility.—We

can further ask, is there a larger class of translation-
invariant states on a lattice that can be reversibly con-
verted to and from the thermal state? We provide an
answer to this question as follows:

Theorem III. A translation-invariant state ρ that is a
mixture of a finite number of ergodic states is reversibly
convertible to and from the thermal state if and only if all
ergodic states in the mixture are of equal potential, i.e.,
ρ =

∑
pkρ

(k) with s(ρ(1)) = s(ρ(2)) = · · · .

To prove the above theorem, we note the following

property of the min- and max-relative entropy for a mix-
ture ρ =

∑
pkρ

(k):

Sεmin(ρn ‖ γn) ≈ min
k
Sε

′

min(ρ(k)n ‖ γn) ; (6a)

Sεmax(ρn ‖ γn) ≈ max
k

Sε
′

max(ρ(k)n ‖ γn) , (6b)

with the approximation holding up to terms that do not
scale with n and up to an adjustment of the smoothing
parameter ε that does not depend on n. If all the ρ(k)
in the decomposition have the same potential, S(ρ(1)) =
S(ρ(2)) = · · · , then Sεmin(ρn ‖ γn) ≈ Sεmax(ρn ‖ γn) with
equality in the thermodynamic limit, and we can apply
Theorem I. Conversely, if the ρ(k) do not all have the
same potential, then the min- and max-relative entropies
differ even in the thermodynamic limit. This implies that
ρ cannot be reversibly convertible to and from the ther-
mal state, because the min- and max-relative entropies
are monotones under thermal operations.
Example: 1D Ising spin chain.—This toy example

illustrates how a thermodynamic potential can emerge
for states that are not in thermodynamic equilibrium.
Consider a 1D chain of spin-1/2 particles with an Ising
nearest-neighbor (n.n.) coupling and an external field h:

H = −J
∑
i,j n.n.

σizσ
j
z + h

∑
i

σiz , (7)

where σz = |↑〉〈↑| − |↓〉〈↓|. Since i.i.d. states are er-
godic, our results imply that two pure states of the
form |ψ〉⊗n, |ψ′〉⊗n can be converted into one another
with thermal operations and an asymptotically negli-
gible source of coherence at a reversible work cost of
Fψ − Fψ′ per copy, where the thermodynamic poten-
tial is Fψ = β−1 limn→∞ S(ψ⊗n ‖ γn)/n, which is the
free energy per site up to an unimportant additive con-
stant. The thermodynamic potential is well defined on
an operational level even for states ψ⊗n that are not in
macroscopic equilibrium. Consider for instance the state
|ψ〉 = |+〉 = [|↑〉 + |↓〉]/

√
2. For h � J , the state ψ⊗n

presents macroscopic changes in the total spin along the
X axis under time evolution according to H, but this
does not prevent it from being reversibly convertible to
and from another state |ψ′〉⊗n.
Discussion.—Our results provide a direct link between

the abstract theory of thermodynamics at the small scale
formulated in terms of a resource theory, and realistic
many-body systems that are commonly studied in statis-
tical mechanics. In statistical mechanics, an ergodic state
physically corresponds to a definite macroscopic state;
it describes a pure thermodynamic phase without phase
coexistence [56]. We endow these ergodic states with
a stronger notion of thermodynamic behavior: The no-
tion of reversibility associated with the resource theory—
which extends the concept in equilibrium thermodynam-
ics to nonequilibrium situations—is tightly related to the
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notion of ergodicity. Furthermore, our analysis under-
scores how reversibility in the resource theory does not
imply equilibrium. Indeed, spatially ergodic states, as
considered here, can evolve nontrivially in time as illus-
trated in the toy example above.

Our rigorous proof [53] makes use of advanced
information-theoretic techniques, including the informa-
tion spectrum [77–83], hypothesis testing and quantum
Stein’s lemma [68, 69, 74, 75], as well as quantum typ-
ical projectors [59, 60, 71, 84]. Our results can be seen
as an extension of the ergodic theorems of Refs. [59, 60].
We also use Ref. [85] to show that if we consider the
reduced state of the infinite-dimensional Gibbs state in-
stead of truncating the Hamiltonian for finite sublattices,
then our results persist for sufficiently high temperatures
where there is a unique KMS state.

Curiously, it is possible to construct toy situations in
which the thermodynamic potential is not given by the
Kullback-Leibler divergence [53]. While this does not
happen in the setting considered in the present paper,
it shows that the Kullback-Leibler divergence is not uni-
versally the correct expression of the emergent thermody-
namic potential as defined via Theorem I when the min-
and max-relative entropies converge to the same value.
Whether this observation is relevant in physically inter-
esting systems is an open question.

It seems plausible that our results could be robust to
slight violations of translation invariance. For example,
slight spatial inhomoginuity in a hydrodynamic mode
could be allowed. Also, ergodic states exhibit some sim-
ilarities with states obeying the eigenstate thermaliza-
tion hypothesis [86–88], such as exponential decay of off-
diagonal entries of the density matrix [53], suggesting
that our techniques could be extended to such settings.
Furthermore, a characterization of infinite or continuous
mixtures of ergodic states is lacking, as opposed to the
finite mixture considered in Theorem III. Finally, one
might hope that our methods can be extended to models
exhibiting disorder, where a gap between the min- and
max-relative entropies would characterize the irreversibil-
ity of conversions between many-body-localized states.
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