
Improving the Computational Efficiency in

Symmetrical Numeric Constraint Satisfaction
Problems

R.M. Gasca, C. Del Valle, V. Cejudo, and I. Barba

Departmento de Lenguajes y Sistemas Informáticos. Universidad de Sevilla. (Spain)
{gasca, carmelo, cejudo, irene}@lsi.us.es

Abstract. Models are used in science and engineering for experimen-
tation, analysis, diagnosis or design. In some cases, they can be consid-
ered as numeric constraint satisfaction problems (NCSP). Many models
are symmetrical NCSP . The consideration of symmetries ensures that
NCSP -solver will find solutions if they exist on a smaller search space.
Our work proposes a strategy to perform it. We transform the symmetri-
cal NCSP into a new NCSP by means of addition of symmetry-breaking
constraints before the search begins. The specification of a library of pos-
sible symmetries for numeric constraints allows an easy choice of these
new constraints. The summarized results of the studied cases show the
suitability of the symmetry-breaking constraints to improve the solving
process of certain types of symmetrical NCSP . Their possible speed-
up facilitates the application of modelling and solving larger and more
realistic problems.

1 Introduction

Symmetries are common in science and engineering applications. It is due to the
inherent symmetry of the physical world. Some examples are: electron spin in
atoms, inertial changes in mechanics, electromagnetism, some organic chemical
compounds, etc... Many problems in these applications exhibit a high degree of
symmetry that can be exploited successfully for solving them.

Backtracking and consistency techniques are conventional methods to solve
constraint satisfaction problems (CSPs). Reducing complexity is the major issue
in solving CSPs, specially when there is a large number of constraints and/or
wide domains of the variables. In first works, the symmetries have been con-
sidered in problems where variables have discrete domains and to remove sym-
metrical solutions by changing the CSP solved [14]. Also, the symmetries are
used in the detection and exploitation in planning problems [6], reasoning and
optimization [4], the generation of balanced incomplete block designs [13] and ap-
plications to low autocorrelation binary sequences [8]. Other approaches consider
the design of a new search method that avoids testing of possible symmetrical
subsolutions [1] and the addition of constraints during the search [15].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/299807979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Numeric Constraint satisfaction problems (NCSP) are more and more of-
ten used to solve engineering problems arisen in different areas of Artificial In-
telligence (qualitative reasoning, diagnosis, planning, scheduling, configuration,
distributed artificial intelligence, etc...). These problems are formed by a set of
constraints among variables whose domains are real interval values. Constraint-
solving systems have as a goal to find all solutions, only one solution, or if the
model that represents the problem is or not consistent.

The symmetrical NCSP (SNCSP) has a set of symmetrical properties or
symmetrical constraints. These problems that contain symmetries may be solved
most efficiently. The search effort can be reduced specially on hard and large
problems. In Numerica [16] the symmetry property of NCSP has been consid-
ered by means of soft constraints. These constraints are equivalent to other ones
except that they are ignored when the existence of solutions is proved.

Reasoning about the ranges of values of variables is a type of reasoning of-
ten used when there are inaccurate data or partially defined parameters. It can
be also generalized as a NCSP . A natural way of reasoning on the ranges of
values is to propagate the domains of the variables through the constraints. It in-
volves assigning values to variables in order to satisfy constraints among subsets
of those variables. These problems can be solved efficiently by combining local
consistency methods, such as approximations of arc-consistency, together with
a backtracking-based search. Different problem solving techniques have been
proposed in the bibliography [9] [11] [2] [16] [10]. The search space in numeric
constraint problems is usually too wide and a lot of these techniques have a ma-
jor drawback since they introduce choice points and they are exponential. The
efficiency of some previous algorithms was analyzed in a previous work [3]. An-
other work [16] for improving the accuracy and efficiency in solving NCSP has
been proposed by reducing dependencies and variable elimination. Our proposal
considers that the symmetry property of NCSP can speed-up significantly its
solving process.

Although NCSP modeling is the necessary step preceding CSP solving, little
work has been done to help modelers. In this line, our method provides a library
of symmetries that allows modelers to remove some symmetries in SNCSP . The
modeler selects and adds symmetry-breaking constraints of this library, reducing
the search space. These additions are performed by hand and require a previous
analysis of the modeler. It must not affect the soundness and completeness of the
solutions. Nevertheless, the modeler must also consider the increase of the com-
putational cost after adding these new constraints in the original NCSP . This
paper is interested in reformulating concise models that support more efficient
solutions.

The rest of the article is organized as follows. In Section 2, we start present-
ing some examples of SNCSPs to introduce the problem domain. Section 3
presents some definitions and preliminaries. Section 4 exposes a simple library
of symmetries to be taken into account in symmetrical NCSPs and proposes
the selection of modelling schemas and their solving process. The experimental

results are presented in Section 5. Finally, in the last section we present our
conclusions and future work.

2 Illustrative Examples

In order to clarify the aim of this work, the following geometrical problem is
very illustrative:

Model ≡

⎧
⎪⎪⎨

⎪⎪⎩

X = {x, y}
D = {x, y ∈ (−∞, +∞),
C = {x2 + y2 = 4, x ∗ y = 1}
G = AllSolutions(X)

For this problem, the search space is IR2, but if we consider the symmetries,
this space is reduced four times. In fact, this reduction improves significantly
the computational complexity of the search process.

Also we have selected two examples from different Artificial Intelligence areas,
the first problem is commonly used in order of magnitude reasoning and the
second one is an example of a configuration task. Both examples are specified
by means of a four-tuple:

– X, the set of variables of the model,
– D, the set of domains of the variables,
– C, the set of relations of the variables of the model, and
– G the goal of the model analysis.

This representation allows an easy mapping from this specification to a NCSP .

2.1 A Countercurrent Heat-Exchanger

This problem is studied in order of magnitude reasoning [12] and [5]. A schema of
a countercurrent heat-exchanger is shown in Figure 1. The important variables
in the analysis of the device are the molar-heat KH and the molar-flowrate FH
of the hot stream, and the molar-heat KC and the molar-flowrate FC of the
cold stream. Also, the temperature differences have been named DTH = Th1 −
Th2, DTC = Tc1−Tc2, DT1 = Th1−Tc1, DT2 = Th2−Tc2. The temperature
drop of the hot stream is DTH, the temperature rise of the cold stream is DTC
and the driving force at the left and right ends of the device are DT1 and DT2

hot

cold

DTH

DTC

DT 1 DT 2

Th2Th 1

Tc 1 Tc 2

Fig. 1. A countercurrent heat-exchanger

respectively. The numeric constraints of the problem are the energy balance of
the exchanger and the result from the definition of the temperature differences:
DTH ∗ KH ∗ FH = DTC ∗ KC ∗ FC and DTH − DT1 − DTC + DT2 = 0.
In a particular case, the following order of magnitude relations may be known:
DT2 is moderately smaller than DT1 and DT1 is much smaller than DTH . A
possible analysis of the model could consists in obtaining the qualitative relation
between FC and FH .

Model ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

X = {DTH, KH, FH, DTC, KC, FC, DT1, DT2}
D = {DTH, KH, FH, DTC, KC, FC, DT1, DT2 ∈ (−∞, +∞),

r1 ∈ [0.1, 0.9] r2 ∈ [0, 0.1] r3 ∈ [0, +∞)}
C = {−DTC ∗ FC ∗ KC + DTH ∗ FH ∗ KH = 0,

−DTC + DTH − DT1 + DT2 = 0, DT2 − DT1 r1 = 0,
DT1 − DTH r2 = 0, FC − FH r3 = 0}

G = Solution(r3)

where r1, r2 are the corresponding intervals for the order of magnitude relations
and r3 is the interval for the unknown order of magnitude relation. Due to the
symmetrical properties of this model it may be considered as a SNCSP .

In the last section, the modeler specifies that he would like to know one
solution of the unknown order of magnitude relation.

2.2 Structural Configuration of Resistors

This example presents a given configuration of resistors as shows Figure 2. The
modeler has the aim of selecting from two types of resistors whose values may be
[9.8, 10.1]Ω or [99.6, 100.4]Ω in order to obtain an equivalent total resistor whose
value is [149.5, 150.5] Ω according to the previous configuration. This problem
can be modelled by means of the four-tuple below. The goal of the modeler is to
search for only one possible solution.

This problem can be solved using the previous mentioned NCSP techniques,
but the computational effort is exponential. We propose to exploit the symme-
tries of this problem in order to achieve better computational costs.

Model ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

X = {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R}
D = {R1, R2, R3, R4, R5, R6, R7, R8, R9,

R10 ∈ [9.8, 10.1], [99.6, 100.4], R ∈ [149.5, 150.5]}
C = {(R1 ∗ R2)/(R1 + R2)+

(R3 + R4) ∗ R5 ∗ R6/(R3 + R4 + R5 + R6)+
(R7+R8)∗(R9+R10)/(R7+R8+R9+R10)=R

G = OneSolution(X)

R
1

R2

R
3

R
5

R4

R6

R7

R9

R8

R10

Fig. 2. Configuration problem with resistors

3 Definitions and Notation

We have presented informally SNCSP in terms of examples. This section
presents a number of definitions for the formalization of symmetrical NCSP.
The variable domains in these problems are real intervals.

Definition 1 (Interval). Let IF denote a finite subset of IR augmented with
the symbols {−∞,∞}. If a, b ∈ IF then an interval [a, b] represents the set of
real numbers {r ∈ IR | a ≤ r ≤ b}.
Definition 2 (Numeric Variable). A variable of the model whose domain is
a real interval. The set of numeric variables of the problem is denoted by X .

Definition 3 (Numeric Constraint). It is a relation (equations) involving a
finite subset of numeric variables.

Definition 4 (Goal). A predicate that denotes the users’ preferences to search
for only one solution, all solutions or the consistent domain of certain variables.

Definition 5 (Numeric Satisfaction Problem). A four-tuple P =(X,D,C,G)
where X = {x1, ..., xn} is a set of variables, whose continuous domains are
respectively D = {d1, ..., dn}(n ≥ 1), C = {c1, ..., cm}(m ≥ 1) is a set of numeric
constraints and G are the goals.

Definition 6 (Symmetrical NCSP). A NCSP that has symmetry con-
straints.

Definition 7 (Solution). An instantiation of the numeric variables such that
all constraints are satisfied. They correspond to n-dimensional cubes, that are
named hypercubes.

We use Ψ to denote a SNCSP (X, D, C, G). Ψ has a set of transformations TΨ =
{T1, ...Tm}. Every transformation Ti ∈ TΨ has associated a finite set of expres-
sions over the variables of the problem αi = {α1

i (X), α2
i (X), ..., αk

i (X)} and a set
of real regions associated to the previous expressions Ωi = {Ω1

i (X), Ω2
i (X), ...,

Ωk
i (X)}. For example in the following SNCSP :

Model ≡

⎧
⎪⎪⎨

⎪⎪⎩

X = {x, y}
D = {x, y ∈ (−∞, +∞),
C = {x2 + y2 = 4, x ∗ y = 1}
G = AllSolutions(X)

some transformations are shown in Table 1.

Table 1. Symmetrical transformations of a previous example

Transformations α Ω

T1 ≡ Permutations(x, y) α1
1(x, y) ≡ x = y ∧ y = x Ω1

1(x, y) ≡ y ≤ x
Ω2

1(x, y) ≡ y ≥ x
T2 ≡ Symmetry(x,y) α1

2(x, y) ≡ x = −x ∧ y = −y Ω1
2(x, y) ≡ x + y ≥ 0

Ω2
2(x, y) ≡ x + y ≤ 0

Every symmetrical transformation belonging to the set TΨ must be invariant.
Let Ti ∈ TΨ be a transformation that has associated an expression X = αi(X).
A transformation is invariant if Ti(Ψ) ≡ Ψ where ≡ denotes symbolic equality.
The transformation of Ψ is obtained by means of the symbolic substitution of
the variables X by expressions αi(X),

Ti(Ψ) = Ψ [αi(X)/X] i ∈ {1, ..., m}
Let Ωi(X) be a finite set of associated regions for a transformation Ti(Ψ), where

Ωi(X) = {Ω1
i (X), Ω2

i (X), ..., Ωk
i (X)}

The elements of this set must satisfy the following properties:

– Minimum overlapping of regions ∀s, t : s, t ∈ 1..k ∧ s
= t | Ωs
i (X) ∩ Ωt

i (X)
may be a hyperplane of a lower dimension with respect to the dimension of
the search space.

– To fill in the search space
⋃

j Ωj
i (X) = IRn where n is the cardinality of the

set X and j ∈ {1, 2, ..., k}.
– Obtaining the next regions

∀s ∈ 1..k − 1 | Ti(Ωs
i (X)) = Ωs+1

i (X)

and if k is finite, then Ti(Ωk
i (X)) = Ω1

i (X)

4 Symmetry Analysis in Symmetrical NCSP

The aim of symmetry analysis is the identification of symmetries and the
generation of the corresponding symmetry-breaking constraints. The search
for symmetries in the initial SNCSP are performed by hand and requires a
previous symmetry analysis. This analysis always must ensure the soundness

and completeness of the search. The symmetry analysis has the following
steps:

1. Identification of possible symmetries of a SNCSP . These problems may
have an infinite number of symmetries and also some symmetries are hard
to calculate. It determines that in this work we only identify the simplest
symmetries. There are several approaches to identify these symmetries:
– the symmetry-breaking constraints are derived from the model.
– the symmetry-breaking constraints are derived from a visual representa-

tion of the model
– Some tools calculate the symmetry-breaking constraints.

The first item of the above list may be adequate to carry out the identification
of the symmetries in symmetrical NCSP .

2. Reduction of the domain variables or generation of symmetry-breaking con-
straints, that are related to the different regions of the transformations.

3. Determination of the expressions to calculate symmetrical solutions and
transformation of the variables’ domains in order to ensure the complete-
ness of the search. It depends on the users’ goals. For example, if the
goal is to obtain all the solutions of a SNCSP then we determine these
expressions.

4.1 Numeric Symmetries Library

The consideration of symmetries in symmetrical NCSP can be a hard process.
There is no known polynomial algorithm to detect all the possible symmetries.
This work only considers a partial analysis of the symmetries which covers the
most elemental numeric symmetries. It is named Numeric Symmetry Library
(NSL) and includes the following symmetries:

• Permutations
1. Transformation: Given a set X ′ ⊆ X whose elements are X ′ =

{x1, ..., xm}, the number of permutations in this set is k = m!.
2. The regions of the transformation Permutation are

Ω1(X) ≡ x1 ≤ x2 ≤ ... ≤ xm

Ω2(X) ≡ x2 ≤ x1 ≤ ... ≤ xm

..

Ωk(X) ≡ xm ≤ ... ≤ x2 ≤ x1

One of these regions can be added to break symmetries.
3. The symmetric solutions are obtained as the permutations of the previ-

ous solutions. According to the notation used before, if s1 is a solution
of Ψ then:

s2 = P 2(s1), s3 = P 3(s2), ..., sk = P k(s(k − 1))

• Symmetries with respect to a hyperplane with all variables of the
SNCSP
1. One possible transformation Ti could be Ti ≡ αi(X) = −X
2. The regions could be

Ω1
i ≡ x1 + ... + xn ≥ 0

Ω2
i ≡ x1 + ... + xn ≤ 0

3. The symmetric solutions have the same absolute values than solutions
obtained in solving the SNCSP but the sign of these values must be
changed.

• Symmetries with respect to a hyperplane with a subset of variables
of the SNCSP
Given a subset X ′ ⊂ X whose variables are {x1, ..., xm}
1. The transformation in this case could be Ti ≡ αi(X ′) = −X ′

2. The regions could be Ω1
i ≡ x1 + x2 + ... + xm ≥ 0 and Ω2

i ≡ x1 + x2 +
... + xm ≤ 0.

3. The symmetric solutions of the SNCSP are obtained changing the sign
of the following variables {x1, .., xm} in the solutions of the SNCSP .

The modeler must check if the hyperplane x1 + x2 + ... + xm = 0 in IRm is
a symmetry hyperplane for all the surfaces that represent the SNCSP .

• Translations
These transformations are convenient in SNCSPs with trigonometric or
periodic functions.
1. The transformation in this case is Ti ≡ αi(x) = x + τ where τ is a real

number.
2. The regions are Ω1

i ≡ 0 ≤ x ≤ τ , Ω2
i ≡ k ≤ x ≤ 2 ∗ τ , ... The number of

regions is determined by the domain of the variable x.
3. The symmetric solutions are obtained from the original SNCSP such

that if s1 is a solution then s2 = s1 + τ, s3 = s2 + τ, ...

Therefore, the symmetrical analysis must determine from the previous NSL
which type of symmetries are most convenient in a particular SNCSP . Modeler
must also analyze the pruning of the search space resulted from the addition
of symmetry-breaking constraints and the complexity of the treatment of these
symmetry-breaking constraints. The efficiency of the numeric constraint solver
must be improved in any case.

The modelling of symmetrical NCSPs is oriented to a search process of
solutions. A broad variety of approaches have been focused to solve NCSPs,
essentially, exhaustive or/and local search techniques. Our work considers exclu-
sively the exhaustive approach. Modeler must determine a modelling schema of
SNCSPs that considers the symmetries before the search begins.

The key idea is to obtain from a SNCSP an equivalent NCSP by the addition
of symmetry-breaking constraints and/or the update domains. This idea can be
represented as

SNCSP (X, D, C, G) SymmetryAnalysis−→ NCSP (X, D, C′, G, T)

The initial Symmetrical NCSP , denoted as Ψ , is transformed by means of a
previous symmetry analysis into a new NCSP where C ⊂ C′ and T are the set
of transformations identified in the symmetry analysis. The conversion is shown
in the following expression:

Ψ ≡ {X, D, C ∧ Ω1
T1

∧ Ω1
T2

... ∧ Ω1
Tk

, G}

This modeling methodology proposes that the modeler must perform the sym-
metry analysis according to the particular syntax of a symmetrical NCSP and
NSL. It allows the identification of the symmetry-breaking constraints that par-
ticipate in the modelling schema of this problem. The transformations T , which
allows the subsequent calculation of the symmetrical solutions are obtained from
NSL.

The specification of a SNCSP must consider the symmetries belonging to
the NSL. Illustrative examples, that we presented in the section 2 of this article,
have some symmetries. Table 2 shows the symmetries that we propose in the
different example models.

Table 2. Symmetry-breaking constraints of the example models

Problem Symmetry-breaking constraints

Geometrical x ≤ y, x + y ≤ 0

Heat-exchanger DTH + KH + FH + DTC + KC + FC + DT1 + DT2 ≥ 0

Resistors R1 ≥ R2, R5 ≥ R6, R7 + R8 ≥ R9 + R10, R7 ≥ R8, R9 ≥ R10

These previous schemas must be solved by means of the adequate algorithm.
If the goal is to search for all solutions, then we will apply the corresponding
transformations to obtain the symmetric solutions.

5 Experimental Results

We have used the previous examples in the experimentation with some exten-
sions. The heat-exchanger example considers one and two heat exchangers in
series. The resistors example considers two configurations with ten and thirteen
resistors respectively. The results are a mean value considering different vari-
able domains and goals. All the experiments have been performed on the same
machine. The program with schema modelling has been run five times on each
problem instance, and the results displayed are an average of these five runs.
The application to the different proposed problems is shown in Table 3. These
results show solutions calculation without considering the CPU computing time
of obtaining symmetry-breaking constraints and symmetrical solutions. In the
underconstrained problem (heat-exchanger), the computational time is the same
in both cases. It indicates that the reduction of the search space is not compen-
sated with a reduction of the computational time. In the other problems, the

Table 3. Computational results of the symmetry and no symmetry excluding in schema
models with bounded solutions

Model Symmetry-excluding No symmetry exclusion

Fails/Choice Points Cpu sec. Fails/Choice Points Cpu sec.

Heat-exchanger 7/0 0.015 7/0 0.016
Heat-exchanger2 10/0 0.018 10/0 0.019
Resistors10 232/285 0.083 1343/2009 0.631
Resistors13 1746/2535 1.590 15852/26824 25.839

computational time is reduced. Then we can conclude that the computational
efficiency of symmetries depends on the type of symmetrical NCSP that the
modeler specifies.

6 Conclusions and Future Work

In this work we propose a strategy to consider symmetry-breaking in symmet-
rical numeric constraint satisfaction problems. The addition of constrains to
break symmetries in these problems reduces the search space. The modeler must
consider the tradeoff between the increase of computational treatment of these
constraints and the previous reduction what is important in certain undercon-
strained problems. The use of breaking-symmetries constraints provides signifi-
cant computational savings in a lot of problems. Their speed-up facilitates the
application of modeling and solves larger and more realistic problems.

In future work, we also would like to eliminate the possible redundancies in
the calculation of symmetry-breaking constraints to reduce the computational
complexity of the SNCSP . Another interesting research area is the automatic
insertion of symmetry-breaking constraints in runtime, when a new symmetry
appears during the search. A future application of the symmetrical reduction of
NCSP will be the efficient modelling in engineering projects.

Acknowledgements

This work has been partially supported by the Spanish Ministerio de Ciencia
y Tecnoloǵıa through a coordinated research project(grant DIP2003-0666-02-2)
and Feder (ERDF).

References

1. Benhamou F. and Sais L. Theoretical study of symmetries in propositional calculus
and applications in Proceedings of CADE92. (1992).

2. Benhamou F. and Older W. Applying Interval Arithmetic to Real, Integer and
Boolean Constraints. In The Journal of Logic Programming pp. 1-24, (1997).

3. Collavizza H., Delobel F. and Rueher M. Extending consistent domains of numeric
CSP. In Proceedings of Sixteenth IJCAI’99, Stockholm, pp. 406-411, (1999).

4. Crawford J., Ginsberg M., Luks E. and Roy A. Symmetry-breaking Predicates for
search problems. In Proc. of KR-96, pp. 148-159, (1996).

5. Dague P. Numeric Reasoning with relative orders of magnitude. In Proc. of the
Thirteenth IJCAI, Cambery, pp. 541-547, (1993).

6. Fox M. and Long D.The Detection and Explotation of Symmetry in Planning Prob-
lems. In Proceedings IJCAI’99 pp. 956-961, (1999).

7. Gent I.P. and Smith B. M. Symmetry Breaking During Search in Constraint Pro-
gramming. In Report 99.02 University of Leeds, (1999).

8. Gent I.P. and Smith B. M. Symmetry Breaking in Constraint Programming. In
Proc. ECAI 2000, (2000).

9. Hyvönen E. Constraint reasoning based on interval arithmetic: the tolerance prop-
agation. In Artificial Intelligence 58, pp. 1-112, (1992).

10. Jussien N. and Lhomme O. Dynamic domain splitting for numeric CSPs. In Pro-
ceedings ECAI98, pp. 224-228, (1998).

11. Lhomme O. Contribution à la résolution de constraintes sur les réels par propaga-
tion d’intervalles. Ph. D. Nice-Sophia University. Antipolis. (1994).

12. Mavovrouniotis M. L. and Stephanopoulos G. Formal Order of Magnitude Rea-
soning in process engineering. Comput. Chem Engineering 12(9-10), pp. 67-880,
(1988).

13. Meseguer P. and Torras C. Solving Strategies for Highly Symmetric CSPs. In Pro-
ceedings IJCAI’99 pp. 400-411, (1999).

14. Puget J. F. On the satisfiability of symmetrical constrained satisfaction problems.
In Proceedings of ISMIS’93, pp. 350-361, (1993).

15. Puget J. F. Symmetry Breaking using stabilizers. In Principles and Practice of
Constraint Programming- CP 2003 LNCS 2833 pp. 585-589, (2003).

16. Van Hentenryck P., Michel L. and Deville Y. Numerica. A modeling language for
global optimization. The MIT Press, (1997).

	Introduction
	Illustrative Examples
	A Countercurrent Heat-Exchanger
	Structural Configuration of Resistors

	Definitions and Notation
	Symmetry Analysis in Symmetrical NCSP
	Numeric Symmetries Library

	Experimental Results
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

