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Abstract: In this paper we propose to study the underlying properties of a given distributed
control scheme in which a set of agents switch between different communication strategies that
define which network links are used in order to regulate to the origin a set of unconstrained
linear systems. The problems of how to decide the time-varying communication strategy, share
the benefits/costs and detect which are the most critical links in the network are solved using
tools from game theory. The proposed scheme is demonstrated through a simulation example.

1. INTRODUCTION

Over the last few years there has been a growing interest of
the control community in the research of distributed con-
trol systems. The basic idea is to divide the overall system
into several smaller subsystems, each controlled by a dif-
ferent local controller or agent which may or may not share
information with the rest. Examples of these situations are
large scale systems or networked systems such as traffic,
water or power networks; see R. R. Negenborn and Hel-
lendoorn. [2006]. In addition, the proliferation of wireless
actuator/sensor devices and their application to enhance
the possibilities of advanced control systems also bring new
challenges; see Neumann [2007]. Issues such as the commu-
nicational burden of the different distributed architectures
play a very important role. For example, the battery life
of motes depend specially on the time the radio is on and
the number of messages sent. Although there are works
in the literature that deal with the dynamics induced by
the communication network (such as time-varying delays
and data losses)(see for example de Wit [2006]) or the
specific distributed control algorithm implemented by the
local controllers(see for example R. R. Negenborn and
Hellendoorn. [2006] or Venkat [2006]), in general, there
are few results that deal with the underlying properties of
a given distributed control architecture. Moreover, these
properties may be dynamical and distributed control poli-
cies should be flexible enough to adapt to the possible
changes.

Decentralized and distributed control schemes often as-
sume that the centralized system is partitioned into a
fixed set of neighborhoods In Alessio and Bemporad [2007]
a decentralized a model predictive control scheme and a
sufficient criterion for analyzing a posteriori the asymp-
totic stability of the corresponding closed-loop system were
presented. This work is enhanced by Alessio and Bempo-
rad [2008] to take into account possible data losses. Liu
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et al. [2008] proposed a decentralized control architecture
for nonlinear systems with continuous and asynchronous
measurements. Magni and Scattolini [2006] proposes a
predictive controller under the main assumptions that the
system is nonlinear, discrete-time and no information is
exchanged between local controllers. The stability of this
class of systems was studied by Raimondo et al. [2007].

In general, the composition of these neighborhoods is
assumed static, that is, the possibility of time varying
neighborhoods is not considered. In addition, there are
other interesting questions that are not addressed such
as which elements of a given distributed control system
are more critical. Motivated by these issues, in this paper
we study the underlying properties of a given distributed
control scheme using tools from game theory. From a
mathematical point of view, game theory is an appropriate
framework to study all the phenomena that arise from the
mutual interaction of agents that take their decisions alone
or in cooperation; see Myerson [1997]. Actually, important
game theory concepts such as Pareto optimality and Nash
equilibrium have been used to study the properties of
control schemes, see for instance the work by Venkat et al.
[2005] or by Maestre et al. [2010]. In this paper we use
tools from coalitional game theory Saad et al. [2009], a
branch of game theory which studies the role played by
communication networks in situations of conflict.

In particular, we focus on the following three different
problems:

• Given a communication network, do all the links have
to be enabled all the time?

• Do all the links and the agents have the same rele-
vance in a networked control system?

• When several agents cooperate to reach a certain
objective, do they have to share equally the costs or
benefits of the cooperation?
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2. PROBLEM FORMULATION

In this paper we consider discrete time linear systems that
can be partitioned in N subsystems whose dynamics are
given by the following model:

xi(t+ 1) = Aiixi(t) +Biiui(t) + di(t),

di(t) =
∑

j 6=i

Aijxj(t) +
∑

j 6=i

Bijuj(t), (1)

where xi ∈ R(qi)
1 and ui ∈ R(ri) with i = 1, . . . , N are

the states and inputs of each subsystem respectively. The
variable di is the influence of the neighbors’ states and
inputs in the update of xi.

Each subsystem is controlled by a different agent that has
access only to its state xi and decides at each sample
time the value of its corresponding input ui. In addition,
the agents can communicate through a network which is
defined as a graph (N,L), where L is the set of edges
L ⊆ LN = {{i, j}|{i, j} ⊆ N, i 6= j} which define the
available communication links between the agents. Note
that under this definition ij and ji represent the same link.
In this paper we assume that the necessary and sufficient
condition for any two agents to communicate is that they
are at least indirectly connected by the network, that is,
there exists a path of active links that connect them.
Additionally, we will assume that the communication has
a cost. In particular, we consider that each link has a fixed
cost c > 0 associated to its use.

The control objective is to regulate the state of all the
subsystems to the origin while minimizing a cost that
depends on the state and input trajectories and the
communications. The stage cost of each agent is defined
as follows

ℓi(t) = xT
i (t)Qixi(t) + uT

i (t)Riui(t),

where Qi ∈ R(qi × qi) and Ri ∈ R(ri × ri) are constant
weighting matrices.

The communicational costs depend on the number of
links that are being used. Given a network (N,L), not
all the links L have to be used all the time. We define
a network mode as a subset of links A in L, composed
only by those links which are enabled. Any link l /∈ A
is considered to be disabled and, thus, absent. In the
following section, we present a distributed control scheme
that decides which network mode A has to be active based
on an analysis of the trade-off between control performance
and communicational costs

3. DISTRIBUTED CONTROL ALGORITHM

In this section we present a distributed control scheme
that at each sampling time, implements a certain com-
munication strategy defined by a network mode A. The
communication strategy A is chosen everyD sample times.
To this end, the agents must broadcast their state and take
a decision about the communication strategy that will be
used in the next D time steps. This leads to a double
sample rate control system. As a result of this policy, the
agents are separated into separated groups C that are able
to communicate defined as communication components.

1 With a little abuse of notation, we will use the notation R(n) to
denote R

n.

We will denote by N/A the set of all communication
components in which the set N is partitioned. Note that

⋃

∀i∈N/A

Ci = N and Ci

⋂

Cj = 0 for all i 6= j.

We assume that at each sampling time each communica-
tion component C ⊆ N/A implements a linear controller
based on all the available state information

uC = KA
CxC ,

where uC ∈ R(
∑

i∈C ri) is the input of a given com-
munication component defined as uC = {ui}i∈C , xC ∈
R

(
∑

i∈C qi) is the the state of a given communication

component defined as xC = {xi}i∈C and KA
C is the matrix

which defines the controller implemented by the commu-
nication component C for the network mode A. Note that
we have dropped the time dependence of uC and xC in
order to simplify the notation.

The set of the matrices KA
C define a centralized linear

controller for the global system. This controller is charac-
terized by the absence of communication between agents
that belong to different communication components. Thus,
the equivalent centralized control law is given by

u = KAx,

where u ∈ R
(
∑

i∈N ri) is the input of the centralized
system defined as u = {ui}i∈N , x ∈ R(

∑

i∈N qi) is the the
state of the centralized system defined as x = {xi}i∈N and
KA is the matrix which defines the centralized controller
implemented for the network mode A.

We assume that there exists a quadratic function that
satisfies

xTPAx ≥
∑

j∈N

∑

k=0,..,∞

ℓj(k), (2)

that is, PA is a weight matrix that provides an upper
bound of the cost to infinity of the centralized system in
closed-loop with the controller u = KAx starting from the
initial state x(0) = x. The calculation details of the matrix
PA is presented in section 5.

Once the sets of matrices PA and KA are defined, the
function r(A, x) is defined as follows:

r(A, x) = xTPAx+ c|L(A)|, ∀A ⊆ L, (3)

where |L(A)| stands for the number of active links in
the network mode A. This function assigns a value to
each communication mode A based on the upper bound
of the cost-to-go of all the communication components in
the network and the corresponding communication costs.
The decision about what communication strategy should
be used during the next D samples is made minimizing
r(A, x) over A.

Algorithm 1. At each sample time, the proposed dis-
tributed control scheme is implemented as follows:

(1) If the sample time is a multiple of D, all the agents
broadcast their state and calculate which is the net-
work mode A that minimizes the function r(A, x).
Otherwise, each agent sends his state only to those
agents that belong to his communication component.

(2) Each agent uses the state information received in
order to update its control action using its corre-
sponding communication component feedback matrix
KC

A . Globally, this implies that the linear controller
u = KAx is applied.
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Remark: The matrix KA takes into account the com-
munications constraints in A. For example, if the i-th
element of u and the j-th element of x belong to different
communication components, then KA(i, j) = 0; that is,
the i-th input does not depend on the j-th state. For the
particular case in which each communication component
is composed by systems with consecutive numeration in
the set N , then KA = diag(KA

C1
,KA

C2
, . . .).

Remark: All the matrices KA
C have to be designed so that

KA guarantees closed-loop stability for the centralized
system. If a given mode is not able to stabilize the system,
then it is not taken into account.

Remark: The on-line implementation of the algorithm may
be simplified by limiting the possible network modes A
that are considered, for example assuming that every D
sampling times only on link can be activated or deacti-
vated.

4. AN ANALYSIS OF THE RELEVANCE OF AGENTS
AND LINKS

In this section we answer the second and third questions
that we made in the introduction. In the previous section
we presented a control scheme to switch dynamically the
state of the communication links based on the function
r(A, x). The presented control problem is mathematically
equivalent to a cooperative game. Cooperative game the-
ory studies situations of mutual interaction between a set
of players which can negotiate among them and commit
themselves to follow common binding strategies. As a
result of the bargaining process, the set of players might
be divided into several subsets called coalitions. The role of
game theory is to study which coalitions of agents should
be formed and to analyze how the costs or benefits from
cooperation should be distributed among the members of
a coalition.

In its most basic form, a cooperative game is defined only
with two elements, a set N of players and a characteristic
function v that assigns a value to each of the possible
coalitions S of agents. A coalition S is defined as a subset
of N . In case that the coalition is formed by all the
players inN , the term grand coalition is used. The function
v(S) represents the value of the coalition, that is, the
costs or benefits of reaching the common goal without
the assistance of the agents that are not present in the
coalition.

The definition of a cooperative game requires the ex-
haustive evaluation of the function v for each possible
coalition of players S. This description provides too much
information for a simple analysis of the relevance of the
agents and the links. All this information can be synthe-
sized by means of a payoff rule, which is a mathematical
tool which provides the individual outcomes of the game,
that is, a payoff vector that specifies the benefit or cost
that each player may reasonably expect from the game.
Mathematically, a payoff or allocation vector is defined as
o = (oi)i∈N ∈ R(N) and specifies for each player i the
profit or cost oi when he cooperates with other players.
There are many different payoff rules in the literature. In
this paper we will use the Shapley value, which is the
only allocation rule γ(N, v) that verifies the efficiency,

additivity and symmetry properties (see Myerson [1997]).
The Shapley value assigns a value γi(N, v) to each agent
i ∈ N in a cooperative game whose value function is given
by v. The Shapley value of a game is defined as

γi(N, v) =
∑

S⊆N\{i}

|S|! (N − |S| − 1)!

N !
(v(S ∪ {i})− v(S)).

From a centralized point of view, the Shapley value of the
game (N, v) is the payoff vector that gives to each agent
his expected marginal contribution to a random coalition.

We propose to use these ideas from cooperative game
theory for the analysis of the relevance of the different
agents and links of a distributed control scheme. To this
end, it is necessary to extend the definition of cooperative
game so that both the network and the communicational
costs are considered. Thus, we define a cost-extended com-
munication situation H as as the tuple (N, v, L, c). We
already know the components of the tuple: N is the set
of players, v is the characteristic function of the game,
L is the sets of links that compose the network and c
is the communicational cost associated to the use of a
link. Together with the Shapley value, cost-extended com-
munication situations allow one to study several inherent
properties of the agents and the network. In the next
subsections we show how to determine what agent and
link play the most important role at a given time.

4.1 Link analysis

When modeling a distributing control problem as a co-
operative game, the most natural way to proceed is to
assume that the control agents are the players of the
game. Nevertheless, it is possible to change the focus to
links instead of agents, just as it is proposed in Borm
et al. [1992]. Thus, the gains or costs from cooperation
are attributed to communication links, which lead us to
define a cost-extended “link game” as a tuple (L, rH) as-
sociated to the cost-extended communication situation H .
The characteristic function for this game is defined as

rH(A) =
∑

C∈N/A

v(C) + c|L(A)|, ∀A ⊆ L, (4)

which is defined for all the possible subsets A of links
contained in the original network L. In the characteristic
function of the link game defined by equation (4), the
grand coalition is divided into its communication com-
ponents and its value is the sum of the values of the
corresponding components and the cost of the links that
are employed for the communication defined by the set A.

We propose to use the function r(A, x) defined in equa-
tion (3) to define the link game characteristic function,
that is, rH(A) = r(A, x). Therefore, given a state x, it is
possible to construct the link game and a qualitative and
quantitative analysis of the relevance of the links in the
game may be obtained from the corresponding Shapley
value γ(L, rH). Each component of this vector represents
the cost of a given link for the system when the state is x.
In other words, the lower value a link has, the higher utility
it has for the system.
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4.2 Agent analysis

In this case the players of the game are the different agents.
Let us consider a cooperative game (N,wH) defined by
characteristic function wH(S) which assigns to each coali-
tion the following cost

wH(S) =
∑

C∈S/L

v(C) + c|L(S)|, ∀S ⊆ N, (5)

where |L(S)| is the number of links that are used by the
coalition S and c is the link cost. We denote this game as
the “agent game”. Note that according to (5) the value
of a coalition S is the sum of the values of its members
separated into their corresponding communication com-
ponents.

A qualitative and quantitative analysis of the relevance of
the agents of the system can be obtained from the Shapley
value γ(N,wH) of the corresponding agent game. To build
such game it is necessary to define the characteristic
function that assigns a value to each coalition S of agents
for a given network L. To this end, it is not possible to use
the controllers defined for each communication component
for a given network mode A because those controllers take
into account the particular communication constraints of
network mode A. For this reason, for each communication
component of L, we need a controller KC and a weight
matrix PC such that

xT
CPCxC ≥

∑

j∈C

∑

k=0,..,∞

ℓj(k) (6)

where xc is obtained from the current state x and is
composed of the states of all the subsystems that belong
to C; PC is a weight matrix that provides an upper bound
for the cost to infinity of the systems that belong to
C in closed-loop with the controller uC(t) = KCxC(t)
starting from the initial state xC(0) = xC assuming that
all the inputs and states that belong to agents outside the
coalition are zero. This assumption allows only to calculate
a simple approximation of the Shapley value of the agent
game. Most conservative choices could have been made, for
example the agents outside of the coalition could have been
considered as disturbances and then a min-max approach
used. The details about the calculation of the controller
can be found in section 5.

Then, the characteristic function of the agent game that
defines the utility of a coalition S is defined as

wH(S) =
∑

C∈S/L

xT
CPCxC + c|L(S)|, ∀S ⊆ N.

The Shapley value of the game (N, vH) is known as
the Myerson value of the game and provides concise
information about the relevance of all the agents in the
game. The lower the value the is, the more relevant role
the agent has in the game. It is important to remark that
the Shapley value of the agent game, as it is defined, does
not have any physical meaning.

5. CONTROLLER DESIGN PROCEDURE

In this section we present a method to design all the ma-
trices that define the controllers and their corresponding
upper bounds on the cost. To this end, we provide two

theorems, one to design the matrices that define each com-
munication mode, and another one to obtain the matrices
that define each possible coalition.

Theorem 1. Let A ∈ L be a set of active links in a
distributed control system. The dynamics of the whole
system are given by AN = {Aij}, ∀i, j ∈ N and BN =
{Bij}, ∀i, j ∈ N and its stage cost defined by QN =
diag(Qi) and RN = diag(Ri), ∀i ∈ N . If there exist
matrices WN = {Wij}, ∀i, j ∈ N , where Wi,j ∈ R(qi×qj),
and YN = {Yij}, ∀i, j ∈ N , where Yi,j ∈ R(ri × qj), such
that the following constraints are satisfied






WN WNAT
N + Y T

N BT
N WNQ

1/2
N Y T

N R
1/2
N

ANWN + BNYN WN 0 0

Q
1/2
N

WN 0 I 0

R
1/2
N YN 0 0 I







> 0

(7a)

s.t.
Wij = 0, Yij = 0 ∀i, j such that xi ∈ C, xj /∈ C

(7b)

then matrices PA = W−1
N and KA = YNW−1

N satisfy (2),
all the communication constraints imposed by the network
mode A and stabilize the whole system.

In the agent game the approximation of the cost of
the communication component C is based on the cost
to infinity given by the xT

CPCxC . This upper bound is
calculated assuming that the rest of the agents states and
inputs are zero. The agent game only provides grounds
for distributing the benefits or costs between the agents
during the game and the resulting feedback gains are
never used to control the system, so it is not necessary
to impose centralized stability as a requirement. The
following theorem presents an LMI constraint that can be
used to solve this design problem.

Theorem 2. Let C ∈ S/L be a set of independent commu-
nication components for a given communication situation
H whose dynamics are given by AC = {Aij}, ∀i, j ∈ C
and BC = {Bij}, ∀i, j ∈ C and its stage cost defined by
QC = diag(Qi) and RC = diag(Ri), ∀i ∈ C. If there exist
matrices WC and YC such that the following constraint is
satisfied






WC WCAT
C + Y T

C BT
C WCQ

1/2
C

Y T
C R

1/2
C

ACW + BCY WC 0 0

Q
1/2
C WC 0 I 0

R
1/2
C

YC 0 0 I







> 0 (8)

then matrices PC = W−1
C and KC = YCW

−1
C satisfy (6)

and stabilize the states of C assuming that the state
and inputs that do not belong to that communication
component are zero.

Both theorems can be proved using standard techniques
based on the application of Schur’s complement.

6. SIMULATION RESULTS

In this section we show an academic example that illus-
trates the techniques proposed in the paper. The system
is shown in figure 1. The agents can communicate with
a network defined by four links. We will refer to the
agents using arabic numbers and to the links using roman
letters. In order to implement the proposed control scheme,
matrices KA and PA have to be designed for each of the
possible modes. Given that there are four links, there are
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1,5,6,7
1 2

3 4
3,6,8,10

4,7,9,10 2,5,8,9

11-14: 3/4 links

15: 4 links

I

II

III

IV

Fig. 1. Links enabled in each mode.

16 possible network modes which have been numbered
from 0 to 15. The networks modes for which a link is
enabled are shown next to it in figure 1.

The matrices that define the subsystem dynamics are the
following:

A11 =

[

1 0.8
0 0.7

]

B11 =

[

0
1

]

A22 =

[

1 0.6
0 0.7

]

B22 =

[

0
1

]

A33 =

[

1 0.9
0 0.8

]

B33 =

[

0
1

]

A44 =

[

1 0.8
0 0.5

]

B44 =

[

0
1

]

Aij =

[

0 0
0 0

]

Bij =

[

0
0.15

]

∀i 6= j

(9)

where xi ∈ R(2) with i ∈ {1, .., 4} are the states of
each subsystem and ui ∈ R(1) with i ∈ {1, .., 4} are
the corresponding inputs. The stage costs ℓi of all the
subsystems are defined by matrices Qi = diag(1, 1), Ri =
1 with i = {1, 2, 3, 4}.

6.1 Distributed control scheme

For each mode, a different LMI problem designed ac-
cording to Theorem 1 have been solved to obtain the
corresponding matrices KA and PA using Matlab’s LMI
toolbox. For example, for mode 4, which corresponds to the
case in which agents 1 and 3 communicate and coordinate
their actions. The resulting matrices are:

K
T

4
=













−0.25 0.00 0.02 0.00

−0.53 0.00 0.06 0.00

0.00 −0.26 0.00 0.00

0.00 −0.45 0.00 0.00

0.01 0.00 −0.23 0.00

0.05 0.00 −0.63 0.00

0.00 0.00 0.00 −0.27

0.00 0.00 0.00 −0.43













P4 =













4.56 5 0 0 −0.36 −1.1 0 0

5 9.61 0 0 −0.8 −2.48 0 0

0 0 5.48 5.14 0 0 0 0

0 0 5.14 8.34 0 0 0 0

−0.36 −0.8 0 0 4.17 5.08 0 0

−1.1 −2.48 0 0 5.08 11.69 0 0

0 0 0 0 0 0 5.37 5.44

0 0 0 0 0 0 5.44 8.40













It can be seen that KA satisfies the communication
constraints of mode 4.

Once the matrices PA that define the upper-bound on the
different cost-to-go values are obtained, it is possible to
determine the optimal network mode for a given state.

We present next some simulations of the proposed dis-
tributed controller which can be seen as a hierarchical
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Fig. 2. States trajectories.
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Fig. 4. Cumulated cost.

control scheme. The simulation presented here have been
done with values of D = 3 and for the initial state:

x1(0) =

[

2
1.8

]

x2(0) =

[

0
0

]

x3(0) =

[

0
0

]

x4(0) =

[

0
0

]

Figures 2 shows the evolution of the system states as a
function of time. Note that whenever an agents is not at
the origin, it disturbs the rest of the agents from their equi-
librium point. Figure 3 shows the different network modes
active during the simulation. In figure 4 the cumulated
cost of the coalitional distributed algorithm is compared to
the cumulated cost of applying full communication at each
sample. The additional communicational cost produced by
the network mode choice explain the higher cost during the
first steps.

6.2 Link analysis

Using the matrices PA, the link game can be constructed
for a given state x in order to analyze which links are more
relevant. The set of players for this game is defined by the
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links, which are enumerated by roman letters in figure 1.
Note that the concepts of coalition of links and network
mode are equivalent. For example, the characteristic func-
tion for each of the possible players of the link game for
the state

x1 =

[

4
3.6

]

x2 =

[

2.1
−3

]

x3 =

[

0.4
0.8

]

x4 =

[

0
0

]

, (10)

is the following

v(I) = 440.84 v(II) = 437.61
v(III) = 439.24 v(IV ) = 364.54
v(I, II) = 402.93 v(I, III) = 439.74
v(I, IV ) = 358.35 v(II, III) = 430.53
v(II, IV ) = 361.81 v(III, IV ) = 365.95
v(I, II, III) = 354.01 v(I, II, IV ) = 354.01
v(I, III, IV ) = 354.01 v(II, III, IV ) = 354.01
v(I, II, III, IV ) = 354.51

These values show that the optimal network mode A for
this state is any of the four composed by three links. The
Shapley value for this game is

γ(L, rH , x) = [98.94 96.91 104.28 54.36] .

This payoff vector guarantees that the players (links) are
the responsible of the costs or benefits the grand coalition
gets. This implies that the higher value a link has, the less
useful for the system is. It is clear that the link that is
more necessary is link number IV , the one that connects
agents 1 and 3, and for this reason this link has the lowest
value. On the other hand link number III, the one that
connects agents 3 and 4, is the one that contributes less
to the global objective, and so it has the highest value.

6.3 Agent analysis

Using the set of controllers designed using theorem 2, we
evaluate the characteristic function for the agent game for
state x:
v(1) = 391.12 v(2) = 35.99 v(3) = 13.22
v(4) = 0 v(1, 2) = 427.61 v(1, 3) = 328.55
v(1, 4) = 391.12 v(2, 3) = 49.21 v(2, 4) = 33.26
v(3, 4) = 12.13 v(1, 2, 3) = 358.35 v(1, 2, 4) = 389.70
v(1, 3, 4) = 329.96 v(2, 3, 4) = 39.40 v(1, 2, 3, 4) = 354.01

If we calculate the Shapley value for this game the follow-
ing vector is obtained

γ(N,wH , x) = [349.89 28.46 −19.07 −5.26] .

The Shapley value is helpful from two points of view. In
first place, the sum of its components adds up exactly
the value that the grand coalition has assigned in the
game. In cases where the characteristic function has an
economic meaning this is very helpful because it provides
a possible allocation vector to distribute the profits from
cooperation. In second place, the Shapley value shows
which agents have greater need of communication and help
from their neighbors.

7. CONCLUSIONS

This paper contributes to the construction of a bridge
between coalitional game theory and control. The main
contributions of the paper are twofold. In first place, we
have proposed a distributed control scheme that dynam-
ically switches the network topology in order to optimize

both the control performance and the communicational
burden. In this sense, an optimization based controller
design method has been provided so that all the requested
matrices can be calculated. In second place, we have pre-
sented a novel interpretation of cooperative game theory
tools to analyze the relevance of agents and links in a
distributed control system. As it has been seen, a valuable
insight into the communication structure of a distributed
system is obtained from the analysis of Shapley values.
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