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Abstract

An investigation on elastoplastic stress and strain produced at notched pieces with different geometries
and material properties using Finite Elements and numerical computation software. Application of

Neuber’s and Molski-Glinka’s rules directed to obtaining real stress and strain at notches from data obtained
with Finite Elements models. This project sets the basis for future research on the same topic, aiming to use
a similar process to obtain results in a wider variety of geometries and materials.
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Notation

σ Real stress
σy Yield stress
σu Ultimate tensile strength
σ
∗
e Pseudo-stress

σn Nominal stress
σmax Maximum stress
ε Real strain
ε
∗
e Pseudo-strain

εn Nominal strain
εe Elastic strain
εp Plastic strain
E Young’s modulus
H Hardening coefficient
n Hardening exponent
Kσ Stress concentration factors
P Load

V





1 Stress concentration

First, it is necessary to study the facts, to multiply the number
of observations, and then later to search for formulas that con-
nect them so as thus to discern the particular laws governing
a certain class of phenomena. In general, it is not until after
these particular laws have been established that one can expect
to discover and articulate the more general laws that complete
theories by bringing a multitude of apparently very diverse phe-
nomena together under a single governing principle.

Augustin-Louis Cauchy, 1857

Stress is a concept used in continuum mechanics to express the internal forces that are produced inside a
solid body by external loads and interactions. Force lines is a graphical method used to visualize these

forces by picturing how they "travel" inside the material using imaginary surfaces. This method helps us to
see where and why stress concentrations happen and it is an easy way to understand its consequences.

1.1 Stress concentration factors

If all elements were to have a perfect constant section, stress would "travel" at a regular, constant and
unidirectional flow. However, hardly ever do machine pieces or structural elements have a constant section
throughout its entire length, the presence of holes, notches, shoulders or sudden alterations in geometry
changes this simple distribution and make force lines to come very near each other at certain points Figure 1.1.

Figure 1.1 Stress flow lines perturbed by alteration in geometry.

This proximity between stress flow lines means that a peak of stress is appearing at a single point. This
stress accumulation is often much bigger than the applied load, so we define a stress concentration factor as
how many times this stress accumulation at a certain point is bigger than the load we are applying.

Kσ =
σmax

σn

1



2 Chapter 1. Stress concentration

Where σmax is the maximum stress produced by the perturbation of geometry and σnom is the nominal
stress produced by the load being applied.

1.1.1 Example

If we apply a uniform load, P, to a thin metal sheet with a hole in the center, there will be a stress concentration
at the boundaries of this circular hole as this is the point where flow lines are nearest to each other (Figure 1.1).
This will result in a stress distribution like the one shown in Figure 1.2.

Figure 1.2 Stress distribution in a thin metal sheet with a hole in the center. Image from Peterson’s Stress
Concentration Factors, Third Edition. [1].

Where,
σnom =

P
Hh

and
σmax = Kσ σn

From experience, we know that stress concentration factors from circular holes are in the order of Kσ ≈ 3,
so in this case, stress produced at the boundaries of the hole are three times larger than the applied nominal
stress. This example shows how important it is to take into consideration stress concentration factors when
designing machine elements, as this can be dangerous, especially because their effect is difficult to estimate.

1.2 Traditional calculation of stress concentration factors

Traditionally, stress concentration factors have been estimated by charts included in handbooks. These charts
display estimations of Kσ depending on parameters like the radius of curvature of a hole, the penetration of a
notch or the width of a notch. As an example, in Figure 1.3 we can see one of these charts. It represents the
Kσ produced in an elliptical notch depending on the relation between its radius of curvature and the width of
its minimum section when an axial load is applied in a line at the center of this minimum section.

There is a wide variety of charts, depending on the type of load (uniaxial, combined...), the loads applied
(axial, torque, momentum...) or changes in geometry (holes, notches, cracks...). All these charts are the result
of series of experiments carried out in laboratories in different situations. This means that they are a relatively
good representation of reality but this does not mean that all pieces that match the parameters of a certain
chart are going to perform the same way as these charts show. This is because the results depicted in these
charts are generally averages from several experiments carried out in the same conditions in different pieces
that differ from each other due to slight natural differences in their material compositions.
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Figure 1.3 Chart representing Kσ produced in an elliptical notch. Image from Peterson’s Stress Concentration
Factors, Third Edition. [1].

1.3 Calculation of stress concentration factors through Finite Elements

The development in modern software of Finite Elements (FE) offers an alternative way to estimate the effects
of loads applied in very complex geometries with relative ease. This makes the need for charts not that
crucial in design, as we can nowadays create a digital model of the geometry we are interested to study and
perform an analysis in any commercial software, obtaining a numerical solution according to theoretical
equations from strength of materials’ theory. This method has the advantage that we can estimate a Kσ for
the exact geometry we are interested in and we do not depend on finding geometries that appear in handbooks
and match with our requirements. However, it also has the same disadvantage it was pointed out before for
the traditional methods, namely, materials present imperfections that may not make them perform as the
idealized models from FE software.
To achieve the objectives of this project, it is necessary to create Finite Elements models that fairly

reproduce real phenomena in order to obtain reliable results without the need for laboratory tests, which are
often tedious and time consuming. For this purpose, the software ansys will be used from now on.





2 Modeling in ANSYS

There is a wide variety of commercial FEM software that offer different possibilities for engineers to
calculate stresses and strains for different geometries subjected to different loads. In this project, I

will be using the software ansys to create models of notched pieces and provide reliable results in order to
establish a way to estimate stresses at these notches whose parameters can be easily changed to obtain an
infinite number of combinations.
I will be modeling geometries that already appear in handbooks and articles, whose data come from

laboratory experiments. The purpose of choosing geometries that already appear in handbooks is to simulate
the conditions under which these experimental results were obtained and compare them to the results we get
from ansys. Both results should be similar, otherwise the numerical model would not be representing the
experiment fairly. If this can be achieved, one can be certain that their numerical models are reliable and so,
we can change parameters to obtain reliable results without the need of costly laboratory experiments.

The chosen geometries will be the ones shown in Figure 2.1 and Figure 2.2 , which appear in Peterson’s
Stress Concentration Factors, Third Edition [1].

Figure 2.1 Single U-Shape notched plate. Original image taken from Peterson’s Stress Concentration Factors,
Third Edition [1].

Figure 2.2 Opposite U-Shape notched plate. Original image taken from Peterson’s Stress Concentration
Factors, Third Edition [1].

5



6 Chapter 2. Modeling in ANSYS

2.1 Single U-shaped notched plate

For this first model, I have chosen a plate presenting a single U-shaped notch. In the experiment, a constant
load was applied along a line at the center of the minimum section all across its depth as shown in Figure 2.3.

t

d/2

d/2

H

h

P

Figure 2.3 Load distribution along a line at the center of the minimum section.

To apply these conditions and be able to obtain results from ansys it is necessary to perform the following
steps. These steps will show how I created the code in ansys to perform a Finite Elements pure elastic solid
body analysis. Variations in this code and other types of analysis will be shown in following sections.

2.1.1 Parameters

Parameters can be defined in ansys by means of string variables, making it easy to relate every following
instruction to the program to these parameters and so on, allowing us to easily change the whole model by
changing these parameters. An example of this is shown in Code 2.1.

We can also create loops in order to change one parameter maintaining the rest constant. This is done with
the command *DO, as it is shown in Code 2.2. In this case I am changing the notch’s radius (R) with the
values obtained in parameter DIV. Then I am saving all previously saved parameters with command PARSAV
and erasing all previously defined geometries with command CLEAR so we can create a new one defined with
the values contained in the next position of vector DIV. Command PARRES is used to reestablish parameters
saved with PARSAV. We also must define where the loop finishes, this is done with command *ENDDO.

2.1.2 Material properties

Material properties are a key factor in all analysis in Finite Elements. They will provide the software with
vital information about the behavior of the element being studied. Here we can set conditions of plane stress,
elasto-plastic behavior and much more. In this case, I am just considering an isotropic, pure elastic material
behaving as a solid body, so ansys only needs the material’s Young’s modulus, Poisson’s coefficient and the
type of element we want to use for our model, in this case SOLID186, which is a higher order 3-D 20-node
solid element that exhibits quadratic displacement behavior [2]. To define material properties, we need to
enter in the Preprocessor section, defined as /PREP7, as shown in Code 2.3

If we want to set conditions for Plane Stress, we can use element PLANE182 and use the different KEYOP-
TIONS to define, in this case, the width of the plate, as shown in Code 2.5. It is also possible to set conditions
for Plane Strain just by changing the KEYOPTIONS of the previous code and replace the with the ones
shown in Code ??.
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2.1.3 Creating a solid body with SOLID186

The solid body in a numerical model is the one in charge of defining the geometry intended to study and it is
also defined in the Preprocessor section. Considering the geometry’s symmetry, it is possible just to define
the upper half of it and then applying symmetry boundary conditions Figure 2.4, avoiding the unnecessary
use of nodes and calculation time. At first, I tried to create the whole plate geometry in a sole volume, as it
was the easiest way to define solid geometries, but it turned out that it was impossible to apply the boundary
conditions needed in this experiment, because there was no way to apply loads on the specific line where
they should be. Instead, I opted for creating an area using lines and deliberately cutting the line that defined
the upper part of the bar right at the point at the center of the minimum section, as is shown at Figure 2.5. To
create the notch, in this case a U-shaped notch, I created a square area and a circular area and subtracted this
from the initial rectangular bar area, obtaining in this way the final desired area, shown in Figure 2.5.

P

P

P

Plane of Symmetry

Figure 2.4 Applying symmetry.

After defining this area, I extruded it in both directions in order to obtain the desired depth (half of this
depth in each direction) and then glued both volumes into one. The code used for this definition of geometry
is shown in Code 2.6

2.1.4 Creating a plane stress plate with PLANE182

The way to define our geometry with PLANE182 is similar to the one with SOLID186 but in this case we only
have to define an area as we have previously defined the desired plate’s width. This also means that all loads
applied in a keypoint of our area will be displayed across the whole width of the plate, so we only need to
apply our load in the keypoint defined at the center of the minimum section. The code used for this definition
of geometry is shown in Code 2.7

2.1.5 Meshing, loads and constraints

Later, still in the Preprocessor section, I meshed the whole volume or area, where a line of nodes was created
across the geometry’s width at the place where lines were cut before, allowing us to apply loads at these
nodes in our solid body model, Figure 2.6, simulating the conditions of the experiment being reproduced.
The mesh was refined at certain lines and surfaces, like in the entire notch surface and moreover in its

middle line (peak), Figure 2.7, and the line where the loads are applied, to make load better distributed all
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t

t+d/2 d/2

Figure 2.5 Lines that define the area of the desired geometry.

Figure 2.6 Loads applied at nodes situated on the line at the center of the minimum section.

along the depth. It is important to properly define the areas where we are interested in obtaining precise
results.

As I have decided to consider the geometry’s symmetry, symmetry boundary conditions have been applied
all over the minimum section. Also, constraints to the movement in direction X have been applied at the
corner of the minimum section with the unnotched face and constraints to the movement in direction Z on
a line that passes along the minimum section at the center of its depth, to restrict rigid solid movement, as
shown in Figure 2.15.
The code that includes meshing and the application of loads and constraints in the solid body model is

shown at Code 2.8. Code in the plane stress model is similar, but it is not required that the movement in the Z
direction be restricted.

There is another possibility in order to properly refine the mesh. It is a better but more costly way to do it.
This way is to refine the entire volume or area with a fine mesh, using the smart mesh option to adapt it to
the geometry that we are meshing. This way, we will avoid the appearances of warnings due to the shape of
elements situated in the most refined points. To do this, we must use the code shown in Code 2.9 for the solid
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Figure 2.7 Mesh refined at notch.

Figure 2.8 Constraints at the corner of the minimum section with the unnotched face.

model and Code 2.10 for the plane stress model.
Another possible change in this code is if we wanted to place a distributed load instead of a load at the

center of the middle of the minimum section. Codes 2.11 and 2.12 show how to do this in solid and plane
stress models respectively.

2.1.6 Solution

To generate results, it is needed that the software compiles Finite Elements equations for the input it has been
given. For this, we need to enter in the Solution processor and run the analysis. In this case, a static structural
solution is specified. This is done according to Code 2.13.

2.1.7 Obtaining results

When the solution is done, it is possible to plot different results, such as stress, strain, total deformation, etc.
It is also possible to create graphs with certain data for certain points we are interested in. The aim of this
model is to find Kσ , so what we need to calculate is σmax. The maximum stress is going to be produced at the
bottom of the notch, as it is there where the maximum stress concentration is going to be. I have represented
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stress distribution along the notch’s root using a path from one edge to the other, representing stress in the Y
direction (Figure 2.9) and along the center of the minimum section (Figure 2.10).

Figure 2.9 Stress distribution along the notch’s peak.

Figure 2.10 Stress distribution along the center of the minimum section.

The codes to create these paths are shown in Code 2.14 and Code 2.15. These codes are defined by the
values of different keypoints, so it is important to have them well defined.

2.1.8 Results output

To write results in an output file we can use command *VWRITE. If a loop is used, we need to create a macro
and so we can create an array of results that we can use later in other software like excel or matlab. In this
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case I have created the following macro, Code 2.16. There are two macros in this code, the first is for writing
the first result and the second is to write the following results down in a column structure.

However, before writing anything we need to define what do we want to write in this output file. To do
this we use the command *GET. As we are interested in obtaining the maximum stress at the notch’s root,
I decided to get the maximum stress in the Y direction of the last path I plotted and then use the macro
previously defined. This is done according to Code 2.17.
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2.1.9 Codes

Code 2.1 Parameters in ansys.

!PARAMETERS

H=1 !WIDTH

B=1.5 !HEIGHT

D=0.05 !DEPTH

T=0.3*H !DEPTH OF TOTAL NOTCH

Eyoung=202375000 !YOUNG MODULUS

Poisson=0.33 !POISSON COEFFICIENT

POI=40000 !LOAD

Code 2.2 Loop in ansys.

DIV=1.1,2.1,3.1,4.1,5.1,6.1,7.1,8.1,9.1

*DO,I,1,9

PARSAV,ALL,

FINISH

/CLEAR

PARRES

Code 2.3 Material properties for solid body model.

/PREP7

ET,1,SOLID186

! MATERIAL

MP,EX,1,Eyoung

MP,EY,1,Eyoung

MP,EZ,1,Eyoung

MP,PRXY,1,Poisson

MP,PRXZ,1,Poisson

MP,PRYZ,1,Poisson

Code 2.4 Material properties for plane stress model.

/PREP7

ET,1,PLANE182

KEYOPT,1,1,0

KEYOPT,1,3,3

KEYOPT,1,6,0

R,1,D,

! MATERIAL

MP,EX,1,Eyoung
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MP,EY,1,Eyoung

MP,EZ,1,Eyoung

MP,PRXY,1,Poisson

MP,PRXZ,1,Poisson

MP,PRYZ,1,Poisson

Code 2.5 Material properties for plane stress model.

/PREP7

ET,1,PLANE182

KEYOPT,1,1,0

KEYOPT,1,3,2

KEYOPT,1,6,0

Code 2.6 Geometry with SOLID186.

!KEYPOINTS

K,1,0,0,0

K,2,H,0,0

K,3,0,B/2,0

K,4,H,B/2,0

K,6,R+(H-R)/2,B/2,0

K,7,0,R,0

K,8,T-R,0,0

K,9,T-R,R,0

!RECTANGLE

LSTR,8,2

LSTR,2,4

LSTR,4,6

LSTR,6,3

LSTR,3,7

LSTR,7,9

LSTR,9,8

FLST,2,7,4

FITEM,2,7

FITEM,2,6

FITEM,2,5

FITEM,2,4

FITEM,2,3

FITEM,2,2

FITEM,2,1

AL,P51X

!NOTCH CIRCLE

CIRCLE, 8, R,,,,

FLST,2,4,4

FITEM,2,8

FITEM,2,9

FITEM,2,10
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FITEM,2,11

AL,P51X

ASBA, 1, 2

!EXTRUSION

VOFFST,3,D/2, ,

VOFFST,3,-D/2, ,

FLST,2,2,6,ORDE,2

FITEM,2,1

FITEM,2,-2

VGLUE,P51X

Code 2.7 Geometry with PLANE182.

!KEYPOINTS

K,1,0,0,0

K,2,H,0,0

K,3,0,B/2,0

K,4,H,B/2,0

K,6,R+(H-R)/2,B/2,0

K,7,0,R,0

K,8,T-R,0,0

K,9,T-R,R,0

!RECTANGLE

LSTR,8,2

LSTR,2,4

LSTR,4,6

LSTR,6,3

LSTR,3,7

LSTR,7,9

LSTR,9,8

FLST,2,7,4

FITEM,2,7

FITEM,2,6

FITEM,2,5

FITEM,2,4

FITEM,2,3

FITEM,2,2

FITEM,2,1

AL,P51X

!CIRCULAR NOTCH

CIRCLE, 8, R,,,,

FLST,2,4,4

FITEM,2,8

FITEM,2,9

FITEM,2,10

FITEM,2,11

AL,P51X
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ASBA, 1, 2

Code 2.8 Meshing, loads and constraints in solid model.

!MESH

MSHKEY,0

MSHAPE,1,3d

FLST,5,2,6,ORDE,2

FITEM,5,1

FITEM,5,-2

CM,_Y,VOLU

VSEL, , , ,P51X

CM,_Y1,VOLU

CHKMSH,'VOLU'

CMSEL,S,_Y

VMESH,_Y1

!REFINE

FLST,5,10,5,ORDE,10

FITEM,5,2

FITEM,5,5

FITEM,5,-6

FITEM,5,8

FITEM,5,-9

FITEM,5,11

FITEM,5,13

FITEM,5,-14

FITEM,5,16

FITEM,5,-17

CM,_Y,AREA

ASEL, , , ,P51X

CM,_Y1,AREA

CMSEL,S,_Y

CMDELE,_Y

AREFINE,_Y1, , ,1,0,1,1

CMDELE,_Y1

FLST,5,8,4,ORDE,6

FITEM,5,1

FITEM,5,12

FITEM,5,-15

FITEM,5,22

FITEM,5,28

FITEM,5,-29

CM,_Y,LINE

LSEL, , , ,P51X

CM,_Y1,LINE

CMSEL,S,_Y

CMDELE,_Y

LREFINE,_Y1, , ,1,1,1,1

CMDELE,_Y1
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!LOADS

FLST,5,2,4,ORDE,2

FITEM,5,17

FITEM,5,31

LSEL,S, , ,P51X

NSLL,S,1

FLST,2,9,1,ORDE,7

FITEM,2,32

FITEM,2,2036

FITEM,2,4026

FITEM,2,-4028

FITEM,2,6267

FITEM,2,8257

FITEM,2,-8259

/GO

F,P51X,FY,POI

ALLSEL,ALL

!CONSTRAIN

FLST,2,2,5,ORDE,2

FITEM,2,2

FITEM,2,11

DA,P51X,SYMM

FLST,2,1,4,ORDE,1

FITEM,2,12

/GO

DL,P51X, ,UZ,0

FLST,2,2,4,ORDE,2

FITEM,2,16

FITEM,2,30

/GO

DL,P51X, ,UX,0

Code 2.9 Refining for complete volume.

FALTA CODIGO

Code 2.10 Refining for complete area.

FLST,5,1,5,ORDE,1

FITEM,5,3

CM,_Y,AREA

ASEL, , , ,P51X

CM,_Y1,AREA

CMSEL,S,_Y

CMDELE,_Y

AREFINE,_Y1, , ,3,0,1,1

CMDELE,_Y1
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Code 2.11 Distributed load in solid model.

FLST,2,4,5,ORDE,4

FITEM,2,5

FITEM,2,-6

FITEM,2,13

FITEM,2,-14

/GO

SFA,P51X,1,PRES,PRE

Code 2.12 Distributed load in plane stress model.

FLST,2,2,4,ORDE,2

FITEM,2,3

FITEM,2,-4

/GO

SFL,P51X,PRES,PRE,

Code 2.13 Solve.

/Sol

ANTYPE,0

Solve

Code 2.14 Code to create a path along the notch’s peak.

/POST1

path,alongZ,2,,1000

ppath,1,,kx(16),ky(16),kz(16)

ppath,2,,kx(8),ky(8),kz(8)

pdef,s_yy,s,y

plpath,s_yy

Code 2.15 Code to create a path along the center of the minimum section.

/POST1

path,patron,2,,100

ppath,1,,kx(5),ky(5),kz(5)

ppath,2,,kx(2),ky(2),kz(2)

pdef,s_yy,s,y

plpath,s_yy

Code 2.16 Code to create a macro to write array of results.
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*CREATE,'MACRO_ESCRIT_1',' ',' '

*CFOPEN,DATOS,dat

*VWRITE,S_yy_max

((SP)1E14.6,' ')

*CFCLOS

*END

*CREATE,'MACRO_ESCRIT_2',' ',' '

*CFOPEN,DATOS,dat,,APPEND

*VWRITE,S_yy_max

((SP)1E14.6,' ')

*CFCLOS

*END

Code 2.17 Code to get the maximum stress in the Y direction of the last path plotted and use macro.

*GET,S_yy_max,PATH,0,MAX,s_yy

*IF,I,EQ,1,THEN

*USE,MACRO_ESCRIT_1

*ELSE

*USE,MACRO_ESCRIT_2

*ENDIF
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2.2 Opposite U-shape notched plate

This second geometry is similar to the first one but, this time, the plate has two opposite U-shape notches.
Due to this geometry, we can benefit from its symmetry and just create one quarter of the plate, setting
symmetry boundary conditions in both cut faces and applying half of the original load, as it is shown in
Figure 2.11.

P

P

P/2

Planes of Symmetry

Figure 2.11 Applying symmetry to double symmetrical geometry.

Therefore, to change the model for this geometry we only need to change the base parameter H and the
constraints to apply symmetry boundary conditions in the middle face and erase the restriction applied in the
X direction displacement. The complete code for this model as a solid body is shown in Code 2.18 and as a
plane stress model in Code 2.19.

2.2.1 Codes

Code 2.18 Complete code for solid body opposite U-shape notched plate.

/CLEAR

*CREATE,'MACRO_ESCRIT_1',' ',' '

*CFOPEN,DATOS,dat

*VWRITE

(S_yy_max)

*VWRITE,S_yy_max

((SP)1E14.6,' ')

*CFCLOS

*END

*CREATE,'MACRO_ESCRIT_2',' ',' '

*CFOPEN,DATOS,dat,,APPEND

*VWRITE
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('S_yy_max')

*VWRITE,S_yy_max

((SP)1E14.6,' ')

*CFCLOS

*END

!PARAMETERS

H=0.127 !WIDTH

H=H/2

B=0.3048 !HEIGHT

D=0.01 !DEPTH

T=0.3*H !DEPTH OF NOTCH

Eyoung=202375000

Poisson=0.33

POI=40000 !LOAD

DIV=1.1,2.1,3.1,4.1,5.1,6.1,7.1,8.1,9.1

*DO,I,1,9

PARSAV,ALL,

FINISH

/CLEAR

PARRES

R=T/DIV(I) !RADIO

/PREP7

ET,1,SOLID186

! MATERIAL

MP,EX,1,Eyoung

MP,EY,1,Eyoung

MP,EZ,1,Eyoung

MP,PRXY,1,Poisson

MP,PRXZ,1,Poisson

MP,PRYZ,1,Poisson

!KEYPOINTS

K,1,0,0,0

K,2,H,0,0

K,3,0,B/2,0

K,4,H,B/2,0

K,6,R+(H-R)/2,B/2,0

K,7,0,R,0

K,8,T-R,0,0

K,9,T-R,R,0

!RECTANGLE

LSTR,8,2

LSTR,2,4

LSTR,4,6

LSTR,6,3

LSTR,3,7

LSTR,7,9

LSTR,9,8

FLST,2,7,4
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FITEM,2,7

FITEM,2,6

FITEM,2,5

FITEM,2,4

FITEM,2,3

FITEM,2,2

FITEM,2,1

AL,P51X

!CIRCULAR NOTCH

CIRCLE, 8, R,,,,

FLST,2,4,4

FITEM,2,8

FITEM,2,9

FITEM,2,10

FITEM,2,11

AL,P51X

ASBA, 1, 2

!EXTRUSION

VOFFST,3,D/2, ,

VOFFST,3,-D/2, ,

FLST,2,2,6,ORDE,2

FITEM,2,1

FITEM,2,-2

VGLUE,P51X

!MESH

MSHKEY,0

MSHAPE,1,3d

FLST,5,2,6,ORDE,2

FITEM,5,1

FITEM,5,-2

CM,_Y,VOLU

VSEL, , , ,P51X

CM,_Y1,VOLU

CHKMSH,'VOLU'

CMSEL,S,_Y

VMESH,_Y1

!REFINE

FLST,5,2,5,ORDE,2

FITEM,5,9

FITEM,5,17

CM,_Y,AREA

ASEL, , , ,P51X

CM,_Y1,AREA

CMSEL,S,_Y

CMDELE,_Y

AREFINE,_Y1, , ,1,0,1,1

CMDELE,_Y1
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FLST,5,2,4,ORDE,2

FITEM,5,17

FITEM,5,31

CM,_Y,LINE

LSEL, , , ,P51X

CM,_Y1,LINE

CMSEL,S,_Y

CMDELE,_Y

LREFINE,_Y1, , ,1,1,1,1

CMDELE,_Y1

FLST,5,1,3,ORDE,1

FITEM,5,5

CM,_Y,KP

KSEL, , , ,P51X

CM,_Y1,KP

CMSEL,S,_Y

CMDELE,_Y

KREFINE,_Y1, , ,1,1,1,1

CMDELE,_Y1

!LOADS

FLST,5,2,4,ORDE,2

FITEM,5,17

FITEM,5,31

LSEL,S, , ,P51X

NSLL,S,1

FLST,2,9,1,ORDE,7

FITEM,2,32

FITEM,2,2036

FITEM,2,4026

FITEM,2,-4028

FITEM,2,6267

FITEM,2,8257

FITEM,2,-8259

/GO

F,P51X,FY,POI

ALLSEL,ALL

FLST,2,2,5,ORDE,2

FITEM,2,2

FITEM,2,11

DA,P51X,SYMM

FLST,2,1,4,ORDE,1

FITEM,2,12

/GO

DL,P51X, ,UZ,0

FLST,2,2,5,ORDE,2

FITEM,2,4

FITEM,2,12
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DA,P51X,SYMM

FINISH

/Sol

ANTYPE,0

Solve

FINISH

/POST1

path,patron,2,,100

ppath,1,,kx(5),ky(5),kz(5)

ppath,2,,kx(5)+R,ky(5),kz(5)

pdef,s_yy,s,y

plpath,s_yy

path,alongZ,2,,1000

ppath,1,,kx(16),ky(16),kz(16)

ppath,2,,kx(8),ky(8),kz(8)

pdef,s_yy,s,y

plpath,s_yy

*GET,S_yy_max,PATH,0,MAX,s_yy

*IF,I,EQ,1,THEN

*USE,MACRO_ESCRIT_1

*ELSE

*USE,MACRO_ESCRIT_2

*ENDIF

*ENDDO

FINISH

Code 2.19 Complete code for plane stress opposite U-shape notched plate.

/CLEAR

*CREATE,'MACRO_ESCRIT_1',' ',' '

*CFOPEN,DATOS_BARATTA,dat

*VWRITE,S_yy_max

((SP)1E14.6,' ')

*CFCLOS

*END

*CREATE,'MACRO_ESCRIT_2',' ',' '

*CFOPEN,DATOS_BARATTA,dat,,APPEND

*VWRITE,S_yy_max

((SP)1E14.6,' ')

*CFCLOS

*END

!PARAMETERS

H=2 !WIDTH

H=H/2

B=5 !HEIGHT
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D=0.05 !DEPTH

T=0.3*H !DEPTH OF NOTCH

Eyoung=202375000

Poisson=0.33

POI=10000000 !LOAD

PRE=-POI/(H*D)

DIV=1.1,2.1,3.1,4.1,5.1,6.1,7.1,8.1,9.1

*DO,I,1,9

PARSAV,ALL,

FINISH

/CLEAR

PARRES

R=T/DIV(I) !RADIUS

/PREP7

ET,1,PLANE182

KEYOPT,1,1,0

KEYOPT,1,3,3

KEYOPT,1,6,0

R,1,D,

! MATERIAL

MP,EX,1,Eyoung

MP,EY,1,Eyoung

MP,EZ,1,Eyoung

MP,PRXY,1,Poisson

MP,PRXZ,1,Poisson

MP,PRYZ,1,Poisson

!KEYPOINTS

K,1,0,0,0

K,2,H,0,0

K,3,0,B/2,0

K,4,H,B/2,0

K,6,R+(H-R)/2,B/2,0

K,7,0,R,0

K,8,T-R,0,0

K,9,T-R,R,0

!RECTANGLE

LSTR,8,2

LSTR,2,4

LSTR,4,6

LSTR,6,3

LSTR,3,7

LSTR,7,9

LSTR,9,8

FLST,2,7,4

FITEM,2,7

FITEM,2,6
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FITEM,2,5

FITEM,2,4

FITEM,2,3

FITEM,2,2

FITEM,2,1

AL,P51X

!CIRCULAR NOTCH

CIRCLE, 8, R,,,,

FLST,2,4,4

FITEM,2,8

FITEM,2,9

FITEM,2,10

FITEM,2,11

AL,P51X

ASBA, 1, 2

!MESH

MSHKEY,0

CM,_Y,AREA

ASEL, , , , 3

CM,_Y1,AREA

CHKMSH,'AREA'

CMSEL,S,_Y

AMESH,_Y1

!REFINE

FLST,5,1,5,ORDE,1

FITEM,5,3

CM,_Y,AREA

ASEL, , , ,P51X

CM,_Y1,AREA

CMSEL,S,_Y

CMDELE,_Y

AREFINE,_Y1, , ,3,0,1,1

CMDELE,_Y1

!CONSTRAINTS

FLST,2,2,4,ORDE,2

FITEM,2,2

FITEM,2,12

DL,P51X, ,SYMM

!LOADS

!FLST,2,1,3,ORDE,1

!FITEM,2,4

!/GO

!FK,P51X,FY,POI

FLST,2,2,4,ORDE,2

FITEM,2,3

FITEM,2,-4
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/GO

SFL,P51X,PRES,PRE,

FINISH

/SOL

SOLVE

FINISH

/POST1

path,patron,2,,100

ppath,1,,kx(5),ky(5),kz(5)

ppath,2,,kx(2),ky(5),kz(5)

pdef,s_yy,s,y

plpath,s_yy

*GET,S_yy_max,PATH,0,MAX,s_yy

*IF,I,EQ,1,THEN

*USE,MACRO_ESCRIT_1

*ELSE

*USE,MACRO_ESCRIT_2

*ENDIF

*ENDDO

FINISH
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2.3 Single and opposite semicircular notched plate

This last model is obtained by setting t/r = 1. This means that the notch’s shape is one perfect semicircle.
The interest for this particularity is that we can find an analytical solutions for this geometry such as those
presented by Maunsell [7] and Ling [6], which will be discussed later. In relation with the modeling in ansys,
the only difference with the U-shape notch codes is that there is no need to create a little rectangle before the
circular part of the notch. This makes the code to create the initial unextruded area as shown in Code 2.20,
leaving the rest as it was shown in the previous codes.

Code 2.20 Code to create the initial unextruded area for the semicircular notch case.

!KEYPOINTS

K,1,0,0,0

K,2,H,0,0

K,3,0,B/2,0

K,4,H,B/2,0

K,6,R+(H-R)/2,B/2,0

K,7,0,0,0

!RECTANGLE

LSTR,7,2

LSTR,2,4

LSTR,4,6

LSTR,6,3

LSTR,3,7

FLST,2,5,4

FITEM,2,5

FITEM,2,4

FITEM,2,3

FITEM,2,2

FITEM,2,1

AL,P51X

!CIRCULAR NOTCH

CIRCLE, 7, R,,,,

FLST,2,4,4

FITEM,2,7

FITEM,2,6

FITEM,2,8

FITEM,2,9

AL,P51X

ASBA, 1, 2
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2.4 Modeling an elasto-plastic material

The way to model an elasto-plastic material in ansys is to create a σ − ε curve that defines the material
behavior, see Ramberg-Osgood relationship (Section 4.1). PLANE182 and SOLID186 allow us to create
this curve by using a nonlinear, inelastic and rate independent material model, which can be defined with
keyoptions. We only need to provide a maximum of 20 points and the software automatically interpolates
values between adjacent points. I have defined the values of this curve in matlab and then picked an equally
spaced sample of 20 points from this curve, then I introduced the values in ansys. In relation with the code,
we only need to change the Material properties (Section 2.1.2) like it is shown in Code 2.21, leaving the rest
as it was. The same can be applied to SOLID186. It is very important that the starting slope of the curve we
introduced agrees with the Young’s modulus we provided.

Code 2.21 Code to introduce elasto-plastic material properties.

ET,1,PLANE182

KEYOPT,1,1,0

KEYOPT,1,3,3

KEYOPT,1,6,0

R,1,D,

MPTEMP,,,,,,,,

MPTEMP,1,0

MPDATA,EX,1,,Eyoung

MPDATA,PRXY,1,,Poisson

TB,KINH,1,1,20,0

TBTEMP,0

TBPT,, 0.000049413319990 , 10000000 ,

TBPT,, 0.000307467294401 , 62105263.16 ,

TBPT,, 0.000574851941833 , 114210526.3 ,

TBPT,, 0.000884167341589 , 166315789.5 ,

TBPT,, 0.001306155930431 , 218421052.6 ,

TBPT,, 0.001962113561667 , 270526315.8 ,

TBPT,, 0.003035259750046 , 322631578.9 ,

TBPT,, 0.004781396972906 , 374736842.1 ,

TBPT,, 0.007539035785502 , 426842105.3 ,

TBPT,, 0.011739095766390 , 478947368.4 ,

TBPT,, 0.017914257038170 , 531052631.6 ,

TBPT,, 0.026708016232101 , 583157894.7 ,

TBPT,, 0.038883487418425 , 635263157.9 ,

TBPT,, 0.055331979496578 , 687368421.1 ,

TBPT,, 0.077081375162851 , 739473684.2 ,

TBPT,, 0.105304331911138 , 791578947.4 ,

TBPT,, 0.141326322017036 , 843684210.5 ,

TBPT,, 0.186633525757482 , 895789473.7 ,

TBPT,, 0.242880589999978 , 947894736.8 ,

TBPT,, 0.311898262604064 , 1000000000 ,
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2.5 Aspects to consider

2.5.1 Plate’s width

In solid models, the plate’s width seems to be a problem when it is very thin. If the complete volume refine
alternative is used (see Section 2.1.5), there seems to be no or very few warnings but when the results are
plotted, they do not show a "perfect" parabola as one would expect, but rather a somewhat warped curve
instead, as shown in Figure 2.12. In plane stress models, this problem does not appear, allowing us to apply a
width as thin as we want.

Figure 2.12 Stress distributions along the notch’s peak with a "thin" width.

2.5.2 Plate’s height

In both solid and plane stress models, the plate’s height seems to be crucial in order to obtain reliable results.
If we apply a "short" height, stress distributions along the minimum section are distorted due to the effect of
the area of application of the loads, Figure 2.13. This effect is more noticeable when when the distribution
along the middle line of the minimum section is applied.

Figure 2.13 Stress distributions along the minimum section with a "short" height.
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2.5.3 High stresses produced in loads applied directly to nodes

To apply loads in both solid and plane stress models as they were defined in Peterson’s book [1], all along the
line at the center of the minimum section, it was necessary to force the software to create a line of nodes at
this point, see Sections 2.1.3 and 2.1.4. For some reason, it is impossible to apply a pressure load at this line
so, to recreate the effects due to this kind of load, I selected all the nodes contained in this line and applied
the same load to them. This causes a very high stress produced at this nodes, Figure 2.14, due to the forces
being applied in a point, not an area. When we look at points sufficiently far from the points of application,
loads are well distributed all along the model but this peak in stress will produce problems of convergence
when an elasto-plastic model is used.

Figure 2.14 High stress produced in the line of application of loads.

2.5.4 Free face boundary conditions

In single, both U-shape and semicircular models, we need to apply some boundary conditions to the free
face, the one opposite to the notched face. In particular, to avoid rigid solid movement, we need to constrain
movement in direction X, Y and Z. For Y and Z there is no particular problem because, due to symmetry,
they are easy to apply, but for direction X we need to find a proper way to constrain it. The easiest way is to
impede movement of one node of the free face. I have analyzed two situations, one with a whole line of the
free face constrained Figure 2.15, and other with just one node constrained Figure 2.16. There is not much
difference between the results obtained from both models as the plate’s width is very thin, but it is one aspect
to consider when designing different geometries.
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Figure 2.15 Constraints at the corner of the minimum section with the unnotched face. Whole line.

Figure 2.16 Constraints at the corner of the minimum section with the unnotched face. Just one node.





3 Stress concentration factors comparison

3.1 Stress concentration factors in opposite U-shaped notched plates

Once the models are defined, it is time to obtain results and compare them to the ones that appear in handbooks.
For this, it is highly important to understand and correctly apply the boundary conditions that are specified in
the handbook’s model. For this first example, I will be gathering results to compare them with the following
chart (Figure 3.1). This chart gives Kσ in terms of the plate’s ratio r

d , where r is the radius of notch and d is
the width of the minimum section. I performed several analysis with different models presenting different
r
d ratios. What I did is to fix the total depth of the U-shape notch and then reduce the radius several times,
saving these results in a data file and then calculated their Kσ using matlab, as showed in Code 3.1. After
introducing data from ansys and running the code, the results are shown in Figure 3.4.

If we compare the data given by Peterson [1] with the results we have obtained from our models (Figure 3.4),
we can see that they are very similar, this proves our model is correct. We can also compare our results to
other results given by other authors like Baratta & Neal [3] or Heywood [4] (Figure 3.5) whose expressions
to calculate stress concentration factors in this kind of notch also appear in Peterson’s Stress Concentration
Factors, Third Edition [1].

In this comparison (Figure 3.5) we can see that all Kσ seem to have a similar values for the same ratio r/d,
the mean error between our ansys model and Baratta & Neal’s expression being 3%. However, in order to
obtain even more accurate results, I have traced back Baratta & Neal’s expression to their original article. In
this article [3], they show how they created their empirical expression from comparison between experiments
and analytical solutions for a semi-infinite plate presenting opposite U-shape notches. They created a chart
comparing their results and other author’s work, Figure 3.2. I have done the same, comparing my results with
Baratta & Neal [3] and Inglis [5] expressions for different models, reducing the total depth of the U-shaped
notch from 30% to 10% and 5% of the total base of the plate, approaching to a semi-infinite plate, but this
time applying a distributed load at the upper face of the plate, as the article does (Figure 3.6).

3.2 Stress concentration factors in single U-shaped notched plates

For this section, I decided to compare the data obtained from ansys with the data given by Baratta & Neal
[3] and the equation given by Inglis [5], Figure 3.2. In their article, they use a uniformly distributed load in a
semi-infinite plate so I have created models with different notch depths, varying from 30 % to 5 % of the
plate’s width, and have applied a distributed load at the boundary faces. The results are shown in Figure 3.7.
We can see that Kσ at the notch with the biggest depth is higher than the rest, which are very similar to each
other and to Baratta & Neal [3] and Inglis [5] data. This can be caused by the effect of boundary conditions
applied at the opposite face to the notch. This notch’s depth being at 30 % of the total width of the plate
makes the effect of the notch affect this face because it is not 3 times the depth of the notch away from it, the
recommended distance to avoid this effect. The other two curves do adapt fairly to the data from the articles,
which make these models perform as desired.

33
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Figure 3.1 Stress concentration factors for a flat tension plate with opposite U-shape notches. Image from
Peterson’s Stress Concentration Factors, Third Edition. [1].



3.3 Stress concentration factors in opposite semicircular notched plates 35

Figure 3.2 Chart from Baratta & Neal article [3].

3.3 Stress concentration factors in opposite semicircular notched plates

This case is a particularization of an opposite U-shaped notched plate, when t/r = 1, but it presents a main
advantage, it has a semi-analytical solution. Ling [6] and Maunsell [7] deduced formulas from an analytical
study of this geometry, making some necessary interpretations and simplifications. In this case, due to the
range of the parameters studied in this project, I decided to compare the data obtained from the ansys models
with Ling’s expression [6], Figure 3.3, and with the chart provided by Peterson [1], Figure 3.1. These results
are shown in Figure 3.8.

Figure 3.3 Chart from Ling’s article [6].

I did the same analysis for a load applied at the center line of the minimum section, the one in Figure 3.3,
and applying a uniform load. This change in the way of loading affects drastically the stress concentration
produced at the notch. The reason for this is the momentum created by the uniform load at the peak of the
notch due to the diminution of section, this makes Kσ for a uniform load to be greater than for the load applied
at the center of the minimum section, as shown in Figure 3.9.

3.4 Stress concentration factors in single semicircular notched plates

This case is similar to the previous one, but with only a single semicircular notch. For this geometry I have
compared the results obtained from the models with the data given by Peterson [1], Figure 3.10, and I have
also made a comparison with different ways of loading, as I did for the previous case, Figure 3.11
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3.5 Issues with Pilkie’s interpolation expressions

1 When comparing the data obtained from the FE models with Peterson’s results [1], I have found that there
is a big discrepancy between the information that Peterson gives in his original handbooks [8], plotted in
charts, and the interpolation expressions that Pilkie [1] offers for these plots that appear in Figure 3.1. These
discrepancies appear, at least, for Kσ at single and opposite U-shaped notches, and can be seen in Figure 3.12
and Figure 3.13 respectively. The error, in %, produced in reference to Peterson’s data can be seen in the
tables 3.1 and 3.2:

Table 3.1 Error table for Pilkie’s interpolation of opposite U-shaped notches.

H/d = 1.05 H/d = 1.10 H/d = 1.15 H/d = 1.20 H/d = 1.30 H/d = 1.50 H/d = 2.00
r/d = 0.10 0.5305 1.1664 4.3877 6.7344 7.5541 8.6806 10.1544
r/d = 0.15 1.0883 0.5512 2.7686 4.2633 7.6440 7.7483 8.6763
r/d = 0.20 1.5757 1.7244 2.5698 3.5332 6.1570 7.3548 9.2938
r/d = 0.25 1.8402 2.1503 2.7186 3.7571 5.3193 7.0790 9.1205
r/d = 0.30 2.8176 2.8786 2.8965 4.3797 5.9895 6.9514 7.6625
Average 1.5704 1.6942 3.0682 4.5336 6.5328 7.5628 8.9815

Table 3.2 Error table for Pilkie’s interpolation of single U-shaped notches.

H/d = 2.00 H/d = 1.50 H/d = 1.20 H/d = 1.10
r/d = 0.10 8.2826 8.9642 3.2888 6.3841
r/d = 0.15 8.6869 9.5690 3.0743 4.5167
r/d = 0.20 8.3483 9.5271 1.8798 2.4996
r/d = 0.25 8.7008 10.0792 0.7766 0.9261
r/d = 0.30 8.7940 9.3465 1.0150 0.8803
Average 8.5625 9.4972 2.0069 3.0414

If we compare the expressions for the case of semicircular notch (r/d = 1), Pilkie’s interpolation [1] seems
to be accurate for the case of single semicircular notch, Figure 3.14, and somewhat better for the case of
opposite semicircular notch, Figure 3.15.
Due to these mistaken interpolating expressions, I decided to create my own using matlab. By picking

points from Peterson’s charts [8] and interpolating them, I created an expression for each one of these curves.
So, for each relation of H/d I offer an expression depending on the r/d ratio.

Expression for Single Semicircular:

Kσ = 3.0743−7.2303
r
d
+4.8645(

r
d
)2 +14.8185(

r
d
)3

Expression for Opposite Semicircular:

Kσ = 3.0571−5.8969
r
d
+8.4157(

r
d
)2 −3.8922(

r
d
)3

3.6 Stress concentration factors in elements with different thickness

An interesting topic that can be studied with these models is how do Neuber’s and Moslki-Glinka’s rules
adapt to elements with different thickness. I have created solid, elasto-plastic models with the exact same
1 The codes used to create the comparisons and expressions that appear in this section appear in Section 3.8.
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Table 3.3 Interpolation expressions for Opposite U-shaped notches.

H/d Interpolation expression

1.05 Kσ = 2.4780−8.1476 r
d +24.2857( r

d )
2 −26.6667( r

d )
3

1.10 Kσ = 3.1600−14.6190 r
d +51.7143( r

d )
2 −66.6667( r

d )
3

1.15 Kσ = 3.6620−18.3714 r
d +63.4286( r

d )
2 −80.0000( r

d )
3

1.20 Kσ = 4.0820−21.9381 r
d +75.4286( r

d )
2 −93.3333( r

d )
3

1.30 Kσ = 3.9120−15.4452 r
d +38.5714( r

d )
2 −33.3333( r

d )
3

1.50 Kσ = 4.6120−23.8381 r
d +77.4286( r

d )
2 −93.3333( r

d )
3

2.00 Kσ = 5.1960−30.0810 r
d +104.2857( r

d )
2 −133.3333( r

d )
3

Table 3.4 Interpolation expressions for single U-shaped notches.

H/d Interpolation expression

1.10 Kσ = 3.6800−17.4333 r
d +56.0000( r

d )
2 −66.6667( r

d )
3

1.20 Kσ = 3.7420−17.0786 r
d +52.5714( r

d )
2 −60.0000( r

d )
3

1.50 Kσ = 3.6900−15.7262 r
d +44.8571( r

d )
2 −46.6667( r

d )
3

2.00 Kσ = 3.6900−15.7262 r
d +44.8571( r

d )
2 −46.6667( r

d )
3

parameters but different thickness, varying for every model the parameter t/r from 1 to 9, and compared the
values obtained from them with the results taken from plane stress and plane strain analysis. Theoretically,
the thinner the plate is, the closer these values must get to plane stress results. On the contrary, the thicker it
is, the closer they must be to plane strain results. The values obtained appear in Figure 3.16 and they show
little variation when plates are very thick, for example, the curves from the models with ratios H/h equal
to 1 and 2 are very close to the values obtained for the Plane Strain model, this means that plates with a
ratio H/h close to or lower to 2 can be consider as to be in Plane Strain. The application of Neuber’s and
Moslki-Glinka’s rules are shown in Section 4.5.
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3.7 Charts

All charts commented above are included in this section.
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Figure 3.4 Comparison between Kσ at an U-shape notch in one side of a flat tension plate taken from different
methods.
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Figure 3.5 Comparison between Kσ at an U-shape notch in one side of a flat tension plate taken from different
methods.
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Figure 3.6 Comparison between Kσ in an opposite U-shaped notched plate.
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Figure 3.7 Comparison between Kσ in a single U-shaped notched plate.
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Figure 3.8 Comparison between Kσ in an opposite semicircular notched plate.
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Figure 3.9 Comparison between Kσ in an opposite semicircular notched plate with a uniform load and a load
applied at the center of the minimum section.
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Figure 3.10 Comparison between Kσ in a single semicircular notched plate.
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Figure 3.11 Comparison between Kσ in a single semicircular notched plate with a uniform load and a load
applied at the center of the minimum section.
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Figure 3.12 Comparison between Kσ at a single U-shape notch obtained by Peterson (in red) and values from
Pilkie’s interpolation expression (in blue).
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Figure 3.13 Comparison between Kσ at a opposite U-shape notch obtained by Peterson (in red) and values
from Pilkie’s interpolation expression (in blue).
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Figure 3.14 Comparison between Kσ at a single semicircular notch obtained by Peterson (in red) and values
from Pilkie’s interpolation expression (in blue).
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Figure 3.15 Comparison between Kσ at a opposite semicircular notch obtained by Peterson (in red) and
values from Pilkie’s interpolation expression (in blue).
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Figure 3.16 Comparison between Kσ at a U-shaped notch in one side of a flat tension plate with different
thickness.
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3.8 Codes

Code 3.1 matlab code to calculate stress concentration factor in different models.

E=202375e6;

n=0.211;

K=1283e6;

H=0.127; % WIDTH

h=0.00254; % DEPTH

P=4e4; % LOAD

B=0.3048;

T=0.1*H;

hr=[1.1 2.1 3.1 4.1];

R=T./hr;

d=zeros([1 length(R)]);

ratio=zeros([1 length(R)]);

Pn=zeros([1 length(R)]);

for i=1:length(R)

d(i)=H-T;

ratio(i)=R(i)/d(i);

Pn(i)=P/(h*d(i));

end

%% PETERSONS RESULTS

Ktn=zeros([1 length(R)]);

for i=1:length(R)

if 0.5<=T/R(i)<2

C1=0.907+2.125*sqrt(T/R(i))+0.023*T/R(i);

C2=0.710-11.289*sqrt(T/R(i))+1.708*T/R(i);

C3=-0.672+18.754*sqrt(T/R(i))-4.046*T/R(i);

C4=0.175-9.759*sqrt(T/R(i))+2.365*T/R(i);

end

if 2<=T/R(i)<20

C1=0.953+2.136*sqrt(T/R(i))-0.005*T/R(i);

C2=-3.255-6.281*sqrt(T/R(i))+0.068*T/R(i);

C3=8.203+6.893*sqrt(T/R(i))+0.064*T/R(i);

C4=-4.851-2.793*sqrt(T/R(i))-0.128*T/R(i);

end

Ktn(i)=C1+C2*(R(i)/H)+C3*(R(i)/H)^2+C4*(R(i)/H)^3;

end

%% RESULTS FROM ANSYS

Kte=zeros([1 length(R)]);

S=[3244.185e5 4762.184e5 5844.532e5 6725.240e5];

for i=1:length(R)

Kte(i)=S(i)/Pn(i);

end
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%% PLOT

figure(1)

plot(ratio,Ktn,ratio,Kte)

legend('Kt Petersons','Kt ANSYS')

title('Stress concentration factor at U-shape notch')

xlabel('r/d')

ylabel('Kt')

figure(2)

KCB=[2.4 2.9 3.4 3.7];

plot(hr,S./(P/((H-T)*h)), hr, KCB)

legend('ANSYS', 'C&B aprox.')

title('Cole & Brown')

xlabel('h/r')

ylabel('fm/P/(D-h)t')

Code 3.2 matlab code to compare Pilkie’s expression for opposite U-shape notch with Peterson’s chart.

rd=[0.1 0.15 0.2 0.25 0.3];

Hd=[1.05 1.10 1.15 1.2 1.3 1.5 2];

H=1;

h=0.0254;

B=0.3048;

ratioSP=rd(1):0.01:rd(length(rd));

Ktn=zeros([length(rd) length(Hd)]);

t=zeros([1 length(Hd)]);

d=zeros([1 length(Hd)]);

r=zeros([length(rd) length(Hd)]);

for j=1:length(Hd)

d(j)=H/Hd(j);

t(j)=H-d(j);

for i=1:length(rd)

r(i,j)=d(j)*rd(i);

if 0.1<=(t(j)/r(i,j))<2

C1=0.955+2.169*sqrt(t(j)/r(i,j))-0.081*t(j)/r(i,j);

C2=-1.557-4.046*sqrt(t(j)/r(i,j))+1.032*t(j)/r(i,j);

C3=4.013+0.424*sqrt(t(j)/r(i,j))-0.748*t(j)/r(i,j);

C4=-2.461+1.538*sqrt(t(j)/r(i,j))-0.236*t(j)/r(i,j);

end

if 2<=(t(j)/r(i,j))<50

C1=1.037+1.991*sqrt(t(j)/r(i,j))+0.002*t(j)/r(i,j);

C2=-1.886-2.181*sqrt(t(j)/r(i,j))-0.048*t(j)/r(i,j);

C3=0.649+1.086*sqrt(t(j)/r(i,j))+0.142*t(j)/r(i,j);

C4=1.218-0.922*sqrt(t(j)/r(i,j))-0.086*t(j)/r(i,j);

end

Ktn(i,j)=C1+C2*(2*t(j)/H)+C3*(2*t(j)/H)^2+C4*(2*t(j)/H)^3;

end
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end

KTN=zeros([length(ratioSP) length(Hd)]);

for j=1:length(Hd)

KTN(:,j)=spline(rd,Ktn(:,j),ratioSP);

end

Peter(7,:)=[3.1 2.58 2.3 2.1 1.98];

Peter(6,:)=[2.9 2.46 2.2 2.02 1.91];

Peter(5,:)=[2.71 2.35 2.1 1.94 1.85];

Peter(4,:)=[2.55 2.17 1.96 1.85 1.77];

Peter(3,:)=[2.37 2.05 1.89 1.78 1.7];

Peter(2,:)=[2.15 1.9 1.76 1.69 1.64];

Peter(1,:)=[1.87 1.71 1.61 1.54 1.5];

KTP=zeros([length(ratioSP) length(Hd)]);

for j=1:length(Hd)

KTP(:,j)=spline(rd,Peter(j,:),ratioSP);

end

Muestra_Opposite=[KTN KTP];

Table_1 = table(ratioSP',Muestra_Opposite(:,1),Muestra_Opposite(:,2),

Muestra_Opposite(:,3),Muestra_Opposite(:,4),Muestra_Opposite(:,5),

Muestra_Opposite(:,6),Muestra_Opposite(:,7),Muestra_Opposite(:,8),

Muestra_Opposite(:,9),Muestra_Opposite(:,10),Muestra_Opposite(:,12),

Muestra_Opposite(:,12),Muestra_Opposite(:,13),Muestra_Opposite(:,14));

for j=1:7

plot(ratioSP,KTN(:,j),'b--');

hold on

plot(ratioSP,KTP(:,j),'r');

hold on

end

xlabel('r/d')

ylabel('Ktn')

hold off

Code 3.3 matlab code to compare Pilkie’s expression for single U-shape notch with Peterson’s chart.

H=1;

h=0.0254;

B=0.3048;

rd=[0.1 0.15 0.2 0.25 0.3];

Hds=[2 1.5 1.2 1.1];

ts=zeros([1 length(Hd)]);

ds=zeros([1 length(Hd)]);

rs=zeros([length(rd) length(Hd)]);

Ktns=zeros([1 length(rd)]);

for j=1:length(Hds)

ds(j)=H/Hds(j);

ts(j)=H-ds(j);

for i=1:length(rd)
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rs(i,j)=ds(j)*rd(i);

if 0.5<=(ts(j)/rs(i,j))<2

C1=0.907+2.125*sqrt(ts(j)/rs(i,j))+0.023*ts(j)/rs(i,j);

C2=0.710-11.289*sqrt(ts(j)/rs(i,j))+1.708*ts(j)/rs(i,j);

C3=-0.672+18.754*sqrt(ts(j)/rs(i,j))-4.046*ts(j)/rs(i,j);

C4=0.175-9.759*sqrt(ts(j)/rs(i,j))+2.365*ts(j)/rs(i,j);

end

if 2<=(t(j)/r(i,j))<20

C1=0.953+2.136*sqrt(ts(j)/rs(i,j))-0.005*ts(j)/rs(i,j);

C2=-3.255-6.281*sqrt(ts(j)/rs(i,j))+0.068*ts(j)/rs(i,j);

C3=8.203+6.893*sqrt(ts(j)/rs(i,j))+0.064*ts(j)/rs(i,j);

C4=-4.851-2.793*sqrt(ts(j)/rs(i,j))-0.128*ts(j)/rs(i,j);

end

Ktns(i,j)=C1+C2*(ts(j)/H)+C3*(ts(j)/H)^2+C4*(ts(j)/H)^3;

end

end

KTNS=zeros([length(ratioSP) length(Hds)]);

for j=1:length(Hds)

KTNS(:,j)=spline(rd,Ktns(:,j),ratioSP);

end

PeterS(4,:)=[2.53 2.18 1.97 1.84 1.75];

PeterS(3,:)=[2.53 2.18 1.97 1.84 1.75];

PeterS(2,:)=[2.50 2.16 1.95 1.81 1.72];

PeterS(1,:)=[2.42 2.10 1.90 1.77 1.69];

KTPS=zeros([length(ratioSP) length(Hds)]);

for j=1:length(Hds)

KTPS(:,j)=spline(rd,PeterS(j,:),ratioSP);

end

Muestra_Single=[KTNS KTPS];

Table_2 = table(ratioSP',Muestra_Single(:,1),Muestra_Single(:,2),Muestra_Single

(:,3),Muestra_Single(:,4),Muestra_Single(:,5),Muestra_Single(:,6),

Muestra_Single(:,7),Muestra_Single(:,8));

figure(2)

for j=1:4

plot(ratioSP,KTNS(:,j),'b--');

hold on

plot(ratioSP,KTPS(:,j),'r');

hold on

end

xlabel('r/d')

ylabel('Ktn')

Code 3.4 matlab code to compare Pilkie’s expression for single semicircular notch with Peterson’s chart.

H=1;

h=0.0254;
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B=0.3048;

rdcs=[0.01 0.05 0.1 0.15 0.2 0.25 0.3];

ratioSPS=rdcs(1):0.01:rdcs(length(rdcs));

Ktpcs=[3 2.72 2.43 2.14 1.94 1.82 1.74];

KTPCS=spline(rdcs,Ktpcs,ratioSPS);

dcs=zeros([1 length(rdcs)]);

tcs=zeros([1 length(rdcs)]);

Ktcs=zeros([1 length(rdcs)]);

for i=1:length(rdcs)

dcs(i)=H/(1+rdcs(i));

tcs(i)=rdcs(i)*dcs(i);

Ktcs(i)=3.065-8.87*(tcs(i)/H)+14.036*(tcs(i)/H)^2-7.219*(tcs(i)/H)^3;

end

KTCS=spline(rdcs,Ktcs,ratioSPS);

Table_3=table(ratioSPS', KTPCS', KTCS');

figure(3)

plot(ratioSPS', KTPCS',ratioSPS', KTCS')

xlabel('r/d')

ylabel('Ktn')

legend('Peterson','Pilkie')

Code 3.5 matlab code to compare Pilkie’s expression for opposite semicircular notch with Peterson’s chart.

H=1;

h=0.0254;

B=0.3048;

rdco=[0.01 0.05 0.1 0.15 0.2 0.25 0.3];

ratioSPO=rdco(1):0.01:rdco(length(rdco));

Ktpco=[3 2.79 2.55 2.35 2.17 2.05 1.97];

KTPCO=spline(rdco,Ktpco,ratioSPO);

dco=zeros([1 length(rdco)]);

tco=zeros([1 length(rdco)]);

Ktco=zeros([1 length(rdco)]);

for i=1:length(rdco)

dco(i)=H/(1+rdco(i));

tco(i)=rdco(i)*dco(i);

Ktco(i)=3.065-3.472*(2*tco(i)/H)+1.009*(2*tco(i)/H)^2+0.405*(tco(i)/H)^3;

end

KTCO=spline(rdco,Ktco,ratioSPO);

Table_4=table(ratioSPO', KTPCO', KTCO');

figure(4)
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plot(ratioSPO', KTPCO',ratioSPO', KTCO')

xlabel('r/d')

ylabel('Ktn')

legend('Peterson','Pilkie')





4 Neuber and Molski-Glinka’s rules

4.1 Ramberg-Osgood relationship

1 In 1943, Ramberg and Osgood proposed a relationship between strain and strain for both, elastic and plastic
zones, that could be summed in the same expression. Strain in the elastic zone is directly related with the
Young’s modulus of the material, whilst, in the plastic zone, it presents an exponential expression that depends
on two parameters, H and n, that are estimated for every material.

εe =
σ

E

εp = (
σ

H
)

1
n

So, if we sum both of these strains, we get the Ramberg-Osgood expression

ε = εe + εp

ε =
σ

E
+(

σ

H
)

1
n

If we give values to the three parameters, E, H and n, and plot the expression, we obtain a single and
smooth curve, Figure 4.1, which is not discontinuous at the yield point.
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Figure 4.1 Ramberg-Osgood expression curve.

1 The expressions showed in this section were taken fromMechanical Behavior of Materials. Engineering Methods for Deformation,
Fracture and Fatigue. Fourth Ed. [9]
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4.2 Neuber’s rule

2 Neuber’s rule [11] is a mathematical relationship that relates nominal stress and strain with local stress and
strain. The rule says that the product of nominal stresses and strains is proportional to the product of the
local elastic plastic stresses and strains.

Kσ ·σn ·Kσ · εn = σ · ε

Some modifications can be made to this expression which allow to write it only in terms of nominal stress.
We can assume the behavior of strain as pure elastic even though the real strain is above the yield point.
Doing this, we obtain the following hyperbola expression

σε =
(Kσ σn)

2

E

This relationship allow us to obtain the real local stress and strain from the nominal stress applied to the
element and the Kσ produced by the notch. However, we need another expression to obtain both stress and
strain, for this we use the Ramberg-Osgood expression that relates these two variables. If we obtain the point
where these two curves intersect, Figure 4.2, we will obtain the real local stress and strain. Therefore, the
equation system we have to solve is the following:

σε =
(Kσ σn)

2

E

ε =
σ

E
+(

σ

H
)

1
n

Where E, H and n are material properties.
It can be proved that this intersection is unconditionally convergent, and so, we can apply a simple algorithm

to solve this system. I’ll be using the algorithm published by Navarro [12], implemented in a matlab code
(Code 4.1).
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Figure 4.2 Ramberg-Osgood curve intersection with Neuber’s hyperbola.

2 Some of the information given in this section was taken from https://www.efatigue.com/ [10]



4.3 Molski-Glinka’s Rule 61

4.3 Molski-Glinka’s Rule

In 1980, Molski and Glinka [13] published a similar relationship between stress and strain, but this time it
was an energy-based method which also holds when localized plastic yielding occurred at the notch root.
They claimed that their method predicts local strain more accurately than Neuber’s method. Molski-Glinka’s
method always show lower values of real stress than the ones obtained by Neuber’s method. Molski-Glinka’s
expression can be arranged as the following [13].

(Kσ σn)
2

2E
=

σ
2

2E
+

σ

n+1
(

σ

H
)

1
n

Just as with Neuber’s method, the equations in this case can also be solved with a simple algorithm very
similar to that used for Neuber’s method [12] (Code 4.2).

4.4 Application of Neuber’s and Molski-Glinka’s rules to Finite Elements models

The aim of this project is to obtain real stress and strain by applying these methods to FE models. Having
already created and proved that the FE models work properly, the application of these methods is quite simple.
For this I will be using again the software matlab. In Codes 4.1 and 4.2 appear two functions, NeuberSe
and MolskiGlinkaSe, whose inputs are the material parameters E, H and n and a pseudo-stress, which is
defined as σ

∗
e = Kσ σn and whose outputs are the real local stress and strain after having applied the previously

mentioned unconditionally convergent algorithms.
To use these functions, we only need to know the material parameters, the value of the applied load and

the Kσ produced at the notch. The material parameters used in these project are shown in 4.1, but they can
be easily changed in both ansys and matlab codes. Stress concentration factors have been calculated in
previous sections and the applied load has always been 10 000 000 N. Due to some problems of convergence in
elasto-plastic models, that appeared when using loads applied to the center line at the middle of the minimum
section, I decided to only use distributed loads in this section.

Table 4.1 Material parameters.

Young’s modulus (E) 202 375 MPa
Poisson’s coefficient (α) 0.3
Hardening coefficient (H) 1 283 MPa
Hardening exponent (n) 0.211

I have made charts comparing Kσ produced at the notch in different situations, a pure elastic model, an
elasto-plastic model and the results obtained from Neuber’s and Molski-Glinka’s algorithms taking as input
the stress produced in the pure elastic model. As it was expected, pure elastic results are much greater than
the elasto-plastic ones when the stress produced is beyond the yield point. If stress is so low that is under the
yield point, both results are equal. As for Neuber’s and Molski-Glinka’s results, they are also always lower
than the elasto-plastic Kσ and similar in value, Molski-Glinka being slightly lower than Neuber. Charts are
presented in the following section and codes to apply algorithms and create these charts appear at section
"Codes". An Index of these charts and codes is shown in Table 4.2

4.5 Application of Neuber’s and Moslki-Glinka’s rules to elements with different
thickness

Just as they have been applied in the previous sections, Neuber’s and Moslki-Glinka’s rules have been applied
to the models mentioned in Section 3.6. The results are shown in Figure 4.11 and Figure 4.12. In this
chart we can see the difference between Neuber’s and Molski-Glinka’s results and the values obtained from
elasto-plastic models. They show an almost straight line at a 45 degree angle, which means that values
obtained from the mentioned methods compared to the ones obtained from elasto-plastic models are very
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Table 4.2 Chart index.

Chart Code
Opposite U-shape notched plate t/H = 0.15 Figure 4.3 Code 4.3
Opposite U-shape notched plate t/H = 0.05 Figure 4.4 Code 4.3
Opposite U-shape notched plate t/H = 0.025 Figure 4.5 Code 4.3

Single U-shape notched plate t/H = 0.3 Figure 4.6 Code 4.4
Single U-shape notched plate t/H = 0.1 Figure 4.7 Code 4.4
Single U-shape notched plate t/H = 0.05 Figure 4.8 Code 4.4

Opposite Semicircular notched plate Figure 4.9 Code 4.5
Single semicircular notched plate Figure 4.10 Code 4.6

similar. This is what we were looking for, the rules proposed by Neuber and Moslki-Glinka adapt fairly well,
providing an easy way to calculate real stresses and strains avoiding the need of time-consuming numerical
or experimental analysis.

The same comparison can be made but this time comparing Kε . The comparison is made by dividing the
nominal strain, taken from the Ramberg-Osgood relationship using σn as input, and the output strain from
Neuber’s and Molski-Glinka’s method algorithms. These charts are shown in Figure 4.13 and Figure 4.14,
the results being similar to the ones obtained for Kσ .
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4.6 Charts
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Figure 4.3 Comparison between Kσ from elastic and elasto-plastic models and values from Neuber’s and
Molski-Glinka’s methods in opposite U-shaped notched plates with t/H = 0.15.
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Figure 4.4 Comparison between Kσ from elastic and elasto-plastic models and values from Neuber’s and
Molski-Glinka’s methods in opposite U-shaped notched plates with t/H = 0.05.
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Figure 4.5 Comparison between Kσ from elastic and elasto-plastic models and values from Neuber’s and
Molski-Glinka’s methods in opposite U-shaped notched plates with t/H = 0.025.
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Figure 4.6 Comparison between Kσ from elastic and elasto-plastic models and values from Neuber’s and
Molski-Glinka’s methods in single U-shaped notched plates with t/H = 0.3.
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Figure 4.7 Comparison between Kσ from elastic and elasto-plastic models and values from Neuber’s and
Molski-Glinka’s methods in single U-shaped notched plates with t/H = 0.1.
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Figure 4.8 Comparison between Kσ from elastic and elasto-plastic models and values from Neuber’s and
Molski-Glinka’s methods in single U-shaped notched plates with t/H = 0.05.
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Figure 4.9 Comparison between Kσ from elastic and elasto-plastic models and values from Neuber’s and
Molski-Glinka’s methods in opposite semicircular notched plates.



4.6 Charts 71

5 ·10−2 0.1 0.15 0.2 0.25 0.3 0.35
1

1.5

2

2.5

3

r/d

K
σ

Elasto-plastic
Neuber’s Rule

Molski-Ginka’s Rule

Figure 4.10 Comparison between Kσ from elastic and elasto-plastic models and values from Neuber’s and
Molski-Glinka’s methods in single semicircular notched plates.
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Figure 4.11 Comparison between Kσ obtained from elasto-plastic models and Neuber’s method from plates
with different thickness.
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Figure 4.12 Comparison between Kσ obtained from elasto-plastic models and Molski-Glinka’s method from
plates with different thickness.
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Figure 4.13 Comparison between Kε obtained from elasto-plastic models and Neuber’s method from plates
with different thickness.
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Figure 4.14 Comparison between Kε obtained from elasto-plastic models and Molski-Glinka’s method from
plates with different thickness.
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4.7 Codes

Code 4.1 matlab implementation for Neuber’s method algorithm.

function [ S, e ] = NeuberSe( E, n, K, Se )

%[ S, e ] = NeuberSe( E, n, K, Se )

% Given E, n, K and a Pseudostress (Se = Kt*Sn), NeuberSe calculates real

Stress

% and Strain in a notched piece intersecting Neuber's Hyperbola and Ramberg-

Osgood function.

tol=1.0;

Lc=((2*n)/(n+1))*((3*n+1)/(n+1))^((1-n)/(2*n));

Bc=sqrt((n+1)/(3*n+1));

L=(E/Se)*(Se/K)^(1/n);

if Lc==L

B=Bc;

elseif L<Lc

Bo=Bc;

Bi=sqrt(1-L*Bo^(1/n+1));

while abs((Bo-Bi)/Bo)*100>tol

Bo=Bi;

Bi=sqrt(1-L*Bo^(1/n+1));

end

B=Bi;

else

Bo=Bc;

Bi=((1-Bo^2)/L)^(n/(n+1));

while abs((Bo-Bi)/Bo)*100>tol

Bo=Bi;

Bi=((1-Bo^2)/L)^(n/(n+1));

end

B=Bi;

end

S=B*Se;

e=S/E+(S/K)^(1/n);

end

Code 4.2 matlab implementation for Molski-Glinka’s method algorithm.

function [ S, e ] = MolskiGlinkaSe( E, n, K, Se )

%[ S, e ] = MolskiGlinkaSe( E, n, K, Se )

% Given E, n, K and a Pseudostress (Se = Kt*Sn), MolskiGlinkaSe calculates

real Stress

% and Strain in a notched piece according to Molski-Glinka's rule.

tol=1.0;
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Lc=((2*n)/(n+1))*((3*n+1)/(n+1))^((1-n)/(2*n));

Bc=sqrt((n+1)/(3*n+1));

L=2/(n+1)*E/Se*(Se/K)^(1/n);

if Lc==L

B=Bc;

elseif L<Lc

Bo=Bc;

Bi=sqrt(1-L*Bo^(1/n+1));

while abs((Bo-Bi)/Bo)*100>tol

Bo=Bi;

Bi=sqrt(1-L*Bo^(1/n+1));

end

B=Bi;

else

Bo=Bc;

Bi=((1-Bo^2)/L)^(n/(n+1));

while abs((Bo-Bi)/Bo)*100>tol

Bo=Bi;

Bi=((1-Bo^2)/L)^(n/(n+1));

end

B=Bi;

end

S=B*Se;

e=S/E+(S/K)^(1/n);

end

Code 4.3 matlab implementation for Neuber’s andMolski-Glinka’s methods algorithms for opposite U-shape
notched plates.

clear

close all

clc

E=202375e6;

n=0.211;

K=1283e6;

H=1; % ANCHO

h=0.05; % PROFUNDIDAD

P=4e6; % Carga

B=0.3048;

T30=0.3*H;

T10=0.1*H;

T05=0.05*H;

hr=[1.1 2.1 3.1 4.1 5.1 6.1 7.1 8.1 9.1];

R30=T30./hr;

R10=T10./hr;

R05=T05./hr;
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d=zeros([1 length(hr)]);

ratio30=zeros([1 length(hr)]);

ratio10=zeros([1 length(hr)]);

ratio05=zeros([1 length(hr)]);

Pn=zeros([1 length(hr)]);

for i=1:length(hr)

ratio30(i)=T30/R30(i);

ratio10(i)=T10/R10(i);

ratio05(i)=T05/R05(i);

Pn(i)=P/(h*H);

end

%% PS30

DATOS_PLANE_STRESS_30 = load('OPPOSITE_PLANE_STRESS/PS_30/DATOS.dat');

Sps30=DATOS_PLANE_STRESS_30';

Ktps30=zeros([1 length(hr)]);

for i=1:length(hr)

Ktps30(i)=Sps30(i)/Pn(i);

end

ratiofinoPS30=ratio30(1):0.01:ratio30(length(ratio30));

KTPS30=spline(ratio30,Ktps30,ratiofinoPS30);

KTPS30_FIT=fit(ratio30',Ktps30','smoothingspline');

%% PS10

DATOS_PLANE_STRESS_10 = load('OPPOSITE_PLANE_STRESS/PS_10/DATOS.dat');

Sps10=DATOS_PLANE_STRESS_10';

Ktps10=zeros([1 length(hr)]);

for i=1:length(hr)

Ktps10(i)=Sps10(i)/Pn(i);

end

ratiofinoPS10=ratio10(1):0.01:ratio10(length(ratio10));

KTPS10=spline(ratio10,Ktps10,ratiofinoPS10);

KTPS10_FIT=fit(ratio10',Ktps10','smoothingspline');

%% PLASTICITY 30

DATOS_PLAS_30 = load('OPPOSITE_PLASTICITY/PLAS_30/DATOS.dat');

S_PLAS_30=DATOS_PLAS_30';

Kt_PLAS_30=zeros([1 length(hr)]);

for i=1:length(hr)

Kt_PLAS_30(i)=S_PLAS_30(i)/Pn(i);

end

KT_PLAS_30=spline(ratio30,Kt_PLAS_30,ratiofinoPS30);

KT_PLAS_30_FIT=fit(ratio30',Kt_PLAS_30','smoothingspline');
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%% PLASTICITY 10

DATOS_PLAS_10 = load('OPPOSITE_PLASTICITY/PLAS_10/DATOS.dat');

S_PLAS_10=DATOS_PLAS_10';

Kt_PLAS_10=zeros([1 length(hr)]);

for i=1:length(hr)

Kt_PLAS_10(i)=S_PLAS_10(i)/Pn(i);

end

KT_PLAS_10=spline(ratio10,Kt_PLAS_10,ratiofinoPS10);

KT_PLAS_10_FIT=fit(ratio10',Ktps10','smoothingspline');

%% RESULTADOS NEUBER 30

Kt_neu_30=zeros([1 length(hr)]);

for i=1:length(hr)

[ Sn, en ] = NeuberSe( E, n, K, S_PLAS_30(i) );

Kt_neu_30(i)=Sn/Pn(i);

end

KT_NEU_30=spline(ratio30,Kt_neu_30,ratiofinoPS30);

KT_NEU_30_FIT=fit(ratio30',Kt_neu_30','smoothingspline');

%% RESULTADOS NEUBER 10

Kt_neu_10=zeros([1 length(hr)]);

for i=1:length(hr)

[ Sn, en ] = NeuberSe( E, n, K, S_PLAS_10(i) );

Kt_neu_10(i)=Sn/Pn(i);

end

KT_NEU_10=spline(ratio10,Kt_neu_10,ratiofinoPS10);

KT_NEU_10_FIT=fit(ratio10',Kt_neu_10','smoothingspline');

%% MOLSKI-GLINKA 30

Kt_mg_30=zeros([1 length(hr)]);

for i=1:length(hr)

[ Smg, emg ] = MolskiGlinkaSe( E, n, K, S_PLAS_30(i) );

Kt_mg_30(i)=Smg/Pn(i);

end

KT_MG_30=spline(ratio30,Kt_mg_30,ratiofinoPS30);

KT_MG_30_FIT=fit(ratio30',Kt_mg_30','smoothingspline');

%% PLOT

figure(1)

plot(KTPS30_FIT,'b')

hold on

plot(KT_PLAS_30_FIT,'g--')

hold on

plot(KT_NEU_30_FIT,'r-.')
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hold on

plot(KT_MG_30_FIT,'m..')

legend('ANSYS Plane Stress 30%','ANSYS Plasticity 30%','NEUBER 30%','Molski-

Glinka 30%')

axis([1 10 2 13])

title('Comparison between plasticity and plane stress')

xlabel('t/r')

ylabel('Kt')

figure(2)

plot(ratiofinoPS10,KTPS10,ratiofinoPS10,KT_PLAS_10,ratiofinoPS10,KT_NEU_10)

legend('ANSYS Plane Stress 10%','ANSYS Plasticity 10%','NEUBER 10%')

title('Comparison between plasticity and plane stress')

xlabel('t/r')

ylabel('Kt')

figure(3)

plot(ratiofinoPS30,KTPS30,'b',ratiofinoPS30,KT_PLAS_30,'b--',ratiofinoPS30,

KT_NEU_30,'b-.',ratiofinoPS10,KTPS10,'r',ratiofinoPS10,KT_PLAS_10,'r--',

ratiofinoPS10,KT_NEU_10,'r-.')

legend('ANSYS Plane Stress 30%','ANSYS Plasticity 30%','NEUBER 30%','ANSYS

Plane Stress 10%','ANSYS Plasticity 10%','NEUBER 10%')

title('Comparison between plasticity, solid and plane stress')

xlabel('t/r')

ylabel('Kt')

Code 4.4 matlab implementation for Neuber’s and Molski-Glinka’s methods algorithms for single U-shape
notched plates.

clear

close all

clc

E=202375e6;

n=0.211;

K=1283e6;

H=1; % ANCHO

h=0.05; % PROFUNDIDAD

P=10000000; % Carga

B=3.5;

T30=0.3*H;

T10=0.1*H;

T05=0.05*H;

hr=[1.1 2.1 3.1 4.1 5.1 6.1 7.1 8.1 9.1];

R30=T30./hr;

R10=T10./hr;

R05=T05./hr;

d=zeros([1 length(hr)]);

ratio30=zeros([1 length(hr)]);

ratio10=zeros([1 length(hr)]);
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ratio05=zeros([1 length(hr)]);

Pn=zeros([1 length(hr)]);

for i=1:length(hr)

ratio30(i)=T30/R30(i);

ratio10(i)=T10/R10(i);

ratio05(i)=T05/R05(i);

Pn(i)=P/(h*H);

end

%% PS30

DATOS_PLANE_STRESS_30 = load('U_SHAPE_PLANE_STRESS/PS_30/DATOS_BARATTA.dat');

Sps30=DATOS_PLANE_STRESS_30';

Ktps30=zeros([1 length(hr)]);

for i=1:length(hr)

Ktps30(i)=Sps30(i)/Pn(i);

end

ratiofinoPS30=ratio30(1):0.01:ratio30(length(ratio30));

KTPS30_FIT=polyval(polyfit(ratio30,Ktps30,3),ratiofinoPS30);

%% PS10

DATOS_PLANE_STRESS_10 = load('U_SHAPE_PLANE_STRESS/PS_10/DATOS_BARATTA.dat');

Sps10=DATOS_PLANE_STRESS_10';

Ktps10=zeros([1 length(hr)]);

for i=1:length(hr)

Ktps10(i)=Sps10(i)/Pn(i);

end

ratiofinoPS10=ratio10(1):0.01:ratio10(length(ratio10));

KTPS10_FIT=polyval(polyfit(ratio10,Ktps10,3),ratiofinoPS10);

%% PS05

DATOS_PLANE_STRESS_05 = load('U_SHAPE_PLANE_STRESS/PS_05/DATOS_BARATTA.dat');

Sps05=DATOS_PLANE_STRESS_05';

Ktps05=zeros([1 length(hr)]);

for i=1:length(hr)

Ktps05(i)=Sps05(i)/Pn(i);

end

ratiofinoPS05=ratio05(1):0.01:ratio05(length(ratio05));

KTPS05_FIT=polyval(polyfit(ratio05,Ktps05,3),ratiofinoPS05);

%% PLASTICITY 30

DATOS_PLAS_30 = load('U_SHAPE_PLASTICITY/PLAS_30/DATOS_BARATTA.dat');

S_PLAS_30=DATOS_PLAS_30';
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Kt_PLAS_30=zeros([1 length(hr)]);

for i=1:length(hr)

Kt_PLAS_30(i)=S_PLAS_30(i)/Pn(i);

end

KT_PLAS_30_FIT=polyval(polyfit(ratio30,Kt_PLAS_30,3),ratiofinoPS30);

%% PLASTICITY 10

DATOS_PLAS_10 = load('U_SHAPE_PLASTICITY/PLAS_10/DATOS_BARATTA.dat');

S_PLAS_10=DATOS_PLAS_10';

Kt_PLAS_10=zeros([1 length(hr)]);

for i=1:length(hr)

Kt_PLAS_10(i)=S_PLAS_10(i)/Pn(i);

end

KT_PLAS_10_FIT=polyval(polyfit(ratio10,Kt_PLAS_10,3),ratiofinoPS10);

%% PLASTICITY 05

DATOS_PLAS_05 =load('U_SHAPE_PLASTICITY/PLAS_05/DATOS_BARATTA.dat');

S_PLAS_05=DATOS_PLAS_05';

Kt_PLAS_05=zeros([1 length(hr)]);

for i=1:length(hr)

Kt_PLAS_05(i)=S_PLAS_05(i)/Pn(i);

end

KT_PLAS_05_FIT=polyval(polyfit(ratio05,Kt_PLAS_05,3),ratiofinoPS05);

%% RESULTADOS NEUBER 30

Kt_neu_30=zeros([1 length(hr)]);

for i=1:length(hr)

[ Sn, en ] = NeuberSe( E, n, K, S_PLAS_30(i) );

Kt_neu_30(i)=Sn/Pn(i);

end

KT_NEU_30_FIT=polyval(polyfit(ratio30,Kt_neu_30,3),ratiofinoPS30);

%% RESULTADOS NEUBER 10

Kt_neu_10=zeros([1 length(hr)]);

for i=1:length(hr)

[ Sn, en ] = NeuberSe( E, n, K, S_PLAS_10(i) );

Kt_neu_10(i)=Sn/Pn(i);

end

KT_NEU_10_FIT=polyval(polyfit(ratio10,Kt_neu_10,3),ratiofinoPS10);

%% RESULTADOS NEUBER 05
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Kt_neu_05=zeros([1 length(hr)]);

for i=1:length(hr)

[ Sn, en ] = NeuberSe( E, n, K, S_PLAS_05(i) );

Kt_neu_05(i)=Sn/Pn(i);

end

KT_NEU_05_FIT=polyval(polyfit(ratio05,Kt_neu_05,3),ratiofinoPS05);

%% MOLSKI-GLINKA 30

Kt_mg_30=zeros([1 length(hr)]);

for i=1:length(hr)

[ Smg, emg ] = MolskiGlinkaSe( E, n, K, S_PLAS_30(i) );

Kt_mg_30(i)=Smg/Pn(i);

end

KT_MG_30_FIT=polyval(polyfit(ratio30,Kt_mg_30,3),ratiofinoPS30);

%% MOLSKI-GLINKA 10

Kt_mg_10=zeros([1 length(hr)]);

for i=1:length(hr)

[ Smg, emg ] = MolskiGlinkaSe( E, n, K, S_PLAS_10(i) );

Kt_mg_10(i)=Smg/Pn(i);

end

KT_MG_10_FIT=polyval(polyfit(ratio10,Kt_mg_10,3),ratiofinoPS10);

%% MOLSKI-GLINKA 05

Kt_mg_05=zeros([1 length(hr)]);

for i=1:length(hr)

[ Smg, emg ] = MolskiGlinkaSe( E, n, K, S_PLAS_05(i) );

Kt_mg_05(i)=Smg/Pn(i);

end

KT_MG_05_FIT=polyval(polyfit(ratio05,Kt_mg_05,3),ratiofinoPS05);

%% PLOT

figure(1)

plot(ratiofinoPS30,KTPS30_FIT,'b')

hold on

plot(ratiofinoPS30,KT_PLAS_30_FIT,'g--')

hold on

plot(ratiofinoPS30,KT_NEU_30_FIT,'r-.')

hold on

plot(ratiofinoPS30,KT_MG_30_FIT,'m:')

legend('ANSYS Plane Stress 30%','ANSYS Plasticity 30%','NEUBER 30%','Molski-

Glinka 30%')

axis([1 10 0 13])

title('Comparison between plasticity and plane stress')
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xlabel('t/r')

ylabel('Kt')

grid on

grid minor

figure(2)

plot(ratiofinoPS10,KTPS10_FIT,'b')

hold on

plot(ratiofinoPS10,KT_PLAS_10_FIT,'g--')

hold on

plot(ratiofinoPS10,KT_NEU_10_FIT,'r-.')

hold on

plot(ratiofinoPS10,KT_MG_10_FIT,'m:')

legend('ANSYS Plane Stress 10 %','ANSYS Plasticity 10 %','NEUBER 10 %','Molski-

Glinka 10 %')

axis([1 10 0 10])

title('Comparison between plasticity and plane stress')

xlabel('t/r')

ylabel('Kt')

grid on

grid minor

figure(3)

plot(ratiofinoPS05,KTPS05_FIT,'b')

hold on

plot(ratiofinoPS05,KT_PLAS_05_FIT,'g--')

hold on

plot(ratiofinoPS05,KT_NEU_05_FIT,'r-.')

hold on

plot(ratiofinoPS05,KT_MG_05_FIT,'m:')

legend('ANSYS Plane Stress 5 %','ANSYS Plasticity 5 %','NEUBER 5 %','Molski-

Glinka 5 %')

axis([1 10 0 9])

title('Comparison between plasticity and plane stress')

xlabel('t/r')

ylabel('Kt')

grid on

grid minor

figure(4)

plot(ratiofinoPS30,KTPS30_FIT,'b')

hold on

plot(ratiofinoPS30,KT_PLAS_30_FIT,'b--')

hold on

plot(ratiofinoPS30,KT_NEU_30_FIT,'b-.')

hold on

plot(ratiofinoPS30,KT_MG_30_FIT,'b:')

hold on

plot(ratiofinoPS10,KTPS10_FIT,'r')

hold on

plot(ratiofinoPS10,KT_PLAS_10_FIT,'r--')

hold on

plot(ratiofinoPS10,KT_NEU_10_FIT,'r-.')

hold on

plot(ratiofinoPS10,KT_MG_10_FIT,'r:')

hold on

plot(ratiofinoPS05,KTPS05_FIT,'g')
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hold on

plot(ratiofinoPS05,KT_PLAS_05_FIT,'g--')

hold on

plot(ratiofinoPS05,KT_NEU_05_FIT,'g-.')

hold on

plot(ratiofinoPS05,KT_MG_05_FIT,'g:')

legend('ANSYS Plane Stress 30 %', 'ANSYS Plasticity 30 %', 'NEUBER 30 %', '

Molski-Glinka 30 %','ANSYS Plane Stress 10 %', 'ANSYS Plasticity 10 %', '

NEUBER 10 %', 'Molski-Glinka 10 %','ANSYS Plane Stress 5 %', 'ANSYS

Plasticity 5 %', 'NEUBER 5 %', 'Molski-Glinka 5 %')

axis([1 9 0 13])

xlabel('t/r')

ylabel('Kt')

grid on

grid minor

Code 4.5 matlab implementation for Neuber’s and Molski-Glinka’s methods algorithms for opposite
semicircular notched plates.

clear

close all

clc

E=202375000000;

n=0.211;

K=1283e6;

H=2; % ANCHO

h=0.05; % PROFUNDIDAD

P=2*10000000; % Carga

Pn=P/(H*h);

B=5;

DIV=[2,2.5,3,3.5,4,4.5,5,5.5,6,6.5,7,7.5,8,8.5,9,9.5,10];

R=(H/2)./DIV;

d=H-2*R;

rd=R./d;

ratio=rd;

ratiofino=rd(length(rd)):0.01:rd(1);

%% ANSYS OPPOSITE DIST

DATOS_PLANE_STRESS_DIST = load('SEMICIRCULAR_OPPOSITE_DIST/DATOS.dat');

Sps_dist=DATOS_PLANE_STRESS_DIST';

Ktps_dist=zeros([1 length(R)]);

for i=1:length(R)

Ktps_dist(i)=Sps_dist(i)/Pn;

end

KTPS_FIT_DIST=polyval(polyfit(rd,Ktps_dist,3),ratiofino);

%% ANSYS OPPOSITE PLASTICITY
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DATOS_PLANE_STRESS_PLAS = load('SEMICIRCULAR_OPPOSITE_PLASTICITY/DATOS.dat');

S_PLAS=DATOS_PLANE_STRESS_PLAS';

Ktps_plas=zeros([1 length(R)]);

for i=1:length(R)

Ktps_plas(i)=S_PLAS(i)/Pn;

end

KT_PLAS=polyval(polyfit(rd,Ktps_plas,3),ratiofino);

%% NEUBER

Kt_neu=zeros([1 length(rd)]);

for i=1:length(rd)

[ Sn, en ] = NeuberSe( E, n, K, S_PLAS(i) );

Kt_neu(i)=Sn/Pn;

end

KT_NEU=polyval(polyfit(ratio,Kt_neu,3),ratiofino);

%% MOLSKI-GLINKA

Kt_mg=zeros([1 length(rd)]);

for i=1:length(rd)

[ Smg, emg ] = MolskiGlinkaSe( E, n, K, S_PLAS(i) );

Kt_mg(i)=Smg/Pn;

end

KT_MG=polyval(polyfit(rd,Kt_mg,3),ratiofino);

%% PLOT

figure(1)

plot(ratiofino,KTPS_FIT_DIST,'b')

hold on

plot(ratiofino,KT_PLAS,'g-.')

hold on

plot(ratiofino,KT_NEU,'r--')

hold on

plot(ratiofino,KT_MG,'m--')

xlabel('r/d')

ylabel('Kt')

axis([0 0.5 1 4])

legend('Plane Stress (Pure Elastic)','Elasto-plastic','Neuber','Molski-Glinka')

grid on

grid minor

Code 4.6 matlab implementation for Neuber’s and Molski-Glinka’s methods algorithms for single semicir-
cular notched plates.

clear

close all

clc

E=202375000000;
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n=0.211;

K=1283e6;

H=2; % ANCHO

h=0.05; % PROFUNDIDAD

P=10000000; % Carga

Pn=P/(H*h);

B=5;

DIV=[2,2.5,3,3.5,4,4.5,5,5.5,6,6.5,7,7.5,8,8.5,9,9.5,10];

R=(H/2)./DIV;

d=H-R;

Pnd=P./(d*h);

rd=R./d;

ratio=rd;

ratiofino=rd(length(rd)):0.01:rd(1);

%% ANSYS SINGLE DIST

DATOS_PLANE_STRESS_DIST = load('SEMICIRCULAR_SINGLE_DIST/DATOS.dat');

Sps_dist=DATOS_PLANE_STRESS_DIST';

Ktps_dist=zeros([1 length(R)]);

for i=1:length(R)

Ktps_dist(i)=Sps_dist(i)/Pn;

end

KTPS_FIT_DIST=polyval(polyfit(rd,Ktps_dist,3),ratiofino);

%% ANSYS SINGLE PLASTICITY

DATOS_PLANE_STRESS_PLAS = load('SEMICIRCULAR_SINGLE_PLASTICITY/DATOS.dat');

S_PLAS=DATOS_PLANE_STRESS_PLAS';

Ktps_plas=zeros([1 length(R)]);

for i=1:length(R)

Ktps_plas(i)=S_PLAS(i)/Pn;

end

KT_PLAS=polyval(polyfit(rd,Ktps_plas,3),ratiofino);

%% NEUBER

Kt_neu=zeros([1 length(rd)]);

for i=1:length(rd)

[ Sn, en ] = NeuberSe( E, n, K, S_PLAS(i) );

Kt_neu(i)=Sn/Pn;

end

KT_NEU=polyval(polyfit(ratio,Kt_neu,3),ratiofino);

%% MOLSKI-GLINKA

Kt_mg=zeros([1 length(rd)]);

for i=1:length(rd)

[ Smg, emg ] = MolskiGlinkaSe( E, n, K, S_PLAS(i) );
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Kt_mg(i)=Smg/Pn;

end

KT_MG=polyval(polyfit(rd,Kt_mg,3),ratiofino);

%% PLOT

figure(1)

plot(ratiofino,KTPS_FIT_DIST,'b')

hold on

plot(ratiofino,KT_PLAS,'g-.')

hold on

plot(ratiofino,KT_NEU,'r--')

hold on

plot(ratiofino,KT_MG,'m--')

xlabel('r/d')

ylabel('Kt')

axis([0.05 0.35 2 5])

legend('Plane Stress (Pure Elastic)','Elasto-plastic','Neuber','Molski-Glinka')

grid on

grid minor



5 Conclusions

The Finite Elements models created in this project have been compared with experimental and theoretical
data from various authors in order to provide reliable results. This reliability allow us to easily modify

the parameters that define these models and to obtain useful data from an infinity of different geometries and
materials, avoiding the need of expensive laboratory studies. This gives this project a lot of potential, being a
more ambitious goal of creating a big database including several different geometries of diverse materials.
This could be the starting point for future end-of-degree or research projects that can use these texts and
codes as a guide to expand the database.
The goal of applying Neuber’s and Molski-Glinka’s rules to the data obtained from the Finite Elements

models has been fulfilled having set a particular file structure to create an output file with the data obtained
from ansys, where several loop codes have been implemented to ease the job, to input in matlab where Kσ

have been calculated and convergence algorithms have been implemented to apply the mentioned rules.
The goals that have not been achieved are to create a reliable solid model for very thin plates and to create

a convergent elasto-plastic model with a load applied in a line at the center of the minimum section.
Regarding the data obtained from the analysis that have been carried out in this project, we can get the

following conclusions:
1. The effect of the notch’s depth is increased when it is bigger than recommended, a distance at least 3

times it’s depth to the end of the plate.
2. Plates with a ratio H/h lower or close to 2 can be considered as to be in Plane Strain.
3. Neuber’s and Molski-Glinka’s methods adapt well for stresses and strains in all range of thicknesses,

giving very similar values to the ones obtained from elasto-plastic models.
4. Considering Kσ based on the gross section, Neuber’s and Molski-Glinka’s methods are generally less

conservative than the results obtained from elasto-plastic models.
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