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Abstract

This paper is concerned with the design of stabilizing MPC
controllers for constrained linear systems. This is achieved by
obtaining a suitable terminal cost and terminal constraint using
a saturating control law as local controller. The system con-
trolled by the saturating control law is modeled by a polytopic
differential inclusion. Based on this, it is shown how to deter-
mine a Lyapunov function and a polyhedral invariant set which
can be used as terminal cost and constraint. The obtained in-
variant set is potentially larger than the maximal invariant set
for the unsaturated linear controller, O∞.

Furthermore, considering these elements, a dual-mode MPC is
proposed. This controller guarantees the enlargement of the
domain of attraction or, equivalently, the reduction of the pre-
diction horizon for a given set of stabilizable initial states. If
the local control law is the saturating LQR controller, then the
proposed dual-mode MPC controller maintains the local opti-
mality of the standard MPC. An illustrative example is given.

1 Introduction

MPC has become a popular control technique both in academy
and industry. The main reason for this success is that MPC can
be considered as an optimum control technique able to deal
with constraints on the states and the manipulated variables in
an explicit manner. Furthermore, a theoretical framework to
analyze topics such as stability, robustness, optimality, etc. has
been developed recently. See [9] for a survey, or [2] for process
industry application issues.

It has been proved [9] that closed-loop stability of the MPC
controller is guaranteed by adding a terminal cost and a ter-
minal constraint in the optimization problem. The considered
terminal cost is a Lyapunov function associated to the system
controlled by a local control law. An associated invariant set
is the terminal set. The domain of attraction of the MPC con-

troller is the set of states that can be steered to the terminal
region in N steps, where N is the prediction horizon.

The most common way of designing a stabilizing MPC con-
troller for a constrained linear system is based on the following
three ingredients: (i) an LQR as local stabilizing controller; (ii)
a quadratic terminal cost equal to the optimal cost; (iii) a termi-
nal set equal to the maximal admissible invariant set, O∞. In
this case, the obtained MPC controller is equal to the infinite-
horizon optimal controller (constrained LQR) in a neighbor-
hood of the origin.

If a saturating control law is used instead, then the region where
the local controller is stabilizing can be increased. Therefore,
the domain of attraction of the MPC controller can be enlarged
(or, equivalently, the required prediction horizon can be re-
duced for a given set of stabilizable initial states). This idea
has been previously used in [3] for single-input linear systems
subject to constraint in the input (but not in the states). A re-
gion where the saturated LQR is optimal is presented and the
optimal cost is explicitly computed for the closed-loop system.
This cost is valid in the maximal invariant set contained in that
region. This invariant set may be non-convex, which leads to a
non-convex MPC optimization problem.

In this paper we use a saturating control law from a different
point of view. From a differential inclusion representation, it
is shown how to compute a suitable Lyapunov quadratic func-
tion and a polyhedral invariant set for the constrained system
controlled by the saturating control law. The obtained invari-
ant set is potentially larger than O∞. Hence, the domain of
attraction of the obtained stabilizing MPC controller may be
enlarged. Furthermore, the obtained MPC is based on a convex
quadratic programming problem and can be applied to generic
constrained multi-input systems. In order to guarantee the en-
largement of the domain of attraction remaining the local op-
timality of the LQR-based design, a dual MPC technique is
proposed.

Notations. For any vector x ∈ IRn, x � 0 means that all
the components of x, denoted x(i), are nonnegative and x � 0
means that are strictly positive. y = |x|, for x ∈ IRn, denotes
the component-wise absolute value, that is, y(i) = |x(i)|. For
two vectors x, y of IRn, the notation x � y means that x−y �
0. For a symmetric matrix A, A > 0 means that it is definite
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positive. Consequently, for two symmetric matrices, A and B,
A > B means that A − B > 0. For a definite positive matrix
P > 0, ε(P, α) denotes the ellipsoid ε(P, α) = {x ∈ IRn :
xT Px ≤ α}. A(i) denotes the ith row of matrix A, and AT

denotes the transpose of A. In denotes the n-order identity
matrix. For any vector x ∈ IRn, diag(x) denotes the diagonal
matrix obtained from x. Co {·} denotes a convex hull.

2 Saturating Control Laws

Let a discrete-time linear system be described by:

x+ = Ax + Bu (1)

where x ∈ IRn is the current state of the system, u ∈ IRm is
the current input and x+ is the successor state. The system is
subject to hard constraints on state and control input:

x(k) ∈ X, u(k) ∈ U

for all k ≥ 0. The sets X and U are polyhedra containing the
origin in their interior. Furthermore the set U is given by

U = {u ∈ IRm : |u| � ρ}

where the vector ρ ∈ IRm is such that ρ � 0.

Consider that system (1) is stabilized by a state feedback law
u = Kx, that is, K is such that the eigenvalues of (A + BK)
are placed inside the unit disk. Note that this control law is
admissible inside a polyhedral region defined as:

RL = {x ∈ IRn ; |Kx| � ρ} (2)

and hence, the control law u = Kx is only able to stabilize the
constrained system in a subset of RL ∩X . This set is the max-
imal positively invariant set for x+ = (A + BK)x contained
in RL ∩X (also called maximal admissible set) and denoted as
O∞ [4].

The controller might be extended outside this region, consider-
ing that the effective control law to be applied to the system is a
saturated state feedback, where each component of the control
vector is defined as follows:

u(i) =




−ρ(i) if K(i)x < −ρ(i)

K(i)x if − ρi ≤ K(i)x ≤ ρ(i)

ρ(i) if K(i)x > ρ(i)

(3)

For all i = 1, · · · ,m. In this case, the closed-loop system be-
comes

x+ = Ax + Bsat(Kx) (4)

which is a non-linear system.

Note that each component of the control law defined by (3) can
also be written as [6, 5]:

u(i) = sat(K(i)x) = α(x)(i)K(i)x (5)

where

α(x)(i)
�
=




−ρ(i)

K(i)x
if K(i)x < −ρ(i)

1 if −ρ(i) ≤ K(i)x ≤ ρ(i)
ρ(i)

K(i)x
if K(i)x > ρ(i)

(6)

with 0 < α(x)(i) ≤ 1, i = 1, . . . , m.

The coefficient α(x)(i) can be viewed as an indicator of the de-
gree of saturation of the ith entry of the control vector. In fact,
smaller is α(x)(i), farther is the state vector from the region RL

given by Equation (2). Notice that α(x)(i) is a function of the
current state x. For the sake of simplicity, in the sequel we de-
note α(x)(i) as α(i). Hence, defining both α ∈ IRm as a vector
for which the ith entry is α(i), i = 1, . . . , m, and a diagonal

matrix D(α)
�
= diag(α), the system (4) can be re-written as

x+ = (A + BD(α)K)x (7)

Note that the matrix (A + BD(α)K) depends on the current
state x, since α does.

Consider now a vector α ∈ IRm such that α(i) ∈ (0, 1] and
define the following polyhedral region

RL(α) = {x ∈ IRn : |Kx| � ρ(α)} (8)

where ρ(α)(i) = ρ(i)

α(i)
, i = 1, . . . , m. Hence, for all x ∈

RL(α), it follows that α(i) ≤ α(i) ≤ 1, ∀i = 1, . . . , m. Note
that RL ⊆ RL(α).

From convexity arguments, for all x belonging to RL(α), it fol-
lows that: D(α) ∈ Co{D1(α),D2(α), . . . , D2m(α)} where
{Dj(α)} are diagonal matrices whose diagonal elements can
assume the value 1 or α(i). Therefore, the system (4) can be
locally represented by a polytopic model (or a polytopic differ-
ential inclusion) as it is stated in the following lemma [5, 6].

Lemma 1 Consider system (4) and a vector α ∈ IRm whose
components α(i), i = 1, . . . , m belong to the interval (0, 1]. If
x ∈ RL(α), then successor state x+ derived from the system
(4) can be computed by the following polytopic model:

x+ =
2m∑
j=1

λjAj(α)x (9)

with
2m∑
j=1

λj = 1, λj ≥ 0 and where

Aj(α)
�
= A + BDj(α)K

Note that the factors λj may depend on the current state x.
From this result the next lemma can be derived.

Lemma 2 If a set S ∈ IRn contained in the region RL(α)
is positively invariant for the polytopic system (9), then S is
positively invariant for the saturated system (4).



Based on the polytopic differential inclusion representation (9),
in the following lemma are given sufficient conditions to find a
quadratic Lyapunov function for the saturated system (4). This
lemma is particularly useful for the design of the stabilizing
MPC controller proposed in section 5.

Lemma 3 Consider system (4), a vector α ∈ IRm with α(i) ∈
(0, 1], and positive definite matrices R ∈ IRm×m and Q ∈
IRn×n . If there exists a positive definite matrix P ∈ IRn×n

satisfying the following LMI

Aj(α)T PAj(α) − P

+KT Dj(α)T RDj(α)K + Q < 0 (10)

for all j = 1, . . . , 2m, then the function F (x) = xT Px verifies

F (x+) − F (x) ≤ −xT Qx (11)

−sat(Kx)T Rsat(Kx)

for all x ∈ RL(α), where x+ = Ax + Bsat(Kx).

Proof: It follows directly from the application of Schur’s com-
plement, convexity arguments and from representation of the
saturated system given by Equation (9).

3 Determination of the Terminal Set

In this section, we show how to compute a suitable positively
invariant set for system (4), based on the polytopic representa-
tion presented in the previous section. The procedure provides
the maximal invariant set contained in XL = RL(α) ∩ X for
the polytopic system (9).

Consider the following sequence of admissible sets for the sys-
tem (9) , given by

C0 = XL

Ck = Q(Ck−1) ∩ XL, k ≥ 1 (12)

where the set Q(Ω) is the one-step set of Ω, that is, the set of
states that reach Ω in one step [1, 7].

The set Ck is the region of initial states from which the system
evolution remains in XL for the next k sampling times. The
sequence of admissible sets satisfies that Ck+1 ⊆ Ck. The set
C∞ is the set of states that are kept in XL for all the time, and
hence is the maximum positively invariant set contained in XL

for the polytopic system.

The one-step set to a polytope Ω = {x ∈ IRn : Hx � h} for
the polytopic system (9) is another polytope given by

Q(Ω) =
2m⋂
j=1

Qj(Ω)

where Qj(Ω) is the one-step set to Ω for the system x+ =
Aj(α)x, that is, Qj(Ω) = {x ∈ IRn : HAj(α)x � h}.

Hence, provided that XL is a polytope, it follows that Ck is
a polytope, since it is the intersection of several polytopes.

In the next theorem it is stated that the maximum invariant set
C∞ is finitely determined and it is a compact polytope, but first
the following lemma is presented:

Lemma 4 If there exists a matrix of the polytopic model Aj(α)
such that the pair (K,Aj(α)) is observable, then the set Cn−1

is a compact polytope, where n is the order of the system.

Proof:

Let Cj
n−1 be the admissible set in n − 1 steps for the system

x+ = Aj(α)x in the set XL(α), i.e. Cj
n−1 = {x ∈ IRn :

Aj(α)ix ∈ XL, i = 0, · · · , n − 1} . Then it is clear that
Cn−1 ⊆ Cj

n−1. Furthermore

Cj
n−1 ⊆ {x ∈ IRn : |KAj(α)ix| � ρ(α), i = 0, · · · , n − 1}

Taking into account that the observability matrix of (K,Aj(α))
is full-rank, then Cj

n−1 is compact and, hence, Cn−1 is com-
pact.

Theorem 1 Let V (x) = xT Px be a Lyapunov function for the
polytopic system (9) such that for all x ∈ RL(α), V (x+) ≤
µV (x) where µ ∈ (0, 1) . If there exists a matrix Aj(α) such
that (K,Aj(α)) is observable then:

(i) C∞ is finitely determined

(ii) C∞ is a positively invariant set for the saturated system
(4), where it is exponentially stable and satisfies the con-
straints.

Proof:

From lemma 4 it is derived that the set Cn−1 is compact, and
hence Ck is compact for all k ≥ n − 1, since Ck ⊆ Cn−1.

Let ε(P, β) denote the ellipsoid {x ∈ IRn : xT Px ≤ β}.
Since Cn−1 is bounded, there is a finite β such that Cn−1 ⊂
ε(P, β).

Let ε(P, γ) be the maximum ellipsoid such that ε(P, γ) ⊂ XL.
Since xT Px is a Lyapunov function strictly decreasing for all
x ∈ XL, this set is a ( µ-contractive )positively invariant set for
the polytopic system and, hence, ε(P, γ) ⊂ C∞.

Note that ε(P, γ) ⊂ C∞ ⊆ Cn−1 ⊂ ε(P, β) and hence β ≥ γ.
Let M be a constant such that βµM ≤ γ, then, provided that
V (x+) ≤ µV (x), it follows that for all x ∈ ε(P, β) the state
of the system reaches ε(P, γ) in M steps or less.

Consider i ≥ n − 1 + M , then Ci ⊆ Cn−1 ⊂ ε(P, β). Conse-
quently, since Ci ⊆ CM , for all x ∈ Ci the system evolution is
contained in XL and reaches ε(P, γ) ⊂ C∞ in M steps or less.



Therefore, for all x ∈ Ci, we have that the system remains
in XL for all the time and hence Ci ⊆ C∞. This yields to
C∞ ⊆ Ci ⊆ C∞ which proves that Ci = C∞ and, therefore,
it is finitely determined.

C∞ is the maximal invariant set contained in XL for the poly-
topic system (9) and then, since XL ⊆ RL(α), it is also a
positively invariant for the saturated system (4). Furthermore,
the existence of a strictly decreasing Lyapunov function V (x)
for the polytopic system, ensures the exponential stability of
(4) in the set C∞.

Notice that the observability condition on (K,Aj(α)) is not
necessary if the set XL is compact. This can be guaranteed if
X or RL(α) are compact.

The obtained positively invariant set C∞ is a polytope, but it
is not possible to ensure that the maximum invariant set for the
unsaturated control law O∞ is always contained in C∞. How-
ever, as could be seen in the numerical example, this inclusion
often occurs or, at least, C∞ is potentially larger that O∞.

Note that C∞ is contained in RL(α) and in lemma 3, α is sup-
posed to be given. Of course, in order to obtain a larger region
RL(α) and, as a consequence, a larger invariant set C∞, it is
interesting to verify (10) with α having components as small
as possible. In the 1-input or 2-input cases, by applying a grid
search, one can easily determine the minimal α for which it
is possible to find a solution for (10). Considering the generic
multi-input systems, iterative schemes, as proposed in [6, 5],
can be used.

For the computation of the admissible sets using the proposed
procedure, an algorithm for removing redundant inequalities
and another one for subset testing of polyhedra are necessary.
There exists efficient algorithms for these tasks [7]. A different
algorithm for the computation of C∞ based on linear program-
ming schemes is given in [5].

4 MPC Stability

In the previous sections, a procedure to compute a Lyapunov
function and an associated invariant set for the system con-
trolled by a saturating control law has been proposed. These
ingredients can be used to design a stabilizing MPC controller.

In MPC, the control action for a given state x is obtained by
solving an optimization problem PN (x) defined by

V 0
N (x) = min

u
VN (x,u)

s.t.

u(j) ∈ U, x(j) ∈ X, j = 0, · · · , N − 1
x(N) ∈ Xf

where u = {u(0), u(1), · · · , u(N − 1)} is a sequence of N

control actions, VN (x,u) is given by

VN (x,u) =
N−1∑
j=0

L(x(j), u(j)) + F (x(N))

where L(x, u) = ‖x‖2
Q + ‖u‖2

R, with Q > 0 and R > 0 and
x(j) = xu(j, x), that is the state at time j if the initial state is
x at time 0 and the control sequence u is applied to the system.

At event (k, x) problem PN (x) is solved, yielding the mini-
mizer u0 and the optimal cost V 0

N (x). The MPC control law is
implicitly given by u = κN (x) = u0(0).

In [9] the well-known sufficient conditions to guarantee asymp-
totic stability of the MPC controller are stated.

Theorem 2 [9] If the terminal set Xf is a positively invariant
set for the system controlled by a local control law u = κf (x)
such that κf (x) ∈ U for all x ∈ Xf and the terminal cost F (x)
is an associated Lyapunov function such that

F (Ax + Bκf (x)) − F (x) ≤ −L(x, κf (x)) ∀x ∈ Xf

then u = κN (x) asymptotically stabilizes the system for all
feasible initial state, i.e. x0 ∈ XN (Xf ).

The domain of attraction XN (Xf ) may be enlarged by increas-
ing the prediction horizon (which yields a greater computa-
tional burden) or increasing the size of the terminal set [8].

It is worth remarking that if one chooses the LQR as local
controller κf (x) = KLQRx, the unconstrained optimal cost
F (x) = xT PLQRx as terminal cost and the maximal invariant
set O∞ as terminal set, the obtained MPC control law is the
infinite horizon optimal control law in a neighborhood of the
origin.

5 MPC controller design

Based on the previous presented results, the following theorem
can be stated.

Theorem 3 Consider a locally stabilizing controller u =
sat(Kx) and let P be the matrix solution of the equation (10)
for given weighting matrices Q and R and for a given vector
α. Suppose that C∞ defined from the sequence (12) is finitely
determined. Then the MPC controller obtained by considering
F (x) = xT Px as terminal cost and Xf = C∞ as terminal set
stabilizes asymptotically the system for all state in XN (C∞).

Note that this choice makes the domain of attraction of the
MPC potentially larger that the one based on the unconstrained
local controller and the resultant optimization problem is a con-
vex quadratic programming one.

Although a saturated LQR, u = sat(KLQRx), is used as local
controller, the designed MPC may not be the infinite-horizon



optimal in a neighborhood of the origin. This is due to the fact
that the considered terminal cost is a conservative approach to
the optimal cost of the controller and hence, P > PLQR. In
order to reduce this conservativeness, the matrix P is computed
by solving (10) minimizing its trace. Furthermore, the obtained
terminal set C∞ may not include O∞.

These drawbacks can be overcome by a simple procedure to
implement the controller:

• If x ∈ XN (O∞), then consider F (x) = xT PLQRx and
Xf = O∞.

• Else, consider F (x) = xT Px and Xf = C∞.

The control law is obtained by solving the resultant optimiza-
tion problem which yields a dual-mode control law. This
controller asymptotically stabilizes the system in a domain of
attraction XN (C∞) ∪ XN (O∞) and hence, the enlargement
property is ensured. Moreover, the infinite horizon optimality
property of the MPC holds.

The condition x ∈ XN (O∞) can be easily checked, since this
set is a polyhedral that can be computed efficiently off-line [7].
Another technique is checking the feasibility of the associated
optimization problem for a given x, which can be posed as an
LP problem.

As it was mentioned before, the MPC design based on a satu-
rated LQR proposed in [3] maintains the optimality property
of the MPC at expense of using a non-convex terminal set
(and hence a non-convex optimization problem). This non-
convexity can be overcome by choosing a large enough pre-
diction horizon. This procedure increases the computational
burden and may reduce the enlargement of the domain of at-
traction derived from the proposed design. Furthermore, this
technique is only valid for single-input systems.

The design presented in this paper provides a polytope and a
quadratic terminal cost for multiple-input systems subject to
constraints on states. This yields a stabilizing MPC derived
from a convex optimization problem. Furthermore, by using a
simple dual-mode MPC controller, the optimality and the en-
largement properties are guaranteed.

6 Numerical Example

Consider a system x+ = Ax + Bu given by

A =
[

1 1
0 1

]
B =

[
0 0.5
1 0.5

]

where the inputs are constrained to ‖u‖∞ ≤ 0.3 and ‖x‖∞ ≤
2. For this system, a LQR controller with Q = I2 and R = I2

is computed. The controller u = Kx and the optimal cost
F (x) = xT PLQRx are given by

K =

[
−0.0037 −0.5850
−0.5919 −0.8844

]
PLQR =

[
2.1801 1.1838
1.1838 2.7688

]

The maximal invariant set for this controller, O∞, is shown in
figure 1.

Following the technique proposed in the paper, a Lyapunov
function and a positively invariant set for the saturating con-
trol law derived from the LQR controller is computed. First,
it has been chosen a vector α such that the LMI (10) is feasi-
ble. The obtained vector is α = [0.25, 0.2] and the calculated
quadratic terminal cost F (x) = xT Px is given by

P =

[
33.5508 28.2391
28.2391 208.3942

]

Next, the maximal invariant set, C∞, for the polytopic system
contained in XL = RL(α) ∩ X is calculated. Both sets are
depicted in figure 1. Note that O∞ ⊂ C∞.

−2 −1 0 1 2

−2

−1

0

1

2

x
1

x 2 O∞ 

C∞ 

X
L

Figure 1: Terminal sets O∞ and C∞.

Considering the terminal cost and terminal set obtained, a sta-
bilizing MPC can be computed. The domain of attraction of
the MPC based on the unsaturated LQR controller, XN (O∞),
is contained in the one of the MPC based on the saturating con-
trol law, XN (C∞). This enlargement is shown in figure 2 for
an MPC with N = 2.
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Figure 2: Domain of attraction of the MPC controller with each
terminal set.

Note that the enlargement of the domain of attraction is equiv-
alent to a reduction of the prediction horizon. In figure 3, it is
shown that X4(O∞) ⊂ X2(C∞). Therefore, all state stabiliz-
able by the LQR based MPC with N = 4 is stabilizable by the
MPC based on the saturated LQR with N = 2. Furthermore,
in this case, X4(C∞) is equal to the maximal stabilizable set
X∞. Hence, for N = 4, the MPC based on the saturating con-
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Figure 3: Comparison between domains of attraction of the
MPC for several prediction horizons.

trol law is able to stabilize all stabilizable set, while the MPC
based on the LQR is not.

However, although the LQR based MPC is the optimal con-
troller, the MPC based on the saturating LQR is not. In order
to improve the optimality of the controller, a dual MPC is pro-
posed. In figure 4, it is compared the evolution between the
dual MPC and the standard MPC based on the saturating con-
trol law for four initial states. In Table 1 the cost associated
to the evolution of the closed loop system for both controllers
is compared. It is demonstrated that the dual-mode MPC con-
troller presents a lower cost, and hence, the performance of the
closed loop system is better.
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Figure 4: Closed loop state portrait of the dual MPC and the
standard MPC.

x0 dual standard
1 13.2857 13.3125
2 11.3655 11.3759
3 12.7831 12.8275
4 14.6420 14.8448

Table 1: Comparative of the cost of the evolution of standard
MPC and the proposed dual-mode MPC

7 Conclusions

In this paper we present a technique to design a stabilizing
MPC controller for constrained linear systems, which is based
on a saturating control law. Using a polyhedral differential in-
clusion for representing the behaviour of the closed-loop sys-
tem, a quadratic terminal cost and a polytopic invariant set can
be efficiently computed. This set is potentially larger than the
maximal invariant set for the system controlled by the unsatu-
rated controller. These ones can be used to design a stabilizing
MPC controller with an associated convex optimization prob-
lem. Furthermore, a dual-mode MPC controller is presented.
This approach guarantees the enlargement of the domain of at-
traction and keeps the local optimality property derived from
using a LQR as local controller.
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