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Abstract

Mathematics has always been a fundamental piece in robotics and, research in
robotics has played an important role in the development of mathematics. This
thesis is motivated by the growing interest on problems that appear in aerial
robotics applications, specifically, on cooperative systems of multiple aerial robots
or drones. Most of the research works in multi-robot systems have focused primar-
ily on construction and validation of working systems, rather than more general
and formal analysis of problems and solutions. By contrast, this thesis focuses on
formally solving problems of aerial multi-robot systems from a discrete and com-
binatorial optimization perspective. Inspired on problems of this area, the thesis
introduces some new theoretical models and problems of interest for mathemati-
cians and computer scientists.

The following topics are covered in this thesis: (1) synchronization: design of a
coordination strategy to allow periodical communication between the members of
a cooperative team while performing a task along fixed trajectories in a scenario
with limited communication range, (2) robustness : analysis of the detrimental
effects in the performance of a synchronized system when one or more robots
fail, (3) stochastic strategies : performance analysis of a synchronized system using
drones with stochastic decision making, and (4) task allocation: decentralized
coordination to perform periodical task allocation in order to maintain a balanced
work load for all members of a team with limited communication range.

In the first part of the thesis, we study the synchronization problem giving
a theoretical characterization of the solutions and, we present an algorithm to
build a synchronized system for a given set of covering trajectories. The second
part focuses on the study of the robustness in a synchronized system regarding
to two key aspects: covering of the working area and communication between
the members of the team. We rigorously study several combinatorial problems
to measure how robust a system is to deal with drones failures. Connections of
these problems with number theory, graph theory, circulant graphs and polynomial
multiplication are shown. The third part is devoted to an analysis of synchronized
systems using random aerial robots. This topic is closely related to the random
walk theory. It is shown that stochastic strategies increase the robustness of a
synchronized system. Finally, this thesis introduces the block sharing strategy to
address the problem of maintaining a balanced task allocation among the robots by
using periodical communications. A proof on the convergence to an optimal task
allocation is given and, a case study for structure construction using a cooperative
team of aerial robots is presented.

All algorithms developed in this thesis have been implemented and extensive
experiments have been conducted to analyze and validate the proposed methods.
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Resumen

Las matemáticas siempre han sido una pieza fundamental en el desarrollo de la
robótica, así como los problemas de robótica han jugado un importante papel en
el desarrollo de las matemáticas. Esta tesis está motivada por el creciente interés
en problemas que aparecen en aplicaciones de robótica aérea, específicamente,
está enfocada en sistemas cooperativos de múltiples robots aéreos o drones. La
mayoría de los trabajos de investigación en sistemas de robots se han centrado
en la construcción y validación de arquitecturas desde un enfoque empírico. Por
el contrario, esta tesis enfoca el estudio de problemas relacionados con tareas
para equipos de robots aéreos desde el punto de vista de la optimización discreta
y combinatoria. Inspirada en problemas de este campo, esta memoria plantea
nuevos modelos teóricos y problemas de interés para las matemáticas aplicadas y
la ciencia computacional.

En esta tesis se abordan los temas siguientes: (1) sincronización: diseño de una
estrategia de coordinación que permita comunicación periódica entre los miembros
de un equipo cooperativo mientras ejecutan una tarea sobre trayectorias fijadas,
(2) robustez : análisis del efecto que produce el fallo de los agentes en un sistema
sincronizado, (3) estrategias estocásticas : análisis del funcionamiento de un sistema
sincronizado cuando se utilizan drones con toma de decisiones aleatorias, y (4)
asignación de tareas : coordinación no centralizada usando asignación periódica de
tareas que permita mantener una carga de trabajo balanceada.

En la primera parte, se estudia teóricamente el problema de la sincronización,
dando condiciones necesarias y suficientes para la existencia de solución y se pre-
senta un algoritmo que construye un sistema sincronizado para un conjunto fijado
de trayectorias de vuelo. La segunda parte de la tesis estudia la robustez de un
sistema sincronizado teniendo en cuenta dos aspectos fundamentales: el cubrim-
iento del terreno y la comunicación entre los miembros del equipo. Se estudian de
forma rigurosa problemas combinatorios que surgen cuando se requiere saber cómo
de robusto es un sistema con respecto a fallos. Se muestran conexiones con áreas
matemáticas como la teoría de números, la teoría de grafos, los grafos circulantes o
multiplicación de polinomios. En la tercera parte de la tesis, se estudia la robustez
del sistema cuando se introducen decisiones aleatorias de los drones. Se prueba la
relación de este problema con la teoría de caminatas aleatorias y se muestra que
el uso de estrategias estocásticas supone una mejora de la robustez del sistema
sincronizado. Por último, se propone la estrategia de coordinación por bloques
para la asignación balanceada de tareas. Se prueba la convergencia del método a
una asignación óptima y se realiza un estudio de caso para la construcción de una
estructura mediante un equipo cooperativo de drones.

Todos los algoritmos desarrollados en esta tesis han sido implementados y se
han llevado a cabo diversos experimentos que demuestran la validez de los métodos
propuestos.
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Chapter 1
Introduction

Drones or UAVs were synonymous of military applications a few years ago.
However, nowadays they are widely applied in several different civil tasks

mainly due to their ability to traverse difficult terrains and carry cameras and
other sensors to realize monitoring tasks [122]. Additionally, the increasingly low
prices of these technologies and their ease of deployment have also boosted their
spreading.

Most of the applications of UAVs are based on surveillance and monitoring
tasks. For example, traffic surveillance [104, 115], border patrolling [57, 76], crop
monitoring [75, 135, 140] and forest fire monitoring [29, 90, 152] to mention just a
few of them. We can qualify these applications as ‘passive’ because the UAVs does
not interact with the environment, they just take data using their sensors (i.e.,
cameras, altitude sensors, thermal cameras, positioning sensors, etc...). However,
‘active’ applications of UAVs are gaining attention in areas like delivery chains
(e.g., Amazon Prime Air project1 or humanitarian aid delivery [61, 106]), preci-
sion agriculture [75, 92] and communication networks (e.g., they can be used to
establishes wireless communication networks in difficult to access regions or when
the communication infrastructure of a region has been damaged by a war or a
natural disaster) [91, 138, 154].

Recently, several projects have focused in the design of manipulator aerial
platforms [110] to perform, for example, assembly tasks [68]. The Robotic, Vision
and Control Group2(GRVC) of the University of Seville is one of the partners
of the H2020 project AEROARMS3 which is focused in the development of an
aerial robotic system equipped with multiple arms and advanced manipulation

1https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
2https://grvc.us.es/
3http://aeroarms-project.eu/

1

https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
https://grvc.us.es/
http://aeroarms-project.eu/


2 CHAPTER 1. INTRODUCTION

capabilities to be applied in industrial inspection and maintenance [134, 136].
Precisely, from the collaboration between GRVC and our group, the Research
Group on Geometric ALGOrithms & Applications4(GALGO), the idea of this
thesis was born.

1.1 Motivation
Several of the previously presented applications require the solution of many math-
ematical (sub)problems. For example, path planning tasks appear in every UAVs’s
application and it can be modeled and solved using resources from geometry, algo-
rithmics and mathematics in general, see a survey of motion planning in [58]. Task
allocation is another problem that appears in multi-UAV applications [15, 48, 79].
This problem is related to others that have been previously studied like task alloca-
tion on production lines [43, 89] or task allocation on other multi-robot frameworks
(e.g., ground robots)[51, 52, 74, 82]. The survey presented in [74] shows several
mathematical models for the task allocation problem, one of them is the Multiple
Traveling Salesman Problem which has been widely studied for mathematicians
and computer scientists [14, 17, 84, 131].

Wireless coverage is another trending application of UAVs [122]. The design-
ing of UAV deployment strategies is one of the challenging topics in this kind of
applications [122]. The authors of [122] classify these strategies based on their ob-
jective function and cite some of the main works in those categories: minimizing
the transmit power of UAVs [93, 119, 96, 117, 112, 9, 97], maximizing the wireless
coverage of UAVs [66, 94, 69, 10, 121, 116, 98], minimizing the number of required
UAVs to perform a task [70, 118, 120, 155, 86] and maximizing data collection
using UAVs [95, 148, 7, 142, 153]. These strategies are related to several math-
ematical fields like optimization and graph theory and, present very challenging
problems in these areas.

Several years ago, the GALGO group, in collaboration with the GRVC, ad-
dressed the problem of assigning a velocity profile to each aerial vehicle in real
time, such that the separation between them is greater than a given safety dis-
tance and the total deviation from the initial planned trajectory is minimized. The
results of this work were published in:

D. Alejo, J.M. Díaz-Báñez, J.A. Cobano, P. Pérez-Lantero, and A. Ollero.
“The velocity assignment problem for conflict resolution with multiple aerial
vehicles sharing airspace”. Journal of Intelligent & Robotic Systems, 69 (1-4),
331-346, 2014.

Since then, a great part of GALGO’s work is focused on the synergy between
aerial robotics and mathematics, and this is precisely the research framework of

4http://alojamientos.us.es/galgo/index.html

http://alojamientos.us.es/galgo/index.html
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the thesis. The research projects related to multi-robot aerial systems in which we
have involved are listed bellow.

Collaborations in the following projects of the GRVC:

1. Aerial Robotics Cooperative Assembly System (ARCAS), funded by the Eu-
ropean Union (2011-2015).
https://investigacion.us.es/sisius/proyecto/23363.
https://cordis.europa.eu/project/rcn/100804.

2. Cooperative Long Endurance Missions with Aerial Robots, funded by the
Spanish Government (2012-2014).
https://investigacion.us.es/sisius/sis_proyecto.php?idproy=20140.

3. MULTIple DRONE Platform for Media Production (MULTIDRONE), funded
by European Union’s Horizon 2020 research and innovation programme un-
der grant agreement No 731667 (2017-2019).
https://investigacion.us.es/sisius/sis_proyecto.php?idproy=28062.
https://cordis.europa.eu/project/rcn/206392.

And nowadays, with the acquired experience, GALGO group has been granted
funding for the project:

4. Geometric Algorithms for Engineering, funded by the Spanish Government
(2017-2020).
https://investigacion.us.es/sisius/sis_proyecto.php?idproy=27658.

One of two research lines of this project is focused on the design of geometric and
discrete algorithms for multi-robot aerial systems.

Also, we are a partner of the H2020 European project:

5. Combinatorics of Networks and Computation (CONNECT), funded by Eu-
ropean Union’s Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No 734922 (2017-2020).
https://investigacion.us.es/sisius/sis_proyecto.php?idproy=28049
https://cordis.europa.eu/project/rcn/207071/factsheet/en.

This project has five work packages and aims to obtain new insights into the
behavior of networks, which are studied from a geometric and computational per-
spective. Our group leads the fourth work package, Graph-based algorithms for
UAVs and for MIR (https://www.connect-rise.eu/work-package4.php).

1.2 Research lines and objectives
In this thesis we address three main objectives that face algorithmic and combi-
natorial problems that appear in the field of aerial robotics.

https://investigacion.us.es/sisius/proyecto/23363
https://cordis.europa.eu/project/rcn/100804
https://investigacion.us.es/sisius/sis_proyecto.php?idproy=20140
https://investigacion.us.es/sisius/sis_proyecto.php?idproy=28062
https://cordis.europa.eu/project/rcn/206392
https://investigacion.us.es/sisius/sis_proyecto.php?idproy=27658
https://investigacion.us.es/sisius/sis_proyecto.php?idproy=28049
https://cordis.europa.eu/project/rcn/207071/factsheet/en
https://www.connect-rise.eu/work-package4.php


4 CHAPTER 1. INTRODUCTION

1 2 3

Figure 1.1: Three quadrotors (in black color) traveling along closed trajectories
while they are covering pairwise disjoint regions. They can communicate only
when they are at the positions marked with gray color. The arrows indicates the
travel directions in the regions.

The first part of this thesis is focused on designing a coordination strategy
to maintain ‘periodical’ connectivity between UAVs under communication con-
straints. Consider the following scenario: we have a big area to monitor with n
aerial robots with a very limited communication range. The area is divided into
pairwise disjoint regions, one per robot. Each robot monitors its region by travel-
ing periodically along a closed trajectory. Two robots can communicate between
them only if they are within the communication range of each other. It is con-
venient that robots communicate frequently in order to share information about
targets or failures of some robot in the system, or simply to report about their
mission. In Figure 1.1, robots 1, 2 and 3 are moving in their regions and they can
communicate between them only at the positions marked with gray robots. And,
robot 3 can communicate with the antenna only if it is at the closest point from
its trajectory to the antenna. Thus, the information from robot 1 passes to robot
2, then to robot 3 and, finally it reaches the antenna. In this way, if no robot
leaves the system the communication between them is guaranteed and the terrain
is completely covered.

The first two objectives of the thesis are related to the scenario presented above:

1. Taking into account the short communication range (with respect to the
work area) of the robots, how to coordinate their movement in order to get
a connected network between the robots (i.e., a message can travel between
any pair of robots)? This is the so-called synchronization problem and it is
the first objective of the thesis.

2. The second objective is to study the weaknesses of the proposed strategy
to solve the synchronization problem and provide robustness mechanisms to
recover the network in case that some robots fail (i.e., a robot may need to
leaves the system to recharge battery or, it may be knocked down by the
enemy in an hypothetical war scenario).

The framework above has several applications apart from surveillance. For
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instance, data collection: UAVs are utilized to gather delay-tolerant information
from a large number of distributed wireless devices. An example is wireless sensors
in precision agriculture applications [122]. Wireless network coverage is another
application of the stated framework [122]: a team of UAVs is used as a team of
mobile stations to provide wireless communication to a region where there is no
communication infrastructure or it has been damaged by a natural disaster or a
war.

In the framework above, every UAV has assigned its task. The third objective
of the thesis focuses on the design of strategies for task allocation between the
members of a team of UAVs:

3. The design of a fully distributed approach, where the robots dynamically
allocate their tasks periodically to maintain an optimal allocation according
to their capabilities. We consider again that the robots have a limited com-
munication range, so that, permanent communication during the mission is
not possible.

1.3 Methodology

The majority of real-world problems are characterized by a high degree of computa-
tional complexity due to their complex underlying models which require intelligent
exact or heuristic algorithms to achieve high accuracy. Existing approaches often
use generic heuristic methods which are adapted to the given scenario without
considering the inherent properties of the problem. Such systems often result in
low performance and high computational complexity. Consequently, our method-
ology addresses this knowledge gap and we aim to contribute to the advance in
technology by designing problem-specific algorithms. We propose a bottom-up
methodology where complex problem statements are approximated by a simple
model for which we design an efficient algorithm which can be generalized later to
real-world scenarios. Moreover, an heuristic method based on an efficient algorithm
should be more accurate than a generic heuristic. With this novel methodology
we address technological problems in a multi-disciplinary effort to advance in the
design of algorithms for performing tasks with drones.

Many problems related to cooperative UAVs rely on geometric networks when
a discretization of the problem is considered. For a simple discretized model we
can take advantage of using graph or geometric algorithms. The field of Computa-
tional Geometry studies fundamental concepts and techniques to solve problems by
exploiting its inherent geometry. It is an exciting field that combines clever algo-
rithmic approaches and beautiful geometric structures to obtain general techniques
for the efficient storage and processing of spatial data. Geometric algorithms are
useful in many application areas such as Operation Research, Robotics, Computer
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Graphics, Geographic Information Systems (GIS), Pattern Recognition, and Mu-
sic Information Retrieval, just to name but a few. These techniques can already
be found in decision-support systems in many problems within the fields of facil-
ity location, air traffic, data mining, clustering, among others. In all these areas,
the geometric problems are solved in a rigorous way, resulting in solutions with
guaranteed efficiency, both in terms of memory space and time complexity.

1.4 Related work
At a recent lecture (October 2013) at MAA’s Carriage House, Florian Potra of
the University of Maryland, Baltimore County, surveyed the rich history of human
efforts to create artificial intelligences and self-operating machines (automatas).
He said: “While the history of robotics is very short, the idea of a robot may be as
old as the earliest mathematical studies. It has always been a special component of
the human psyche.”[103]. The modern robotics was born in the twentieth century
as an interplay between engineering, computer science and mathematics.

All robotic applications requires some level of mathematics, for example, robots
with manipulator arms require mathematical models to control their limbs [99].
Path planning for mobile robots requires resources from geometry and optimiza-
tion to find paths (avoiding obstacles if there are any) of minimum length/cost
[80, 58, 149]. In May 2000 there was a meeting at the National Science Foundation
in Arlington Virginia on “The Interplay between Mathematics and Robotics” where
many leading experts in the United States of America discuss the importance of
mathematics in robotics and also the role of robotic problems could play in the de-
velopment of mathematics (http://www.math.umbc.edu/~potra/FINALreport.
PDF). As an illustrative example of the synergy between mathematics and robotics
we would like to mention the Dubins path, which is the shortest curve that connects
two points in the two-dimensional Euclidean plane with a constraint on the curva-
ture of the path and with prescribed initial and terminal tangents to the path, and
an assumption that the vehicle traveling the path can only travel forward [41]. This
is a beautiful and interesting mathematical problem, which is fundamental in the
fields of robotics and control theory to plan paths for wheeled robots, aerial robots
and underwater vehicles. Another important example of this synergy is Compu-
tational Geometry, which recently emerged as a new branch of mathematics and
computer science and, has grown mainly motivated by robotics and its applica-
tions [111]. To conclude this brief discussion on the interplay between robotics and
mathematics, we would like to mention that, nowadays, this relationship has even
been studied from the point of view of mathematical education [100, 45, 127].

In the last twenty years, the use of aerial robots and aerial multi-robot systems
in monitoring, surveillance, delivery of goods, network coverage, etc. [122], has
brought several challenges that have attracted the attention of both, robotics and
mathematical research communities. For example, the Vehicle Routing Problem

http://www.math.umbc.edu/~potra/FINALreport.PDF
http://www.math.umbc.edu/~potra/FINALreport.PDF
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(VRP) and Traveling Salesman Problem (TSP), are classical problems in the oper-
ational research area that have got renewed attention with these applications: see
[4] for a survey on VRP instances with applications to multi-objective Unmanned
Aerial Vehicle operations and, see [5, 143] for studies on both problems in com-
mercial scenarios that consider a combination of trucks and drones to perform the
so-called “last-mile deliver”.

However, research in robotics has focused primarily on construction and valida-
tion of working systems, rather than more general and formal analysis of problems
and solutions [52]. And, most of the formal works, only use mathematics as a
resource to build or validate their solutions. This thesis, framed in the synergy be-
tween mathematics and robotics, formally studies some problems related to aerial
multi-robot systems. Also, to the best of our knowledge, it is a pioneering work
that, inspired on problems of this area, introduces some new theoretical models,
structures and problems that could be of interest for mathematicians and computer
scientists.

The following three subsections show specific related works to each of the three
thesis’s objectives: the synchronization problem, robustness of synchronized aerial
multi-robot systems and task allocation on aerial multi-robot systems.

1.4.1 Previous work related to the synchronization problem

Recall that, in the synchronization problem the robots are performing their tasks
in a large area and they have a limited communication range, then they cannot
establish a permanent communication network. Then, a coordination strategy is
required to guarantee periodic meetings between pairs of robots and, thus allowing
the information to be disseminated throughout the team. The coordination of a
team of robots under communication constraints has been studied in many specific
cases, fundamentally in surveillance and monitoring missions. In this subsection
we explore some of the previous works that aims to establish such coordination
strategies.

In [76] a cooperative perimeter-surveillance problem is posed and it is offered a
decentralized solution that accounts for perimeter growth (expanding or contract-
ing) and insertion/deletion of team members. In this scenario, the team of robots
operates on a single trajectory (that can change dynamically) for all the agents.
Therefore, two robots moving in opposite directions always meet and can share
information with a small communication range, so assigning different directions
to the members of the team and changing direction alternately in every meeting
event generates the necessary encounters between pairs of neighboring agents. A
technique to explore unknown areas using a cooperative team of robots is pre-
sented in [47]. Their strategy is based on a data structure called Sensor-based
Random Graph (SRG) where the members of the team store environment data
and the robots are constantly exploring and updating the SRG. When two robots
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fortuitously meet at a point, they share information and generate new collision
free motion plans to explore the potential unknown regions. The authors of [56]
consider the problem of satisfying communication demands in a multi-agent sys-
tem where several robots cooperate on a task and a fixed subset of the agents act
as mobile routers. The goal is to position the team of robotic routers to provide
communication coverage to the remaining client robots. The authors present an
adaptive solution to allow for dynamic environments and variable client demands.
The main difference with our scenario is that we do not require (or we are not
allowed to use) a team of router robots to provide connectivity.

Some of the coordination strategies are based on a convenient subdivision of
the area to monitor. For example, in [151], the idea is to divide the area to be
explored, a rectangle, for simplicity, into n strips, one for each robot, and then to
execute a lane based search. The communication links are in the common borders
between two consecutive strips. Data flows from the leftmost and rightmost agents
to the center agent, and decision control flows from the center to the sides of the
team. Based on the form in which the information flows in this strategy they
called it X Synchronization (XS). This technique is interesting but, unfortunately,
can not be applied to solve the problem for general workspaces (no strips possi-
ble) with a complex subdivision of the region to monitor. In [64] the following
scenario is examined: a mobile network of robots must search, survey, or cover
an environment and communication is restricted by relative location. That is, all
the members of the team are connected only when they are in specific positions
due to obstacles (or something else) in the environment. The idea is to plan the
motion of every member of the team to cover the entire region in a minimum of
time such that periodically the team is totally connected. They propose an online
algorithm that scales linearly in the number of robots and allows for arbitrary
periodic connectivity constraints. In [132] an integrated algorithm for task alloca-
tion and motion planning is presented. The goal of this algorithm is to keep the
connectivity of a cooperative team of robots while their perform a surveillance or
exploration mission. The members of the team have limited communication range
but the distance between the agents does not admit disconnections. The tasks are
assigned to the robots and the motion paths are computed under this restrictions.
The topology of the network can changes during the mission but disconnections
are not allowed.

Some of the strategies presented above enforce a permanent communication
by using extra hardware to provide communication in the team ([56]) or, by allo-
cating tasks and computing paths conveniently in order to maintain a connected
network ([132]). Neither of these approaches are feasible in our scenario because as
we have posted before we do not have extra hardware to provide communication
and, by other hand, moving close enough to maintain the communication may
not be a good idea when the region to monitor is large, in these cases it is more
convenient that the members of the team are spread out over the region collect-
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ing information. Then, a coordination strategy is required to guarantee periodic
meetings between pairs of robots aiming to provide a global communication with
intermittent information exchange between neighboring robots while they perform
their subtasks. The others strategies presented above tackle the communication
problem from this perspective, however, they are limited by a fixed topology of
the region or a fixed way in which the region is subdivided. In Chapter 2 we aim
the problem of establishing a coordination strategy on any complex region using
a given subdivision of the terrain.

1.4.2 Related work to robustness of multi-robot aerial sys-
tems

The strategy proposed to solve the synchronization problem in Chapter 2 guaran-
tees two important aspects in the proposed scenario:

• coverage: the region to monitor is subdivided in n subregions, one per robot,
so, every robot covers its assigned region and,

• communication: every robot has periodic communications with the robots
in neighboring regions.

These periodic intermittent meetings between neighboring robots establish a global
communication network allowing the spreading of the information, i.e., it is pos-
sible to perform a broadcast in the system. If some robot leaves the system due
to some catastrophic failure or because it needs to refuel, then the performance of
the system is compromised. Taking into account that scalability, fault-tolerance
and failure-recovery are important concerns of distributed systems of UAVs, the
second objective of the thesis is focused on these matters on the proposed syn-
chronization/coordination strategy. At the end of Chapter 2 the shifting protocol
is introduced as a recovering strategy to maintain the covering of the region and
the communication among the surviving robots when one or more robots leave the
system. This protocol does not change the original subdivision of the region, but
allows the robots to move from one subregion to another. We experimentally show
that shifting protocol is quite robust to random failures of the robots.

In order to determine the robustness of the strategy we use two measures:

• idle time (of a subregion): which is the interval of time in which a subregion
is not attended by any robot and,

• broadcast time: which is the time it takes for a message issued by a robot to
reach the full team (of surviving robots).

The idle time is an important quality measure in surveillance and monitoring
systems. The frequency of visits as a criterion for measuring the efficiency of
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patrolling is called idleness. For a survey of diverse approaches to patrolling based
on idleness criteria we refer the reader to [8, 87, 101, 128].

The broadcast time is related to the meeting time, defined as the maximum
time for two robots to communicate, is another quality measure that is used to
evaluate the performance of a system with respect to communication. Collabo-
rative exploration of an unknown environment where the robots meet each other
periodically to “cooperate” has been widely considered in robotics, see for exam-
ple [46, 109]. Broadcast and meeting time have been studied in mobile networks,
robotics and random walks, see for example [31, 65, 85, 146].

In Chapter 3, the robustness of our strategy is studied in the worst case. We
show that, depending on the subdivision of the region, if certain set of robots fail
then some points of the region are not longer visited or the system loses the broad-
cast ability. It may even happen that one or more robots became isolated, i.e.,
they never meet another robot. This lead us to address the combinatorial prob-
lem of determining the minimum number of robots that must fail to break the
robustness of the proposed strategy. There are many combinatorial problems mo-
tivated by multi-robot applications as it was shown in the first part of this section
([4, 124, 6, 77, 133]). In fact, almost every multi-robot application induces combi-
natorial optimization problems, for example, determining the minimum of robots
to perform the mission, or the minimum cost (travel distance, energy consumption,
etc.) to perform a mission with n robots, etc.

To overcome these catastrophic failures of the system in the worst case, in
Chapter 4 a randomization of the shifting protocol is introduced. Recently, the
study of stochastic multi-robot systems has attracted considerable attention in
the field of mobile robots. This approach brings several advantages, such as lower
times to complete tasks, cost reduction, higher scalability, and more reliability,
among others [150, 44]. In a pure random mobility model, each node randomly
selects its direction, speed, and time, independently of other nodes. Some models
include random walks, random waypoints or random directions. See [26] for a
comprehensive survey.

In Chapter 4, it is shown that our stochastic model generates random walks.
A random walk on a graph is the process of visiting the nodes of the graph in
some sequential random order. The walk starts at some fixed node, and at each
step it moves to a neighbor of the current node chosen randomly. There is a
vast theoretical literature dealing with random walks. For an overview see e.g.
[85, 108]. One of the main reasons that random walk techniques are so appealing for
networking applications is their robustness to dynamics. A random walk presents
locality, simplicity, low-overhead and robustness to structural changes. Because
of these characteristics, applications based on random walks are becoming more
and more popular in the networking community. In recent years, different authors
have proposed the use of random walks for querying/searching, routing and self-
stabilization in wireless networks, peer-to-peer networks, and other distributed
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systems [11].
Relevant works in robotics related to the idle-time concept are [87] and [128],

where the main objective is to reduce the period between two consecutive visits to
any vertex in order to minimize the detection delay for intruders. In the patrolling
problem for communication scenarios, some models have been considered in [102]
but, the evaluation criterion also is the idle-time. In this thesis, we add to the
idle-time two new measures to precisely ensure communication of the team dealing
with random strategies: the isolation-time (meeting-time) and the broadcast-time.
Recently, the concept of Flying Ad-Hoc Network (FANET), which is basically ad
hoc network between UAVs, has been introduced in [13]. FANETs can be seen
as a subset of the well-known mobile ad hoc networks (MANETs), where the use
of random walks has been intensive [59]. Thus, an opportunity to extend the
stochastic methods to UAVs has been opened. Our contribution is to provide an
example of using random strategies as an alternative to existing protocols for UAVs
networks.

1.4.3 Related work to task allocation on multi-robot sys-
tems

The third objective of the thesis focuses on designing of an strategy to maintain
a balanced task allocation to face dynamical changes of the system or the envi-
ronment. The task allocation problem has been widely studied in different areas.
Centralized mechanisms have advantages including a guaranteed optimal solution.
However, their limitations are well known, i.e. their slow response to dynamic
events and vulnerability to failures. In dynamic and uncertain environments, de-
centralized mechanisms are preferred. Decentralized task allocation approaches
for autonomous agents have been well studied in robotics [39, 52, 74, 78, 81]. Ref-
erence [50] presents a dynamic task allocation scheme using an auction process
for a heterogeneous robot team. Reference [38] introduces a market-based multi-
robot task allocation architecture in which robots are modeled as self-interested
agents with the goal of maximizing individual profits. In [22, 30] two algorithms
on market-based decision strategy are proposed: the consensus-based auction
algorithm (CBAA) and its generalization to the multi-assignment problem, the
consensus-based bundle algorithm (CBBA). In [19], the CBBA is extended taking
into account obstacle regions in order to generate collision free paths for UAVs.

In practice, robots have a limited communication capability which may influ-
ence development and performance of the task allocation algorithm significantly.
In [40] an interception scenario involving a team of UAVs and a group of moving
targets is considered. Their problem is to coordinate the team of UAVs based
on their local information using a decentralized task allocation approach using
intermittent and asynchronous communications. In [2, 1], the authors focus on
a decentralized algorithm to ensure information propagation in area monitoring
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missions with a fleet of heterogeneous UAVs with limited communication range.
The strategy follows a distributed one-to-one coordination schema and has been
adopted to maintain a balanced area partition among the robots.

The task allocation problem is also related to the well-known assembly line
balancing (ALB) optimization problem in operational research [21, 113]. The
ALB problem deals with partitioning the total assembly operations into a set of m
elementary tasks oi(i = 1, . . . ,m) with times ti, and assigning them to a team of n
assembly robots rk(k = 1, . . . , n) such that all robots approximately spend equal
assembly times and the so-called “precedence constraints” between operations are
satisfied. Assuming that the set Sk of tasks is assigned to the k-th robot, its
assembly time is t(Sk) =

∑
j∈Sk

tj. The ALB problem is NP-hard [113] and soft
computing approaches have been proposed in [107]. The main goal in an ALB
model is the allocation of the tasks among stations so that the precedence relations
are not violated and a given objective function is optimized. Besides balancing
a newly designed assembly line, an existing assembly line has to be re-balanced
periodically or after certain changes in the production process or the production
plan.

1.5 Contributions
In this section the contributions of this thesis are listed on an item basis. The first
objective of the thesis is addressed in Chapter 2. In here we present:

1. A synchronized system as a strategy to coordinate the movement of the
robots in their regions in such a way that pairs of robots are synchronized
and arrive periodically at the same time to a region where they are close
enough to exchange information.

We also present:

2. A fail-recovery approach on a synchronized system that allows robots to leave
the system or be inserted into it, minimizing detrimental effects on system
performance.

In this chapter we also define the communication graph of a synchronized sys-
tem as a graph whose vertices are the trajectories and there is an edge connecting
two trajectories if their robots can exchange information periodically.

A synchronized system has three very important properties that assure the
good performance of the system: the robots have meetings periodically, all the
points in the trajectories are visited periodically and it has the ability for messages
broadcasting between the robots in the system. And, if some robots fail then the
surviving ones apply the fail-recovery approach trying to maintain these properties.
However, if a large enough number of robots fail, the system may lose some of these
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properties. In Chapter 3 we focus on the study of the resilience of a synchronized
system, that is, what is the maximum number of robots that can fail such that
the system maintains these properties? Actually, we study the problem from the
other point of view, what is the minimum number ρ such that there exist ρ robots
whose removal causes the loss of some of these properties? In Chapter 3 these
questions are addressed.

3. Three resilience measures are presented:

(a) coverage resilience as the minimum number ρc such that, there exist ρc
robots whose removal causes that some point is no longer covered,

(b) k-isolation resilience as the minimum number ρi such that, there exist
ρi robots whose removal causes that at least k surviving robots have no
longer any meeting and,

(c) broadcasting resilience as the minimum number ρb such that, there exist
ρb robots whose removal causes that it is no longer possible to make a
broadcast in the system.

Obviously, the larger the resilience, the more fault tolerant the system is. These
measures lead us to three combinatorial problems: given a synchronized system
what are the values of these measures? In [23] the notion of k-isolation resilience is
introduced and an O(n2) time algorithm for computing the 1-resilience is proposed.
Chapter 3 studies these problems and shows that:

4. The problem of computing any of the presented measures depends on the
topology of the communication graph. Let n denote the number of trajecto-
ries in the synchronized system. The following table summarizes our results:

Communication graph’s topology

Resilience measures Tree Cycle N ×M Grid∗ General

coverage O(1) O(n) O(Tgcd(N,M))† O(n)

k-isolation NP-Hard O(n) O(1) NP-Hard

broadcasting O(n3/2) O(n) O(1) O(nκ ·min{κ3 + n, nκ})‡

∗We say that the communication graph has an N×M grid topology if the trajecto-
ries are arranged forming a grid of N rows andM columns, notice that n = N ∗M .
† Tgcd(N,M) denotes the required time to compute gcd(N,M). Taking into ac-
count that n = N ∗M then, Tgcd(N,M) = O(log n(log log n)2 log log log n) accord-
ing to [129].
‡ κ denotes the value of the broadcasting resilience.
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5. We also analyze the problem of computing k-isolation resilience for specific
values of k: an almost linear time (in the number of trajectories) algorithm
is proposed to compute the 1-isolation resilience for any synchronized system
(improving the O(n2) time algorithm presented in [23]). And, if the commu-
nication graph is a tree then the 1-isolation resilience can be computed in
linear time, the 2-isolation resilience can be computed in O(min(t2, n log n))
time and the k-isolation resilience (k > 2) can be computed in O(tnk−1)
time, where

√
πn/2 − 1 ≤ t ≤ n − 1 is a parameter that depends on the

topology of the communication tree.

After analyzing the weaknesses and strengths of a synchronized system, in
Chapter 4:

6. Two random variants synchronized systems are presented where the robots
apply the fail-recovery approach (item 2 of this list) randomly. We study
the behavior of the expected meeting time, expected broadcast time and
expected idle time.

In Chapter 5:

7. The block-information-sharing (BIS) strategy is formally presented as a gen-
eralization of the one-to-one approach presented in [1, 2] and the convergence
of the BIS strategy is formally proved in a general task allocation scenario.

8. Moreover, it is shown how to use this strategy to design a fault-tolerant
approach for structure construction using a cooperative team of aerial robots.
The robots work in parallel and the dynamic assignments of the tasks are
performed using blocks in order to maintain a balanced allocation where each
aerial robot approximately spends the same time to construct the assigned
section. Thus, the maximum time a robot spends to complete the assigned
section of the construction is minimized.

1.5.1 Related publications and collaborations

The main contributions of this thesis are based on the following publications, which
are published or currently under review in peer-reviewed journals and conferences.

• J. Díaz-Báñez, L. E. Caraballo, M. A. Lopez, S. Bereg, I. Maza, and A.
Ollero. “A general framework for synchronizing a team of robots under com-
munication constraints”. IEEE Transactions on Robotics, 33(3):748–755,
June 2017. (Chapter 2)
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• J. Díaz-Báñez, E. Caraballo, M. A. Lopez, S. Bereg, I. Maza, and A. Ollero.
“The synchronization problem for information exchange between aerial robots
under communication constraints”. In 2015 IEEE International Conference
on Robotics and Automation (ICRA), pages 4650–4655, May 2015. (Chap-
ter 2)

• S. Bereg, L. E. Caraballo, J. M. Díaz-Báñez, and M. A. Lopez. “Computing
the k-resilience of a synchronized multi-robot system”. Journal of Combina-
torial Optimization, 36(2):365–391, Aug 2018. (Chapter 3)

• S. Bereg, L. E. Caraballo, J. M. Díaz-Báñez, and M. A. Lopez. “On the
robustness of a synchronized multi-robot system”. Submitted to Journal of
Combinatorial Optimization. (Chapter 3)

• S. Bereg, L. E. Caraballo, J. M. Díaz-Báñez, and M. Lopez. “The uncovering-
resilience of a synchronized multi-robot system”. In XVII Spanish Meeting
on Computational Geometry. Alicante, Spain, Jun 2017. (Chapter 3)

• S. Bereg, L. E. Caraballo, J. M. Díaz-Báñez, and M. Lopez. “Computing the
k-resilience of a synchronized multi-robot system”. In European Workshop
on Computational Geometry (EuroCG2017). Malmö, Sweden, Apr 2017.
(Chapter 3)

• L. E. Caraballo, J. M. Díaz-Báñez, R. Fabila-Monroy, and C. Hidalgo-Toscano.
“Patrolling a terrain with cooperrative UAVs using random walks”. In 2019
International Conference on Unmanned Aircraft Systems (ICUAS), pages
828–837, June 2019. (Chapter 4)

• L. E. Caraballo, J. M. Díaz-Báñez, I. Maza, and A. Ollero. “The block-
information-sharing strategy for task allocation: A case study for structure
assembly with aerial robots”. European Journal of Operational Research,
260(2):725–738, 2017. (Chapter 5)

• L. E. Caraballo, J. J. Acevedo, J. M. Díaz-Báñez, B. C. Arrue, I. Maza, and
A. Ollero. “The block-sharing strategy for area monitoring missions using a
decentralized multi-uav system”. In 2014 International Conference on Un-
manned Aircraft Systems (ICUAS), pages 602–610, May 2014. (Chapter 5)

The following publications are related to, or inspired by, the work presented in
this thesis, but are not considered in this manuscript.

• L. E. Caraballo, J. M. Díaz-Báñez, R. Fabila-Monroy, A. Fernández, and
F. Rodríguez. “Collision avoidance for aerial vehicles using turn-angles”. In
XVIII Spanish Meeting on Computational Geometry. Girona, Spain, Jul
2019.
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• S. Bereg, L. E. Caraballo, and J. M. Díaz-Báñez. “Efficient inspection of
underground galleries using k robots with limited energy”. In ROBOT 2017:
Third Iberian Robotics Conference, pages 706–717. Springer International
Publishing, 2018. ISBN: 978-3-319-70833-1.

1.5.2 Thesis outline

Chapter 2 addresses the synchronization problem (first objective of the thesis) and,
presents the synchronized systems as a solution for this problem. Chapters 3 and
4 are devoted to the second objective: robustness of synchronized systems. The
first of these chapters studies some drawbacks that can appear in a synchronized
system when a set of robots fail and, it studies several measures to determine
how fault-tolerant a system is. This chapter contains most of the theoretical
work of the thesis. In Chapter 4 we introduce some stochastic behavior in the
drones of a synchronized system in order to overcome the drawbacks shown in the
previous chapter. The third and last objective, task allocation, is addressed in
Chapter 5, where the block-information-sharing strategy is proposed as a general
approach to maintain a balanced task allocation on multi-robot system under
communication constraints. Finally, the work is concluded in Chapter 6, where
future work directions are discussed.



Chapter 2
The synchronization
problem

Communication is required in a cooperative robotic system that performs a
task in a decentralized manner and the robustness of the system depends on

the reliability of the communication links between the agents involved. In many
scenarios, direct communication among all the agents cannot be guaranteed (large
workspace with respect to the communication range of the system’s members, for
instance). In such scenarios, the communication links are available only when
neighboring robots reside within a short communication range [25, 125]. This is
the situation assumed in this chapter.

Let us consider a team of robots which are periodically traveling along prede-
termined closed simple trajectories (i.e., smooth Jordan curves) while performing
an assigned task (see examples in Section 1.2). Each of the agents needs to com-
municate information about its operation to other agents, but the communication
interfaces have a limited range. Hence, when two agents are within the com-
munication range, a communication link is established, and the information is
exchanged. We say that two agents are “synchronized” if they can exchange in-
formation periodically. In this chapter, the following synchronization problem is
considered: given the path geometries of a group of robots, schedule the motion
of the robots along their trajectories so that the number of synchronized pairs of
robots is maximized.

In order to illustrate some of the issues arising in the synchronization problem,
let us consider the situation shown in Figure 2.1 with trajectories P1, P2 and P3,
and three robots moving in the same direction (counterclockwise) along their re-
spective trajectories. Suppose that, due to limited communication, there is only a
possible communication link between every pair of trajectories (a possible commu-
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nication link is indicated by a pair of connected red hollow points in Figure 2.1).
How can we guarantee that each pair of robots is synchronized, i.e., each pair of
robots arrives at a possible communication link between their trajectories at the
same time periodically? Let x, y and z be the required time to travel (as it’s shown
in Figure 2.1) between the link positions of P1, P2 and P3, respectively. It is easy
to see that if the three agents spent x + y + z time to make a tour in their tra-
jectories, then every pair of robots is synchronized and they exchange information
every tour. The video at https://youtu.be/4Bo590VcKbY shows an animation of
a simple system with circular trajectories where every pair of neighboring robots
is synchronized.

P1

P2

P3x z

y

Figure 2.1: Simple scenario of the synchronization problem. Two robots can ex-
change information only if they are on a pair of connected red hollow points.

The synchronization problem arises naturally in missions of surveillance or
monitoring [2, 102], wireless network coverage [66, 24], in structure assembly while
the robots are loading and placing parts in a structure [18], or even in the ex-
ploration process looking for parts to be assembled as performed in the ARCAS
project (http://www.arcas-project.eu), to name but a few applications. In
fact, its eventual solution may find many applications beyond the initial problems
posed here.

Moreover, notice that the synchronization problem is even more relevant in
aerial robots due to:

• Rotorcraft robots (e.g., helicopters or multirotor systems) have very demand-
ing energy requirements that limit the flight endurance. Then, hovering,
which is very energy demanding, waiting for other aerial robots to commu-
nicate or to perform cooperatively a task, should be minimized by means of
synchronization.

• The synchronization of fixed wing aircraft imposes more strict constraints
when they should meet to interchange information due to the velocity of

https://youtu.be/4Bo590VcKbY
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these aircrafts that may lead to communication losses when using short range
communication devices.

Additionally, the short communication range between aerial robots, and un-
manned aerial vehicles in general, is interesting from the point of view of security.
In fact, this short range communication may avoid communication jamming, which
is a significant threat in the practical application of unmanned aerial vehicles [139].

2.1 Problem formulation

The ingredients of the general problem considered here are the following:

• A team V1, V2, . . . , Vn of n aerial robots need to share information while
cooperating in the execution of a task in a decentralized way.

• Each vehicle Vi has a fixed communication range ri and flies along a specified
closed trajectory Pi. The routes are disjoint, eliminating concerns about
collisions.

• A potential communication link exists between the trajectories of vehicles Vi
and Vj if and only if the minimum distance between the trajectories does not
exceed the value min{ri, rj}. The two vehicles may exchange information at
all times when the distance between them is less than or equal to min{ri, rj}.

• We say that two robots are neighbors if there exists a potential communi-
cation link between their trajectories; and two neighbors are synchronized if
they visit that link at the same time.

• Given two synchronized robots Vi and Vj, the communication region of Vi and
Vj, is given by the two connected arcs Rij and Rji on Pi and Pj respectively
such that when Vi flies on Rij and Vj flies on Rji, the distance between Vi
and Vj is kept within min{ri, rj}. Two cases arise, depending on whether the
two neighbors fly in opposite directions, one clockwise (CW) and the other
counter-clockwise (CCW), or in the same direction. Figure 2.2a shows the
latter case while Figure 2.2b illustrates the former. Notice that the two cases
affect differently the length of the arcs Rij and Rji. We will later see that
they also impact differently the robustness of the system.

Problem 2.1.1 (The Synchronization Problem). Given a set of n robots, each
performing part of a cooperative task within a closed trajectory, and exchanging
information with a fixed communication range, schedule the trajectories such that
the number of synchronized robot pairs is maximized. When this number equals the
number of communication links, the system is fully synchronized.



20 CHAPTER 2. THE SYNCHRONIZATION PROBLEM

. . .

. . .

Pi

Pj

r

︸
︷︷

︸

(a) One direction

. . . . . .

︸
︷︷

︸

Pi

Pj

r

(b) Two directions

Figure 2.2: Representation of the communication region between two robots Vi
and Vj (gray region): (a) two neighboring robots moving in clockwise direction
and (b) two neighboring robots moving in opposite directions. Notice that both
figures use the same communication range (r = min{ri, rj}).

First, observe that under a general model, even the synchronization between
two robots cannot be guaranteed. Consider, for example, a system consisting of
only two robots, each moving at constant speed with a very small communication
range. Then, if the ratio of the two trajectory lengths is not rational, a synchro-
nized motion is not possible. Typically, the methods used in the literature achieve
synchronization by changing the speeds of the robots by small amounts, e.g., they
allow for the possibility of one vehicle “waiting" for the other. Unfortunately, this
simple approach is only feasible for two vehicles. For a team of cooperative robots,
a more delicate theoretical study is required.

The following questions need to be answered in order to implement an efficient
and robust multi-robot coordinated system: (i) When can a cooperative multi-
robot system be synchronized without changing the robot speeds? and (ii) in case
of a robot failure, can the schedules be slightly altered in order to complete the
global task in a new synchronized system?

This chapter aims to answer the above two questions. Based on theoretical
results on a simplified model, we propose an algorithm that is efficient and robust
in the face of catastrophic robot failures where the synchronization of a large team
of robots is assured.

2.2 Theoretical results in a simplified model
The general methodology we are proposing is to first obtain strong results on
a simplified, albeit not entirely practical model, and then to adapt the newly
acquired theoretical knowledge to more general and realistic models. Accordingly,
we discuss how to extend the approach for the simple model to others models in
Section 2.3 where we consider, for example, heterogeneous vehicles, non-circular
routes, etc.

Let us consider a simplified model for which the basic results can be stated.
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In this simplified model all aerial robots fly at the same altitude and move along
equal and pairwise disjoint circular trajectories at the same speed with the same
communication range. Without loss of generality, assume that a robot spent one
unit of time to make a tour in a trajectory.

Let T = {C1, C2, . . . , Cn} be the set of pairwise disjoint unit circles representing
the flight trajectories of the n robots and let ε < 0.5 be the communication range
of the robots. Let Ci and Cj be two trajectories such that the distance between
their centers is less than or equal to 2 + ε. Then, the robots in Ci and Cj can
potentially share information (see Figure 2.3).

In order to model the ensuing communication constraints we define the graph
of potential links of the system with respect to range ε as follows:

Definition 2.2.1 (Graph of potential links). Let T = {C1, . . . , Cn} be a set of
trajectories and let ε be the communication range of the robots. The graph of
potential links of the system with respect to range ε is a planar graph Gε(T ) =
(V,Eε) whose vertices are the circle centers and whose edges connect two centers
if their distance is less than or equal to 2 + ε (see Figure 2.4). Moreover, if two
trajectories, Ci and Cj, are connected by an edge of Eε then they are neighbors
and, the edge connecting them is denoted by (i, j).

Remark 2.2.2. In the simplified model, the graph of potential links is actually
the intersection graph of a set of enlarged trajectories, namely, the set of disks of
radius 1 + ε/2 with the same trajectory centers. Therefore, the graph of potential
links can be computed in linear time [16].

Since communication is an important issue in cooperative scenarios, this work
focuses on sets of trajectories whose graphs of potential links is connected. Assume
for the rest of the chapter that we are working with a given set of trajectories T
and a fixed communication range ε such that the graph of potential links Gε(T ) is
connected.

In the analysis that follows, it will be convenient to denote a point of a trajec-
tory by the angle that it forms with horizontal positive axis measured in counter-
clockwise direction, i.e., the angle in polar coordinates (see Figure 2.3).

Since the robots move at constant speed, it suffices to know the starting position
and movement direction of a robot in order to compute its position at any time.
Thus, we can define a schedule of a system as the set of starting positions and
travel directions on every trajectory.

Definition 2.2.3 (Schedule). Let T = {C1, . . . , Cn} be a set of trajectories. A
schedule on T is a pair of functions (α, δ), α : T → [0, 2π) and δ : T → {−1, 1},
where α(Ci) is the starting position in the circle Ci and δ(Ci) is the movement
direction in the circle Ci, 1 corresponds to counterclockwise direction (CCW) and
−1 to clockwise direction (CW). At an arbitrary time t, a robot’s position in circle
Ci is:

α(Ci) + 2π · δ(Ci) · t. (2.1)
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Ci

Cj

φji

φij

︸ ︷︷ ︸ε

Figure 2.3: The simple model. Robots in Ci and Cj can share information because
the distance between them is less than or equal to ε. Notice that they are at the
link positions φij and φji, respectively.
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Figure 2.4: Representation of a set C1, C2, . . . , C9 of unit circles and the underlying
graph of potential links.
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Let (i, j) be an edge in Eε. For the sake of simplicity we consider that two
robots in trajectories Ci and Cj can establish a communication link if and only if
they are at the same time over the segment that connects the centers of Ci and
Cj, see Figure 2.3. The following definition describes formally these positions.

Definition 2.2.4 (Link position). Let T = {C1, . . . , Cn} and ε be the set of trajec-
tories and the communication range of a system, respectively. Let Gε(T ) = (V,Eε)
be the graph of potential links of the system. Let (i, j) be an edge in Eε. The link
position of Ci with respect to Cj, denoted by φij, is the angle corresponding to the
point of Ci closest to Cj. Clearly, if φij is defined, so is φji and φji = π + φij (see
Figure 2.3).

Using the previous two definitions we can extend the notion of synchronization
to trajectories in the following way:

Definition 2.2.5 (Synchronized trajectories). Let S = (α, δ) be a schedule on a
system whose set of trajectories is T and whose communication range is ε. Two
trajectories Ci and Cj of T are synchronized by S if there exists a 0 ≤ t < 1 such
that:

α(Ci) + 2π · δ(Ci) · t = φij and α(Cj) + 2π · δ(Cj) · t = φji.

Notice that, two robots in a synchronized pairs of trajectories, are synchronized
between them and they “meet each other” (establish a link position) every time
unit (see Figure 2.3).

Definition 2.2.6 (Communication graph). Let S be a schedule on a system whose
set of trajectories is T and whose communication range is ε. The communication
graph of S, is a spanning subgraph1 of Gε(T ) = (V,Eε) whose edges are the pairs
of synchronized trajectories.

Notice that, if the communication graph of a schedule is connected then a
message can be relay between every pair of robots on the system (may be passing
through multiple robots). We are interested in this kind of schedules.

Definition 2.2.7 (Synchronization schedule). Let S be a schedule on a system
whose set of trajectories is T and whose communication range is ε. Let G be the
communication graph of S. If G is connected then we say that S is a synchroniza-
tion schedule. If G = Gε(T ) then S is a full synchronization schedule.

We say that a system is synchronized if the team of robots (one per trajectory)
is using a synchronization schedule.

In the following we are going to characterize the relation between pairs of
synchronized trajectories. In order to save notation we will use αi and δi instead
of α(Ci) and δ(Ci) to refer the starting position and travel direction in a trajectory
Ci, respectively.

1A spanning subgraph of a graph H is another graph whose set of vertices is exactly the same
set of vertices of H and whose set of edges is a subset of the set of edges of H.
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Lemma 2.2.8. Let G be the communication graph of an schedule S = (α, δ). Let
(i, j) be an edge of G. If δj = δi then αj = π + αi.

Proof. There exists a value t such that:

αi + 2πδit = φij and αj + 2πδjt = φji.

By using Definition 2.2.4 we get that:

αj + 2πδjt = αi + 2πδit+ π.

Using that δi = δj the result follows.

Lemma 2.2.9. Let G be the communication graph of an schedule S = (α, δ). Let
(i, j) be an edge of G. If δi = −δj then αj = φji + φij − αi.

Proof. There exists a value t ≥ 0 such that:

φij = αi + 2πδit and φji = αj + 2πδjt.

Then:
φij − αi = 2πδit and φji − αj = 2πδjt.

Using that δi = −δj the result follows.

Let T be set of trajectories and let ε be the communication range of the robots.
Let S = (α, δ) be a schedule on T and, let S ′ = (α′, δ) be another schedule on
T using the same directions in every trajectory. Consider that α′(Ci) = α(Ci) +
2πεδ(Ci) for all Ci ∈ T where ε is a positive constant. Note that, in this case
the starting positions of S ′ are the positions of S after ε units of time. Therefore,
if the system starts with a set of n robots using the schedule S, after ε units of
time, the robots will be moving like if they have just started using the schedule S ′.
Then, we can say that S and S ′ are almost the same schedule, they are equivalent.
Notice that S and S ′ have the same communication graph.

Definition 2.2.10 (Equivalent schedules). Let T be set of trajectories and let ε be
the communication range of the robots. Two schedules S = (α, δ) and S ′ = (α′, δ′)
on T are equivalent if for all t ≥ 0 there exists a value t′ = t′(t) ≥ 0 such that:

α′i + 2πδ′it
′ = αi + 2πδit for all 1 ≤ i ≤ n.

More informally, this definition says that if we have two imaginary sets of robots
following schedules S and S ′, respectively, and we take a picture of the team who
is following schedule S at some arbitrary time, then, S and S ′ are equivalent if we
can get exactly the same picture at some instant of time in the team following S ′.
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Remark 2.2.11. Let S be the set of all the possible schedules on a system. It
is easy to prove that the previous definition establishes an equivalence relation
between the elements of S. That is, for any schedules S, S ′ and S ′′ in S:

• S is equivalent to S (reflexive property),

• if S is equivalent to S ′ then S ′ is equivalent to S (symmetric property), and

• if S is equivalent to S ′ and S ′ is equivalent to S ′′ then S is equivalent to S ′′
(transitive property).

Then, this equivalence relation provides a partition of S into (disjoint) equivalence
classes.

The following theorem characterizes the equivalent schedules.

Theorem 2.2.12. Two schedules S = (α, δ) and S ′ = (α′, δ′) are equivalent if and
only if δ′ = ±δ and α′ = α + cδ where 0 ≤ c < 2π is a constant.

Proof. Firstly, we prove that if S and S ′ are equivalent, then δ′ = ±δ and α′ =
α+ cδ where c ∈ R is a constant. We will start by showing that for all 1 ≤ i ≤ n,
if δ′1 = δ1 then δ′i = δi and, if δ′1 = −δ1 then δ′i = −δi. After that, we are going to
prove that if α′1 = α1 + cδ1 then α′i = αi + cδi.

Let pi(t) = αi+2πδit and p′i(t) = α′i+2πδ′it denote the position in trajectory Ci
at time t using schedules S and S ′, respectively. Let t > 0 be an arbitrary instant
of time. Let t′ > 0 be the minimum value such that p1(t) = p′1(t

′). Since S and S ′
are equivalent we deduce that pi(t) = p′i(t

′) for all 1 ≤ i ≤ n. Let 0 < ε < 1/2.
Notice that:

pi(t+ ε) = αi + 2πδi(t+ ε) = pi(t) + 2πδiε.

Suppose that δ′1 = δ1, then p′1(t′ + ε) = p1(t + ε). Since S and S ′ are equivalent,
then, for all 1 ≤ i ≤ n:

p′i(t
′ + ε) = pi(t+ ε)

p′i(t
′) + 2πδ′iε = pi(t) + 2πδiε.

Using that p′i(t′) = pi(t) and 0 < 2πε < π we deduce that δ′i = δi for all 1 ≤ i ≤ n.
Now, suppose that δ′1 = −δ1, then p′1(t′ + 1 − ε) = p1(t + ε). Since S and S ′ are
equivalent, then, for all 1 ≤ i ≤ n:

p′i(t
′ + 1− ε) = pi(t+ ε)

p′i(t
′)− 2πδ′iε = pi(t) + 2πδiε.

Using that p′i(t′) = pi(t) and 0 < 2πε < π, we deduce that δ′i = −δi for all
1 ≤ i ≤ n.
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Let 0 ≤ c < 2π be a constant such that α′1 = α1 + cδ1. For all times t, t′ such
that p′i(t′) = pi(t) we have that:

p′i(t
′) = pi(t)

α′i + 2πδ′it
′ = αi + 2πδit

α′i = αi + 2πδit− 2πδ′it
′

α′i = αi + 2πδi(t− δiδ′it′). (δ2i = 1)

Notice that the last equation can be rewritten as:

α′i = αi + 2πδi · frac(t− δiδ′it′)

where frac(t − δiδ
′
it
′) denotes the fractional part of (t − δiδ

′
it
′). Note that the

integer part of (t − δiδ
′
it
′) corresponds to entire loops in a trajectory because a

robot spends one time unit in a tour, thus, it doesn’t affect the position in a circle.
For i = 1, regardless the values of t and t′, the value 2π · frac(t − δ1δ′1t′) is the
constant c. Notice that, if δ′ = ±δ then δ′iδi = δ′1δ1 for all 1 ≤ i ≤ n. Thus,
2π · frac(t − δ1δ′1t′) = c for all 1 ≤ i ≤ n. This completes the proof of the first
implication.

Now, let us focus on proving that if δ′ = ±δ and α′ = α + cδ (0 ≤ c < 2π)
then S = (α, δ) and S ′ = (α′, δ′) are equivalent schedules. Let t be an arbitrary
instant of time and let t′ be the minimum non-negative value of the form:

t′ = s
(
t− c

2π

)
+ k where k ∈ Z and s =

δ

δ′
=

{
1 if δ′ = δ

−1 if δ′ = −δ

For all trajectory Ci ∈ T the position in Ci at time t′ following schedule S ′ is:

p′i(t
′) = α′i + 2πδ′it

′

= α′i + 2πδ′i

(
s
(
t− c

2π

)
+ k
)

= α′i + 2πδ′is
(
t− c

2π

)
+ 2πδ′ik

= α′i + 2πδ′i
δi
δ′i

(
t− c

2π

)
(2πδ′ik doesn’t affect the position)

= α′i + 2πδit− cδi
= αi + cδi + 2πδit− cδi (α′i = αi + cδi by hypothesis)
= αi + 2πδit

= pi(t).

Then S and S ′ are equivalent.
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C1 C2 C3

(a)

C1 C2 C3

(b)

Figure 2.5: (a) and (b) represent the same system with different and non-equivalent
schedules S = (α, δ) and S ′ = (α′, δ′), respectively. S and S ′ have the same
communication graph G = (V = {1, 2, 3}, E = {(1, 2)}) (which is drawn using
light-gray color) and δ′ = δ (the directed arcs represent the travel direction in
every trajectory). The hollow points represent the used starting positions.

Let T and ε be the set of trajectories and the communication range of a system
of robots respectively. Let Gε = (V,Eε) be the graph of potential links of the
system. Let S = (α, δ) be a schedule of the system. Let V |S = {A,B} denote
the partition of V induced by δ, i.e., δi = δj for all (i, j) ∈ (A × A) ∪ (B × B)
and δi = −δj for all (i, j) ∈ (A × B). Let C be an equivalent class of schedules
on the system. From the previous theorem it is easy to see that C determines
a bipartition {A,B} of V such that, for all schedules S and S ′ of C we have
V |S = V |S ′ = {A,B}.

Notice that any bipartition {A,B} of V and any function of starting points
α : T −→ [0, 2π) determines an equivalence class of schedules on the system.

Lemma 2.2.13. If two schedules are equivalent then they have the same commu-
nication graph.

Proof. Let S = (α, δ) and S ′ = (α′, δ′) be two equivalent schedules with communi-
cation graphs G = (V,E) and G′ = (V,E ′), respectively. Let (i, j) ∈ E be an edge
of G. Then, at some time t ≥ 0

αi + 2πδit = φij and αj + 2πδjt = φji.

By using the definition of equivalent schedules, we know there exists an instant
t′ ≥ 0 such that:

α′i + 2πδ′it
′ = φij and α′j + 2πδ′jt

′ = φji.

Then, (i, j) ∈ E ′ (by using the definition of communication graph). Thus, E ⊆ E ′.
Applying the same argument for every edge of G′ we get that E ′ ⊆ E, then
G = G′.

Notice that the reverse implication of the previous lemma is not true. See
Figure 2.5, where two schedules are shown with the same communication graph
and robots moving in CCW direction in both cases. However, the shown schedules
are not equivalent.
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Definition 2.2.14. Let Gε = (V,Eε) be the graph of potential links of a system.
Let S be a schedule of the system. Let G = (V,E) be a subgraph of Gε. We say that
G is synchronizable by S if G is a subgraph of the communication graph of S (i.e.,
Ci is synchronized with Cj for all (i, j) ∈ E). We also say that S synchronizes G.

From the previous definition and Lemma 2.2.13, the following result is deduced:

Corollary 2.2.15. Let S and S ′ be two equivalent schedules of a system whose
graph of potential links is Gε. If a subgraph G of Gε is synchronizable by S then
G is also synchronizable by S ′.

Lemma 2.2.16. Let Gε = (V,Eε) be the graph of potential links of a system. Let
G be a spanning subgraph of Gε. Let S and S ′ be two schedules that synchronize G.
If V |S = V |S ′ and G is connected then S and S ′ are equivalent synchronization
schedules.

Proof. Let S = (α, δ) and S ′ = (α′, δ′). Notice that if G is connected then the
communication graph of S and S ′ are also connected, thus, S and S ′ are synchro-
nization schedules. Since V |S = V |S ′, we get that δ′ = ±δ. Therefore, for proving
that S and S ′ are equivalent we only need to demonstrate that α′ = α+cδ for some
c ∈ [0, 2π) (Theorem 2.2.12). Let c ∈ [0, 2π) be a constant such that α′1 = α1+cδ1.
Let us prove that α′i = αi + cδi for all i ∈ V by using induction on the length of
the shortest path from 1 to i in G (recall that G is connected). Let V1,d ⊆ V be
the set of vertices of G at distance d or less from 1. Let us start with d = 0. Then
V1,0 = {1} and α′i = αi + cδi for all i ∈ V1,0.

Assume as inductive hypothesis that for a fixed value d ≥ 0 α′i = αi + cδi for
all i ∈ V1,d.

Let j be an arbitrary vertex in V1,d+1 \ V1,d, then, a shortest path P in G from
1 to j has length d+ 1. Let i be the penultimate vertex in P , i.e., P = [1, . . . , i, j].
Notice that i ∈ V1,d.

If δj = δi then δ′j = δ′i (because δ′ = ±δ) and:

α′j = α′i + π (by Lemma 2.2.8)
= αi + cδi + π (by inductive hypothesis)
= αj + cδj. (by Lemma 2.2.8 and using δi = δj)

If δj = −δi then δ′j = −δ′i (because δ′ = ±δ) and:

α′j = φij + φji − α′i (by Lemma 2.2.9)
= φij + φji − αi − cδi (by inductive hypothesis)
= αj + cδj. (by Lemma 2.2.9 and using δi = −δj)

Then, by using Theorem 2.2.12, S and S ′ are equivalent.
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From Theorem 2.2.12, Lemma 2.2.16 and Lemma 2.2.13 we deduce the following
result that characterizes equivalent synchronization schedules.

Theorem 2.2.17. Let S = (α, δ) and S ′ = (α′, δ′) be two schedules with commu-
nication graphs G and G′, respectively. S and S ′ are equivalent synchronization
schedules if and only if G and G′ are the same connected graph and δ′ = ±δ.

Remark 2.2.18. From Theorem 2.2.17 it is deduced that an equivalence class C
of synchronization schedules is determined by a graph G = (V,E) and a bipartition
{A,B} of V such that:

• G is the communication graph of all the schedules in C and,

• {A,B} is the bipartition determined by all the schedules in C.

Moreover, if a schedule S is an optimum solution for Problem 2.1.1 then every
schedule S ′ equivalent to S is an optimum solution for Problem 2.1.1 as well.
Therefore, the solution for Problem 2.1.1 is not single schedule, rather it is an
equivalence class of schedules.

The following result states that the schedule which is the solution of the syn-
chronization problem (Problem 2.1.1) is a synchronization schedule, that is, its
communication graph is connected.

Lemma 2.2.19. Let Gε = (V,Eε) be the graph of potential links of a system.
If a schedule S reaches the maximum possible number of synchronized pairs of
trajectories then S is a synchronization schedule.

Proof. Let S = (α, δ). Let G = (V,E) be the communication graph of S. For the
sake of contradiction, assume that G is not connected. Let (x, y) ∈ Eε \ E such
that x and y are not connected by any path in G. Take a bipartition {A,B} of V
such that x ∈ A and y ∈ B. Think in SA =

(
α(A), δ(A)

)
and SB =

(
α(B), δ(B)

)
as

two schedules resultant from the restriction of S to A and B, respectively. Take
the schedules S ′A =

(
α′(A), δ(A)

)
and S ′B =

(
α′(B), δ(B)

)
equivalent to SA and SB

such that α′(A)x = φxy and α
′(B)
y = φyx, respectively. Let S ′ =

(
α′(A) ∪ α′(B), δ

)
.

The number of connected components of the communication graph G′ = (V,E ′) of
S ′ is less than the number of connected components of G. Notice that, for every
edge (i, j) of G, (i, j) also belongs to G′ and, G′ additionally contains the edge
(x, y) which is not in G. So, |E ′| > |E|, this is a contradiction.

In the following subsection we focus on the study of an algorithm to build a
synchronization schedule S for a system (not necessarily with maximum number
of synchronized pair of robots). Notice that, using this schedule a message can be
relay between every pair of robots on the system.



30 CHAPTER 2. THE SYNCHRONIZATION PROBLEM

2.2.1 The synchronization algorithm

Let Gε = (V,Eε) be the graph of potential links of a system. Given a connected
spanning subgraph G of Gε and a partition {A,B} of V , the algorithm that we
propose in this subsection computes a synchronization schedule S such that S
synchronizes some spanning tree of G and V |S = {A,B}.

The idea of the algorithm is to build a sequence {1} = Z0 ⊂ Z1 ⊂ · · · ⊂
Z|V |−1 = V of nested subsets of V . The algorithm builds this sequence by stages
i = 0, 1, . . . , (|V | − 1) in this order. When i = 0 the algorithm builds Z0 = {1}
and assigns the values α1 = 0 and δ1 = 1 if 1 ∈ A and δ1 = −1 if 1 6∈ A (that
is 1 ∈ B = V \ A). To pass from stage i to stage i + 1 the algorithm look for a
vertex w in V \ Zi adjacent to another vertex v ∈ Zi. Then Zi+1 = Zi ∪ {w} and
the algorithm computes the values of αw and δw using the following rule:

αw =

{
αv + π if (v, w) ∈ (A× A) ∪ (B ×B),

φvw + φwv − αv otherwise,

δw =

{
δv if (v, w) ∈ (A× A) ∪ (B ×B),

−δv otherwise.

(2.2)

Property 2.2.20. Let G = (V,E) be the input graph. Let ei denote the used edge
to pass from Zi to Zi+1. For all 0 ≤ i < |V | the graph Ti = (Zi, {e0, e1, . . . , ei−1}) is
a subtree of G, the schedule S = (α, δ) synchronizes Ti and, Zi|S = {A∩Zi, B∩Zi}.

Proof. Let us prove it by induction on i. For i = 0, the tree T0 = ({1}, ∅) is a
single node, so, it is a subtree of G. At this stage the algorithm has assigned the
values α1 = 0 and δ1 = 1 if 1 ∈ A and δ1 = −1 if 1 ∈ B. Obviously, S synchronizes
T0 and Z0|S = {A ∩ Z0, B ∩ Z0} because T0 is formed by the single vertex 1.

Suppose as inductive hypothesis that the property holds for a fixed value i. Let
(v, w) the used edge to pass from Zi to Zi+1. Recall that Zi+1 = Zi ∪ {w}, v ∈ Zi
and w ∈ V \Zi. The graph Ti+1 is the resultant graph of connecting the new vertex
w to Ti by using the edge (v, w), using that Ti is a tree (inductive hypothesis) we
get that Ti+1 is a tree as well. Let (x, y) be an edge of Ti+1. If (x, y) 6= (v, w) then
the trajectories Cx and Cy are synchronized by S (inductive hypothesis). When
passing from stage i to i + 1, the algorithm computes the values of αw and δw
by using the already computed values of αv and δv (see equation 2.2). By using
Lemma 2.2.8 and Lemma 2.2.9 we can check that the trajectories Cv and Cw are
synchronized by S as well. Thus, S synchronizes Ti+1. Additionally: if v and w are
in the same set of the partition {A,B} (i.e., (v, w) ∈ (A×A)∪(B×B)) then δw = δv
(see equation 2.2) and, w and v will be in the same set of the partition Zi+1|S. If
v and w are in different sets of the partition {A,B} (i.e., (v, w) ∈ (A × B)) then
δw = −δv (see equation 2.2) and, w and v will be in different sets of the partition
Zi+1|S. In both cases, using that Zi|S = {A ∩ Zi, B ∩ Zi} (inductive hypothesis)
we get that Zi+1|S = {A ∩ Zi+1, B ∩ Zi+1}. The result follows.
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Algorithm 1: SynchronizationAlgorithm
Input : G = (V,E), A
Output: α, δ

1 φ← link_positions(G)
2 Q← queue()
3 enqueue(Q, 1)
4 M ← [ false , . . . , false ] // list of length |V |
5 M [1]← true
6 α← [ 0, . . . , 0 ] // list of length |V |
7 δ ← [ 0, . . . , 0 ] // list of length |V |
8 α[1]← 0
9 δ[1]← −1

10 if 1 in A then
11 δ[1]← 1
12 end
13 while Q is not empty do
14 v ← dequeue(Q)
15 l← neighbors(G, v)
16 foreach w in l do
17 if not M [w] then
18 if (v in A and w in A)
19 or (v not in A and w not in A) then
20 α[w]← α[v] + π
21 δ[w]← δ[v]

22 else
23 α[w]← φ[v, w] + φ[w, v]− α[v]
24 δ[w]← −δ[v]

25 end
26 M [w]← true
27 enqueue(Q,w)

28 end
29 end
30 end
31 return α, δ
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Algorithm 1 implements the previous idea using a breadth-first search approach
starting at vertex 1. The input is a connected spanning graph G = (V,E) of
the system and the set A ⊆ V (notice that B = V \ A). The output of the
algorithm are the functions α and δ of a synchronization schedule S. Notice that
the sequence {1} = Z0 ⊂ Z1 ⊂ · · · ⊂ Z|V |−1 = V is emulated by using the
Boolean array M . If M has k elements marked as true then, these k elements
conform the set Zk−1. The constructed breadth-first tree is the spanning tree
T = (Z|V |−1, {e0, . . . , e|V |−2}) of G. Then, from Property 2.2.20 the following
result follows:

Corollary 2.2.21. Let G = (V,E) be a connected spanning graph of a system.
Let {A,B} be a partition of V . Let S be the output schedule of Synchronization
Algorithm(G, {A,B}). Then, V |S = {A,B} and S synchronizes a spanning tree
of G.

Lemma 2.2.22. Algorithm 1 takes O(n) time where n is the number of trajectories
in the system.

Proof. Let G = (V,E) be the input graph of the algorithm. It is easy to check that
this algorithm takes O(|E|) time (every edge is analyzed twice, one per incident
vertex line 13 and 14). Taking into account that Gε is a planar graph and G is a
subgraph of Gε we get that |E| ∈ O(n) where n is the number of trajectories in
the system. Thus, the algorithm takes O(n) time.

Theorem 2.2.23. Let G = (V,E) be a connected spanning graph of a system. Let
{A,B} be a partition of V . If there is a schedule S that synchronizes G and V |S =
{A,B}, then, the output schedule S ′ of SynchronizationAlgorithm(G, {A,B}) is
equivalent to S. Moreover, S ′ synchronizes G as well.

Proof. From Corollary 2.2.21 we have that S ′ synchronizes some spanning tree
T of G. This tree T is also synchronized by S (because T is a subgraph of G)
then, by using Lemma 2.2.16, S and S ′ are equivalent and they have the same
communication graph (Lemma 2.2.13). Therefore, S ′ synchronizes G.

Definition 2.2.24. Let Gε = (V,Eε) be the graph of potential links of a system. Let
G = (V,E) be a subgraph of Gε. We say that G is synchronizable by a bipartition
{A,B} of V if there is a schedule S that synchronizes G and V |S = {A,B}. We
also say that S verifies that G is synchronizable by {A,B}.

Let Gε = (V,Eε) be the graph of potential links of a system. Let G = (V,E)
be a connected spanning subgraph of Gε. Notice that any two schedules S and S ′
that verify that G is synchronizable by a bipartition {A,B} of V are in the same
equivalence class of synchronization schedules.

From Corollary 2.2.21 the following result is derived:
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Lemma 2.2.25. Let Gε = (V,Eε) be the graph of potential links of a system. Any
spanning tree T of Gε is synchronizable by any bipartition {A,B} of V . Moreover,
the output schedule of SynchronizationAlgorithm(T, {A,B}) verifies that T is
synchronizable by {A,B}.

Let Gε = (V,Eε) be the graph of potential links of a system. And let G
be a connected spanning subgraph of Gε. In subsection 2.2.2 we are going to
study the conditions G must fulfills to be synchronizable by the bipartition {V, ∅}.
Subsection 2.2.3 focuses on the study of the conditions that G must fulfills to
be synchronizable by the bipartition {A,B} considering that G is bipartite with
partite sets A and B.

2.2.2 Robots moving in the same direction

Suppose that we have a synchronized system where all the robots are moving
in the same direction. Let S be the synchronization schedule that the robots
are following. Let G = (V,E) be the communication graph of S. Then, G is
synchronizable by the partition {V, ∅} of V . In this subsection we focus on the
study of graphs synchronizable by the partition {V, ∅}.

Lemma 2.2.26. Let G = (V,E) be a connected spanning graph of a system. Let
S = (α, δ) be a schedule that synchronizes G such that V |S = {V, ∅}. If (i, j) ∈ E
and (i, k) ∈ E then αj = αk.

Proof. From Lemma 2.2.8 we have that αi = αj + π and αk = αi + π. Then,
αk = (αj + π) + π = αj + 2π = αj.

Using Lemma 2.2.26 we derive the following corollary:

Corollary 2.2.27. Let G = (V,E) be a connected spanning graph of a system. If
G is synchronizable by {V, ∅} then G does not contain cycles of odd length.

Proof. Let S = (α, δ) be a schedule that verifies that G is synchronizable by
{V, ∅}. For the sake of contradiction, suppose that G contains and odd cycle
〈i0, i1, . . . , i2c, i0〉. From the previous lemma we know that αi0 = αi2 = · · · = αi2c .
And by Lemma 2.2.8 we know that αi0 = αi2c + π and this is a contradiction.

Now we are ready to prove the main result for the simplified model when the
robots move in the same direction.

Theorem 2.2.28. Let G = (V,E) be a connected spanning graph of a system.
G is synchronizable by {V, ∅} if and only if G is bipartite. Moreover, the output
schedule S of SynchronizationAlgorithm(G, V ) verifies that G is synchronizable
by {V, ∅}.
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Proof. From Corollary 2.2.27 we deduce that if G is synchronizable by {V, ∅} then
G is bipartite.

Let us focus on proving that if G is bipartite then it is synchronizable by {V, ∅}.
Let S = (α, δ) be output schedule of SynchronizationAlgorithm(G, V ). Notice
that δi = 1 for all i ∈ V , then V |S = {V, ∅}. So, we only need to prove that
S synchronizes G. There is a spanning tree T of G such that S synchronizes T
(Corollary 2.2.21). Notice that αi = 0 or αi = π for all i ∈ V . Let (i, j) be an
edge of G which is not in T . Let P = [i = v1, . . . , v2c = j] be the path from i to j
in T . Notice that P has an even number of vertices because G is bipartite. Thus,
if αv1 = 0 then αv2 = π, αv3 = 0, . . . , αv2c = π and, if αv1 = π then αv2 = 0,
αv3 = π, . . . , αv2c = 0. In any case αj = αi + π, then trajectories Ci and Cj are
synchronized by Lemma 2.2.8. The result follows.

From this theorem, the following result is directly derived:

Corollary 2.2.29. Let T be a set of trajectories and let ε be the communication
range of the robots. The synchronized system with robots moving in the same direc-
tion that ensures maximum number of synchronized pairs of robots is determined
by the bipartite subgraph of Gε with maximum number of edges.

We can compute the graph Gε of potential links in linear time (Remark 2.2.2),
then, we can test the bipartiness of Gε in linear time. If it is bipartite we are
done, else a reasonable strategy is to use a bipartite subgraph with the maximum
number of edges. Finding the maximum bipartite subgraph of a general graph is
an NP-complete problem [72]. However, such a subgraph can be found in polyno-
mial time when the input graph is planar [60]. Alternatively, there exist various
approximation algorithms that can be useful in practice (see for instance [42]).

The synchronization problem (Problem 2.1.1), with the restriction that all
robots move in the same direction, can be solved using Algorithm 2. Notice that,
with this algorithm, we obtain a synchronization schedule which is a representative
of an equivalence class of schedules that are optimum solutions for this problem.

2.2.3 Robots moving in opposite directions

Let Gε = (V,Eε) be the graph of potential links of a system. In this subsection we
derive conditions that ensure the synchronization of a system where every pair of
synchronized robots are moving in opposite directions. Note that such a model can
only be deployed on a bipartite communication graph G = (V,E). In this case,
the partition V |S determined by the used synchronization schedule S corresponds
exactly to the partite sets of the bipartite communication graph (i.e., V = A∪B,
A ∩B = ∅, E ⊆ (A×B) ∩ Eε and V |S = {A,B}).
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Algorithm 2: Computing a synchronization schedule where all the robots
move in the same direction.
Input : T , ε
Output: α, δ

1 Gε ← computeIntersectionGraph(T, 1 + ε/2)
2 if Gε is bipartite then
3 G← Gε

4 else
5 G← maximumBipartiteSubgraph(Gε)
6 end
7 return SynchronizationAlgorithm(G, V (G)) // Algorithm 1
8

Theorem 2.2.30. Let G = ({A,B}, E) be a connected bipartite spanning graph of
a system. G is synchronizable by {A,B} if and only if every cycle 〈i1, . . . , i2c, i1〉
in G satisfies:

(φi1i2 + φi2i1)− (φi2i3 + φi3i2) + · · ·+ (φi2c−1i2c + φi2ci2c−1)− (φi2ci1 + φi1i2c) ∈ 2πZ.

Moreover, the output schedule S of SynchronizationAlgorithm(G, {A,B}) veri-
fies that G is synchronizable by {A,B}.

Proof. Let S = (α, δ) be a schedule that verifies that G is synchronizable by
{A,B}. Let 〈i1, . . . , i2c, i1〉 be an arbitrary cycle in G. From Lemma 2.2.9 we have
that:

αi2 = (φi1i2 + φi2i1)− αi1
αi3 = (φi2i3 + φi3i2)− (φi1i2 + φi2i1) + αi1

...
...

αi2c = (φi2c−1i2c + φi2ci2c−1)− · · ·+ (φi1i2 + φi2i1)− αi1
αi1 = (φi2ci1 + φi1i2c)− (φi2c−1i2c + φi2ci2c−1) + · · · − (φi1i2 + φi2i1) + αi1 .

From the last equation we derive that:

(φi2ci1 + φi1i2c)− (φi2c−1i2c + φi2ci2c−1) + · · · − (φi1i2 + φi2i1) = 2πm

for some m ∈ Z. This completes the first implication of the theorem.
Let us focus on proving the second implication. Let S = (α, δ) be output

schedule of SynchronizationAlgorithm(G, {A,B}). From Corollary 2.2.21 we
know there is a spanning tree T ofG such that S synchronizes T and V |S = {A,B}.
Let (i, j) be an edge of G which is not in T . Let P = [i = v1, . . . , v2c = j] be the
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Figure 2.6: ij is a vertex of a cycle C. Let "I" and "E" denote the interior- and
exterior- region of C, respectively. Let βj and γj denote the internal and external
angle of C at vertex ij, respectively.

path from i to j in T . Notice that P has an even number of vertices because G is
bipartite. From hypothesis we know that:

(φv1v2 +φv2v1)−· · ·+(φv2c−1v2c +φv2cv2c−1)− (φv2cv1 +φv1v2c) = 2πm, m ∈ Z. (2.3)

From Lemma 2.2.9 we get that:

αv2 = (φv1v2 + φv2v1)− αv1
αv3 = (φv2v3 + φv3v2)− (φv1v2 + φv2v1) + αv1

...
...

αv2c = (φv2c−1v2c + φv2cv2c−1)− · · ·+ (φv1v2 + φv2v1)− αv1 .

Then, using equation 2.3, we finally get that:

αv2c = 2πm+ (φv2cv1 + φv1v2c)− αv1
= (φv2cv1 + φv1v2c)− αv1 .

Therefore, Cv2c is synchronized with Cv1 (Lemma 2.2.9). This completes the proof.

Let C = 〈i1, . . . , i2c, i1〉 be a cycle of G with the vertices numbered in counter-
clockwise ordering. Notice that traveling from ij to ij+1 the interior of C is in the
left side and the exterior of C is in the right side (see Figure 2.6). Let βj and γj
denote the internal and external angle of C at vertex ij, respectively. Rewrite the
expression of Theorem 2.2.30 grouping the link positions of a same trajectory:

(φi1i2−φi1i2c)+(φi2i1−φi2i3)+(φi3i4−φi3i2)+ · · ·+(φi2ci2c−1−φi2ci1) ∈ 2πZ. (2.4)

For all 1 ≤ j ≤ 2c notice that: if j is odd then the group is written as (φijij+1
−

φijij−1
) and, if j is even then the group is written as (φijij−1

− φijij+1
).

Suppose that j is even. If φijij−1
> φiijij+1

then the value of the j-th group is:

(φijij−1
− φijij+1

) = βj,
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Figure 2.7: ij−1, ij and ij+1 are three consecutive vertices of a cycle visited in
counterclockwise direction. "I" denotes the interior of the cycle and "E" denotes
the exterior of the cycle. (a) φijij+1

< φijij−1
and (b) φijij+1

> φijij−1
.

see Figure 2.6 and Figure 2.7a. If φijij−1
< φiijij+1

then the value of the j-th group
is:

(φijij−1
− φijij+1

) = −γj = βj − 2π = βj,

see Figure 2.6 and Figure 2.7b.
Suppose that j is odd. If φijij−1

> φiijij+1
then the value of the j-th group is:

(φijij+1
− φijij−1

) = −βj = γj − 2π = γj,

see Figure 2.6 and Figure 2.7a. If φijij−1
< φiijij+1

then the value of the j-th group
is:

(φijij+1
− φijij−1

) = γj,

see Figure 2.6 and Figure 2.7b. Doing the corresponding substitutions in equa-
tion 2.4 results:

γ1 + β2 + · · ·+ γ2c−1 + β2c ∈ 2πZ.

Taking into account that βj + γj = 2π we get that:

β1 + γ2 + · · ·+ β2c−1 + γ2c ∈ 2πZ.

Then, Theorem 2.2.30 can be rewritten as follows:

Theorem 2.2.31. Let G = ({A,B}, E) be a connected bipartite spanning graph
of a system. G is synchronizable by {A,B} if and only if every cycle C =
〈i1, . . . , i2c, i1〉 in G satisfies: β1 + γ2 + · · · + β2c−1 + γ2c ∈ 2πZ or equivalently:
γ1 + β2 + · · · + γ2c−1 + β2c ∈ 2πZ, where βj and γj denote the internal and
external angle of C at vertex ij, respectively. Moreover, the output schedule S
of SynchronizationAlgorithm(G, {A,B}) verifies that G is synchronizable by
{A,B}.

From this theorem the following result is directly derived:
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Corollary 2.2.32. Let T be a set of trajectories and let ε be the communication
range of the robots. The synchronized system that ensures maximum number of
synchronized pairs of robots where every pair of synchronized robots are moving in
opposite directions is determined by the bipartite subgraph G of Gε with maximum
number of edges that fulfills: for every cycle C = 〈i1, . . . , i2c, i1〉 in G, β1 + γ2 +
· · · + β2c−1 + γ2c ∈ 2πZ or equivalently: γ1 + β2 + · · · + γ2c−1 + β2c ∈ 2πZ, where
βj and γj denote the internal and external angle of C at vertex ij, respectively.

In this thesis the problem of computing the maximum subgraph G of Gε such
that G fulfills the conditions established in Corollary 2.2.32 remains open. How-
ever, in many practical applications the graph G is given (see the experiment
description of Section 2.6). Nevertheless, Algorithm 3 shows an approach to get a
synchronization schedule where every pair of synchronized robots travel in opposite
directions.

Algorithm 3: Computing a synchronization schedule where all the syn-
chronized pairs of robots are traveling in opposite directions.
Input : T , ε
Output: α, δ

1 Gε ← computeIntersectionGraph(T, 1 + ε/2)
2 if Gε is bipartite then
3 G← Gε

4 else
5 G← maximumBipartiteSubgraph(Gε)
6 end
7 A,B ← bipartition(V (G), G)
8 G′ ← maximumSynchronizableSubgraph(G)
9 return SynchronizationAlgorithm(G′, A) // Algorithm 1

10

Th subrutine bipartition returns the bipartition of the set of vertices of
a connected bipartite graph. Notice that this process takes linear time (recall
that the number of edges of G s linear because G is a planar graph). The sub-
rutine maximumSynchronizableSubgraph(G) implements some heuristic to find
a big subgraph whose cycles fulfills the condition of Corollary 2.2.32. Notice,
this subrutine is optional, using G in line 9 we get a synchronization schedule
(Corollary 2.2.21) but, the obtained schedule may not maximize the number of
synchronized pairs of robots.
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2.3 Generalization to non-circular trajectories and
heterogeneous robots

So far we have assumed homogeneous robots, with equal speeds and fuel capacities.
In this section we describe how to extend the results under a more general and more
realistic setting. Let us consider a team of n robots with different capabilities and
performing their corresponding tasks through arbitrary disjoint closed trajectories
{P1, . . . , Pn}.

Naturally, we have some control on the speeds of the robots as they can accel-
erate or decelerate to increase or decrease their speed. The speed can even change
on different sections of the same trajectory. The key to generalizing the synchro-
nization scheme used in the simple theoretical model is to force all members of
the team to take (approximately) the same time to make a tour of their respective
trajectories. In the ideal theoretical model two neighboring robots reach the com-
munication link at the same time. In a real implementation of these strategies,
however, we need to allow some margin of error in order to guarantee robustness.
This can be accomplished by having each robot comparing its current and target
locations at regular time intervals, and adjusting its speed (accelerating or decel-
erating), if necessary, in order to keep the synchronization. We refer to the time
that a robot takes to make a tour as the system period.

We can use the communication links to partition a trajectory Pi into sections
and assign each of them a travel time tj such that

∑
j tj = τ , where τ is the

system period. From this assignment we can compute the required speeds in each
section. Once we know the required speed for each section, it suffices to know
the starting position and movement direction of a robot in order to compute its
position at any time. Thus, the problem in the general case is: given a partition of
the trajectories into sections, assign a time to each section so that the cumulative
time of all sections of a same trajectory is τ , and compute the initial position for
every robot in its trajectory such that the system is synchronized.

The construction of the graph of potential links is similar to the case of the
simplified model. We include a node in the graph for each trajectory Pi and include
an edge between two nodes if the minimum distance between the respective tra-
jectories is within the communication range. Note that we allow at most one edge
between two nodes. If there are multiple pairs of points on two trajectories whose
distances are within the communication range we choose the closest pair. Due to
robustness reasons we are going to allow that the robots change its trajectories in
some situations (see Section 2.4), then, to build the graph of potential links it is
convenient to consider the communication range ε of the system as the minimum
communication range between all the robots. In this way, every two robots can
establish a communication link between any pair of neighboring trajectories. To
compute the edges we can use known algorithms from computational geometry
(e.g., [141, 105]) to efficiently find the minimum distance between two polygons.
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In many cases, this step can be skipped because the communication links between
the trajectories are established previously (see the experiment description of Sec-
tion 2.6).

Then, let T = {P1, P2, . . . , Pn} be a set of disjoint closed trajectories assigned
to a team of n robots. Also, let Gε = (V,Eε) be the computed graph of potential
links on T using the communication range ε = min{ri}. Borrowing notation
from previous sections, we use φij to denote the location of Pi closest to Pj, for
(i, j) ∈ Eε. (Note that in the generalization φij is not an angle as in circular model,
but rather a location in the curve Pi that can be parameterized to a value in [0, 2π)
if so desired). The following definitions generalize the main definition presented in
the simple circular model.

Definition 2.3.1. Let T = {P1, . . . , Pn} be the set of trajectories of a system and
let ε be the communication range. Let Gε = (V,Eε) be the graph of potential links
of the system. Let τ be the system period. A schedule of the system is a function
S : R≥0 → P1 × · · · × Pn such that S = (s1, . . . , sn) where si : R≥0 → Pi is a
function that indicates the expected position of a robot in Pi at any time instant,
that is, si(t) is the position of a robot in Pi at time t. Notice that S(t) = S(t+kτ)
for all t ∈ R≥0 and k ∈ N.

Definition 2.3.2. Let T = {P1, . . . , Pn} be the set of trajectories of a system and
let ε be the communication range. Let Gε = (V,Eε) be the graph of potential links
of the system. Let S = (s1, . . . , sn) be a schedule of the system. Two trajectories
Pi and Pj are synchronized by S if (i, j) ∈ Eε and si(t) = φij then sj(t) = φji.
The communication graph of S is the spanning subgraph G of Gε whose edges are
the pairs (i, j) such that Pi and Pj are synchronized. For all subgraph H of G we
say that H is synchronizable by S. If G is connected then S is a synchronization
schedule.

Let G be a connected spanning subgraph of Gε to by synchronized. If G is a
tree, then considering each trajectory as consisting of a single section, we obtain
that the speed in each trajectory Pi is constant and equal to the ratio li/τ where
li is the length of Pi. Then fixing arbitrary the initial position in trajectory Pi,
we can compute the initial position of every neighbor of Pi as follows. Let Pj be a
neighbor of Pi and suppose that a robot takes t units of time to reach φij from its
starting position. Thus Pi and Pj are synchronized if a robot takes t units of time
to reach φji from its starting position (see Figure 2.8). Note that the computed
initial position for Pj depends on its chosen direction of movement. It is easy to
see that in this way we can compute the initial positions for all the trajectories
in the synchronized system. If G contains cycles, this simple approach does not
work because considering each trajectory as a single section forces the robots to
use constant speed (possibly different from each other) 2.

2However, it easy to see that the same approach that worked for unit circles would work here
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Figure 2.8: The dashed-dotted stroke is the section of trajectory to take to achieve
φij and φji respectively. Both should use the same amount of time (t) to achieve
the link position.

Figure 2.8 shows a cycle in the graph G, if we know the starting position in
P1 we can compute the starting position in P2, then in P3, and so on until we
have computed the starting position in Pk using the starting position in Pk−1. But
having done this, P1 and Pk are not necessarily synchronized. In the following we
are going to extend the results of sections 2.2.2 and 2.2.3 to help us determine
when a graph can be synchronized with robots moving in the same direction or
with neighbors moving in opposite directions, respectively.

First, we introduce notation needed for the rest of this section. Let βi (resp. γi)
be the time it takes a robot to travel the inside (resp. outside) section of trajectory
Pi in the cycle (see Figure 2.9). We use elapsed time to describe the location of
robots as follows: φij + t denotes the position in Pi obtained by moving CCW from
φij during t units of time. Analogously, φij − t denotes the position obtained by
moving CW in Pi from φij during t units of time.
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Figure 2.9: A cycle in a synchronized system.

Theorem 2.3.3. Let τ be the period of a system whose graph of potential links
is Gε. Let G be a connected spanning subgraph of Gε. G is synchronizable by a

if we parameterize position to a value in [0, 2π) and allow the robots to change its speed to cover
different distances in physical space but equal distance in parameter space.
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schedule where all the robots move in the same direction if and only if for all cycle
C = 〈P1, P2, . . . , Pk〉 in G there exists a value z ∈ N such that:

β1 + β2 + · · ·+ βk = zτ and
γ1 + γ2 + · · ·+ γk = (k − z)τ,

where βi and γi are the required times to travel the internal section and external
section of C at trajectory Pi.

Proof. In the equations below we use αi to denote the starting position in Pi.
Without loss of generality, suppose that the robots move CCW and that α1 = φ1k.
Computing α2, α3, . . . , αk we obtain the following result:

α1 = φ1k

α2 = φ21 − β1
α3 = φ32 − β1 − β2
...

...
αk = φk,k−1 − β1 − β2 − · · · − βk−1

Obviously, having that Pi is synchronized with Pi+1 for 1 ≤ i < k then the cycle
can be synchronized if and only if α1 = φ1k − β1 − β2 − · · · − βk = φ1k, from here
we deduce that β1 + β2 + · · · + βk is a multiple of τ because φij = φij + τ . Note
that βi < τ for all 1 ≤ i ≤ k, then

β1 + β2 + · · ·+ βk = zτ z ∈ N, (0 < z < k)

Since βi + γi = τ then

(β1 + γ1) + (β2 + γ2) + · · ·+ (βk + γk) = kτ

The difference between (2.3) and (2.3) is

γ1 + γ2 + · · ·+ γk = (k − z)τ.

Note that k is not necessarily an even number, but in the simplified model
β1 + β2 + · · · + βk is a multiple of τ only if k is even. This is consistent with the
bipartition requirement.

Now, consider the case of neighbors moving in opposite directions. In this case,
G must be bipartite.

Theorem 2.3.4. Let τ be the period of a system whose graph of potential links is
Gε. Let G be a connected spanning bipartite subgraph of Gε. G is synchronizable
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by a schedule where every pair synchronized robot move in opposite directions if
and only if for all cycle C = 〈P1, P2, . . . , P2k〉 in G there exists a value z ∈ N such
that:

β1 + γ2 + β3 + · · ·+ β2k−1 + γ2k = zτ and
γ1 + β2 + γ3 + · · ·+ γ2k−1 + β2k = (2k − z)τ,

where βi and γi are the required times to travel the internal section and external
section of C at trajectory Pi.

Proof. In the equations we use αi to denote the starting position of in Pi. Without
loss of generality, suppose that α1 = φ1k and P1 has CCW direction. Computing
α2, α3, . . . , αk we obtain the following result:

α1 = φ1k

α2 = φ21 + β1

α3 = φ32 − β1 − γ2
...

...
α2k−1 = φ2k−1,2k−2 − β1 − γ2 − · · · − γ2k−2
α2k = φ2k,2k−1 + β1 + γ2 + · · ·+ γ2k−2 + β2k−1

Obviously, having that Pi is synchronized with Pi+1 for 1 ≤ i < 2k implies that the
cycle can be synchronized if and only if α1 = φ1k−β1−γ2−· · ·−β2k−1−γ2k = φ1k,
from here we conclude that β1 + γ2 + · · · + β2k−1 + γ2k is a multiple of τ because
φij = φij + τ . Note that βi < τ for all 1 ≤ i ≤ 2k, then

β1 + γ2 + · · ·+ β2k−1 + γ2k = zτ z ∈ N, (0 < z < 2k)

Since βi + γi = τ then

(β1 + γ1) + (β2 + γ2) + · · ·+ (β2k + γ2k) = 2kτ

The difference between (2.3) and (2.3) is

γ1 + β2 + · · ·+ γ2k−1 + β2k = (2k − z)τ.

2.4 Robustness
We now address the issue of robustness of the synchronized system. Imagine that
one member u of the team becomes unavailable because of failure or because it
needs to leave the system temporarily (e.g., to refuel). First, let us consider the
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Figure 2.10: Robot 6 can leave the system swapping with 3, 4 and 5 in this order.

latter scenario. We want to minimize the detrimental effect of the departing robot u
on global system performance. A simple strategy consists of repeatedly “swapping
with a neighbor” until u reaches the trajectory nearest to the outside goal, at
wich this point u can easily leave the system as illustrated in Figure 2.10. The
best moment to make a swap with a neighbor is when the involved robots arrive
to a link position (this is, indeed, another advantage of a synchronized system)
where a simple collision avoidance approach between two cooperative vehicles can
be applied. Consider now the case of a hard failure, where one (or more) robots
fail and can no longer move. Under the assumption that robots which fail do not
block live robots, we can easily solve the problem while maintaining the set of
trajectories. In this case, one or more live neighbors can assume the tasks of the
inoperative robots by using the same routes. If a robot arrives at a communication
position and the neighbor is not there, then it assumes that this neighbor failed
and passes to the neighboring trajectory performing the a task of the inoperative
robot. If needed, even a new robot might be inserted in the system by using the
swapping strategy mentioned above.

We call shifting to the process in which a robot passes from its current trajec-
tory to a neighboring one. Notice that a swap consists of two shifting operations.
When a robot passes to a neighboring trajectory it follows the movement direc-
tion assigned to this trajectory, see Figure 2.11. This behavior allows keeping the
synchronization in the system even when the robots shift their trajectories. Notice
that, during a shifting operation the robots must accelerate in order to adjust its
time-position with the schedule in the new trajectory. Let ω be the minimum
travel time between two consecutive link positions of a same trajectory in the sys-
tem. Assume that if a robot in trajectory Pi at time t starts a shifting operation
toward trajectory Pj then after ω time units it will be at the scheduled position
of Pj, that is:

Property 2.4.1. Let T = {P1, . . . , Pn} be the set of trajectories of a synchronized
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system with synchronization schedule S = (s1, . . . , sn). Let ω be the minimum
travel time between two consecutive link positions of a same trajectory in the sys-
tem. Let Pi and Pj be two trajectories such that (i, j) is in the communication
graph of S. If at time t a robot u in Pi (the position of u at time t is si(t)) starts a
shifting operation toward Pj then, during this process, u accelerates if it is needed
in order to reach the position sj(t + ω) at time t + ω after that u continues with
the programmed speed following the schedule in trajectory Pj.

In such a way a robot u, after a shifting operation from Pi to Pj, can reach the
next link position in Pj at the scheduled time.

The following result establishes a non-redundancy property of robots occupying
the trajectory of a inoperative neighbor.

Theorem 2.4.2. In a synchronized system that fulfills Property 2.4.1 each trajec-
tory is occupied by at most one robot at any time.

Proof. If all the trajectories have at most one robot, then after a swapping opera-
tion all the trajectories will have at most one robot by definition. We focus now in
the case when a robot shifts its trajectory because it does not detect the expected
neighbor. Assume, for the sake of contradiction, that there exists a trajectory Pi
occupied by two robots u and u′ which entered Pi coming from the link positions
φji and φki in Pj and Pk, respectively. Robots u and u′ could not have entered Pi
at the same time because a robot in Pi cannot be at φij and φik simultaneously.
Suppose that u′ entered second. When u′ arrives at φki, u is already moving in
Pi and has reached φik (by Property 2.4.1). As a consequence, robot u′ does not
enter in Pi because it detects that Pi is occupied by robot u, a contradiction.

See Figure 2.11, notice that a shifting operation between two trajectories with
opposite directions is smoother than a shifting operation between trajectories with
the same direction. So, for a mobile robot is easier to perform a shifting operation
between trajectories with opposite travel directions and even more taking into
account that the robot must accelerate during this operation. Moreover, if we
are using aerial robots in the system the kinematic constraints of these vehicles
prevent the passing from one trajectory to another keeping the initial assigned
movement direction if the trajectories have the same direction. Therefore, the op-
posite movement directions in the neighboring trajectories ensures the robustness
of the approach.

Recall that two robots don’t need to be exactly a the corresponding link posi-
tions at the same time to establish a communication link, there is a communication
region around the link positions where the robots can exchange information, see
Figure 2.2. Notice that some external elements may affect the precision of the
robots motion following the schedule (e.g., aerial robots performance may be af-
fected by the lack of accuracy of the location sensors or the wind), then it could
happen that a robot arrives at a link position with some delay or advance. The
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Figure 2.11: Path (bold stroke) traveled by a robot (hollow point) when it passes
from a trajectory to another. (a) Both trajectories have the same direction. (b)
The trajectories have opposite directions.

communication regions allows the system to absorb these perturbations in the
planned schedule. Notice that opposite travel directions between synchronized
neighbors guaranties larger communication regions, see Figure 2.2. The larger the
communication regions, the greater the delays or advances that the system can
tolerate. Therefore, using a schedule where all the synchronized pairs of robots
move in opposite directions assures a better performance of the system.

In the rest of this thesis we consider synchronized systems where every pair of
synchronized trajectories have assigned opposite travel directions and the robots
perform shifting operations to swap their trajectories (when it is required) or when
they detect the absence of a neighboring robot in a link position.

Notice that, to deploy such system, every robot requires all the information
regarding to the set of trajectories and the link positions between them. They also
require the synchronization schedule function of the system. When the system is
deployed, every robot moves toward initially assigned trajectory at the starting
position and loads a motion plan to follow the schedule in the current trajectory.
When the mission starts every robot repeatedly executes the pseudo-code shown
in Algorithm 4. The first line of the algorithm adjusts the velocity of the robot
in order to maintain a tracking of the scheduled position. Notice that P ′ is the
neighboring trajectory and P is the current trajectory, line 5 completes the shifting
process because the neighboring trajectory becomes the current one. The function
load_trajectory_plan(P, current_pos, current_time) load a motion plan to
follow the schedule on trajectory P from the current position and the current time.
And the function load_shift_plan(P, P ′) compute and load a motion plan to
pass from P to P ′. A video is available at https://www.youtube.com/watch?v=
T0V6tO80HOI illustrating all the phases of the algorithm and the motion of the
robots when the system is deployed.

2.5 Simulation and computational results for area
surveillance with aerial robots

Consider the cooperative surveillance of an area by means of a team of small fixed
wing aerial robots (ARs). The area can be divided into a grid whose cells have a

https://www.youtube.com/watch?v=T0V6tO80HOI
https://www.youtube.com/watch?v=T0V6tO80HOI
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Algorithm 4: Onboard algorithm
1 adjust_velocity()
2 if shifting then
3 if current_pos is in P ′ then
4 shifting← false
5 P ← P ′

6 load_trajectory_plan(P, current_pos, current_time)

7 end
8 else
9 do_work()

10 if entering in a communication region then
11 open_communication()
12 P ′ ← neighboring_trajectory()

13 end
14 if communications are opened then
15 if sharing_info then
16 if end of info stream then
17 sharing_info← false

18 close_communication()
19 if a swapping is required then
20 shifting← true

21 load_shift_plan(P, P ′)

22 end
23 end
24 if a neighbor has been detected then
25 start_info_exchange()
26 sharing_info← true

27 if reaching the end of the communication region then
28 close_communication()
29 shifting← true

30 load_shift_plan(P, P ′)

31 end
32 end
33 end
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Figure 2.12: (a) A team of fixed wing ARs is surveying a 3 × 3 grid divided
region whose cells are 300m×300m. Each AR is flying in its cell over a predefined
trajectory. (b) The trajectory in a cell of the grid is formed by four repetitions of
the pattern drawn with thick stroke. The turns has been noted with the Greek
letters α, β and γ, and using the same letter for equal turns. The turn γ is the
half of turn α. On the right, the measures of the turns α and β. (c) Section of
a grid division. The communication region between them is shaded in gray. The
aerial robots have been magnified to make them look better.

size of 300m×300m and each cell is assigned to a member of the team. Figure 2.12a
shows a rectangular region divided into a grid of three rows by three columns (in
short, a 3× 3 grid). The robots are equipped with an on-board camera with focal
length 14mm and a field of view of 53.13◦×36.87◦. The robots are programmed to
fly at a constant altitude of 90m (to meet regulations preventing the obstruction
of commercial air traffic) and at a constant speed of 12m/s. From this altitude the
covered area by the camera is approximately 45m×30m and targets greater than
0.06m can be detected. To cover a 300m×300m cell we can use a back-and-forth
closed trajectory (see for example [147]) as it is shown in Figure 2.12b. Note that
the farthest points to the trajectory are at a distance of 20.23m, so in these critical
points we have a deviation margin on the route of ±2m. Thus, every point can be
watched by the camera in some instant during the tour. The kinematic constraints
of the fixed-wing aircraft imposes a turning radius greater than 16.67m at 12m/s
as shown in Figure 2.12b.

The robots have very constrained communication range and the only possibility
to exchange relevant information is to synchronize the robots in such a way that
two robots meet in adjacent cells. The objective is to synchronize the system such
that all the robots transmit the collected information in spite of robot failures and
dealing with required refueling maneuvers as it was mentioned in Section 2.1. In
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Table 2.1: Simulations results surveying grid divided regions.

N◦ ARs N◦ F. ARs Avg. BT(s) Max. IT(s)

Grid 3× 3 9 0 348.71 0.00
Grid 3× 3 9 2 394.46 157.87
Grid 3× 3 9 4 482.33 277.50

Grid 5× 3 15 0 543.30 0.00
Grid 5× 3 15 3 595.50 260.63
Grid 5× 3 15 7 658.43 607.50

our scenario the link position between two adjacent trajectories is at the middle
point of the common side between the corresponding cells, see Figure 2.12. The
distance between two neighboring trajectories at the communication link is 25m
(see Figure 2.12c), which is close enough to share information using the on-board
wireless equipment and sufficiently far to avoid collisions. The proposed trajec-
tory is symmetrical and formed by the union of four repetitions of the pattern
shown in Figure 2.12b with thick stroke. This symmetry implies that an aerial
robot makes the same route traveling from any link position to the next link po-
sition(Figure 2.12b shows that the trajectory segments AB, BC, CD and DA are
equal). Note that all the cycles that appear in the graph of potential links induced
by the grid division are equal and formed by four trajectories. Theorem 2.3.4 en-
sures that the graph of potential links is synchronizable on the described situation.

Within this scheme, any two synchronized neighbors are moving in opposite
directions, one of them in CW direction and the other in CCW direction, although
they move along the same direction in the communication region (see Figure 2.12c).
The communication region between two neighboring robots has a length of 100m.
Thus, flying at 12m/s, they have 8.33s to share information. The length of the pro-
posed covering trajectories is approximately 3609.79m and an AR spends 300.82s
to make a tour in its cell.

Simulations were performed to validate the proposed approach. We ran each
simulation during 50 periods, 15 041s. We considered two measures to evaluate the
performance of the system: the broadcast time (BT), that is, the time it takes for
a message issued by a robot to reach the full team, and the idle time (IT), defined
as the interval of time in which a trajectory is not attended by any AR.

Table 2.1 shows the results of the experiments on 3× 3 and 5× 3 grid graphs.
The first column shows the initial number of ARs; the second column, the number
of ARs with critical failures (selected randomly); the third, the broadcast time;
and the last one shows the maximum idle times during the simulation. All the
results correspond to the average of 10 simulations with the same parameters.

In addition, we performed other simulations using communication graphs ran-
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Table 2.2: Simulations results using graphs randomly generated.

N◦ ARs N◦ F. ARs Avg. BT(s) Max. IT(s)

Rand10 10 0 209.69 0.0
Rand10 10 2 216.66 87.2
Rand10 10 5 273.92 207.4

Rand15 15 0 237.50 0.0
Rand15 15 3 293.11 76.2
Rand15 15 7 348.28 231.9

domly generated and circular trajectories. A random graph is generated construc-
tively as follows. Suppose that we have a connected graph formed by m circles.
In order to increase the graph we select a random circle c and a random ray r
from the center of c, then the new circle is placed with center on r such that it
is disjoint with the other circles and keeping the connection in the graph. With
this approach (starting with one circle) we can construct graphs of any numbers
of nodes. Table 2.2 (with the same structure of Table 2.1) shows the results of the
simulations with random graphs of 10 and 15 trajectories. Circles of radius 150m
and a system period of 80s were considered and, therefore, the ARs are flying at
11.78m/s. Each simulation was ran for 4000s.

Tables 2.1 and 2.2 show that our method is robust. The broadcast time does
not grow significantly even if near 50% of the robots fail. Thus, the system is fault-
tolerant. Also, it is worth noting the importance of a large number of communica-
tion links in the graph. In grid configurations, all the cycles meet the hypothesis of
Theorem 2.3.4 and we can use the graph of potential links is synchronizable. How-
ever, in random graphs the probability to generate cycles fulfilling such hypothesis
is low. In this case, the algorithm computes the feasible maximal subgraph losing
many communication links. For random graphs, the idle time measure shows a
decrease in performance. In the next chapter of this thesis we focus on the study
of the effect of leaving robots.

2.6 Preliminary experimental results

In order to have some additional hints on the applicability of the synchronization
strategies previously described, some preliminary flights were performed on the
indoor multi-UAV testbed of the Center for Advanced Aerospace Technologies
(CATEC) located in Seville (Spain). This testbed has been used in the last years
to develop and test cooperation algorithms for multiple aerial vehicles. The useful
volume where tests can be conducted is a box with a base of 14× 14 meters and 5
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Figure 2.13: Photograph of the indoor testbed used for the preliminary experi-
ments and the aerial vehicles involved.

meters height. The testbed has an indoor localization system based on 20 VICON
cameras that only needs the installation of passive markers on each of the aerial
robots. This system is able to provide, in real-time, the position and attitude of up
to ten each aerial vehicles with centimeter accuracy. The quadrotors used in our
experiments were two Hummingbirds from Ascending Technologies 3 which have a
payload of 200 grams with a flight autonomy up to 20 minutes. Figure 2.13 shows
the indoor testbed with a drawing on the floor that emulates the aerial view of an
urban area with roads and buildings.

As two quadrotors are involved in the experiments, the indoor testbed arena
is divide into two cells of 10× 5 meters each. Each quadrotor is equipped with an
on-board camera pointing downwards with a field of view of 85◦ × 45◦. The flight
altitude is fixed at 1.4 meters in such a way that the trajectories required to cover
the whole urban setting are not as simple as two segments inside each sub-area.
For this altitude, the trajectories computed as reference for the vehicles in order
to cover the sub-areas are shown in Figure 2.14. The right and left trajectories
are symmetrical and the communication region between the two trajectories is
shadowed. The shifting paths drawn in dashed stroke are used if one of the aerial
robots should be covering the whole area in case the other is lost. The communi-
cation segments are 3 meters long, and as a consequence of the opposite motion of
the robots in their trajectories, in the communication region they fly in the same
direction with zero relative speed between them. The distance between points B
and C is 2 meters, and the length of the shifting path from A to B is approximately
2.50 meters long. In order to guarantee the synchronization between the robots,
the time required to travel from C to B must be approximately equal to the time

3http://www.asctec.de/en/
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Figure 2.14: The square in bold is a 10× 10-meter experimental area. This area is
divided into two 10× 5 sub-areas. The trajectories (with lengths in meters) used
to cover the experimental area are shown. Also, the outside the square in bold
suggests how to extend the pattern to greater areas by using more aerial robots.

required to travel from A to B. Therefore the speed in the shifting paths must be
1.25 times the speed from C to B.

At the beginning of the mission, both aerial robots are following their coverage
paths exchanging information along the gray zone depicted in Fig. 2.14. Figure 2.15
shows the distance between the robots during the first two minutes until robot B
leaves the arena. Once robot A does not meet robot B along the gray region,
it extends its initial path to cover both sub-areas. Figure 2.16 shows the 3D
trajectory followed by robot A during the whole mission. It can be seen how it
follows the reference and extends its coverage area passing through the gray region
until robot B comes back. The video of the whole mission can be downloaded from
https://grvc.us.es/TROsynch.

This scenario can be extended to more aerial robots and greater areas as it is
illustrated in Figure 2.14, where every pair of neighbors have identical communi-
cation region with identical shifting paths.

https://grvc.us.es/TROsynch
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Figure 2.15: Distance between the aerial robots before robot B leaves the arena.
It can be seen that the distance is below the threshold of 2 meters considered for
the communication between the robots during the periods when they meet along
the gray region depicted in Fig. 2.14. These periods are highlighted with dashed
line rectangles.
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Figure 2.16: The trajectory in 3D followed by robot A during the whole mission
is depicted in blue, whereas the reference is represented in red. Although there
are some tracking errors, the size of the gray region allows to compensate the
deviations.
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2.7 Conclusions
In this chapter we have introduced a new problem on communication systems:
Consider a set of n pairwise closed and simple trajectories and a set of n robots
(one per trajectory) with a limited communication range ε. In this setting we
say that there is a communication link between two trajectories if the minimum
distance between them is less than ε. We consider, at most, a communication
link for every pair of trajectories. We say that two robots moving along their
trajectories are synchronized if they periodically arrive at the same time at the
same communication link. Thus, a pair of synchronized robots can establishes
a wireless communication and exchange information between them, periodically.
The synchronization problem asks for a motion schedule for the system such that
the number of synchronized pairs of robots is maximized.

We have proven that the optimum motion schedule is not unique, rather there is
a whole family (equivalence class) of motion schedules that maximize the number
of synchronized pairs of robots. We introduced the concept of communication
graph as a graph whose vertices are the trajectories and edges are the pairs of
trajectories with synchronized robots. Therefore, the synchronization problem
looks for the schedule with larger communication graph. In a simple case where
the trajectories are unit circles and the robots move at constant speed, we have
shown that a family of schedules is determined by a communication graph and a
bipartition {A,B} of the trajectories set. This partition indicates that the travel
direction assigned to robots in A’s trajectories is opposite to the travel directions
of robots in B’s trajectories (i.e., if the robots in A’s trajectories move in clockwise
direction then the robots in B’s trajectories move in counter-clockwise direction
and, viceversa).

We have also studied the synchronization problem in two different specific
configurations:

1. all the robots move in the same direction and,

2. all pairs of synchronized robots move in opposite directions.

In both cases the optimum family of schedules is determined only by the commu-
nication graph because the bipartition is directly derived from these settings: in
the first case (1), the bipartition is {V, ∅} (where V is the whole set of trajectories)
and, in the second case (2), the communication graph G must be bipartite and the
bipartition is formed by the partite sets of G. We have studied and characterized
the optimum schedule in both cases. And, using the simple model where the tra-
jectories are unit circles, we have shown how to compute a schedule that ensures
that messages can be exchange (maybe passing through many robots) between any
pair of robots. Also, we exposed an algorithm to solve the synchronization prob-
lem in the first case but, the second case remains as an open problem. Anyway, in
many practical applications the graph G of communications is a priori established,
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so, in these cases, to build a specific schedule with communication graph G we can
compute the starting positions of the robots using our characterization.

For the sake of robustness, we described a recovery protocol, that maintaining
the same set of trajectories and the initial synchronization scheme, reduce the
detrimental effect of robot failures. Due to kinematic constraints in practical
applications, it is convenient to apply this protocol on systems where all pairs of
synchronized robots move in opposite directions. Our simulations and preliminary
experiments show that the presented approach is robust against robot failures.

Future work could explore other practical variations of the problem, includ-
ing: 1) the trajectories can overlap and share multiple communication links that
provide extra opportunities for information exchange and 2) instead of failure, we
can consider the inability of an agent to properly maintain its schedule along its
trajectory.
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Chapter 3
Resilience of a
Synchronized
Communication System

Robustness is an important issue in distributed systems. Many research
works are focused in the study of measures to determine how fault-tolerant

a system is [54, 71, 145, 144]. The developing of these kind of metrics allows to
compare different systems and determine which one is better. This kind of study
also leads to determine what are the critical scenarios for some specific system.

In this chapter we are going to study more deeply the robustness of a synchro-
nized system. We are going to base our study in the simplified model introduced
in Section 2.2 of Chapter 2. The results that we present in this model can be ex-
tended to general synchronized system by using the ideas presented in Section 2.3
of Chapter 2.

In the simplified model all the trajectories are unit-circles, the communication
range of the system is a value ε < 0.5, all the robots move with constant speed
along their trajectories and the system period (i.e., the required time by robot
to make a complete tour in a trajectory) is one unit of time. Figure 3.1 shows a
synchronized system in the simplified model. Recall that in a such systems, every
pair of synchronized robots are moving in opposite directions (one clockwise and
the other counterclockwise). We show in light gray the pairs of neighboring robots
with an established communication link between them. Each subfigure represents
the state of the system at every quarter of time unit, starting with the state shown
in Figure 3.1a.

In a synchronized system, a trajectory swap between two neighboring robots is

57
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Figure 3.1: Synchronized system of robots following circular trajectories. The
robots are represented as solid points in the circles. Arrows represent the movement
direction of the robots in the trajectories. In this example the graph of potential
links is a cycle of four nodes.
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Figure 3.2: (a) A robot shifts to a neighboring trajectory when it detects that the
corresponding neighboring robot has left the system. The robot u follows the path
drawn with bold solid stroke. There were no robots on the trajectory Cj when u
is arriving at the link position in Ci. (b) A swapping operation between robots u
and u′.

allowed in some situations (see Section 2.4 of Chapter 2) and does not affect the
performance of the system. See Figure 3.2b, notice that a swap operation takes
place in a communication link, so, the involved robots can exchange information
and after the swapping u′ (resp. u) continues with the schedule in Ci (resp. Cj)
performing the task that was previously doing u (resp. u′). Therefore, from a
global point of view after a swapping the status of the system has not changed.

Now, let us see how the system is affected when one or more robots leave. The
first thing to notice is: if k robots have left the system then there is always k
unattended trajectories. In Section 2.4 of Chapter 2, a strategy was proposed to
address this problem: when a robot u in Ci arrives to the link position φij and
detects no other robot in the neighboring trajectory Cj, it considers that Cj is unat-
tended and shifts from Ci to Cj in order to assume the task in Cj, see Figure 3.2a.
Notice that after the shifting operation Ci is unattended and Cj is not. Also no-
tice that u has lost a chance of exchanging information. Section 2.5 of Chapter 2
presents some computational experiments showing that after randomly removing a
few robots of the system, the surviving ones (non-removed robots) eventually meet



59

C1 C2

C4 C3

u1

u3

(a)

C1 C2

C4 C3

u1

u3

(b)

C1 C2

C4 C3

u1

u3

C5

u5

(c)

Figure 3.3: (a) and (b) When the robots represented by hollow points leave the
system then the surviving ones, solid points, follow the closed path drawn with
bold solid stroke. The trajectory segments in dotted stroke in (b) and (c) are non-
covered. In (b) u1 and u3 are isolated, however, in (c), u1 and u3 are not isolated,
they meet u5 periodically. The message broadcasting is possible in (c) but it is
not in (b).

each others and visit all the trajectories. So, no trajectory is unattended forever
and the communication remains (it is possible to make a broadcast between the
surviving robots).

However, in some cases, if enough robots leave the team, an undesirable phe-
nomenon may occur: a robot, independent of how much longer stays in the system,
it permanently fails to encounter other robots every time it arrives at a link, caus-
ing it to repeatedly shift to neighboring trajectories. In this case, we say that the
robot is isolated or in isolation mode. Figures 3.3 (a) and (b) show a synchronized
system where two robots leave and the remaining robots, u1 and u3, permanently
fail to encounter other robots at the link positions, so they enter the isolation
state1.

Another problem, more general than the isolation of some robots, is the loss
of the ability for messages broadcasting in the system. It is easy to see that, even
without isolated robots, the system may not allow broadcasting, as the surviving
robots are partitioned into independent connected components, for communication
purposes. We say that there is a loss of connectivity in a system if only one
robot survives or there is a pair of robots that cannot exchange messages through
a sequence of message exchanges between neighboring robots. For example, in
Figure 3.3b, a broadcast is not possible because the living robots are isolated.

Now, focus on covering. Notice that in a system with one robot per trajectory,
every point of every trajectory is visited by some robot periodically. We say
that every trajectory point is covered. If some robots leave the system and the
remaining ones stay in their trajectories (ignoring the shifting strategy altogether)
then, obviously all the points of the trajectories of the leaving robots are non-
covered. Using the shifting strategy one may think that the covering is guaranteed.
However, this is not true. Sometimes, the departure of a set robots (independent of

1An illustration of this phenomenon is at https://www.youtube.com/watch?v=64gKnefnXew.

https://www.youtube.com/watch?v=64gKnefnXew
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(a) (b) (c)

Figure 3.4: (a) Region to cover. (b) Area decomposition of the region using a grid
pattern and the paths to cover every cell of the region. (c) Simplification of the
practical model using an abstraction with circular trajectories. The underlying
communication graph is represented using gray dotted strokes.

whether it causes a loss of communication or not among the active robots) results
in some trajectory segments (set of consecutive points of a trajectory), or even
entire trajectories, to no longer be visited by an active robot. In this case we say
that these are non-covered trajectory segments, see Figure 3.3b and 3.3c.

In this chapters we are going to study these undesirable phenomenons and we
are going to establish resilience measures to evaluate how robust a system is to
face these problems.

As we will show, the values of the resilience measures stated in this chapter
depend on the topology of the communication graph. This graph depends on the
applied partition strategy, in which the environment is partitioned into sections
covered separately by individual robots. Partitioning or area decomposition for
path planning in robotics is a widely researched subject in coverage and tracking
tasks and a common topology is the grid [49]. In grid based methods, the area
partitioning is performed by applying a grid overlay on top of the area leading
to a discrete configuration space, where if all the cells are visited, then a com-
plete coverage is assumed (see Figure 3.4). Additionally, cycles are considered in
boundary or fence patrolling [36]. A strategy is to fragment the boundary into
sections which are patrolled separately by individual robots [33] (see Figure 3.5).
Other studied configurations are trees. In fact, in area coverage, often it is as-
sumed that the underlying graph is a tree (computed, for example, on the dual
graph of a triangulation of the terrain). Spanning trees have been frequently used
for multi-robot coverage [62] and boundary patrolling [37]. Also note that, if we
consider the underlying graph G of the area decomposition whose vertices are cells
and whose edges are the pairs of close cells then, if G is connected, a spanning tree
of G can be used as communication graph because any tree is bipartite and syn-
chronizable (Corollary 2.2.21 and Lemma 2.2.25). In this chapter we also focus on
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(a) (b) (c)

Figure 3.5: (a) Solid black stroke represent a border to monitor. The gray strip
around the border is the region to cover. (b) Decomposition of the region into cells,
one cell per robot and for every cell a closed trajectory to cover it is computed. (c)
Simplification of the practical model using an abstraction with circular trajectories.
The underlying communication graph is represented using gray dotted strokes.

the problem of computing the resilience of synchronized system for specific cases:
when the communication graph is a tree, a grid or a cycle.

3.1 Problem statement
Recall that in this chapter we are going to use the simple model introduced in
the previous chapter. Taking into account that the swap operations don’t affect
the performance of the system we are going to ignore these operations and focus
on the study of a synchronized system after the removing of some robots and
assuming that no other robot enters the system. Also, recall that in such systems
the surviving robots apply a the shifting strategy, that is, every time a robot arrives
at a link position and the corresponding neighboring robot is not there, it shifts to
the neighboring trajectory and continues with the schedule of the new trajectory.

Definition 3.1.1 (Synchronized communication system (SCS)). Let T = {C1,
. . . , Cn} be a set of pairwise disjoint unit circles (trajectories). A synchronized
communication system (SCS) is a team of n robots using a synchronization sched-
ule (α, δ) with communication graph G = (V,E) (which is connected and bipartite)
such that δ(Ci) = −δ(Cj) for all {i, j} ∈ E. An m-partial SCS, 0 < m ≤ n, is a
synchronized communication system in which n−m robots have left the team and
the m remaining robots apply the shifting strategy.

Remark 3.1.2. Note that an SCS is a type of partial SCS where no robots have
left. Thus, any claims about partial SCSs holds for SCSs as well. Also, if we have
a partial SCS F and a robot leaves F then we get a different partial SCS F ′, so,
every statement on a partial SCS assumes that no more robots leave the system.
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Let us define formally the phenomenons that we are going to study in this
chapter.

Definition 3.1.3 (Isolation). In a partial SCS, a robot is isolated or is in isolation
if every time that it arrives at a link position the corresponding neighbor is not
there, causing it to shift to the neighboring trajectory.

Definition 3.1.4 (Loss of connectivity). We say that a partial SCS has a loss of
connectivity if there exists a pair of surviving robots that cannot exchange messages
(possibly through a sequence of message relays between neighbors) or if there is only
one surviving robot in the system.

Definition 3.1.5 (Non-covered trajectory section). In a partial SCS, we say that
a section of a trajectory is not covered or it is a non-covered trajectory section if
is not visited by a robot regardless the time the system is running.

In the following we are going to present the measures to determine the robust-
ness of a SCS to these problems.

Definition 3.1.6 (k-isolation-resilience). The k-isolation-resilience of a SCS (k ≥
1) is the minimum number ρi, such that, there exist ρi robots whose removal causes
the isolation of at least k surviving robots. If it is not possible to obtain k isolated
robots then the k-isolation-resilience is set to infinity.

Definition 3.1.7 (Broadcasting resilience). The broadcasting resilience of a SCS
is the minimum number ρb, such that, there exist ρb robots whose removal causes
a loss of connectivity in the system.a set of

Definition 3.1.8 (Coverage resilience). The coverage resilience of a SCS is the
minimum number ρc, such that, there exist ρc robots whose removal results in at
least one non-covered trajectory section.

Notice that the coverage resilience is related to the idle-time of a point p in
a terrain, that is, the maximum time that p is unattended by any of the robots.
Notice that the maximum number of robots that can fail so that the idle-time of all
points is finite is the value of the coverage resilience minus one. A generalization
of the definition above is the t-coverage resilience,

Definition 3.1.9 (t-coverage resilience). Given t > 0, the t-coverage resilience is
the minimum number ρtc, such that, there exist ρtc robots whose removal causes
the idle-time of some trajectory point to be at least t units of time.

Remark 3.1.10. Notice that in a SCS (where no robot has left the system) the
idle-time of any trajectory point is 1. So, the t-coverage resilience is zero for all
t ≤ 1.

Then, we are going to focus in the following problems:
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Figure 3.6: Tokens and robots movement. (a) Initial state of the SCS. At time 0,
robot ui holds token zi. (b) State of the system at time t1 > 0. Robots u0 and u3
met and exchanged tokens. (c) State of the system at time t2 > t1 > 0. Robot u3
and its token z0 have been removed.

Problem 3.1.11. Given a SCS, determine its coverage resilience.

Problem 3.1.12. Given a SCS and a natural number k, determine the k-isolation
resilience of the system.

Problem 3.1.13. Given a SCS, compute its broadcasting resilience.

Note that higher resilience values correspond to increased fault tolerance. In
the next section we are going to introduce some technical tools to tackle the posted
problems.

3.2 Technical tools
We are going to introduce the notion of token as an abstract entity used to describe
the behavior of a partial SCS. Suppose that every robot bears a token when the
SCS is deployed. When two robots meet in a communication link, they exchange
their tokens. When a robot is removed, the token it carries is removed as well, see
Figure 3.6.

A token fulfills the following property:

Property 3.2.1. A token always shifts to the neighboring trajectory at the corre-
sponding link positions.

Proof. It is pretty obvious that the location of a token in the system is the position
of the robot bearing it and they move together at 2π length per time unit speed.
Let us focus now on to show that a token always shifts to the neighboring trajectory
at the corresponding link positions. Suppose that a robot u bearing a token z
arrives at a link position.
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Figure 3.7: (a) Robots u and u′, bearing tokens z and z′ respectively, arrive at the
same time at a link position, so, they meet each other. Analogously, we can say
that the tokens z and z′ meet each other as well. (b) Robot u, bearing token z,
performs a shifting operation because it detects no robot at the link position.

(a) (b) (c)

Figure 3.8: SCSs with two rings (a); one ring (b) and three rings (c).

• If there is a robot u′ in the neighboring trajectory then u and u′ stay in their
current trajectories but they exchange their tokens, so, token z shifts to the
neighboring trajectory, see Figure 3.7a.

• If there is no robot in the neighboring trajectory then u and z shifts to the
neighboring trajectory, see Figure 3.7b.

To tackle this problem we need the notion of a ring, first introduced in [23]. In
the sequel, we give useful properties of rings.

Definition 3.2.2 (Ring). A ring in a SCS is the locus of points visited by a token.

Figure 3.8 shows the rings of three different SCSs.

Remark 3.2.3. Each ring is a closed path composed of sections of various trajec-
tories and has a direction of travel determined by the movement direction in the
participating trajectories. Each section of a trajectory between two consecutive link
positions participates in exactly one ring, thus, the rings in a SCS are pairwise
disjoint.
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Remark 3.2.4. The form of a ring or the number of rings in a system do not
depend on the set of active robots, that is, the rings remains invariant in a system
regardless of the removal robots. The rings only depend on the topology of the
communication graph of the system and the travel directions assigned to the tra-
jectories (notice that inverting the travel directions of the trajectories we get rings
with the same form but with opposite travel directions).

From the definition of ring and Property 3.2.1 we derive:

Property 3.2.5. The position of a token is the position of the robot who is bearing
it. A token always remains in its initial ring and travels with constant speed 2π
length per time unit along its ring.

Remark 3.2.6. Notice that the property above remains invariant regardless of the
removal of robots. That is, if a token z is in a ring r of a partial SCS at time t and
after some time ∆t some robots have been removed but z remains in the resultant
partial SCS, then, at time t+ ∆t token z remains in r.

Definition 3.2.7 (Path in a ring). A path in a ring r from a point p ∈ r to a point
q ∈ r is the ordered set of visited points from p to q following the travel direction
of r (it may contain tours on r). If a path does not contain any tour in the ring
then we say that it is a simple path.

As suggested by the examples in Figure 3.8, the lengths of rings in a system
varies from ring to ring. In discussing the length of a ring, it is convenient to ignore
the effect on distance arising from shifting between neighboring trajectories, i.e.,
to proceed as if neighboring circular trajectories were tangent to each other.

Definition 3.2.8 (Length of a ring). The length of a ring is defined as the sum
of the lengths of the trajectory arcs forming the ring. Analogously, the length of a
path in a ring is defined as the sum of the lengths of the trajectory arcs (as many
times as they are traversed) forming the path.

Figure 3.9 illustrates the above definitions. The following proposition is a
technical result needed to describe the length of a simple path between two robots
(or tokens) in the same ring.

Proposition 3.2.9. Let (α, δ) be the synchronization schedule used in a partial
SCS with set of trajectories T = {C1, . . . , Cn}. Let σ be a path in a ring r.
Let A1, . . . , As denote the directed arcs traversed in σ when following the travel
direction of r, and let Ci denote the trajectory containing Ai.2 Then, for all 1 ≤

2Note that a path between two robots may have two arcs in the same trajectory, see Figure 3.9c
for an example. Therefore, distinct indexes i and j may exist such that Ci = Cj . This does
not affect the proof of the claim because it is not required that the arcs belong to different
trajectories.
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Figure 3.9: (a) The length of a section σ of a ring is the sum of the lengths of
the arcs A1 and A2. (b) Path from position p to position q in the same ring. The
second endpoint of Ai and the first endpoint of Ai+1 are marked with a common
hollow point for all 1 ≤ i < s. (c) A simple path between two robots in a ring that
has two arcs in the trajectory C.

j ≤ s,

α(Cj) + δ(Cj) · 2π · (t+

j∑

i=1

ti) = θj. (3.1)

where ti is the required time by a robot to traverse Ai and θj is the angle position
of the second endpoint of Aj in Cj.

Proof. We prove equation (3.1) by induction on j. For j = 1, by equation (2.1),
we have the base case:

α(C1) + δ(C1) · 2π · (t+ t1) = θ1.

Inductive hypothesis. Suppose that equation (3.1) holds for some j < s. By the
definition of the synchronization schedule we have

α(Cj+1) + δ(Cj+1) · 2π ·

(
t+

j∑

i=1

ti

)
= θ′j+1,

where θ′j+1 is the position of the first endpoint of Aj+1 in Cj+1. Since θj+1 =
θ′j+1 + δ(Cj+1) · 2π · tj+1, we have

α(Cj+1) + δ(Cj+1) · 2π ·

(
t+

j+1∑

i=1

ti

)
= θj+1,

and the claim follows.

The following lemma is established in [23] with a slightly different argument.

Lemma 3.2.10. In a partial SCS, let p and q be the positions on trajectories Ci
and Cj at time t, respectively. If p and q are in the same ring r, then the length
of the path between p and q is in 2πN.



3.2. TECHNICAL TOOLS 67

Proof. Let (α, δ) be the synchronization schedule of the system. Then:

p = α(Ci) + δ(Ci) · 2π · t and,
q = α(Cj) + δ(Cj) · 2π · t. (3.2)

Let σ be the path in the ring from p to q following the travel direction on r. Let
tσ be the required time to travel σ. Then:

α(Cj) + δ(Cj) · 2π · (t+ tσ) = q (by Proposition 3.2.9)
α(Cj) + δ(Cj) · 2π · t+ δ(Cj) · 2πtσ = q

q + δ(Cj) · 2πtσ = q (by equation 3.2))
δ(Cj) · 2πtσ = 0

Therefore, the angle 2πtσ is in 2πZ. Since 2πtσ is the length of the path σ, the
lemma follows.

Corollary 3.2.11. In a partial SCS, the length of a path between two robots (to-
kens) in the same ring is in 2πN.

Proof. Let t be an arbitrary instant of time. Let p and q the positions at time
t of two robots (tokens) in the same ring. Then, using Lemma 3.2.10 the result
follows.

Corollary 3.2.12. The length of every ring in a SCS is in 2πN.

Proof. Let r be an arbitrary ring. Let p be a point of r. Let σ be the path that
starts at p and follows the travel direction of r until p is reached again. Notice
that r and σ have the same length and, by Lemma 3.2.10 the length of σ is in
2πN.

Lemma 3.2.13. In a partial SCS the number of robots in a given ring remains
invariant. If the length of the ring is 2lπ then it has at most l robots. Furthermore,
in a SCS (where no robots have left the system), a ring of length 2`π has exactly
` robots, each at distance 2π from the next.

Proof. From Property 3.2.5 we directly derive that: in a partial SCS the number of
tokens in a ring remains invariant. So, having into account that a token is carried
by a robot the first claim follows. From Corollary 3.2.11 and Corollary 3.2.12 we
deduce that a ring of length 2lπ has at most l robots. We now prove the third
claim. Consider a system of n trajectories and m rings. Suppose that the i-th ring
has length 2liπ and xi robots, 1 ≤ i ≤ m. Then xi ≤ li, for all i, and n =

∑m
i=1 xi.

Since the rings are disjoint,
∑m

i=1 li = n. Then

n =
m∑

i=1

xi ≤
m∑

i=1

li = n,

and we conclude that li = xi for all i.
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Two tokens meet each other if they arrive at the same communication link at
the same time (see Figure 3.7a, i.e., the robots bearing the tokens arrive at the
same communication link at the same time).

The proof of the following result follows easily from Property 3.2.5:

Lemma 3.2.14. Let z and z′ be two tokens of a partial SCS in rings r and r′

(possibly the same ring), respectively. The tokens z and z′ will meet each other
if and only if there is a communication link ` where the rings r and r′ cross each
other, and, there are two paths of the same length L: one from z to ` in r (possibly
longer than r) and other from z′ to ` in r′ (possibly longer than r′).

Definition 3.2.15 (Correspondence between tokens). Let z and z′ be two tokens
in a partial SCS. We say that there is a correspondence between z and z′ at time
t if there exists a 4t > 0 such that z and z′ meet each other at time t+4t.

Let x be a point in a ring r and let d be a non-negative real number. The
point x+ d is the point reached by traveling distance d from x following the travel
direction in r. Analogously, the point x − d is the point y such that y + d is x.
Notice that d could be greater than the length of r. Also notice that x− d+ d =
x+ d− d = x.

Lemma 3.2.16. Let r and r′ be two rings (could be the same ring) of a partial
SCS of lengths 2πµ and 2πµ′, respectively. Let z and z′ be two tokens in r and r′,
respectively. If z and z′ meet each other at a communication link ` then they will
meet each other at ` every mcm(µ, µ′) (minimum common multiple of µ and µ′)
time units.

Proof. Suppose that z and z′ meet each other at ` at time t. The location reached
after traveling mcm(µ, µ′) time units from ` in r is the point `+2π ·mcm(µ, µ′) = `.
The same occurs by traveling on r′. Therefore, at time t+ mcm(µ, µ′) the tokens
z and z′ will meet each other at `. The result follows from successive applications
of this argument.

Lemma 3.2.17. Let z and z′ be two tokens in a partial SCS at time t1. Suppose
that at time t2 > t1 a set (possibly empty) of robots (with their respective tokens)
have been removed from the system but z and z′ remain in the resultant partial
SCS. Then, there is a correspondence between z and z′ at time t1 if and only if
there is a correspondence between z and z′ at time t2.

Proof. Let r and r′ be the rings of z and z′, respectively (r and r′ could be the
same ring). Let 2πµ and 2πµ′ be the lengths of r and r′, respectively.

Suppose there is a correspondence between z and z′ at time t1. Let xt1 and
x′t1 be the positions of z and z′ in r and r′, respectively, at time t1. Then, by the
definition of correspondence and Lemma 3.2.14, there are paths p and p′ (in r and
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r′ respectively) of length 2π4t starting at xt1 and x′t1 , respectively, and ending at
a communication link ` (where r and r′ cross each other). That is:

xt1 + 2π4t = `

x′t1 + 2π4t = `.

Let k be the smallest non-negative integer such that k ·mcm(µ, µ′) +4t ≥ t2− t1.
From Lemma 3.2.16, we have that:

xt1 + 2π(k ·mcm(µ, µ′) +4t) = `

x′t1 + 2π(k ·mcm(µ, µ′) +4t) = `.

Let xt1 + 2π(t2 − t1) and x′t1 + 2π(t2 − t1) be the positions occupied by z and
z′ after traveling for t2 − t1 time units, respectively. Let q and q′ be the paths
obtained by traveling from these positions in r and r′, respectively, during k ·
mcm(µ, µ′) +4t− (t2− t1) time units. Notice that q and q′ have the same length
2π(k ·mcm(µ, µ′) +4t− (t2 − t1)). Moreover:

xt1 + 2π(t2 − t1) + 2π(k ·mcm(µ, µ′) +4t− (t2 − t1)) = `

x′t1 + 2π(t2 − t1) + 2π(k ·mcm(µ, µ′) +4t− (t2 − t1)) = `.

Therefore, there will be a correspondence between z and z′ at time t2.
Now, suppose there is a correspondence between z and z′ at time t2. Let xt2

and x′t2 be the positions at time t2 of z and z′ in r and r′, respectively. Then,
by definition of correspondence and Lemma 3.2.14, there are two paths p and p′
(in r and r′ respectively) of length 2π4t starting at xt2 and x′t2 , respectively, and
ending at a link position `. That is:

xt2 + 2π4t = `

x′t2 + 2π4t = `.

Then, from Property 3.2.5 and Remark 3.2.6 we have that xt2 − 2π(t2 − t1) and
x′t2−2π(t2−t1) were the positions at time t1 of z and z′, respectively. Let q and q′ be
the paths obtained by traveling from these positions in r and r′, respectively, during
t2− t1 +4t time units. Notice that q and q′ have the same length 2π(t2− t1 +4t).
Moreover:

xt2 − 2π(t2 − t1) + 2π(t2 − t1 +4t) = xt2 + 2π4t = `

x′t2 − 2π(t2 − t1) + 2π(t2 − t1 +4t) = x′t2 + 2π4t = `.

Therefore, there was a correspondence between z and z′ at time t1 and the result
follows.

Remark 3.2.18. The previous lemma states that the relation of correspondence
between two tokens z and z′ remains invariant regardless of the removal of robots
unless z or z′ is removed from the system.
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Figure 3.10: (a) Meeting graph of the SCS of Figure 3.6 at time 0 (Figure 3.6a).
Notice that the meeting graph remains invariant at time t1 (Figure 3.6b). (b) The
meeting graph of the resultant partial SCS after removing robot u3 (Figure 3.6c).

Definition 3.2.19 (Meeting graph). Let F be an m-partial SCS. Let Z be the set
of surviving tokens. The meeting graph of F is the graph TF whose vertices are
the tokens in Z (that is, V (TF) = Z) and whose set of edges is:

E(TF) = {{z, z′}|z ∈ Z, z′ ∈ Z, there is a correspondence between z and z′}.

From Remark 3.2.18, the meeting graph of a partial SCS remains invariant
while no additional robots are removed. Figure 3.10a shows the meeting graph
of the SCS of Figure 3.6 before the robot u3 is removed. From the definition of
meeting graph and Lemma 3.2.17, the next result (illustrated in Figure 3.10b)
follows:

Lemma 3.2.20. Let F be an m-partial SCS with set of tokens Z. Let F ′ be the
m′-partial SCS resulting from the removal of some robots from F . Let Z ′ ⊂ Z be
the set of tokens of F ′. Let TF and TF ′ denote the meeting graphs of F and F ′
respectively. Then, TF ′ is the subgraph of TF induced by Z ′.

3.3 Computing coverage resilience

In this section we show how to compute the coverage resilience for arbitrary graphs
as well as for trees and grids.

Notice that if a token z is at a point x of a ring r then x is being covered by the
robot bearing z. This simple observation allows us to study the coverage resilience
using tokens.

Upon deployment of a system, a ring of length 2πl contains l tokens at distance
2π from one to the next (Lemma 3.2.13). From Property 3.2.5 and Remark 3.2.6,
the distribution of the tokens in a ring when some robots have been removed from
the system looks like Figure 3.11. The following theorems are deduced:
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Figure 3.11: Tokens in a ring of a partial SCS. The hollow points represent the
removed tokens.

Lemma 3.3.1. Let r be a ring of length 2lπ in a partial SCS. If a < l is the
maximum number of absent consecutive tokens in r then the idle-time of any point
in r is a+ 1 (see Figure 3.11).

Lemma 3.3.2. Let r be a ring in a partial SCS. A trajectory segment of r is
non-covered if and only if r does not contain surviving robots.

From Remark 3.2.3 and Theorem 3.3.2 the following result is deduced:

Corollary 3.3.3. Let c be the number of rings in an SCS. Let 2l1π, 2l2π, . . . , 2lcπ
be the lengths of the c rings. The coverage resilience of the system is the minimum
of {l1, l2, . . . , lc}.
Theorem 3.3.4. The coverage resilience of a given SCS can be computed in linear
time on the number of trajectories in the system.

Proof. Corollary 3.3.3 suggests a simple algorithm to compute the coverage re-
silience of a SCS by determining the rings in the system and their lengths. To do
that, it is sufficient to follow the movement of a token until reaching the starting
point. In this way, the length of a detected ring is the sum of the lengths of the
traversed arcs. The complexity of detecting a ring in this way is O(m) where m
is the number of link positions traversed by the ring. When a ring is detected (by
returning to the starting point), then we choose a non visited trajectory arc in
order to detect another ring and so on. If there are no more non-visited trajectory
arcs then we are done. Let G be the communication graph of the SCS. Recall
that every link position of the system is an edge of the communication graph G.
Clearly, the complexity of this algorithm is O(|E|) where E is the set of edges in G.
Taking into account that the communication graph is planar then this algorithm
has running time O(n) where n is the number of trajectories.

Given a value t > 0, the t-coverage resilience can also be computed using the
rings of the SCS. Let c be the number of rings in the system and 2l1π, 2l2π, . . . , 2lcπ
their lengths. Let l∗ be the minimum of {l1, l2, . . . , lc}. Using Lemma 3.3.1 we
deduce that if l∗ ≥ dte, then the t-coverage resilience is dte − 1; otherwise, the
t-coverage resilience is l∗. As a consequence, we can state the following:

Theorem 3.3.5. The t-coverage resilience of an SCS is min{l∗, dte − 1} where
2πl∗ is the length of the shortest ring in the system.
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C

(a)

C

(b)

Figure 3.12: (a) Ring corresponding to T ′. (b) Ring corresponding to T .

3.3.1 Coverage resilience for trees and grids

Trees

In this section we are going to focus in computing the coverage resilience for some
specific cases of the communication graph: trees and grids. Our goal is to improve
the linear time algorithm proposed in the proof of Theorem 3.3.4 by using that
the communication graph of the system is a tree or a grid.

Lemma 3.3.6. If the communication graph of a SCS is a tree then there is a single
ring.

Proof. We prove the lemma by induction on the number of trajectories. Clearly,
if there is only one trajectory, the ring is unique.

Suppose that the claim holds for any tree with n trajectories. We show that
it also holds for any tree T with n + 1 trajectories. Let C be a trajectory corre-
sponding to a leaf in T , see Figure 3.12a. Let T ′ be the tree obtained by deleting
trajectory C. Then there is exactly one ring corresponding to T ′. Adding C to the
system, the ring changes by adding a loop covering C as shown in Figure 3.12b
and the lemma follows.

From the previous lemma, Corollary 3.3.3 and Theorem 3.3.5, it is directly
derived that:

Corollary 3.3.7. If the communication graph of a SCS with n trajectories is a
tree then, the coverage resilience and the t-coverage resilience can be computed
in constant time. Moreover, the coverage resilience of the system is n and the
t-coverage resilience is min{n, dte − 1}.

Therefore the system is very stable (with respect to covering) because regardless
the number of removed robots, the remaining robots (if there are any) will cover
all the trajectories.

Grids

In the rest of this section, we study the coverage resilience of a SCS where the
communication graph is a grid. Consider a set of M · N trajectories distributed
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in M rows and N columns. Each trajectory is identified by a pair (i, j) where
1 ≤ i ≤ M and 1 ≤ j ≤ N indicate the row and the column, respectively, where
the trajectory is located. In the communication graph, trajectory (i, j) is linked
to trajectories (i− 1, j) if i > 1, (i, j − 1) if j > 1, (i+ 1, j) if i < M and (i, j + 1)
if j < N . We refer to this type of SCS as a grid SCS. An m-partial grid SCS is
analogously defined.

1

2

3

1 2 3 4

Figure 3.13: A 3× 4 grid SCS. The drawn portion of a ring hits the top boundary
at trajectories (1, 2) and (1, 4), it hits the bottom boundary at (3, 2), the left
boundary at (2, 1) and the right one at (1, 4).

In a grid SCS we say that a ring hits the top boundary of the grid if the
ring passes through the top section of a circle in the first row. Analogously we
can define when a ring hits the left, bottom or right boundary of the ring. See
Figure 3.13.

Figure 3.14 shows the local behavior of a ring as it visits the trajectories of
a grid SCS. In this Figure, small white squares denote two kinds of points: the
points where the ring hits the boundaries and the communication links between
two neighboring circles (for simplicity, tangent trajectories are considered). Note
that these points are traversed diagonally (with slopes 1 and −1) by a ring. We
consider the movement lattice formed by these points (see Figure 3.15). If the grid
communication graph has M rows and N columns then the movement lattice has
2M + 1 rows indexed from 0 (topmost) to 2M (bottommost) and 2N + 1 columns
indexed from 0 (leftmost) to 2N (rightmost). In this way, every vertex of the
lattice can be referenced by its row and column (see Figure 3.15). Notice that a
token moves diagonally on this lattice (following the ring that houses it) and only

A

B

(a)

A

B

(b) (c) (d)

Figure 3.14: Local behavior of a ring in a grid SCS.
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changes its direction when reaching a vertex with out-degree equal to one (i.e.
when it hits a grid boundary, it bounces).

0 1 2 3 4 5 6

0

1

2

3

4

Figure 3.15: Movement lattice in a grid.

Lemma 3.3.8. An M ×M grid SCS has M rings of length 2Mπ. Each ring hits
each of the four boundaries exactly once.

Proof. Let H be the movement lattice of the system. Let r be the ring that hits
the top boundary at the vertex (0, i) of H. It is easy to see that r hits the right
boundary at vertex (2M−i, 2M), the bottom boundary at the vertex (2M, 2M−i)
and the left boundary at (i, 0). Also, r does not hit the boundaries in any other
vertex. Note that a step from one vertex to another in the movement lattice
corresponds to a section of a ring of length π/2. The ring r visits 4M vertices on
H, thus the length of r is 4M · π/2, i.e., 2Mπ. Repeating this argument for each
hitting point in the top boundary we obtain M rings of length 2Mπ. The sum of
the lengths of all circles in the system is 2M2π and the sum of the lengths of the
M rings in the system is 2M2π too, so there is no other ring in the system.

Let S1 and S2 be two grid SCSs. We say that S1 and S2 are concatenable if
S1 and S2 have the same number of rows M and for all 1 ≤ i ≤M the movement
direction assigned to the last trajectory of the i-th row of S1 is opposite to the
movement direction assigned to the first trajectory of the i-th row of S2. The
concatenation of S1 and S2, such that the last trajectory in the i-th row of S1 is
linked with the first trajectory in the i-th row of S2 (for all 1 ≤ i ≤M), produces
a new M × (N +N ′) grid SCS, see Figure 3.16.

The following result is a technical lemma that we need in order to complete
the proof of Theorem 3.3.10.

Lemma 3.3.9. Let S and U be two concatenable grid SCSs of size M × N and
M ×M , respectively. Suppose that S has k rings of the same length l, and every
ring in S hits each of the left and right boundaries exactly c times, and hits each
of the top and bottom boundaries exactly c′ times. Let R be the M × (N +M) grid
SCS resulting from the concatenation of S and U . Then, R has exactly k rings
of the same length l + 2cMπ and every ring in R hits each of the left and right
boundaries exactly c times, and hits each of the top and bottom boundaries exactly
c′ + c times.
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S1 S2 S3

Figure 3.16: S3 is the resultant SCS of the concatenation of the SCSs S1 and S2.

. . .

. . .

. . .
r r′

S U

. . .

. . .

. . .
r′′

R

Figure 3.17: r is the ring in S that hits the right boundary in the second row. r′
is the ring in U that hits the left boundary in the second row. r′′ is the ring in R
obtained from r and r′ in the concatenation of S and U .

Proof. By Lemma 3.3.8, U has M rings of length 2Mπ, and all of them hit each
boundary once. Thus, every ring in U extends the length of a ring in S by 2Mπ,
see Figure 3.17. Since every ring in S hits the right boundary c times then, after
concatenation, each ring in S is fused with c rings in U . Note that two rings in S
can not be fused together in the concatenation. Then, every ring in R is formed by
the fusion of one ring in S and c rings in U . Therefore, R has k rings of the same
length l + 2cMπ. Every ring so obtained hits the left boundary c times at the c
hitting points of the respective ring in S, and hits the right boundary c times at
the hitting points of the c respective rings in U . Every ring in R hits each of the
top and bottom boundaries c′ + c times, at the c′ hitting points of the respective
ring in S and at the hitting points of the c respective rings in U .

We now proceed to establish a key result of this subsection.

Theorem 3.3.10. An M ×N grid SCS has gcd(M,N) (greatest common divisor
of M and N) rings of the same length 2πMN

gcd(M,N)
. Moreover, every ring hits each of

the left and right boundaries M
gcd(M,N)

times and hits each of the top and bottom
boundaries N

gcd(M,N)
times.
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Proof. We prove the result by induction in the number of rows. For M = 1, we
have that every 1×N grid SCS has a single ring, gcd(1, N) = 1, one hitting point in
left and right boundaries, and N hitting points in the top and bottom boundaries.
Thus, the theorem holds in this case. Assume as inductive hypothesis that: for a
fixed value P , the theorem holds for every M ×N grid SCS with M ≤ P .

We need to prove the theorem for a (P + 1) × N grid SCS. If N ≤ P then,
using the fact that a (P +1)×N grid SCS is equivalent to a N× (P +1) grid SCS,
the theorem holds by the inductive hypothesis. If N = P + 1 then the theorem
holds by Lemma 3.3.8. In order to prove the theorem for a (P + 1)×N grid SCS
with N > P + 1 we use induction in the number of columns. Assume as second
inductive hypothesis that: for a fixed value Q ≥ P +1, the theorem holds for every
(P + 1)×N grid SCS with N ≤ Q.

Let S be a (P + 1) × (Q + 1) grid SCS. We have that Q + 1 > P + 1, then
removing the last P + 1 columns of S we obtain a (P + 1) × (Q − P ) grid SCS
denoted by S ′. The theorem holds for S ′ by the second inductive hypothesis. The
P +1 removed columns conform a (P +1)×(P +1) grid SCS which is concatenable
with S ′. So, concatenating S ′ with the P +1 removed columns we obtain S. Then,
by using Lemma 3.3.9 and properties of the greatest common divisor, the result
follows.

By using Theorem 3.3.10, Corollary 3.3.3 and Theorem 3.3.5 we arrive to the
main result of this subsection:

Theorem 3.3.11. The coverage resilience of an M ×N grid SCS is:

M ·N
gcd(M,N)

.

And, the value of the t-coverage resilience is:

min

{
M ·N

gcd(M,N)
, dte − 1

}
.

Corollary 3.3.12. The coverage resilience and t-coverage resilience of an N ×M
grid SCS can be computed in O(Tgcd(N,M))3 time.

3.4 Computing k -isolation resilience
In this section we are going to prove that the problem of computing the k-isolation
resilience of a SCS is NP-hard when k is part of the input. Also, we are going to
show that the corresponding decision problem is NP-complete. Additionally we
are going to study this problem for small values of k.

3Tgcd(N,M) denotes the required time to compute gcd(N,M). Taking into account that
n = N ∗M then, Tgcd(N,M) = O(log n(log log n)2 log log log n) according to [129].
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To conclude this section we study the problem of computing the k-isolation
resilience when communication graph is a tree, a cycle or a grid.

The following lemma relates isolation with tokens and will be useful for com-
puting the k-isolation resilience.

Lemma 3.4.1. Let u be a robot in a partial SCS F . Let z be the token carried by
u. The following statements are equivalent:

• u is isolated.

• u always bears z.

• z has degree zero in the meeting graph of F .

Proof. If u is isolated then it never meet another robot in the communication links,
so, it does not exchange its token and bears z forever.

Let us prove now that if u always bears z, then z has degree zero in the meeting
graph of F . For the sake of contradiction, assume that there is a token z′ such that
there is a correspondence between z and z′. When z meets z′ if u is bearing z then
u exchanges tokens with the robot bearing z′, so, after the meeting, u is bearing
z′. If when z meets z′ the token z is not carried by u then, u has exchanged tokens
previously. In any case there is a contradiction.

If z has degree zero in the meeting graph of F then z never meets another
token, so, u never meets another robot, i.e., u is isolated.

From the previous lemma we can say that a robot is isolated if it is bearing an
isolated token.

3.4.1 Hardness of computing the k-isolation resilience

The following notion gives us a useful tool to address the hardness of computing
the k-isolation resilience of a SCS.

Definition 3.4.2 (Isolation number). The isolation number of a SCS is the max-
imum possible number of isolated robots (tokens) in a partial SCS.

The following result is deduced directly from the definitions of isolation number
and k-isolation resilience.

Corollary 3.4.3. If the isolation number of a SCS is s, then the k-isolation re-
silience of the system is infinity for all k > s.

Lemma 3.4.4. If the isolation number of a SCS is s then the s-isolation resilience
of the system is n− s.
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Ci Cj

`

Figure 3.18: Ring that crosses itself at the communication point `. The two travel
directions through ` are shown with black arrows. The section of the ring on the
left (resp. on the right) of ` is a tie which is represented using bold light-gray
(resp. bold dashed dark-gray) stroke.

Proof. Let R be the s-isolation resilience of the system, by definition R ≤ n − s.
Thus, there exists a set of R robots whose removal induces the isolation of s
robots. Suppose R < n − s then, in the resultant partial SCS, the set of non-
isolated surviving robots is not empty and its cardinality is greater than 1 by
definition of isolation. Therefore the removal of all but one non-isolated surviving
robots results in a new partial SCS with s+ 1 isolated robots, a contradiction.

From Lemma 3.4.1 and the definition of isolation number we have that:

Corollary 3.4.5. Let F be a SCS. Let TF be the meeting graph of F . The isolation
number of F is equal to the cardinality of the maximum independent set4 of TF .

We are going to prove that computing the isolation number of a SCS is NP-
hard, then, the problem of computing the k-isolation resilience is NP-hard as well.

Let r be a ring in a partial SCS that crosses itself at a communication link
`, see Figure 3.18. Notice that ` can be traversed in two different directions, one
from Ci to Cj and another from Cj to Ci.

Definition 3.4.6 (Tie of a ring). Let r be a ring in a partial SCS that crosses
itself at a communication link `. A tie of r is any of the two simple paths that
starts and ends at ` following the travel direction in r.

Corollary 3.4.7. The length of a tie is in 2πN.

Proof. Let ` be a communication link where a ring r crosses itself between two
trajectories Ci and Cj. Let dij and dji be travel directions through ` determined by
r from Ci to Cj and, from Cj to Ci, respectively. Let (α, δ) be the synchronization
schedule of the system. Since Ci and Cj are synchronized, there is a value t > 0
such that:

α(Ci) + 2πδ(Ci)t = φij and α(Cj) + 2πδ(Cj)t = φji.

4Subset of nodes in a graph that does not contain two adjacent nodes.
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z z′

`

τ︷ ︸︸ ︷ τ ′︷ ︸︸ ︷

(a)

z′

z

`

l

l

τ︷ ︸︸ ︷

d
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Figure 3.19: (a) The length of the tie τ (resp. τ ′) is equal to the length of path
from z′ (resp. z) to z (resp. z′) following the travel direction in r. (b) There is
a correspondence between tokens z and z′ because the distance between them is
equal to the length of a tie in the same ring. The bold gray curve from z to ` while
leaving τ has length d.

Notice that the one of the two ties determined by ` can be represented as a simple
path that starts at φij and ends at φji following the direction dij (and the other tie
would be a simple path that starts at φij and ends at φji following the direction
dji). Then, using that the length of a section of r between φij and φji is in 2πN
(Lemma 3.2.10), the result follows.

From Lemma 3.3.6 and Corollary 3.4.7 we have:

Corollary 3.4.8. In a SCS of n trajectories whose communication graph is a tree,
a communication link determines two ties of lengths 2lπ and 2(n− l)π respectively,
where l ∈ N.

Lemma 3.4.9. Let z and z′ be two tokens on a ring r of an m-partial SCS. There
is a correspondence between z and z′ if and only if r has a tie whose length is equal
to the length of a simple path between z and z′.

Proof. (⇒) Suppose there is a correspondence between z and z′. Then z and z′

must meet each other after a while at a communication link ` where r crosses
itself. Observe that the path from z′ to z following the travel direction in r is one
of the ties determined by `, see Figure 3.19a, so the length of this tie is equal to
the length of the path from z′ and z.

(⇐) Suppose r has a tie, let us say τ , whose length is equal to the length l of the
path from z′ to z following the travel direction in r. Let ` be the communication
link that determines τ , see Figure 3.19b. There are two ways to reach `, one
entering and the other leaving τ . Let d be the length of the path from z to `
leaving τ . The point obtained by traveling d units of length from the current
positions of z and z′, respectively, is ` in both cases, z reaches ` leaving τ and
z′ reaches ` entering τ . Consequently, there is a correspondence between z and
z′.

From lemmas 3.4.9, 3.3.6, and 3.4.1 we deduce:
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Figure 3.20: (a) Example of a SCS whose communication graph is a tree. Notice
that the length of every tie is in 2π · {1, 4, 6, 9}. (b) The circulant graph C10{1, 4}.

Corollary 3.4.10. In an m-partial SCS whose communication graph is a tree, a
token z is isolated if and only if the distance between z and any other live token is
different from the lengths of all ties in the single ring of the system.

We now show that SCSs whose communication graphs are trees are related to
circulant graphs. A graph on n nodes is circulant if the nodes of the graph can be
numbered from 0 to n−1 such that, if two nodes x and (x+d) mod n are adjacent,
then two nodes z and (z + d) mod n are adjacent for any z. We call such a node
numbering a c-order.

Remark 3.4.11. Let G = (V,E) be a circulant graph of n vertices. The set of
jumps of G is J = {min{(i − j) mod n, (j − i) mod n} | (i, j) ∈ E}. Notice that
for all (i, j) ∈ E we have that i + d = j or j + d ≡ i (mod n) for some d ∈ J .
Then, the circulant graph G can be encoded by the number of vertices n and the
set of jumps J , and, it can be shortly denoted as CnJ . Notice that 1 ≤ d ≤

⌊
n
2

⌋
for

all d ∈ J . As an illustration, see Figure 3.20b where the circulant graph C10{1, 4}
is shown.

Lemma 3.4.12. Let F be a SCS of n trajectories whose communication graph is
a tree. The meeting graph TF of F is a circulant graph.

Proof. Let r be the single ring in F . Let 0, 1, . . . , n− 1 be a circular enumeration
of the tokens in r, following the travel direction of the ring. Lemma 3.2.13 implies
that token i is 2π units ahead of token i−1 (mod n, as usual). Let 2l1π, . . . , 2ltπ be
the lengths of all ties in r. Let TF be the meeting graph of F . By Lemma 3.4.9, the
tokens adjacent to token i in TF are {i+ l1, . . . , i+ lt}. Then, TF is circulant.

Figure 3.20a shows a SCS with a ring of length 20π. Notice that the length of
every tie is 2π, 8π, 12π or 18π. Therefore, enumerating the tokens of this ring from
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0 to 9 in the travel direction of the ring, we see that token i has correspondences
with tokens i+ 1, i+ 4, i+ 6 and i+ 9, (mod 10). Figure 3.20b shows the meeting
graph of this system, which is the circulant graph C10{1, 4}.

In the following, we define an auxiliary operation to transform a circulant graph
into another circulant graph with some interesting properties for us.

Definition 3.4.13 (Kn,n-augmentation). Let G = (V,E) be a graph with n nodes.
A graph G′ = (V ′, E ′) is a clone of G if G′ and G are isomorphic and V ∩V ′ = ∅.
The Kn,n-augmentation of G, denoted by G = (V ,E), is the graph resulting from
a graph join operation between G and a clone G′, i.e V = V ∪ V ′ and E =
E ∪ E ′ ∪ {{v, w} | v ∈ V,w ∈ V ′}.

From now on we denote a vertex in a graph of n vertices by vi with i ∈
{0, . . . , n− 1}. In general, the vertex indices are taken modulo n.

The following result can be deduced directly from the definition of circulant
graphs.

Lemma 3.4.14. A graph is circulant if and only if all its connected components
are isomorphic to the same circulant graph.

Proof. (⇐) Let G = (V,E) be a circulant graph of n nodes and let v0, . . . , vn−1 be
a c-order of G. Construct a graph G′ as the union of m pairwise disjoint clones of
G and let v(i)0 , . . . , v

(i)
n−1 be the c-order of i-th clone corresponding to the c-order of

G. It is easy to see that

v
(1)
0 , v

(2)
0 , . . . , v

(m)
0 , v

(1)
1 , v

(2)
1 , . . . , v

(m)
1 , . . . , v

(1)
n−1, v

(2)
n−1, . . . , v

(m)
n−1

is a c-order of G′. Therefore G′ is circulant.
(⇒) Let G = (V,E) be a circulant graph and let v0, . . . , vn−1 be its c-order.

Let C be a connected component of G containing v0. Let m > 0 be the lowest
value such that vm ∈ C. Then the nodes v2m, v3m, . . . are in C. It can be proven
that m divides i for all vi ∈ C. It can also be proven that m divides n. Therefore
C = {v0, vm, v2m, . . . , vn−m}. From here, it is easy to see that G has m isomorphic
connected components of the form {vi, vi+m, vi+2m, . . . , vn−m+i} for all 0 ≤ i <
m.

Lemma 3.4.15. Let G = (V,E) and G = (V ,E) be a graph and its Kn,n-
augmentation, respectively. G is a circulant graph if and only if G is a circulant
graph.

Proof. Let G′ = (V,E) be the clone of G used in the creation of G.
(⇒) Let v0, . . . , vn−1 be a c-order of G and v′0, . . . , v′n−1 be the corresponding

c-order of G′. Consider the ordering L = (v0, v
′
0, v1, v

′
1, . . . , vn−1, v

′
n−1) of V . We

show that L is a c-order of G. Indeed, if d is odd then, for any i, (vi, vi+d) is an
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(a) (b)

Figure 3.21: (a) Circulant graph C6{2}. (b) Circulant graph C12{1, 3, 4, 5} which
is the K6,6-augmentation of C6{2}, solid points denote the nodes of the original
graph, and non-solid ones, the vertices of its clone. Original and cloned vertices
are connected with dashed edges.

edge of G. If d is even, then both vi and vi+d are in the same graph G or G′. Then
(vi, vi+d) ∈ E if and only if (v0, vi+d/2) ∈ E. Therefore the graph G is circulant.

(⇐) If G is circulant then its complement graph ¬G is circulant. By Lemma
3.4.14, ¬G has m isomorphic components. Since ¬G is the union of ¬G and
¬G′, ¬G has m/2 isomorphic components that are circulant graphs. Thus, G is a
circulant graph by Lemma 3.4.14.

Lemma 3.4.16. Let G = (V,E) and G = (V ,E) be a graph and its Kn,n-
augmentation, respectively. The maximum independent set of G and the maximum
independent set of G have the same cardinality.

Proof. Let H ⊆ V and H ⊆ V be maximum independent sets in G and G,
respectively. Notice that the vertices in H also form an independent set in G,
thus |H| ≤ |H|. Since G is the Kn,n-augmentation, H cannot contain a vertex
from V and a vertex from V ′. So, either H ⊆ V or H ⊆ V ′. Then |H| ≤ |H| and
|H| = |H|.

Let CnJ be a circulant graph. Let C2nJ denote the Kn,n-augmentation of CnJ
where

J = {2d | d ∈ J} ∪
{

2i− 1

∣∣∣∣ 1 ≤ i ≤
⌊
n+ 1

2

⌋}
.

Figure 3.21 shows an example of a circulant graph and its Kn,n-augmentation.
Notice that the set of jumps of the Kn,n-augmentation of CnJ contains all the odd
numbers in the interval [1, n].

We are ready to prove the main result of this section.

Theorem 3.4.17. The problem of computing the isolation number of a SCS (IN-
SCS) is NP-hard, even, if the communication graph of the SCS is a caterpillar
tree5.

5A caterpillar tree is a tree in which all the vertices are within distance 1 of a central path.
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Figure 3.22: Addition of Ci to the SCS. The ring of the SCS is shown with bold
stroke. The case of i ∈ J is shown in (a). The case of i /∈ J is shown in (b) and
(c). If i is the smallest value not in J then add Ci to the 1-line (b). If it isn’t,
then let m < i be the greatest value such that Cm is not centered on the 0-line. If
Cm is centered on the −1-line then Ci is added to the 1-line (b). If Cm is centered
on the 1-line then Ci is added to the −1-line (c).

Proof. We use a reduction from the problem of computing the maximum inde-
pendent set in a circulant graph (MIS-CG) which is NP-hard [32]. Let CnJ be
a circulant graph with n ≥ 2, as input to the MIS-CG problem. For convenience
we work with C2nJ which is the Kn,n-augmentation of the given circulant graph
CnJ . Recall that the problem of computing a maximum independent set for CnJ
is equivalent to the problem of computing a maximum independent set for C2nJ
(Lemma 3.4.16) and that J contains all odd numbers in [1, n].

By Corollary 3.4.5, it suffices to transform C2nJ into a SCS of 2n circles whose
communication graph is a caterpillar tree such that

d ∈ J if and only if there is a tie of length 2dπ in the SCS. (3.3)

We place the circles on three horizontal lines with coordinates in 1, 0 and −1
as illustrated in Figure 3.22. First, place the circle C0 on the 0-line. Then place
Ci, i = 1, . . . , n as follows. Let Cj be the last circle placed on the 0-line.

1. If i ∈ J then add the circle Ci to the 0-line touching Cj, see Figure 3.22a.

2. If i /∈ J then add the circle Ci touching Cj but alternating between centered
on the 1-line and centered on the −1-line. In other words, if the last added
circle not centered on the 0-line is centered on the 1-line, then center Ci on
the −1-line, and vice-versa. see Figures 3.22b and 3.22c, respectively.

Notice that i in the second case is even since J contains all odd numbers in
[1, n]. Thus, the next circle Ci+1 will be placed on the 0-line. Since the lines 1 and
−1 alternate, Ci touches only one circle, Cj, which is placed in the 0-line.

We have placed n + 1 circles C0, . . . , Cn. In order to add the n− 1 remaining
circles we proceed as follows:

• if n is even then:
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Figure 3.23: Instructions of how to add the n−1 remaining circles. (a) If Cn−1 and
Cn are both on the 0-line, then apply symmetry about the vertical line between
Cn−1 and Cn. (b) If Cn−1 is on the 0-line but Cn is not, then apply symmetry
about the vertical line passing through the center of Cn−1. (c) In the remaining
case apply symmetry about the touching point of Cn−2 and Cn.



3.4. COMPUTING K-ISOLATION RESILIENCE 85

– if n ∈ J then we proceed as shown in Figure 3.23a.

– if n /∈ J then we proceed as shown in Figure 3.23b.

• if n is odd then:

– if (n− 1) ∈ J then we proceed as shown in Figure 3.23a.

– if (n− 1) /∈ J then we proceed as shown in Figure 3.23c.

Now, we are ready to prove statement (3.3) on the obtained SCS.
(⇒) If d ∈ J , then Cd is centered on the 0-line and the tie determined by the

crossing point between Cd and the previous circle centered on the 0-line covers the
d circles to the left of Cd. Consequently, the length of this tie is 2dπ.

(⇐) Every crossing point between circles centered on the same vertical line
determines two ties of length 2π and 2(2n− 1)π, respectively, and 1 is in J . Con-
sider the crossing point between two circles centered on the 0-line. By symmetry,
we can assume that the circles are Cj and Ci where 0 ≤ j < i ≤ n. The crossing
point determines a tie of length 2iπ covering the i circles to the left of Ci. Since
Ci is on the 0-line, i ∈ J . This argument completes the proof.

Figure 3.24 shows some examples of the SCS construction.

The following result is deduced from Theorem 3.4.17 and Lemma 3.4.4.

Corollary 3.4.18. The problem of computing the k-isolation resilience of a SCS
is NP-hard.

In the rest of this section we focus on how to count the number of isolated
robots (tokens) in an m-partial SCS in order to prove that the decision version of
k-isolation resilience problem is NP-Complete.

Lemma 3.4.9 gives us a method to check if there is a correspondence between
two tokens of the same ring. But, how does one check if there is a correspondence
between two tokens of different rings?

Theorem 3.4.19. In an m-partial SCS, let z and z′ be two tokens in different
rings r and r′, respectively. Let ` be communication link where r and r′ cross each
other. Let d and d′ denote the lengths of the simple paths from z and z′ to ` at an
arbitrary time instant t, respectively. Let 2lπ and 2l′π be the lengths of r and r′
respectively. Then:

• d− d′ is in 2πZ.

• Let s ∈ Z such that d − d′ = 2πs. Then, there is a correspondence between
tokens z and z′ if and only if the greatest common divisor of l and l′ divides
s.
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(a) SCS obtained from the circulant graph C12{1, 3, 4, 5} shown in Figure 3.21b.

(b) C4{2} and its K4,4-augmentation:
C8{1, 3, 4}.
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(c) SCS obtained from C8{1, 3, 4}.

(d) C9{3} and its K9,9-augmentation: C18{1, 3, 5, 6, 7, 9}.
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(e) SCS obtained from C18{1, 3, 5, 6, 7, 9}.

Figure 3.24: Examples of construction of a SCS from the Kn,n-augmentation of
some circulant graphs. The samples in (a) and (c) are obtained by applying the
steps illustrated in Figure 3.23b and 3.23a, respectively. The example in (e) is
obtained by applying the steps illustrated in Figure 3.23c.
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Figure 3.25: Illustration of Theorem 3.4.19.

Proof. Figure 3.25 shows the positions of the tokens. First, we prove that (d−d′) ∈
2πZ. Suppose, w.l.o.g., that d ≤ d′. Consider the time t + ∆t when z reaches `.
At time t the distance from z′ to ` is d′ − d. Due to the synchronization, at time
t+ ∆t there is or there should be (in case it has been removed) a token of r′ at `.
Then, using Lemma 3.2.10 we get that d′ − d ∈ 2πN.

We focus now on the second claim. If there is a correspondence between z and
z′ then at anarbitrary time instant t there are two paths of equal length, let us
say L, from z and z′ to `. The path from z (resp. z′) to ` can be decomposed in
the section from z (resp. z′) to ` and zero or more round trips in r (resp. r′). Let
x and y denote the number of round trips of the paths in r and r′, respectively.
Therefore L = d+ x · 2πl and L = d′ + y · 2πl′ where (x, y) ∈ N× N. Then:

d+ x · 2πl = d′ + y · 2πl′

d− d′ = y · 2πl′ − x · 2πl
2πs = y · 2πl′ − x · 2πl
s = y · l′ − x · l (3.4)

Considering x and y variables, this is a Diophantine equation and has a solution
where x and y are integers if and only if gcd(l, l′) | s.

(⇒) If there is a correspondence between z and z′, then there exists a solution
(x1, y1) ∈ N× N for equation (3.4). Therefore, gcd(l, l′) | s.

(⇐) If gcd(l, l′) | s then there exist infinitely many solutions for equation (3.4)
in Z × Z. Observe that the line represented by equation (3.4) has positive slope.
Therefore, there exist infinite solutions in N × N. Taking any of these solutions
in N× N, we can obtain two paths, one from z to ` and the other from z′ to ` of
equal lengths. Therefore, there is a correspondence between z and z′.

Given an m-partial SCS, the problem of counting how many of the m robots
(tokens) are isolated takes polynomial time. This can be done using a correspon-
dence test between every pair of live tokens z and z′ in the system.

Correspondence test: Given two tokens z and z′, is there a corre-
spondence between them?
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Lemma 3.4.20. Given an m-partial SCS, the correspondence test between two
tokens z and z′ in the system takes O(nTgcd(n)) time, where Tgcd(n) is the time6 to
compute the greatest common divisor between any two numbers less than or equal
to n.

Proof. The first thing to do is a preprocessing in order to find the rings of the
system and their lengths. During this process we can also obtain the ties and
their lengths. This preprocessing step takes O(|E|) time where E is the set of
edges of the communication graph. Since this graph is planar,the preprocessing
step takes O(n) time. After that, we proceed as follows in order to perform the
correspondence test between every pair of tokens in the system. Let z and z′ be
two tokens in the system. If z and z′ are in the same ring, the test can be done in
O(n) time by checking ties of the ring (Lemma 3.4.9). If they are in different rings,
r and r′ respectively, then there are two options. (i) If r and r′ have no common
crossing points then there is no a correspondence between them. (ii) Otherwise,
for every communication link ` where r and r′ cross each other check if z and z′
meet each other at ` using Theorem 3.4.19. This can be done in O(Tgcd(n)) time,
where Tgcd(n) is the time to compute gcd(l, l′) and 2lπ and 2l′π are the lengths
of rings r and r′, respectively. Thus, the correspondence test takes O(nTgcd(n))
time.

Corollary 3.4.21. Given an m-partial SCS, the total time to count the number
of isolated robots (tokens) is O(m2nTgcd(n)).

As a consequence of the above results, we arrive at the following result:

Corollary 3.4.22. The decision problems: determining if the k-isolation resilience
of a SCS is smaller than a given value s and determining if the isolation num-
ber of a SCS is greater than a given value s are both NP-complete, even if the
communication graph is a caterpillar tree.

3.4.2 Algorithm to compute k-isolation resilience

Despite the problem of computing the k-isolation resilience of SCS is NP-hard we
may want to compute its values. In this subsection we present an algorithm to
compute this resilience measure in O(knk+1) time, so, this algorithm can be useful
for small values of k.

Lemma 3.4.23. Constructing the meeting graph of a SCS takes O(n2) time.

Proof. Let F be a SCS. Let Z be the set of tokens. In O(n) time we can discover
all the rings, the ties and the position of the tokens in the rings. To build the

6Tgcd(n) = O(log n(log log n)2 log log log n) according to [129].
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meeting graph TF we start by setting V (TF) = Z. Then, to conform E(TF) do the
following:

Same ring: For each token z in a ring r, find tokens in r at positions p +
l1, p+ l2, . . . where p is the position of z and {l1, l2 . . . } is the set of the lengths of
the ties in r. Add edges to E(TF) between z and every found token. The running
time of this step is O(n) for one token z and O(n2) in total.

Distinct rings: For each communication link ` where two different rings r
and r′ cross each other. Compute g = gcd(l, l′), where 2lπ and 2l′π are the lengths
of r and r′ respectively. For each token z in r at distance d from `, find all tokens
in r′ at distance d + i · g, i = 0, 1, 2, . . . . Add edges between z and these tokens
to E(TF). This can be done in O(n + I) = O(n) time per communication link
where I is the number of edges found for communication link. The total time is
O(n2).

Let TF be the meeting graph of a SCS F . In the following we describe an
algorithm to compute the k-isolation resilience of F by exploring all the possible
k independent sets of TF .

Theorem 3.4.24. Computing the k-isolation resilience of a SCS takes O(knk+1)
time.

Proof. The idea to compute the k-isolation resilience is the following:
In a preprocessing step compute the meeting graph TF of the SCS in O(n2) time.
Now, let A be a dynamic set with the available (surviving) tokens. At the beginning
A = {z1, . . . , zn} contains all n tokens. In general, if A is empty, we cannot select
a new token and we check another set of k tokens. When a token zi is selected
from A, we remove its neighbors in TF from A. If zi is not the last (k-th selected)
token, then A contains candidate tokens to select next. If zi is the last selected
token, then |A| is the number of remaining tokens. Let Amax be the largest set A
of remaining tokens over all selections of k tokens (if it is not possible to select k
tokens then the k-isolation resilience is∞). Then n− k− |Amax| is the k-isolation
resilience of the system.

The number of analyzed subsets is O(nk) (all the possible subsets of k tokens)
and every subset is analyzed in O(nk) time. Then, the result follows.

3.4.3 Improvement on computing 1-isolation resilience

Remark 3.4.25. Let F be a SCS. Let Z = {z1, . . . , zn} be the initial set of tokens
in F . Let N(z) denote the number of tokens that have a correspondence with z,
z ∈ Z. By definition, the value of 1-isolation resilience is min {N(z)|z ∈ Z} =
δ(TF) where δ(TF) denotes the degree of the vertex with minimum degree in the
meeting graph TF of F .
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Computing the 1-isolation resilience of a SCS using the algorithm of Theo-
rem 3.4.24 takes O(n2) time. The following theorem improves this complexity for
this specific case.

Theorem 3.4.26. The 1-isolation resilience of a SCS can be computed in Õ(n) =
O(nTgcd(n)) time.

Proof. In a preprocessing step, find the rings and their lengths, also, obtain the
ties and their lengths. This preprocessing takes O(n) time. For each ring r, pick
a single token z from it. Let r1, r2, . . . be the rings crossing r. For each ring ri
crossing r, compute gi = gcd(l, li) in O(Tgcd(n)) time where 2lπ and 2liπ are the
lengths of r and ri, respectively. Also, compute a list Di in the following way: Di

starts empty, then, for each communication link ` where ri crosses r, let d be the
distance from z to `. If there is a value d′ ∈ Di such that gi divides d − d′ then
Di stays the same, else, add d to Di. Compute N(z) = t(r) +

∑
i |Di| · li/gi where

t(r) is the distinct lengths of ties in r. This is the number of tokens that have a
correspondence with z (Lemma 3.4.9 and Theorem 3.4.19). Let x be another token
laid 2bπ behind z in r. Notice that if a token z′ in a ring r′ has a correspondence
with z, then the token x′ laid 2bπ behind z′ in r′ has a correspondence with x.
From this observation we have that for every two tokens z and x in the same ring,
N(x) = N(z). Let %(r) be the value N(z) of an arbitrary token z in the ring r.
Computing %(r) takes O(er ·Tgcd(n)) time where er is the number of communication
links traversed by r. Find the smallest %(r) for all rings r in the system and this
is the 1-isolation resilience value.

The total running time of this algorithm is O(nTgcd(n)) = Õ(n)7 because every
communication link is analyzed two times, one per each traversing ring (the same
ring twice in ties) and the number of communication links is O(n).

3.4.4 k-isolation resilience for trees, cycles and grids

This subsection focuses on computing the k-isolation resilience for some specific
cases of the communication graph: cycles and grids. We propose polynomial time
algorithms for the cases of cycles or grids. We also improve the results of sections
3.4.2 and 3.4.3 when the communication graph is a tree.

Trees

Lemma 3.4.27. Computing the set J of jumps of the circulant meeting graph of
a SCS whose communication graph is a tree takes linear time.

Proof. From Lemma 3.4.9 and Corollary 3.4.8 we have that traveling in the system
along the ring, we can determine in linear time the length of all the ties in the

7Õ notation hides polylogarithmic factors.
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system. Moreover, from properties of the circulant graphs, Lemma 3.4.12 and
Corollary 3.4.8, we have that l ∈ J if and only if there is a tie of length 2lπ and
l ≤ n/2. The result follows.

From the previous lemma, Remark 3.4.25 and properties of the circulant graphs,
the following result is straightforward deduced:

Lemma 3.4.28. In a SCS whose communication graph is a tree, the value of the
1-isolation resilience is 2|J |, if n/2 6∈ J and, 2|J | − 1, in other case, and it can be
computed in linear time.

Now, let us focus on computing the 2-isolation resilience of a SCS whose com-
munication graph is a tree.

Lemma 3.4.29. Let L = {l1, . . . , lt} be the set of tie lengths in the single ring of
a SCS whose communication graph is a tree. Let S+ and S− be the multisets:

S+ = {lj + li | (li, lj) ∈ L× L, lj + li 6∈ L, lj + li < n} and,
S− = {lj − li | (li, lj) ∈ L× L, lj − li 6∈ L, lj − li > 0} .

Then the 2-isolation resilience of the system is 2t− f , where f is the frequency of
the mode8 in S+ ∪ S−.

Proof. Let z0, z1, . . . , zn−1 be a circular labeling of the tokens such that there is a
correspondence between two tokens zi and zj if and only if ((j − i) mod n) ∈ L.
W.l.o.g. assume that z0 and zd are two isolated tokens after removing a set R
of tokens with minimum cardinality (i.e., |R| is the 2-isolation resilience). Notice
that 0 < d < n and d 6∈ L. Let S0 = {zl | l ∈ L} denote the set of tokens having
a correspondence with z0. By other hand, let Sd = {zd+l | l ∈ L} (the subindices
d + l are taken modulo n) denote the set of tokens having a correspondence with
zd. Notice that R = S0 ∪ Sd and |R| = 2t − |S0 ∩ Sd| which is the 2-isolation
resilience of the system. The tokens having a correspondence with both z0 and
zd are in S0 ∩ Sd. Let us prove that |S0 ∩ Sd| is equal to the frequency fd of d in
S+ ∪ S−.

Firstly we prove that fd ≤ |S0 ∩ Sd|, that is, every occurrence of d in S+ ∪ S−
induces a different token in S0 ∩ Sd.

• For every occurrence of d in S−, there is a pair (li, lj) ∈ L × L such that
lj − li = d. Then, lj = d + li and zlj ∈ Sd. Clearly, zlj ∈ S0, and therefore,
zlj ∈ S0∩Sd. Also, for every two different occurrences of d in S− there are two
different pairs (li, lj) ∈ L×L and (li′ , lj′) ∈ L×L such that lj−li = lj′−li′ = d.
It is easy to check that lj 6= lj′ . Then, zlj 6= zlj′ and both are in S0 ∩ Sd.

8The mode of a multiset is the value that appears most often.
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• For every occurrence of d in S+ there is a pair (li, lj) ∈ L × L such that
li + lj = d. Notice that (n − li) ∈ L (by properties of circulant graphs)
and ((d + (n − li)) mod n) = lj. Then, zlj ∈ Sd. Clearly zlj ∈ S0, thus,
zlj ∈ S0 ∩ Sd. Analogously to the previous case, for every two different
occurrences of d in S+, there are two different pairs (li, lj) ∈ L × L and
(li′ , lj′) ∈ L × L such that lj + li = lj′ + li′ = d. It is easy to check that
lj 6= lj′ . Then, zlj 6= zlj′ and both are in S0∩Sd. Finally, notice that, if there
is a pair (li, lj) ∈ L × L such that lj + li = d (resp. lj − li = d) then lj < d
(resp. lj > d) and there is no li′ ∈ L such that lj − li′ = d (resp. lj + li′ = d).
This observation implies that every occurrence of d in S+ induces a token in
S0 ∩ Sd which is different from all the tokens induced by occurrences of d in
S−. Then, the first part of the proof (fd ≤ |S0 ∩ Sd|) is completed.

Secondly, we prove that fd ≥ |S0 ∩ Sd|, that is, for every token zx in S0 ∩ Sd
there is an occurrence of d in S+ ∪ S−. Clearly x = lj ∈ L.

• If x > d then, there is li ∈ L such that x − li = d. Also, if there is a token
zx′ ∈ S0 ∩ Sd such that zx′ 6= zx and x′ > d then, there is a value li′ ∈ L,
li′ 6= li such that x′− li′ = d. Therefore, every token zx ∈ S0 ∩Sd with x > d
induces a different occurrence of d in S−.

• If x < d then, there is li ∈ L such that ((d + li) mod n) = x. Taking into
account that 0 < x < d < n and li < n, we get that n < d + li < 2n, then
d − (n − li) = x. By rewriting the last equation as d = x + (n − li) and
taking into account that (n− li) ∈ L (by properties of circulant graphs), an
occurrence of d in S+ is induced. Analogously to the previous case, if there
is another token zx′ ∈ S0 ∩ Sd such that zx′ 6= zx and x′ < d then, there is
a value li′ ∈ L, li′ 6= li such that d − (n − li′) = x′. Therefore, every token
zx ∈ S0 ∩ Sd with x < d induces a different occurrence of d in S+.

The proof that |S0 ∩ Sd| = fd is now completed and, by using the definitions
of mode and 2-isolation resilience we conclude that d is the mode of S+ ∪ S−.

From the previous lemma the following theorem is deduced:

Theorem 3.4.30. The 2-isolation resilience of a SCS whose communication graph
is a tree can be computed in O(t2 + n) time where, n is the number of trajectories
in the system and t is the number of different tie lengths.

Proof. In a preprocessing step, find the set of tie lengths L = {l1, ..., lt} by traveling
along the single ring of the system. This step takes O(n) time. After that, by
computing lj + li and lj − li for all (li, lj) ∈ L × L we can find the mode d (and
its frequency f) in the multiset S+ ∪ S− of Lemma 3.4.29. This step takes O(t2)
time. Finally, the 2-isolation resilience is 2t− f .
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Figure 3.26: Examples of lower bounds in the number of tie lengths of a SCS. (a)
A tree where n = a2. The lengths of the ties are L = {1, 2, . . . , a, 2a, 3a, . . . , a2 −
a, a2 − (a − 1), . . . , a2 − 1} and |L| = 3a − 3. (b) A star tree with non-circular
trajectories where n could be arbitrarily large and L = {1, n− 1}.

The following remark shows cases in which the application of the previous
theorem conducts to a very good performance ini the computation of the 2-isolation
resilience.

Remark 3.4.31. If t is O(
√
n) then, computing the 2-isolation resilience takes

linear time (Theorem 3.4.30). For example, consider a SCS with n = a2 trajecto-
ries connected between them as it is shown in Figure 3.26a. It is easy to check that
t = 3a − 3, then t ∈ O(

√
n). Also, considering non-circular and degenerated tra-

jectories we can build a SCS whose communication graph is a star tree with t = 2
for any arbitrary large value of n, see Figure 3.26b. In these cases, the algorithm
described in the proof of Theorem 3.4.30 has very good performance (linear time).

Not everything is good news, there are some bad cases in which the idea of
Theorem 3.4.30 is not so good, see the following remark.

Remark 3.4.32. If t is Ω(n) (e.g., the communication graph of the system is a
simple path), the idea of Theorem 3.4.30 takes O(n2) time.

In the following, we show another idea to improve the time complexity of
Theorem 3.4.30 when t ∈ Ω(n).

Lemma 3.4.33. Let L = {l1, . . . , lt} be the set of tie lengths in the single ring
of a SCS whose communication graph is a tree. Let d ∈ N, 0 < d < n. Let
p(x) = xl1 +xl2 + · · ·+xlt. The coefficients of xd and xn+d in p2(x) are the number
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of occurrences of d in the multisets

S+ = {lj + li | (li, lj) ∈ L× L, lj + li 6∈ L, lj + li < n} and
S− = {lj − li | (li, lj) ∈ L× L, lj − li 6∈ L, lj − li > 0} , respectively.

Proof. Observe that

p2(x) = xl1+l1 + xl1+l2 + . . . + xl1+lt +
xl2+l1 + xl2+l2 + . . . + xl2+lt +

...
...

...
xlt+l1 + xlt+l2 + . . . + xlt+lt .

For every pair (li, lj) ∈ L× L we have that:

• If li+ lj = d then, an occurrence of d is induced in S+ and a term xd appears
in p2(x). Therefore, the coefficient of xd in p2(x) is the number of occurrences
of d in S+.

• If li+lj = n+d, a term xn+d appears in p2(x). Also, we have that (n−li) ∈ L
(by properties of circulant graphs), then ((n−li), lj) ∈ L×L and lj−(n−li) =
d. Therefore, an occurrence of d is induced in S− and the coefficient of xn+d
in p2(x) is the number of occurrences of d in S−.

Notice that the degree of p(x) is less than n (recall that max{l1, . . . , lt} ≤ n−1),
then its coefficient representation is a list of O(n) elements. Moreover, the degree
of p2(x) is less than 2n − 1 and, its coefficient representation uses O(n) elements
as well. Having this representation of p2(x), we can find the mode of S+ ∪ S− and
its frequency in linear time. The straightforward method to compute p2(x) from
p(x) takes O(n2) time, but, using the fast Fourier transform, or FFT, it can be
done in O(n log n) time [35] (Chapter 30 - Polynomials and the FFT). These ideas
support the following result:

Theorem 3.4.34. The 2-isolation resilience of a SCS whose communication graph
is a tree can be computed in O(n log n) time where, n is the number of trajectories
in the system.

Proof. In a preprocessing step, find the set of tie lengths L = {l1, ..., lt} by traveling
along single ring of the system. This step takes O(n) time. After that, make a
coefficient representation of p(x) = xlt + · · · + xl1 , it takes O(n) time. Then, by
using the FFT, compute p2(x) in O(n log n) time.

Let c(l) denote the coefficient of xl in p2(x). Find the value l∗ such that:

c(l∗) + c(l∗ + n) = max
1≤l<n,l 6∈L

{c(l) + c(n+ l)}.

This last step takes O(n) time. The 2-isolation resilience is 2t−c(l∗)−c(l∗+n).
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The following corollary concludes our analysis of the problem of computing
the 2-isolation resilience of a SCS whose communication graph is a tree. It is
straightforward deduced from theorems 3.4.30 and 3.4.34.

Corollary 3.4.35. The value of the 2-isolation resilience in a SCS whose com-
munication graph is a tree can be computed in O(n log n) time in the worst case.
Moreover, if the number of tie lengths is O(

√
n), then, the 2-isolation resilience

can be computed in linear time.

In the following we focus on computing the k-isolation resilience of a SCS whose
communication graph is a tree.

Let L = {l1, . . . , lt} be the set of tie lengths in the system. Let Z = {0, . . . , n−
1} be a circular numbering of the tokens such that there is a correspondence
between two tokens i and j if and only if ((j − i) mod n) ∈ L. For all S ⊂ Z, let
N(S) = {((l + i) mod n) | l ∈ L, i ∈ S} denote the set of neighboring tokens of
S. To compute the k-isolation resilience of a SCS whose communication graph is
a tree, we propose the following procedure:

With out loss of generality, set 0 as the first isolated token. Then, for every
(k − 1)-set S of isolated tokens such that 0 ∈ S: Let AS = Z \ (S ∪N(S)) be the
set of available tokens. Now, compute the mode m of multiset S+ ∪ S− where

S+ = {z + l | (z, l) ∈ N(S)× L, z + l < n, z + l ∈ AS} and
S− = {z − l | (z, l) ∈ N(S)× L, z − l > 0, z − l ∈ AS} .

Compute ρ(S) = |N(S)|+t−f where f is the frequency of m in S+∪S−. Compute
the k-isolation resilience as minimum of ρ(S) over all possible sets S.

The correctness of this procedure can be proven using the same ideas of Lemma
3.4.29. Theorems 3.4.36 and 3.4.37 focus on the time complexity of this procedure
by using two different approach to compute the mode m of multiset S+ ∪ S−.

Theorem 3.4.36. In a SCS whose communication graph is a tree, the k-isolation
resilience, k ≥ 3, can be computed in O(nk−2t ·min(n, kt)) time.

Proof. In a preproccessing L can be computed in linear time. Note that, the
number of (k − 1)-sets of isolated tokens that contains 0, is O(nk−2). Using the
same ideas of Theorem 3.4.24 to compute these sets takes O(ktnk−2) time. By
other hand, for every computed set S we have that |N(S)| ≤ min{n, (k − 1)t}.
Therefore, a straightforward approach to compute the mode m of multiset S+∪S−
takes O(t ·min(n, kt)) time. Taking into account that we need to compute m for all
computed (k−1)-sets we have total computing time O(ktnk−2+nk−2t·min(n, kt)) =
O(nk−2t ·min(n, kt)) time.

Theorem 3.4.37. In a SCS whose communication graph is a tree, the k-isolation
resilience, k ≥ 3, can be computed in O(nk−2(tk + n log n)) time.
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Proof. The only difference with the previous theorem is that, in here, we com-
pute the mode m of multiset S+ ∪ S− by applying polynomial multiplication (us-
ing FFT). Let the polynomials p(x) =

∑
l∈L x

l and q(x) =
∑

z∈N(S) x
z. Notice

that degree of both polynomials is bounded by n, then, their multiplication takes
O(n log n) time. Let c(l) denote the coefficient of xl in (p · q)(x). Find the value
l∗ such that:

c(l∗) + c(l∗ + n) = max
1≤l<n,l∈AS

{c(l) + c(n+ l)}.

This last step takes O(n) time. The mode of S+ ∪ S− is l∗ and its frequency is
c(l∗) + c(l∗ + n).

Finally, taking into account that computing all possible (k− 1)-sets of isolated
tokens that contains 0 takes O(ktnk−2) time, the result follows.

Remark 3.4.38. For small values of k: if t ∈ O(
√
n) then, it is better to use

Theorem 3.4.36 because the time complexity becomes O(knk−1). By other hand,
if t ∈ Ω(n) then, it is better to use Theorem 3.4.37 because the time complexity
becomes O(nk−1(k + log n)) = O(nk−1 log n).

Cycles

Lemma 3.4.39. Let G be the communication graph of a m-partial SCS. If G is a
cycle, then the system has exactly two rings, one with CW direction and the other
with CCW direction. Furthermore, every edge of G corresponds to a crossing of
the two rings.

Proof. We proceed by induction on the number 2M of trajectories (nodes) in G
(recall that G is bipartite, so every cycle has even length). If M = 2, we have 4
trajectories, and the claim holds, as shown in Figure 3.8a. Assume as inductive
hypothesis that, for a fixed value M , the claim holds for every cycle graph with
2M trajectories. Now, let us consider a cycle graph G with 2(M + 1) trajectories
(Figure 3.27a). If we remove two consecutive trajectories (C and D) and “glue”
the ends in the broken section we obtain a cycle graph G′ with 2M trajectories
(Figure 3.27b). By the inductive hypothesis, the claim holds for G′. Figure 3.27b
shows the clockwise ring using solid stroke in red, and the other one using dashed
stroke in blue. The sections of rings in the removed two circles are also shown
in Figure 3.27b. After that, inserting again the two removed trajectories into the
original position we obtain a cycle graph with 2(M+1) trajectories, reestablishing
the claim, see Figure 3.27c. Note that, as depicted in Figure 3.27c, when we
reinsert the removed trajectories, we match terminals (solid-circle to solid-circle,
solid-square to solid-square, etc.).

Lemma 3.4.40. In an m-partial SCS, whose communication graph is a cycle with
rings r and r′, a robot in r is isolated if and only if r′ is empty of robots (tokens).
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Figure 3.27: Induction proof of Lemma 3.4.39.

Proof. Suppose that there are tokens z and z′ in r and r′, respectively. From
Property 3.2.5 and Lemma 3.4.39 we deduce that z and z′ will meet each other, so,
there is a correspondence between them. Also, note that there is no correspondence
between tokens of the same ring. Then, from Lemma 3.4.1 it follows that a robot
in r bearing a token z is starving if and only if the ring r′ is empty of tokens.

Using Lemma 3.4.40 and Lemma 3.2.13 we conclude:

Theorem 3.4.41. Consider a system whose communication graph is a cycle and
let r and r′ be the two rings with lengths 2πl and 2πl′, respectively. The isolation
number of the system is max{l, l′} and the k-isolation resilience is min{l, l′} if
k ≤ max{l, l′} and infinity, otherwise.

Remark 3.4.42. If the communication graph is a cycle with isolation number ζ,
then for all k ≤ ζ, the value of the k-isolation resilience matches the value of the
coverage resilience of the system (Theorem 3.4.41 and Corollary 3.3.3).

To close this subsection, notice that to compute the k-isolation resilience of
an SCS whose communication graph is a cycle we can use the same linear time
algorithm described in Theorem 3.3.4.

Grids

In this subsection we revisit the grid SCS introduced in subsection 3.3.1. We show
a set of results that allow us to calculate the k-isolation resilience with a closed
formula. All the results presented in previous sections are directly based on the
properties of rings (their lengths, number, or topology). However, the following
results, surprisingly, do not use these tools.

Consider the movement lattice introduced in subsection 3.3.1. Analyzing the
movement of a token in the movement lattice of a grid SCS, we arrive at the
following remark:
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Figure 3.28: The small hollow disk represents a token moving in the movement
lattice. The horizontal and vertical projections of the token motion are also shown.

Remark 3.4.43. In the lattice of a grid SCS, every token moves with constant
speed according to a mathematical billiard pattern of motion [130]. Moreover, the
X-motion (resp. Y-motion) of a token, which is the projection of the token motion
onto the X-axis (resp. Y -axis), is a periodic movement of a ball on a line segment
that bounces off the ends, see Figure 3.28. Notice also that the speed in the X-axis
(resp. Y -axis), hence on the lattice as well, of all the tokens is the same.

Lemma 3.4.44. In a partial grid SCS, if two robots occupy trajectories in the
same row (resp. column) at some instant of time, then their respective tokens have
always been and will always be in the same row (resp. column) of the movement
lattice.

Proof. Let u and v be robots in the same row, say row i, at some time t (the case
of robots in the same column is treated similarly). Suppose that robot u is at
position α. Since the system is synchronized, the position of robot v is at α or
π − α, see Figure 3.29. However, independent of whether the position of v is α or
π − α, they both have the same direction along the Y axis (both going down or
both going up) due to synchronization. Then, due to the periodic constant motion
of the tokens in Y axis (Remark 3.4.43), the tokens of u and v are in the same row
at any time (before t and after t). The lemma follows.

α α αα αβ β

Figure 3.29: The white points represent the positions of robots in trajectories of
a same row in a grid SCS, β = π − α.
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Theorem 3.4.45. A robot (token) in a partial grid SCS is isolated if and only if
there is no other robot (token) in the same row or column.

Proof. (⇒) Let u be an isolated robot. For the sake of contradiction, suppose that
there is another robot v in the same row at some time t (the case when they are
in the same column is analyzed similarly). Let z and z′ be the tokens of u and
v at time t, respectively. Since the X-motion of each of these tokens is periodic
and has the same constant speed, it is easy to see that after some time, say 4t
units of time, z and z′ will meet each other in the X-axis projection. Thus, the
tokens z and z′ have the same x and y coordinates in the movement lattice at time
t+4t. Since z and z′ at time t+4t belong to two different robots (one robot is
u and the other robot is not necessarily v), these robots are at the communication
link between two neighboring trajectories. Therefore, robot u is not isolated, a
contradiction.

(⇐) It suffices to show that, if a robot u is not isolated, then there is another
robot in the same row or column. Robot u will be communicating with another
robot, say v, at some time t. There are two possibilities for the communication
link in the grid. The trajectories of u and v at time t are either in the same row
or in the same column. Either way, the theorem follows.

Finally, by induction on k and the pigeonhole principle, we conclude:

Theorem 3.4.46. The isolation number in an M × N grid SCS is min(M,N)
and its k-isolation resilience is k(M + N − 2) − k(k − 1) if k ≤ min(M,N) and
infinity, otherwise.

3.5 Computing broadcasting resilience
The robots of a SCS conform a connected network because every pair of robots
can send/receive messages between each other, possibly by multiple relays between
neighboring robots.

We can model the message transmission by means of the following protocol:
the messages are carried by the tokens instead of the robots. If a token is carrying
a message and meets another token who does not know it, then, after the meeting,
both of them know the message. Therefore, when a robot u sends a message at
time t, we assume that u puts the message into its token at time t. At time t′ > t,
we say that a robot u′ knows the message if and only if it is bearing a token that
has the message.

Lemma 3.5.1. Let F be an m-partial SCS. If at some time t robot u of F is
bearing a token z then u will bear z periodically. More formally, if u in F is
bearing token z at time t, then there exist a value σ ∈ N (σ > 0) such that u is
bearing z at every time of the form t+ σk with k ∈ N.
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Figure 3.30: A 2-partial SCS at time t0, the solid points are the positions occupied
by the surviving robots and the hollow points are the positions where a removed
robot should be.

Proof. Let U = {ui1 , . . . , uim} be the set of live robots in F and let Z be the set of
tokens in F . Fix a time t0. For every trajectory Cj (1 ≤ j ≤ n) in the system, let pj
be the position of Cj where there is or there should be (due to the synchronization
of the system) a robot at time t0, see Figure 3.30. Let P = {p1, . . . , pn}. Notice
that if a robot u is at a point p ∈ P then after one time unit u is at a point p′

that is in P as well. For every l ∈ N and 1 ≤ j ≤ m, let
(
ρ
(l)
j , τ

(l)
j

)
be an ordered

pair where ρ(l)j and τ
(l)
j are the position and token of robot uij at time t0 + l,

respectively. Notice that ρ(l)j ∈ P and τ (l)j ∈ Z for all j, l.

Let X(l) =
((
ρ
(l)
1 , τ

(l)
1

)
, . . . ,

(
ρ
(l)
m , τ

(l)
m

))
. Note that X(l) describes the state

of the system at time t0 + l, a kind of snapshot of the system at time t0 + l. Let
us analyze the infinite sequence X = X(0), X(1), X(2), . . . . The values of this
sequence are the columns of Table 3.1. Now, recall that

(
ρ
(l)
j , τ

(l)
j

)
is in P ×Z for

all l, j, then X(l) is in (P × Z)m for all l. Notice that |P | = n and |Z| = m, thus
|(P × Z)m| = (nm)m. It follows, using the pigeonhole principle, that the sequence
X repeats values. Let σ be a natural number such that X(σ) is the first repeated
value in X . That is, there is a value l′ ∈ N, 0 ≤ l′ < σ such that X(l′) = X(σ),
see Table 3.1.

We claim that l′ = 0. Suppose that l′ > 0. As a consequence of the behavior of
a partial SCS it is easy to show that X(l′+1) = X(σ+1) and X(l′−1) = X(σ−1).
Then the value X(σ−1) is the first repeated value in X , a contradiction! Therefore
l′ = 0 and σ is the period of the system, i.e., X(l) = X(l + σ) for all l ∈ N.

Lemma 3.5.2. Let F be an m-partial SCS. Let TF be the meeting graph of F . If
at time t a robot u is bearing a token z then at time t′ > t robot u is bearing a
token z′ which is in the same connected component of z in TF .

Proof. From the nature of the meeting graph, we know that if a robot u with token
z exchanges its token with a robot u′ with token z′, then z and z′ are adjacent in
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0 1 · · · σ · · ·

ui1

(
ρ
(0)
1 , τ

(0)
1

) (
ρ
(1)
1 , τ

(1)
1

)
· · ·

(
ρ
(σ)
1 , τ

(σ)
1

)
· · ·

ui2

(
ρ
(0)
2 , τ

(0)
2

) (
ρ
(1)
2 , τ

(1)
2

)
· · ·

(
ρ
(σ)
2 , τ

(σ)
2

)
· · ·

...
...

...
...

uim

(
ρ
(0)
m , τ

(0)
m

) (
ρ
(1)
m , τ

(1)
m

)
· · ·

(
ρ
(σ)
m , τ

(σ)
m

)
· · ·

Table 3.1: The j-th row represents the sequence of transitions of the robot uij at
times t0, t0 + 1, t0 + 2, . . . .

the meeting graph. Then, the sequence of token’s exchanges made by u from time
t to time t′ defines a path in TF .

Lemma 3.5.3. Let F be an m-partial SCS. Let TF be the meeting graph of F .
Let u and u′ be robots in F bearing tokens z and z′ at time t, respectively. A
message sent by u at time t is delivered to u′ if and only if z and z′ are in the
same connected component of TF .

Proof. (⇒) Suppose that a message sent by u at time t (hence, associated with z)
is delivered to u′ at time t′. Let τ be the token held by u′ at time t′. It is easy
to see that if τ contains the message then there is a path in TF between z and
τ . Thus, from Lemma 3.5.2, we deduce that z and z′ are in the same connected
component of TF .

(⇐) Suppose that z and z′ are in the same connected component of TF . Thus,
the message in z will be delivered to z′ at some time. From Lemma 3.5.1, we
deduce that the message will reach u′.

Remark 3.5.4. From the previous lemma we deduce that if it is possible to send
a message at time t from robot u to robot u′, then it is also possible to send a
message at time t from u′ to u.

From the previous remark and Lemma 3.5.3 we arrive to the following corollary:

Corollary 3.5.5. Let F be an m-partial SCS. Let TF be the meeting graph of F .
There is a loss of connectivity in F if and only if TF is disconnected or if it consists
of a single vertex.

Let G = (V,E) be a connected graph. A vertex-separator is a set S ⊂ V such
that the subgraph induced by V \ S is disconnected. The vertex-connectivity of
G, denoted by κ(G) is |V | − 1 if G = Kn (the complete graph); otherwise, κ(G) is
the cardinality of a smallest vertex-separator.

From Lemma 3.2.20, Corollary 3.5.5 and by using the previous definition of
connectivity of a graph, the next result follows:
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Theorem 3.5.6. Let F be a SCS and let TF be the meeting graph of F . The
broadcasting resilience of F is κ(TF). And, it can be computed in O(nκ(TF) ·
min{κ3(TF) + n, nκ(TF)}) time.

Proof. The graph TF can be computed in O(n2) time (Lemma 3.4.23). Then, the
vertex-connectivity of TF can be computed in O(nκ(TF)·min{κ3(TF)+n, nκ(TF)})
time [63] and, the result follows.

By using the definitions of the resilience measures we have:

Corollary 3.5.7. The broadcasting resilience of a SCS F is less than or equal to
its 1-isolation resilience.

In Section 3.4.3, it is shown that the 1-isolation resilience of a SCS can be com-
puted in Õ(n), therefore, we can compute a bound for the broadcasting resilience
of a SCS in almost linear time. The next subsections focuses on improving the
time complexity of Theorem 3.5.6 on some configurations that appear in practical
applications: trees, cycles and grids.

3.5.1 Broadcasting resilience for trees, cycles and grids

In this section we are going to focus in computing the broadcasting resilience for
some specific cases of the communication graph: trees, cycles and grids.

Trees

Let F be a SCS whose communication graph is a tree. From Lemma 3.4.12 we
know that the meeting graph TF of F is a circulant graph. Using Remark 3.4.11
we have that TF = CnJ where n is the number of trajectories in the system and J
is the set of jumps. Notice that the number of edges of TF could be quadratic (i.e.,
if the trajectories are disposed in a path then, the meeting graph is a complete
graph). So, computing explicitly every edge of TF takes O(n2) time in the worst
case. However, notice that |J | ≤

⌊
n
2

⌋
and computing J takes linear time (see

Lemma 3.4.27).

Lemma 3.5.8. Let F be a SCS with a single ring. The broadcasting resilience of
F can be computed in O(n3/2) time.

Proof. Computing the set J of jumps of the circulant meeting graph takes linear
time (Lemma 3.4.27). Then, the connectivity of CnJ can be computed in O(n3/2)
time using the algorithm proposed in [20, 88]. By Theorem 3.5.6, the result follows.

From the lemma above and Lemma 3.3.6, the following result is directly de-
duced:

Corollary 3.5.9. The broadcasting resilience of a SCS whose communication
graph is a tree can be computed in O(n3/2) time.
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Cycles

Lemma 3.5.10. Let F be a SCS whose communication graph is a cycle. The
broadcasting resilience of F is min{l, l′} where 2lπ and 2l′π are the lengths of the
two rings in F . Moreover, the broadcasting resilience can be computed in linear
time.

Proof. From Property 3.2.5, Remark 3.2.6 and Lemma 3.4.39 it follows that the
meeting graph of F is the complete bipartite graphKl,l′ and therefore the minimum
separator vertex set of Kl,l′ has cardinality min{l, l′}. The linear time algorithm
described in Theorem 3.3.4 allows us to compute the rings of the system and their
lengths.

Corollary 3.5.11. Let F be a SCS whose communication graph is a cycle. Let 2lπ
and 2l′π be the lengths of the two rings in F . The three measures, broadcasting
resilience, coverage resilience and k-isolation resilience (for all k ≤ max{l, l′}),
have the same value, which is min{l, l′} and, this value can be computed in linear
time.

Grids

Lemma 3.5.12. Let F be an N ×M SCS. The broadcasting resilience of F is
N +M − 2.

Proof. From Theorem 3.4.45 we deduce that the meeting graph of F is a complete
graph if and only if N = 1 or M = 1. In any of these cases the lemma holds.

If N ≥ 2 and M ≥ 2, the meeting graph TF has a separator set S ⊂ V (TF)
such that |S| = κ(TF). Now, from Theorem 3.4.46 we know that the 1-isolation
resilience of F is N +M − 2, then, by using Corollary 3.5.7, we have that κ(TF) ≤
N +M − 2. Then:

|V (TF) \ S| = N ·M − κ(TF) ≥ N ·M −N −M + 2. (3.5)

In the following we prove that:

|V (TF) \ S| ≤ N ·M −N −M + 2. (3.6)

Let A 6= ∅ and B 6= ∅ form a bipartition of V (TF) \ S such that {a, b} 6∈ E(TF)
for all a ∈ A and b ∈ B. Let rows(A) ⊂ {1...N} and rows(B) ⊂ {1...N} denote
the sets of rows occupied by the tokens in A and B, respectively. Analogously, let
cols(A) ⊂ {1..M} and cols(B) ⊂ {1..M} denote the sets of columns occupied by
the tokens in A and B, respectively. Notice that rows(A)∩ rows(B) = cols(A)∩
cols(B) = ∅.

Take r ∈ rows(A) and c ∈ cols(A), let z be the token of F on the circle
of row r and column c. If z is not in A then z is in S. Let A′ = A ∪ {z}
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and S ′ = S \ {z}. Notice that A′ and B form a bipartition of V (TF) \ S ′ and
there is no edge from A′ to B. Therefore, S ′ is a separator set and |S ′| < |S|
which is a contradiction. Thus, for every r ∈ rows(A) and c ∈ cols(A) the
token on the circle (r, c) is in A and |A| = |rows(A)| · |cols(A)|. Analogously,
we can prove that |B| = |rows(B)| · |cols(B)|. To simplify the notation, let
|rows(A)| = rA, |cols(A)| = cA, |rows(B)| = rB and |cols(B)| = cB. Then:
|V (TF) \ S| = |A|+ |B| = rA · cA + rB · cB.

Since rB ≤ N − rA and cB ≤M − cA, then:

rA ·cA+rB ·cB−N ·M+N+M−2 ≤ rA ·cA+(N−rA)·(M−cA)−N ·M+N+M−2.

The right part of the above inequality can be rewritten as:

(1− cA)(N − rA − 1) + (1− rA)(M − cA − 1).

Notice that (1− cA) ≤ 0 and (1− rA) ≤ 0. On the other hand, (N − rA − 1) ≥ 0
and (M − cA − 1) ≥ 0. This proves inequality (3.6) and the stated lemma follows
from inequalities (3.5) and (3.6).

3.6 Conclusions
Area coverage in cooperative robot networks is a fundamental component of many
applications. For instance, a group of UAVs can form a network and accomplish
complicated missions such as rescue, searching, patrolling and mapping. There
are two main issues which must be considered when developing a solution with a
cooperative robot network: coverage and communication.

In this chapter we propose various quality measures of a synchronized system of
robots related to the robustness of the network in the presence of failures. Comput-
ing these measures leads to interesting combinatorial problems from the theoretical
point of view. With respect to communication between robots, we considered two
quality measures: the k-isolation resilience and the broadcasting resilience. The
k-isolation resilience is the minimum number of robots whose removal may cause
the isolation of at least k surviving robots. Although the problem of computing
this measure is NP-hard in general, even for trees, we showed how to solve the
problem when the system is small or for small values of k. We also show how
to compute the k-isolation resilience when the communication graph is a cycle
(in linear time) or a grid (with an analytic expression) which are commonly used
configurations in multi-UAVs applications. The broadcasting resilience is related
to the capacity of the system for sending messages through the network, it can be
computed in O(nκ ·min{κ3 + n, nκ}) time where n is the number of trajectories
and κ is the broadcasting resilience value. Additionally, we showed how to improve
this complexity on trees to O(n3/2) time, on cycles to O(n) time and, on grids to
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constant time. For the study of the robustness with respect to area coverage, we
introduced the concept of coverage resilience as the minimum number of robots
whose removal may result in at least one non-covered trajectory segment. Notice
that if we denote this measure as ρc, the removal of at most ρc−1 robots from the
system guarantees that the total area is covered. In order to bound the idle-time
of the system, that is, the maximum time a point of the area is unattended by the
robots, we also define the T -coverage resilience as the minimum number of robots
we can remove so that the idle-time is at least T . We gave a linear time algorithm
to compute these values of resilience for a general communication graph and we
found closed form solutions depending on the input size for trees and grid-graphs.
Moreover, we showed some relationship between the measures. For example, the
three measures match when the communication graph is a cycle.

Notice that the time complexity of Theorem 3.5.6 depends on the algorithm ex-
posed in [63] which computes the vertex-connectivity of any general graph. Then,
it could be interesting to study if there is a better algorithm to compute the
broadcasting resilience by using some specific properties of the vertex-connectivity
in meeting graphs.
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Chapter 4
Randomized Synchronized
Communication Systems

Stochastic multi-UAV systems have attracted considerable attention in the
field of mobile robots. This approach brings several advantages, such as lower

times to complete tasks, cost reduction, higher scalability, and more reliability,
among others [150]. In a pure random mobility model, each node randomly se-
lects its direction, speed, and time, independently of other nodes. Some models
include random walks, random waypoints or random directions. See [26] for a
comprehensive survey.

In this chapter we introduce some stochastic behavior for the surviving robots
of a partial SCS (see Definition 3.1.1 of Chapter 2) in order to gain robustness
in the system. Recall that in a partial SCS the surviving robots perform a de-
terministic protocol when they arrive to a link position: if there is a robot in the
neighboring trajectory then they exchange information and remain in their respec-
tive trajectories, and, if there is no robot in the neighboring trajectory then the
robot shifts to the neighboring trajectory. In this chapter we call deterministic
strategy to this protocol. In Chapter 3 we have presented three problems that
may appear in a partial SCS using the deterministic strategy: isolation (a robot
always fails trying to meet a robot in the communication links), uncovering (some
trajectory sections are non covered) and loss of connectivity (the system loses the
capacity to relay messages between every pair of robots in the system). In this
chapter, we introduce a random way to perform the shifting operations in order
to avoid these drawbacks.

We are going to show that the random alternatives behave really well with
very few robots in the system. Then, in scenarios where we have many subregions
(trajectories) and a few robots its more convenient to use the random strategies

107



108 CHAPTER 4. RANDOMIZED SCS’S

of this chapter.

4.1 Random strategies and measures

Two random strategies are proposed in this chapter as an alternative to the deter-
ministic strategy proposed and studied in chapters 2 and 3. The first one is easier
to study theoretically and the other one is more convenient in practical scenarios.

Random strategy: Every time a robot arrives at a communication link be-
tween its current trajectory and a neighboring one, it decides with probability
p = 1

2
if it remains in its trajectory or it passes to the neighboring one by a shift-

ing operation. Notice that by following this protocol more than one robot may
share the same position. For instance, if two robots arrive at a communication link
and one of them decides to maintain its trajectory and the other one decides to
make a shifting operation, then they will move together like a single robot. Work-
ing with aerial robots, this drawback can be solved by flying at different altitudes
or by flying side by side within a safety margin. Also note that while the robots
are flying together, they can maintain permanent communication.

Quasi-random strategy: Every time a robot arrives at a communication link,
the following rule is applied: if there is no robot in the neighboring trajectory, then
it decides with probability p = 1

2
if it remains at its trajectory or if it passes to the

neighboring one by a shifting operation. Otherwise, it remains in its trajectory.
Note that with this protocol, no two robots travel on the same trajectory and a
collision avoidance approach is not required in this case.

Definition 4.1.1. We will call randomized SCS (R-SCS) to a synchronized system
where the robots are applying the random strategy. A quasi-randomized SCS (QR-
SCS) is defined analogously.

Remark 4.1.2. The behavior of a robot in a R-SCS is independent of the other
robots; the movement of a robot in QR-SCS depends on the behavior of the other
robots. Finally, the behavior of the robots following the deterministic strategy is
totally co-dependent.

In what follows we introduce three criteria to compare the performance of these
strategies. The metrics carry valuable information regarding the coverage and the
communication performance of a SCS.

• The idle-time is the average time that a point in the union of the trajectories
remains unobserved by a robot.

• The isolation-time is the average time that a robot is without communica-
tion with any other robot.
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• The broadcast-time is the average time elapsed from the moment a robot
emits a message until it is received by all the other robots.

It is worth mentioning that these metrics are related to some resilience measures
defined previously for SCS’s: idle-time is related to coverage-resilience, defined the
minimum number of robots whose removal may result in a non-covered subarea
(see Definition 3.1.8), isolation-time is related to 1-isolation resilience, defined as
the cardinality of a smallest set of robots whose failure suffices to cause that at least
one surviving robots operates without communication (see Definition 3.1.6) and
broadcast-time is related to broadcasting resilience, introduced as the minimum
number of robots whose removal may disconnect the network (see Definition 3.1.7).

4.2 Theoretical results
In this section we present some theoretical bounds on the above metrics. We then
compare these values with experimental results. First, we review some well-known
notions of random walks. Random walks are the main tool that we will use to
study the behavior of the metrics in a partial SCS. We follow the notation of [85].
Let G = (V,E) be a connected (di)graph with n vertices. Starting at a vertex v0,
randomly select a neighbor v1 of v0. Then randomly select a neighbor of v1 and so
on. This process yields a sequence of vertices of G, which we call a random walk
on G. Let vt denote the vertex of the random walk at the t-th step. Let P0 be
the probability distribution from which v0 was chosen, i.e., P0(v) = Pr(v0 = v) for
all v ∈ V . We denote by M = (pvw)v,w∈V the transition matrix, i.e., pvw is the
probability of moving from vertex v to vertex w. Then, Pt = M tP0 denotes the
probability distribution of vt, i.e., Pt(v) = Pr(vt = v) for all v ∈ V .

The period k of a vertex v is defined as k = gcd{n > 0|Pr(vt = v|v0 = v) > 0}.
In other words, v has period k if any subsequent visit to v occurs in multiples of
k time steps. If k = 1, the vertex v is aperiodic. If every vertex in G is aperiodic,
G is said to be aperiodic.

A probability distribution P that satisfies that P = M ·P is called a stationary
distribution. If the graph G is (strongly) connected, then the stationary distribu-
tion exists and it is unique. Moreover, if G is also aperiodic, Pt converges to the
stationary distribution as t→∞.

4.2.1 The discrete model of a partial SCS

Let (α, δ) be the synchronization schedule of a partial SCS F with n trajectories
{C1, . . . , Cn}. Consider the digraph G = (V,E), where V = {1, . . . , n} and (i, j)
is an arc of E from i to j if there is a path P (not necessarily in the same ring)
of length 2π from αi = α(Ci) to αj = α(Cj) following the assigned travel direc-
tions in the circles. See Figure 4.1, where a SCS is shown and a path between
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C6

C1

C2

C3

C4

C5

Figure 4.1: The solid points are the starting positions of synchronization sched-
ule. The path (in red stroke) from α6 to α5 has length 2π and follows the travel
directions along the visited trajectories. This path traverses four communication
links.
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Table 4.1: (a) Adjacency matrix of the discrete motion graph on Figure 4.1. (b)
Matrix of transition probabilities of the discrete motion graph on Figure 4.1

the starting positions α6 and α5 is marked in bold red stroke. Without loss of
generality, assume that the starting positions are not link positions (notice that if
some starting positions are on a communication link then taking as starting po-
sitions the trajectory points after (or before) ε units of time we get an equivalent
synchronization schedule). Table 4.1a shows the adjacency matrix of G. Note that
the diagonal entries (i, i) have value equal to 1 because in one unit of time a robot
can make a tour along its trajectory and come back to the same starting position.
We call G the discrete motion graph of the system.

Due to synchronization, if a robot is at some position in α then all other robots
are also at some position in α (regardless the strategy being used). Moreover, if
a robot is at a position in α then, after one unit of time, it will also be at some
position in α. The movement of a robot in F can be modeled by a ‘walk’ on G
and one step of the ‘walker’ on G corresponds to one time unit on F . Also, given
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a sequence of edges (a path) on G traversed by a walker, we are able to get the
traversed path by the corresponding robot in F . Thus, the behavior of k available
robots in F is modeled by k simultaneous walkers on G.

The random strategy can be modeled using standard random walks on G.
This does not happen for quasi-random- or deterministic- strategies, since the
movement of an agent in G depends on the motion of the other agents of the
system (Remark 4.1.2). The following section focus on the study of the random
strategy using random walks on the graph G.

4.2.2 Randomized SCS’s

This section focus on the theoretical study of the random strategy using random
walks on the graph G. Let G = (V,E) be the discrete motion graph of a R-SCS
with synchronization schedule (α, δ). Let αi and αj be the starting positions of
trajectories Ci and Cj, respectively. If (i, j) ∈ E, there exists a path P of length 2π
from αi to αj. Let cij be the number of communication links traversed by P . For
an illustration, in Figure 4.1 the path from α6 to α5 traverses four communication
links and c6,5 = 4. The transition matrix of the process M = (pij)i,j∈V is defined
as follows:

Mij =

{
(1/2)cij if (i, j) ∈ E

0 otherwise.
Table 4.1b shows the transition matrix associated to the discrete motion graph

of the SCS shown in Figure 4.1. Using the definition of M and taking into ac-
count that in every communication link there are two possible paths to follow, we
immediately derive that:

Property 4.2.1. The matrix M is a right stochastic matrix, i.e.,
∑

jMij = 1.

Lemma 4.2.2. The transition matrixM associated to a random walk on a discrete
motion graph is doubly stochastic. That is:

∑

i

Mij =
∑

j

Mij = 1.

Proof. Let S = (α, δ) be the synchronization schedule used in the system. By
Property 4.2.1 we have

∑
jMij = 1. Now, let us prove that

∑
iMij = 1.

Let S ′ = (α,−δ) be the synchronization schedule that results from reversing
the orientation of every circle and maintaining the synchronized starting points.
Let G′ = (V,E ′) be discrete motion graph of the system using S ′ and letM ′ be the
transition matrix associated to a random walk on G′. Note that G and G′ have
the same set of vertices V and (i, j) ∈ E if and only if (j, i) ∈ E ′. Also note that
Mij = M ′

ji and then M ′ = Mᵀ. By Property 4.2.1 we know that
∑

jM
′
ij = 1, that

is, each row of M ′ adds up to 1. Therefore, each column of M adds up to 1 and
the result follows.
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CiCj

Ci′

(a)

CiCj

Ci′

(b)

Figure 4.2: Illustration of the proof of Lemma 4.2.3. (a) In red: path from αj to
αi′ . In blue: path from αi to αj. (b) In red: path from αi′ to αj. In blue: path
from αj to αi.

Lemma 4.2.3. The discrete motion graph of a synchronized system is strongly
connected.

Proof. We can prove this lemma by induction on the number of trajectories of the
system. It is easy to check that the lemma holds for a synchronized system with
one or two trajectories. Suppose, as inductive hypothesis, that the lemma holds
for any synchronized system of n ≥ 2 trajectories.

Let F be a synchronized system with n+ 1 trajectories. Let G be the discrete
motion graph of F . Let T be a spanning tree of the communication graph of F .
Let Ci and Cj be two trajectories of the system such that Ci corresponds to a
leaf of T and Cj is adjacent to Ci in T , see Figure 4.2. Notice that by removing
Ci from the system and keeping the starting positions and travel directions in the
others trajectories we get a synchronized system F ′ with n trajectories. Let G′ be
the discrete motion graph of F ′. Let i′ be an arbitrary vertex of G′. By inductive
hypothesis there two paths in G′, one from i′ to j and another from j to i′. Then,
there exist paths in F ′ from αi′ to αj and viceversa, Figure 4.2 shows these paths
using red strokes in subfigures (a) and (b), respectively. Observe that, in F there
are paths of length 2π from αi to αj and viceversa (these paths are shown using
blue color in Figure 4.2, (a) and (b), respectively). Therefore, the arcs (i, j) and
(j, i) are in G. As a consequence, the path from i′ to j (resp. from j to i′) in G′
can be extended using the edge (j, i) (resp. (i, j)) and the lemma is fulfilled.

From the previous lemma is directly deduced that:

Corollary 4.2.4. A random walk in a discrete motion graph is irreducible.

Also, from the previous lemma and taking into account that Mii > 0 for all i
we get that:

Corollary 4.2.5. A random walk in a discrete motion graph is aperiodic.

Now, from Corollary 4.2.5, Lemma 4.2.3 and Lemma 4.2.2 we arrive to the
main result of this section:
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Theorem 4.2.6. A random walk on a discrete motion graph has a stationary
distribution π∗ and π∗ is uniform. That is, π∗(i) = 1/n for all 1 ≤ i ≤ n, where n
is the number of trajectories in the system.

From Theorem 4.2.6 and using the properties of a synchronized system we have:

Corollary 4.2.7. Let F be a R-SCS. Let (α, δ) denote the synchronization schedule
used on F . Assuming that the starting position of a robot is picked with uniform
probability in α = {α1, . . . , αn}, then after t ∈ R+ units of time, the robot is at
some point of α′ = {α1+2πδ1t, . . . , αn+2πδnt} with uniform probability. Moreover,
(α′, δ) is a new synchronization schedule (which is equivalent1 to (α, δ)).

Let F be a R-SCS and let G = (V,E) be its discrete motion graph. Knowing
that the stationary distribution of a random walk on G is uniform, in the following
two subsections we present some theoretical results about the idle-time and the
isolation-time of F . Obtaining theoretical results for the broadcast-time for our
model seems to be hard and it remains open for future works. Indeed, previous
works are limited to specific graph families, namely grids (using a protocol different
from ours, since they consider all possible directions at each vertex) and random
graphs. See [55] and references therein for a recent work on the broadcast time.

The idle-time

In this subsection we show results on the idle-time of a R-SCS with k robots.

Theorem 4.2.8. Suppose that k agents are doing a random walk on a discrete
motion graph G = (V,E) and their starting vertices are taken uniformly on V .
Let v an arbitrary vertex of V . The expected number of robots that visit v during
an interval of dn

k
e steps is at least one (n = |V |).

Proof. Let t1, . . . , tc be an arbitrary sequence of c = dn
k
e steps of the random walk

(ti = t1 + i − 1 for all 1 < i ≤ c). By Theorem 4.2.6, at the step ti (1 ≤ i ≤ c)
each robot is at v with probability 1/n. For every 1 ≤ i ≤ c and every 1 ≤ j ≤ k,
let Xij be the random variable given by:

Xij =

{
1 if the j-th drone is at v at step ti,
0 otherwise.

Therefore,

E[Xij] =
1

n
.

Let

Y =
c∑

i=1

k∑

j=1

Xij.

1See Definition 2.2.10 of Chapter 2.
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Note that the expected number of robots that visit v during the given interval of
steps is equal to E[Y ]. By linearity of expectation

E[Y ] =
c∑

i=1

k∑

j=1

E[Xij] =
c∑

i=1

k∑

j=1

1

n
= c

k

n
=
⌈n
k

⌉ k
n
≥ 1.

From the previous theorem we obtain:

Corollary 4.2.9. Suppose that k agents are doing a random walk on a discrete
motion graph G = (V,E) and their starting vertices are taken uniformly on V .
For all v ∈ V , let Iv be the random variable that indicates the number of steps
between two consecutive visits to v. The expected value of Iv is E[Iv] ≤ dnk e, where
n = |V |.

Taking into account that one step in the discrete motion graph corresponds
to one time unit and, by using Corollary 4.2.7 and Theorem 4.2.8, we deduce the
following conclusion:

Corollary 4.2.10. Let F be a R-SCS where k robots are operating. If the robots
start at randomly chosen positions then the idle-time is at most dn

k
e, where n = |V |.

The result above assumes that the robots are uniformly located at the beginning
and that the system lies in the stationary distribution. However, in practical
applications the robots are all deployed at a given position, for instance in the
trajectories nearest to the boundary of the global region. In this case, we need
to study the time it takes for the stationary distribution to be reached by the
system, that is, the mixing time. Informally, the mixing time is the time needed
for a random walk to reach its stationary distribution, or, more specifically, the
number of steps before the distribution of a random walk is close to its stationary
distribution. In the experiments, we will show that the mixing time in our model
is really small for grids in real scenarios and we can say that, after a few units
of time (5 for a 5 × 5 grid, i.e., for 25 trayectories), the idle-time of the random
strategy for k drones is at most dn

k
e.

The isolation-time

A meeting occurs when two robots arrive at the same time at a common communi-
cation link between their trajectories. We want to study the expected time a robot
is isolated, that is, the expected time between two consecutive meetings of a robot.
We study this measure theoretically in the discrete motion graph using resources
from random walks as in the previous section. Therefore, in this theoretical study
we consider a meeting between two agents when they visit a same vertex of the
discrete motion graph at the same time.
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v0

v1

vs

u′′

u′

p

qo

v′1
v′0

Figure 4.3: The points v0, v1, . . . , vs, v′0, v′1 are the corresponding starting positions
on their circles. The path v0, v1, . . . , vs, traversed by a robot u, is shown using blue
solid stroke. The robot u′ departs with u from v0 at time t and they separate their
paths at the communication link p. The robot u′′ meets u at the communication
link q and they arrive at vs traveling together. If a robot u′′′ departs from v′0 at
time t following the red dashed stroke that ends at v′1, then, u and u′′′ meet in the
communication link o without visiting any starting position together.

In the following, we describe the difference between the isolation-time measure
on a R-SCS and its corresponding discrete communication graph. Let F be a
R-SCS and let G be its corresponding discrete motion graph. Suppose that, in
G, an agent u has two consecutive meetings at times t and t + s. Thus, agent u
has been isolated by s time units in G. Let v0, . . . , vs be the consecutive sequence
of vertices of G visited by u in this time interval. Let u′ and u′′ be the agents
that meet u in v0 and vs, respectively. Having into account that the vertices of
G are not communication links, then, in F , u and u′ separate their paths in a
communication link p traversed by them at some time t′ such that t < t′ < t + 1,
see Figure 4.3. Similarly, u and u′′ meet in a communication link q of F at some
time t′′ such that t+s−1 < t′′ < t+s, see Figure 4.3. Therefore, in F , u has been
isolated by less than s time units. Also, notice that, if two robots in F meet in a
communication link (o in Figure 4.3) coming from two different starting positions
(v0 and v′0 in Figure 4.3) and, after the meeting, they go toward different starting
positions (v1 and v′1 in Figure 4.3), then, this meeting is not reported in G.

From these observations, the following remark is straightforward deduced:

Remark 4.2.11. The isolation-time of a robot in a R-SCS is always less than the
isolation-time in the corresponding discrete motion graph.

Theorem 4.2.12. Suppose that k agents are doing a random walk on a discrete
motion graph G = (V,E) and their starting vertices are taken uniformly on V .
Then, the expected number of times that an agent meets another one at some

vertex of V during an interval of
⌈

nk−1

nk−1 − (n− 1)k−1

⌉
steps is at least one.
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Proof. Let t1, . . . , tc be an arbitrary sequence of c =

⌈
nk−1

nk−1 − (n− 1)k−1

⌉
steps

of a random walk (ti = t1 + i − 1 for all 1 < i ≤ c) performed by an agent u.
By Theorem 4.2.6, we deduce that u is alone at a vertex v of V at step ti with
probability: 1

n

(
n−1
n

)k−1
= (n−1)k−1

nk . And, u is not at v at step ti with probability
n−1
n

. Thus, the probability of u being with at least another robot at v at step ti is
given by:

1− (n− 1)k−1

nk
− n− 1

n
=
nk−1 − (n− 1)k−1

nk
.

Let Xi,v be the random variable given by:

Xi,v =

{
1 if u meets some robot at v at step ti,
0 otherwise.

It easy to see that

E[Xi,v] =
nk−1 − (n− 1)k−1

nk
.

Let

Y =
c∑

i=1

∑

v∈V

Xi,v.

Now, the expected number of times that u meets another agent at some vertex
of V during the given sequence of steps is equal to E[Y ] and

E[Y ] =
c∑

i=1

∑

v∈V

E[Xi,v] =
c∑

i=1

∑

v∈V

(
nk−1 − (n− 1)k−1

nk

)
≥ 1.

From this theorem we arrive to:

Corollary 4.2.13. Suppose that k agents are doing a random walk on a discrete
motion graph G = (V,E) and their starting vertices are taken uniformly on V .
For every agent, the expected number of steps between two consecutive meetings is

at most
⌈

nk−1

nk−1 − (n− 1)k−1

⌉
.

Now, extending the previous result to a R-SCS (using Remark 4.2.11), we have:

Corollary 4.2.14. Let F be a R-SCS where k robots are operating. If the robots
start at randomly chosen positions then, for every robot, the expected time between

two consecutive meetings is less than
⌈

nk−1

nk−1 − (n− 1)k−1

⌉
.
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Figure 4.4: Behavior of the function I(k) =
⌈

nk−1

nk−1−(n−1)k−1

⌉
, the expected isolation-

time for 2 ≤ k ≤ 100 robots considering a scenario of n = 100 trajectories.

Observe that Corollary 4.2.14 says that a robot meets another robot in an

interval of time of length at most
⌈

nk−1

nk−1 − (n− 1)k−1

⌉
. This implies that for only

two robots in the system, they meet at most every n times unit (consider k = 2 in
the formula).

Figure 4.4 shows the behavior of the expected time when k is increasing. The
behavior of this function says that a small number k << n of drones is enough to
get a good result with the random strategy .

4.3 Experimental results

In this section, we evaluate the validity of the proposed random strategies com-
paring the values of idle-time, isolation-time and broadcast-time with the results
obtained using the deterministic strategy. Also, we show that the bounds we
proved for idle-time and isolation-time are very tight and evaluate the mixing
time to explore the rate of convergence of the system to the uniform distribution.
These experiments were implemented in Python3.6 using NumPy 1.15.2. The code
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is available in GitHub2.

4.3.1 Experiments description

Typically, in surveillance tasks with small drones, the map is split into a grid of
small cells. Thus, we performed several experiments on grid graphs of sizes 10×10,
15×15, 20×20 and 30×30. For every one of these grids of N×N size, we simulated
the random strategies with k robots, 1 ≤ k < N2. And, for every grid and every
value k, we have performed 10 repetitions of the experiment, choosing the starting
position of each robot uniformly at random from the synchronized positions. Each
experiment in an N × N grid ran for 4N2 units of time. In the following, E(i)

N,k

denotes the i-th repetition of an experiment in a grid of size N×N using k robots.
Let F be a synchronized N×M grid shaped system. LetWN,M be an auxiliary

graph, that we call walking graph, whose vertices are the communication links (the
edges between neighboring circles of F) and the 2(N+M) touching points between
the trajectories and an imaginary box circumscribed on F , see Figure 4.5. There
is a directed edge (v, w) in WN,M if there exists an arc of length π/2 between
the points corresponding to v and w following the assigned travel directions. In
the following, let V (WN,M) and E(WN,M) denote the set of vertices and arcs of
WN,M , respectively. Each robot moves on F following the travel directions and
can perform a shifting operation only at the communication links. Thus, any (not
necessarily simple) path inWN,M corresponds to a valid sequence of movements of
a robot in F where a step inWN,M corresponds to 1/4 of a time unit in F . In this
way, the movement of an agent inWN,M (following the arcs in E(WN,M)) emulates
a valid sequence of movements of a robot in F . We performed the experiments
on the walking graph WN,N . From now on, for simplicity we denote the walking
graph by WN .

4.3.2 Experiments for the idle-time

Note that every point at a circle of an N × N grid SCS is at some arc of WN .
Hence, the idle-time of an N ×N grid SCS using k robots is the idle-time of the
arcs of WN using k robots. In order to measure this value, we do the following:
in each experiment E(i)

N,k, for every arc e ∈ E(WN), we count the number of times
that e is traversed by a robot and when it is traversed. Having all the visits to
an arc e, we can compute the average time idle(i)e (k) between consecutive passes
through the arc e in the experiment E(i)

N,k.
Let idlee(k) = 1

10

∑10
i=1 idle

(i)
e (k) denote the average time between consecutive

passes through the arc e all over the 10 repetitions of the experiment using k robots.
Finally, in order to compare the idle-time of these strategies having into account

2https://github.com/varocaraballo/random-walks-synch-sq-grid
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Figure 4.5: The walking graph of the 3× 3 grid SCS shown in Figure 3.1(b). The
imaginary box where the system is inscribed is drawn using dotted stroke. The
vertices of the walking graph are the non-solid points. Notice that the directed
arcs between these nodes follow the travel directions assigned in Figure 3.1(b).
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Figure 4.6: Comparison of the idle-time obtained in the experiments using the
strategies random, quasi-random (Q-random) and deterministic: (a) 10× 10 grid
SCS, (b) 15× 15 grid SCS, (c) 20× 20 grid SCS and (d) 30× 30 grid SCS.
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the worst case, average case and best case we define the functions

max_idleWN
(k) = max

e∈E(WN )
{idlee(k)},

avg_idleWN
(k) =

1

|E(WN)|
∑

e∈E(WN )

idlee(k),and

min_idleWN
(k) = min

e∈E(WN )
{idlee(k)}, respectively.

We have computed these three functions using the three mentioned strategies
and the results are shown in Figure 4.6. The three functions max_idle, avg_idle
and min_idle are shown using dotted, solid and dashed stroke respectively. These
functions are shown in three different colors: blue, orange and red for random,
quasi-random and deterministic strategy, respectively.

Figures 4.6(a), 4.6(b), 4.6(c) and 4.6(d) correspond to grid SCSs of sizes 10×
10, 15 × 15, 20 × 20 and 30 × 30, respectively. In every subfigure we show the
evolution of max_idle, avg_idle and min_idle for the three strategies. Note
that, in the charts of Figure 4.6 we do not show the behavior of the functions until
the maximum tested value of k (which is N2) because we want to emphasize the
differences between the three tested strategies and these differences are evident
for low values of k (after a certain value of k, the functions are similar for all
the strategies). Note that, when using low values of k, there is a huge difference
between the deterministic strategy and the other ones. This difference is not
surprising because from Lemma 3.3.8, we know that an N × N grid SCS graph
has N rings and to cover everything using the deterministic strategy, at least
one robot per ring is required, Lemma 3.3.2. Therefore, with less than N robots
is not possible to cover every point and we get a very high idle-time. In these
cases the idle-time is bounded by the duration of the simulation (4N2), although,
what really happens is that some points are never visited. Note that, because the
starting positions are taken randomly, even if k ≥ N , some rings could be empty
of robots. Therefore, all the points involved in these rings are uncovered.

Also, note that the max_idle is not 4N2 for every k < N . That is because the
value idlee(k) is amortized among the 10 repetitions of the experiment (in some
experiment E(i)

N,k a ring r may be empty of robots and then idle(i)e (k) = 4N2 for
every arc e involved in r, but in some other experiment E(j)

N,k, the ring r may have
c > 0 robots, thus, idle(j)e (k) = N/c for every arc e involved in r).

Notice that with the random or quasi-random strategies we get a very similar
behavior. In fact, a very good result because the function avg_idleWN

is close
to the function f(k) = N2/k and this is the best possible behavior taking into
account that we have 2πN2 length of trajectory (the sum of the N2 circles) to
cover and k robots moving at 2π units of length per time unit. Moreover, by using
one of these random strategies, the function avg_idleWN

starts decreasing rapidly
and, around to the value k = N =

√
n (recall n = N2 in these grid SCSs), the
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Figure 4.7: Comparison of the isolation-time obtained in the experiments using
the strategies random, quasi-random (Q-random) and deterministic: (a) 10 × 10
grid SCS, (b) 15× 15 grid SCS, (c) 20× 20 grid SCS and (d) 30× 30 grid SCS.

decreasing rate is notably reduced. This behavior indicates that, when one of the
random strategies is being used in a SCS with k ≥ N robots, the addition of more
robots to the system does not represent a significant improvement of the idle-time.
Another conclusion that we can extract from the experiments is that, using any
of the two random strategies with very few robots (k ≈ N), the idle-time is really
good. However, to get good results using the deterministic strategy we need, with
high probability, a much larger number of robots.

4.3.3 Experiments for the isolation-time

Note that every meeting between two robots in an N × N grid SCS takes place
at one of the vertex of the walking graph WN . Hence, in an N × N grid SCS
using a set U of k robots, the isolation-time of the system is the expected time
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between two consecutive meetings at a vertex of WN using k robots. In order to
measure this value, we do the following: in each experiment E(i)

N,k, for every robot
u ∈ U , we count the number of times that u meets some other robot and when
these meetings occur. Having all the meetings of u we can compute the average
time isolation(i)u (k) between consecutive meetings of u in the experiment E(i)

N,k.
In order to compare the isolation-time of the strategies having into account the

worst case, average case and best case, we define the functions:

max_isolation(i)WN
(k) = max

u∈U
{isolation(i)u (k)},

avg_isolation(i)WN
(k) =

1

k

∑

u∈U

isolation(i)u (k),

min_isolation(i)WN
(k) = min

u∈U
{isolation(i)u (k)},

respectively. Then, we compute the averaged values all over the 10 repetitions of
the experiments:

max_isolationWN
(k) =

10∑

i=1

max_isolation(i)WN
(k)

10
,

avg_isolationWN
(k) =

10∑

i=1

avg_isolation(i)WN
(k)

10
,

min_isolationWN
(k) =

10∑

i=1

min_isolation(i)WN
(k)

10
.

We have computed the values of these three global functions using the three
tested strategies and the results are shown in Figure 4.7. The three functions
max_isolation, avg_isolation and min_isolation are shown using dotted,
solid and dashed stroke, respectively. These functions are shown in three dif-
ferent colors: blue, orange and red for random, quasi-random and deterministic
strategy, respectively.

Figures 4.7(a), 4.7(b), 4.7(c) and 4.7(d) correspond to grid SCSs of sizes 10×10,
15×15, 20×20 and 30×30, respectively. In every subfigure, we show the evolution
of the max_isolation, avg_isolation and min_isolation for the three strategies
for k ≥ 2 (note that a single robot in the system is always isolated). As in the
previous subsection, Figure 4.7 does not show the behavior of the functions until
the maximum tested value of k because the differences between the strategies are
much more evident for low values of k (after a certain value of k, the functions
are similar between them for all the strategies). Note that, using low values of k,
the deterministic strategy is much worse than the random ones. Notice that for
two robots the values of max_isolation, avg_isolation and min_isolation are
the same (that is, the three functions start at the same point for every strategy).
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Figure 4.8: Comparison of the isolation-time obtained in the experiments using
the strategies random and quasi-random (Q-random): (a) 10 × 10 grid SCS, (b)
15× 15 grid SCS, (c) 20× 20 grid SCS and (d) 30× 30 grid SCS.
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This behavior is because when a robot has a meeting, it is with the other one, so,
they both have exactly the same statistics. Therefore, the average, maximum and
minimum isolation times of them have the same value.

From Theorem 3.4.45, we know that in an N ×N grid SCS with robots using
the deterministic strategy, two robots meet each other if and only if they start
in circles of the same row or column. Thus, using k � N2 robots, it is very
probable that a robot starts in a circle whose row and column are different from
the rows and columns of any other robot in the system. Because of this, the
values of max_isolation are so high for small values of k. Also, note that us-
ing a relative small number of robots, but greater than 2, the probability of at
least two of them start at the same column or the same row is high. Because of
this, the min_isolation function decreases quickly. Therefore, using the deter-
ministic strategy there is a huge difference between the functions max_isolation,
avg_isolation and min_isolation. Finally, notice that avg_isolation is closer
to min_isolation than to max_isolation. This indicates that using a small
group of robots there is a high probability that one of them is isolated but, it is
very probable that the number of non-isolated robots is greater than the number
of isolated robots.

In Figure 4.7, it is difficult to observe the behavior of the random strategies
due to the high values of isolation-time using the deterministic strategy. Notice
that we get a very similar behavior using any of the randomized strategies, which
it is much better than using the deterministic strategy. We have added Figure 4.8
to compare the values of isolation-time using the random strategies. We have
used a logarithmic scale in the Isolation-time axis. Notice that, the greater the
number of robots is, the better Quasi-random strategy is with respect to Random
strategy. Another conclusion that we can extract from Figure 4.8 is that, using any
of the random strategies, with very few robots respect to the number of trajectories
(cells), i.e. k ≈ N =

√
n, we obtain a very good value of isolation-time. However,

to get good results using the deterministic strategy we need, with high probability,
a much larger number of robots (see Figure 4.7). Moreover, the value k = N marks
a threshold in the function avg_isolation when one of the two random strategies
is being used because, the addition of more robots to a SCS with k ≥ N robots
does not represent a significant reduction of the isolation-time.

4.3.4 Experiments for the broadcast-time

In this subsection we study the broadcast-time measure using the three different
proposed strategies for grid SCSs. To evaluate this measure, we have elaborated
a different experiment. Suppose that we have an N × N grid SCS F with k ≥
2 (k ∈ N) robots. In order to estimate the broadcast-time of the system we do the
following: In the walking graphWN of F we randomly set the k starting positions
of each robot with uniform probability, then we randomly choose a robot to emit a
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Figure 4.9: Comparison of the broadcast-time obtained in the experiments using
the strategies random, quasi-random (Q-random) and deterministic: (a) 10 × 10
grid SCS, (b) 15× 15 grid SCS, (c) 20× 20 grid SCS and (d) 30× 30 grid SCS.
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message. After that, the simulation starts using one of the proposed strategies until
all the robots of the team have received the message or 4N2 time units have elapsed.
Let E(i)

N,k and broadcast(i)WN
(k) denote the i-th repetition of this experiment and its

simulation time, respectively. Note that broadcast(i)WN
(k) = min{4N2, t} where t

is the required time for the message to be known for all the robots in the team. We
repeat this experiment N2 times and we estimate the broadcast-time of F using
k robots by the value:

broadcastWN
(k) =

1

N2

N2∑

i=1

broadcast(i)WN
(k).

We have computed the values of the function broadcastWN
for 2 ≤ k < N2

and N = 10, 15, 20 and 30. The results of our experiments are shown in Figure 4.9
using a logarithmic scale for the broadcast-time and the number of used robots.
According to this picture, for small values of k, the random strategies are much
better than the deterministic one. As mentioned above, two robots using the de-
terministic strategy meet each other only if their initial positions are in the same
row or the same column (Theorem 3.4.45). Consider now a new auxiliary graph
H as follows: add a vertex for every robot and an edge between two robots exists
if they are on circles within the same row or the same column. Obviously, it is
possible to make a broadcast if and only if H is connected. When the number of
robots is small, it is very probable than H is not connected. For this reason, broad-
cast times are very high by using the deterministic strategy for a small number of
robots.

When the number of robots is sufficiently high (k > N4/3), the three strategies
are more similar. However, we can see that the deterministic strategy is better than
the others although the quasi-random strategy gives similar results, see Figure 4.9.
The reason of this behavior is that when k is big, the auxiliary graphH is connected
and, a broadcast can be completed in approximately N time units. Also, note that,
using the quasi-random strategy, the more robots we have the more similar this
strategy is to the deterministic one.

Finally, notice that using any of the proposed strategies, the broadcastWN

function “rises” slightly at the beginning and after that, it decreases. From this,
we deduce that at the very beginning, adding robots to the system means an
increasing of the broadcast time. This fact means that it is more difficult to
complete a broadcast for a bigger team. However, after a certain threshold, the
more robots we have, the faster a broadcast is completed. This behavior can be
explained because after a certain value of k, an increase on the number of robots
helps to spread the message. More specifically, at the beginning only one robot
knows the message. If the number of robots is sufficiently large, after a few time
units, it will meet someone (as it is shown in the previous subsection), and after
that, there are two robots that know the message. Then, after another few time
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Figure 4.10: Estimated mixing times in R-SCSs of sizes 5 × 5, 10 × 10, 15 × 15,
20× 20, 25× 25 and 30× 30.

units, they will meet more robots and ideally 4 robots would know the messages
and so on. Therefore, the more robots carry the message, the faster it is spread.

4.3.5 Mixing time

In this subsection, we experimentally study the mixing time of the distribution cor-
responding to a random drone in a R-SCS. Our study is based on the discretization
of a R-SCS introduced in Section 4.2.1 and the transition matrix presented in Sec-
tion 4.2.2. The experiment of this section consists on computing the transition
matrix M corresponding to a R-SCS F and then M2,M3, . . . until a matrix close
to the uniform distribution is obtained. More precisely, we ask for a matrix M t

such that, for any initial distribution π:

||πM t − π∗|| < ε (4.1)

where || · || denotes the Euclidean norm of a vector, π∗ is the uniform distribution
(which is the stationary distribution of the random walk described by a random
drone) and ε is a small fixed value. Then, this value t is an estimation of the
mixing time.

Notice that lim
t→∞

πM t = π∗ for all initial distribution π, then lim
t→∞

M t = M∗

where M∗ is the matrix where every entry is 1/n. Therefore, πM∗ = π∗ and then:

||πM t − π∗|| = ||πM t − πM∗|| = ||π(M t −M∗)|| ≤ ||π||||M t −M∗||,

where ||M t −M∗|| denotes the 2-norm of matrix M t −M∗.
Taking into account that ||π|| = 1 it is deduced that ||πM t−π∗|| ≤ ||M t−M∗||.

Then, we look for the minimum value t such that ||M t −M∗|| < ε.
For values of N in {5, 10, 15, 20, 25, 30} we build the transition matrix M of an

N×N grid R-SCS and we seek for the smallest t such that ||M t−M∗|| < ε = 1/4.
This is a typical value to estimate the mixing time [12, 83, 123].

Figure 4.10 illustrates the obtained results. Notice that the behavior of the
mixing time seems to be linear with respect to the number of trajectories. The
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Figure 4.11: Experimental results on idle-time and the theoretical ones using a
20 × 20 R-SCS. (a) It shows the behavior of the idle-time with respect to k =
1 . . . 400 (number of robots). (b) It shows the same data of (a) but constrained to
k ≤ 15 in order to make visible the differences between the two curves.

increasing ratio (slope) is 0.17 approximately. That is, for every trajectory added
to the system, the mixing time increases by 0.17 units. The obtained estimations
of mixing times for R-SCSs of sizes 10 × 10, 15 × 15, 20 × 20 and 30 × 30 (these
are the sizes of the studied R-SCS in previous sections) are 18, 40, 71 and 159,
respectively.

4.3.6 Comparison with the theory

In this section we compare the obtained results in the previous experiments using
the random strategy and the theoretical results on idle-time and isolation-time of
sections 4.2.2 and 4.2.2 respectively. Moreover, a comparison between our experi-
ments on broadcast-time using the random strategy and the theoretical results on
regular graphs in [34] is added.

First, we show that the bound obtained for the idle-time is very tight with
respect the experiments. See Figure 4.11 where the analytical and the experimental
results are shown for a 20 × 20 grid R-SCS. In Figure 4.11(a) the results on k =
1...400 are shown. See that the analytical and the experimental results almost
coincide. Figure 4.11(b) shows the same data but constrained to k ≤ 15 in order
to make visible the differences between the two curves which are more evident with
few robots. However, notice that, even using a few robots the random strategy have
a very good performance, it is almost optimum (recall that n/k is the best possible
idle-time in a system formed by k robots in a region divided into n trajectories).

In the comparison of the isolation-time, we found that the theoretical expected
value is an upper bound of the average experimental isolation-time as we have
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Figure 4.12: Experimental results on isolation-time and the theoretical ones using
a 20 × 20 R-SCS. (a) It shows the behavior of the isolation-time with respect to
k = 2 . . . 400 (number of robots). (b) It shows the same data of (a) but constrained
to k ≤ 25 in order to increase visually the differences between the two curves.

noted in subsection 4.2.2, more specifically, Remark 4.2.11. Figure 4.12 shows the
behavior of the theoretical expected value and the average experimental isolation-
time in 20×20 grid R-SCS. In Figure 4.12(a) the global behavior of the two curves
is shown for k = 2...400. Figure 4.12(b) shows the same data but constrained to
k ≤ 25 in order to make easier to see the differences between these curves. Notice
that difference between the theoretical and experimental isolation-time decreases
when the number of robots increases. This behavior makes sense because the
effects of the phenomenon described in the second paragraph of subsection 4.2.2
are more evident when the number of trajectories is large with respect to the
number of robots, because there is a lot of room and it is very probable that the
robots are spared on the region. However, if we increment the number of robots
this effect is diluted because the greater the number of robots is, the probability
of a robot not traveling alone increases.

Let us focus now on the broadcast-time. Figure 4.13a shows a section A of size
4× 4 of a grid R-SCS F . Let S be the set of starting positions in A. Let S ′ ⊂ S
be the set of the starting positions marked as greater non-solid points. Notice
that, from any point p′ ∈ S ′ we can reach a point p ∈ S using a path of length
2π and all these paths traversed four communication links. Therefore, Mi,j = 1

16

for all i ∈ S ′ and j ∈ S where M is the transition matrix of the discrete motion
graph corresponding to F . Notice that if F is big, most of the vertices in the
discrete motion graph have degree 16 and the transition from these vertices to a
neighbor has probability 1

16
. Therefore, if F is big the discrete motion graph is

almost regular. In [34] the broadcast-time for regular graphs is studied and they
state that for most starting positions, the expected time for k random walks to



130 CHAPTER 4. RANDOMIZED SCS’S

(a)

101 102

Number of robots (log scale)

101

102

Br
oa

dc
as

t-t
im

e 
(lo

g 
sc

al
e)

Theoretical
Random

(b)

0 50 100 150 200 250 300 350 400
Number of robots

0

50

100

150

200

250

300

Br
oa

dc
as

t-t
im

e

Theoretical
Random

(c)

0 10 20 30 40 50
Number of robots

50

100

150

200

250

300

Br
oa

dc
as

t-t
im

e

Theoretical
Random

(d)

Figure 4.13: (a) A section of size 4 × 4 of a grid R-SCS. In (b), (c) and (d) the
curve Random shows the average broadcast time obtained in several experiments
in a 20×20 grid R-SCS using k = 2...400 robots. The curve Theoretical shows the
behavior of the function b(k) = 2 ln k(δ−1)n

k(δ−2) where δ = 16 and n = 400. (b) Shows
these curves using logarithmic scale, (c) shows these curves using linear scale and
(d) shows this curves constrained to k ≤ 60.
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broadcast a single piece of information to each other is asymptotic to

2 ln k(δ − 1)n

k(δ − 2)
as k, n→∞,

where n is the number of trajectories and δ is the vertices degree.
Figures 4.13 (b), (c) and (d) show a comparison between the average broadcast

time results obtained in the experiments of subsection 4.3.4 using a 20 × 20 grid
R-SCS F and the curve b(k) = 2 ln k(δ−1)n

k(δ−2) where n = 400 (number of trajectories
on F) and δ = 16 (degree of most of the vertices in the discrete motion graph
of F). Analogously to the comparison for the isolation-time, the curve b(k) is an
upper bound of the real broadcast-time due to the same reason. Notice that the
two curves have very similar shapes. In Figure 4.13 (d) these curves are shown for
k ≤ 60 in order to make visible the similarity on their shapes. Notice that both
curves have a little peak at the beginning as we expect due to the natural behavior
of the broadcast time when the number of robots increases (see final paragraph of
subsection 4.3.4).

4.4 Conclusions

Terrain surveillance using cooperative unmanned aerial vehicles (UAV) with lim-
ited communication range can be modeled as a geometric graph in which the
robots share information with their neighbors. If every pair of neighboring robots
periodically meet at the communication link, the system is called a Synchronized
Communication System (SCS). In order to add unpredictability to the determin-
istic framework proposed in Chapter 2, we study the use of stochastic strategies
on the SCS. We evaluate both the coverage and communication performance and
showed the validity of two random strategies compared with the deterministic one.
The performance metrics of interest focused on in this chapter were idle-time (the
expected time between two consecutive observations of any point of the system),
isolation-time (the expected time that a robot is isolated) and broadcast-time (the
expected time elapsed from the moment a robot emits a message until it is received
by all the other robots of the team).

We first proved theoretical results for one of the strategies, the so-called ran-
dom strategy, that can be modelled by classical random walks and obtain bounds
assuming that the starting vertices are uniformly selected. A theoretical study
for the other protocol, the so-called quasi-random strategy, that does not generate
random walks, is a challenging open problem. Then, we performed three computa-
tional studies: a comparison between the deterministic and the random strategies;
a simulation for estimating the mixing time of the system (roughly, the time needed
for a random walk to reach its stationary distribution); and a comparison between
the simulation and the theoretical bounds.
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We state a summary of our observations in the experiments. Overall, the behav-
ior was analyzed by increasing the size of the team of UAVs working on grid graphs.
For the first study, our results pointed out that if we have few robots, as it is usual
in practice, it is more convenient to use one of the random strategies instead of the
deterministic one. Indeed, in this case, the results obtained with random strategies
were much better than the behavior obtained using the deterministic strategy for
the three tested measures. Although we can select clever initial positions for the
robots in the deterministic strategy such that the properties of communication and
coverage are satisfied, the system does not contemplate unpredictability. If some
robots fail, the system can lose efficiency. As the experiments set, this drawback
can be overcome using random strategies. The experiments also showed that the
behavior of the random strategies is very similar for any of the proposed quality
measures. In the second study, we observed that the estimated mixing time is
small compared with the number of trajectories in the system and it increases
slowly. The third experimental study showed that the theoretical bounds for the
performance metrics are tight with the simulations.

Future research could also focus on considering other random strategies, differ-
ent topologies in the experiments, as well as a study on the influence of the value
of the probability p, fixed as 0.5 in this work.



Chapter 5
Block-sharing strategy

Multi-robot task allocation in dynamic environments is one of the funda-
mental problems in cooperative robotics and a challenging area in opera-

tional research [39, 52, 78, 126, 137]: given a group of cooperative robots, a global
task to be performed in a dynamic environment and a cost function, how should
subtasks be allocated to the robots in order to complete the task while minimizing
costs?

Let us consider a task such as the cooperative manipulation of structures ad-
dressed in the ARCAS European Project (http://www.arcas-project.eu/) funded
by the European Commission. One of the goals of this project is to assemble a
structure using a team of aerial robots equipped with on-board manipulators. The
practical interest of this system can be found in situations where it is required to
build a structure in places with difficult access through conventional means (see
Fig. 5.1). The use of aerial robots allows to perform assembly operations in any
point in space, which in areas of difficult access represents a relevant advantage
over ground robots.

Assembly planning [53] is the process of creating a detailed plan to craft a
whole product from separate parts by taking into account the geometry of the final
structure, available resources to manufacture the product, fixture design, feeder
and tool descriptions, etc. Efficient assembly plans can significantly reduce time
and costs. The assembly planning problem has been shown to be NP-complete [73]
and covers three main assembly subproblems: sequence planning, line balancing,
and path planning.

Reference [67] presents a classification of structures according to different fea-
tures: number of hands, monotonicity (whether operations of intermediate place-
ment of subassemblies are required), linearity (whether all assembly operations
involve the insertion of a single part or multiple parts which have to be inserted
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Figure 5.1: Two aerial robots equipped with LWR KUKA robotic arms manip-
ulating a bar to build a structure in places with difficult access by conventional
means.

simultaneously), and coherence (whether each part that is inserted will touch some
other previously placed part). The structures considered in this chapter are se-
quential (for two robots), monotone, linear and contact-coherent.

This chapter focuses on the line balancing stage and introduces a novel paradigm
for coordinating multiple robots in the execution of cooperative tasks in dynamic
scenarios. The basic idea is to share information within a group or block of robots
before assigning subtasks to all the members of the block. In this way, the method
simulates a centralized system using a decentralized approach in which the robots
share information in order to guarantee a local optimal solution in each stage of
the algorithm. Our strategy fits the locally centralized paradigm mentioned in [27]
and allows the team to perform task allocation periodically in an entirely decen-
tralized manner. Moreover, by allocating tasks to robots repeatedly, a team can
adapt as circumstances change achieving fluid coordination.

The block-information-sharing (BIS) strategy was introduced in [28] for area
monitoring missions as a generalization of the one-to-one paradigm presented
in [1, 2]. In these papers, the authors have experimentally demonstrated that
this strategy converges to an optimal situation in which a particular objective
function, the idle time function, is minimized. However, neither theoretical proofs
on the convergence nor approach formalization have been published so far.

In this chapter, the convergence of the BIS strategy is formally proved in a
general task allocation scenario. Moreover, it is shown how to use this strategy
to design a fault-tolerant approach for structure construction using a cooperative
team of aerial robots. The robots work in parallel and the dynamic assignments
of the tasks are performed using blocks in order to maintain a balanced allocation
where each aerial robot approximately spends the same time to construct the
assigned section. Thus, the maximum time a robot spends to complete the assigned
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section of the construction is minimized. Consequently, the benefit obtained is
twofold: the total time for the construction is optimized and the robustness of the
approach is guaranteed since the system is periodically re-balanced to cope with
certain events, such as battery failure or the loss of some aerial robots, during the
construction process.

5.1 Problem statement

Consider a cooperative team of autonomous and heterogeneous robotic agents and
a task which has to be accomplished by the team. In a cooperative framework, it
is assumed that the task is divisible and parallelizable in such a way that it can
be partitioned so that each subtask is assigned to a robot in the team. Individual
agents execute their subtasks independently except in the common parts where
neighbors need to coordinate their cooperation.

The time to perform the overall task is determined by the maximum time spent
by the individual robots on their subtasks while a balanced allocation needs to be
maintained in order to prevent overload and ensure efficiency. Considering the
parallel nature of this scenario, performing the task in the shortest possible time
requires minimizing the maximum time spent by the individual robots.

As in the ALB problems, the task to perform can be modeled as a set of
operations where subtasks correspond to a disjoint partition of the task. The
formalization of the problem is illustrated with two examples:

(i) building a structure using assembly parts (we assume equal complexity of
placing the parts) in which the task is the set of assembly operations;

(ii) monitoring a region, where the task is the set of all points in the region.

Let T be the set representing the general task to be performed, where each
subtask is a subset of T . Let U1, U2, . . . , Un be a team of n robots to perform the
task. The capability coefficient indicates the amount of operations which can be
performed by a robot in a given time frame. Let ci ∈ R denote the capability
coefficient of Ui to perform a task. For scenario (i), the capability coefficient of
a robot is the number of assembly operations that can be performed per unit of
time; for scenario (ii) it indicates the area which can be monitored in one unit of
time. Let µ : Σ→ R be a function to measure the task T , where Σ is a σ-algebra
on T . For example, for a subtask T ′ ⊆ T , in (i) µ(T ′) is the number of assembly
operations in T ′ and in (ii) µ(T ′) is the area of the region T ′. The time required
by the robot Ui to perform a subtask T ′ is given by

µ(T ′)

ci
.
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Let Ti be the subtask assigned to the robot Ui. Our goal is to obtain a partition
{T1, . . . , Tn} of T such that

max
i

{
µ(Ti)

ci

}

is minimized. Using the definitions above, the key issue addressed in this chapter
is the following:

Problem 5.1.1 (Efficient task allocation). Given a heterogeneous team of robots
U1, U2, . . . , Un and a task T ,

Minimize f(T1, T2, . . . , Tn) = max
i

{
µ(Ti)

ci

}

s. t.
n⋃

i=1

Ti = T ,

Ti ∩ Tj = ∅, ∀i 6= j.

If the general task T is a discrete set of atomic (indivisible, basic) operations,
that is, T = {a1, a2, . . . , am}, then for a subtask Ti ⊆ T , it follows that

µ(Ti) =
∑

aj∈Ti

µ({aj}) =
m∑

j=1

µ({aj})xij

where xij = 1 if aj ∈ Ti, and xij = 0 otherwise. Our problem can be rewritten as
follows:

Minimize f(x11, . . . , x1m, . . . , xn1, . . . , xnm) = max
i





m∑

j=1

µ({aj})xij

ci





(5.1)

s. t.
n∑

i=1

m∑

j=1

xij = m,

n∑

i=1

xij = 1, ∀1 ≤ j ≤ m.
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Note that a generalization of example (i), where the complexity of placing
pieces varies and ci is the capability of the i-th robot to manipulate pieces, can be
also modelled using statement (5.1).

It is easy to see that in an optimal allocation all robots spend the same amount
of time to perform their respective subtasks according to their capabilities. Con-
sequently, to ensure an optimal task allocation, it follows that:

µ(Ti) = ci
µ(T )
n∑

j=1

cj

. (5.2)

In this chapter we are interested in a fault-tolerant and decentralized strat-
egy to solve Problem 5.1.1 for multiple tasks. On the one hand, the conditions
of the environment as well as the capabilities of the robots can change dynam-
ically, requiring an update of the task allocation. On the other hand, in many
real situations, robots work in an inaccessible areas and it is thus desirable to per-
form the tasks in a decentralized manner due to communication range limitations.
Therefore, a decentralized strategy is required to recover and keep an optimal task
allocation during the execution of a mission despite dynamical changes in the team
or the environment. In the following section, the BIS strategy is presented as a
solution to this problem.

In the remainder of this chapter, it is assumed that the global task to be
performed can be represented as a measurable set T , and every subtask is a mea-
surable subset Ti of T . Also, in order to simplify the notation, the values of µ(T )
and µ(Ti) are referred to as T and Ti, respectively.

5.2 The block-information-sharing paradigm in dy-
namic task allocation problems

The so-called one-to-one strategy [1, 2], which was initially applied to area mon-
itoring missions, can be easily adapted to general tasks. Suppose that our team
has a non-optimal task allocation which we wish to turn into an optimal one in
a decentralized manner without any intervention of external information sources.
The key idea behind the one-to-one strategy is to share the information on capa-
bilities and subtasks among neighboring robots so they can re-allocate subtasks
between them. It has been experimentally demonstrated that the task allocation
in the system converges to an optimal partition of the general task when this
process is repeated iteratively. Unfortunately, the convergence may be too slow
in some cases. In [28], examples of configurations where the one-to-one strategy
converges only slowly to an optimal partition are shown and the BIS strategy is
introduced as a generalization of the one-to-one approach that allows to accelerate
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the convergence to an optimal solution. In this chapter, we lift the BIS strategy
on a higher level of abstraction and present the approach as a general paradigm
with multiple applications in cooperative robot systems.

5.2.1 General strategy

Consider a general task to be executed by a cooperative team of heterogeneous
robots equipped with wireless communication for information sharing. Further-
more, assume that the environment conditions as well as the individual perfor-
mance of the robots change dynamically affecting the global performance of the
team. We are interested in a strategy to obtain and maintain a balanced sub-
task allocation which allows to complete the global task in minimum time. As
the communication range is limited, it is assumed that each robot can only share
information with its neighbors. This assumption implies a communication graph:
Nodes correspond to robots and an edge between to nodes exists only if the re-
spective robots are able to share information. To ensure that all members of the
team are involved in the strategy, the communication graph needs to be connected.
In Figure 5.2 a two-dimensional communication graph is illustrated (in real-world
applications with aerial robots, a three-dimensional graph can be considered).

U1

U2

U3

U4

U5

U6

U7

U8

U9

U10

Figure 5.2: Representation of an area allocation among robots and the associated
communication graph.

We define a block as a connected subgraph of the communication graph which
we denote with the indices of the robots within the block. For example, B =
{1, 3, 4} denotes the block composed by the robots U1, U3 and U4. A partition
of the communication graph into blocks is a block-configuration. The BIS strat-
egy supports two or more block-configurations such that their union contains all
edges of the communication graph. Figure 5.3 shows two such block-configurations
which, since their union contains all edges, can be used in the strategy.

The BIS strategy is based on the organization of a team of robots according to
a block-configuration, where, within a block, robots share information among each
other. Before creating an allocation, the robots remain in their position until all
information about capabilities and tasks has reached all of the robots in the block.
The iterative approach is as follows: When the team completes a task allocation
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using a block-configuration, another block-configuration is used in the next stage.
The reallocation process in a block uses equation (5.2) locally. Formally, if B is a
block and Ui is a robot in B, the new subtask T ′i for Ui is given by

T ′i = ci

∑
j∈B Tj∑
j∈B cj

. (5.3)

U2
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U8
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U1

(a)
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U6
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U8

U9

U10

(b)

Figure 5.3: Block-information-sharing partition samples.

An example is given in Figure 5.3: Suppose that the robots start in the config-
uration shown in Figure 5.3a with partition into blocks {1, 2}, {3, 4, 5, 6, 7, 8} and
{9, 10}. Within each block, robots share information and reallocate their subtasks.
After this first step, each block has a task allocation that is locally optimal. In the
next stage, the team considers the configuration shown in Figure 5.3b composed
of the blocks {1, 2, 3, 4, 5} and {6, 7, 8, 9, 10} and reallocates the tasks in these
blocks correctly. After that, the team returns to the previous configuration in
Figure 5.3a and so on.

In the next subsection, we formally prove that the BIS strategy, which takes
advantage of local information to correctly distribute tasks, converges to an optimal
task allocation for Problem 5.1.1. We aim to minimize the maximum time required
by a robot to perform its subtask. In this scenario, which corresponds to an optimal
solution, all heterogeneous robots spent an equal amount of time. The BIS strategy
tends to produce such an allocation and ensures good performance for setups for
which a balanced allocation is optimal. Consequently, this paradigm can be applied
to multiple scenarios where a task is executed by cooperative robots. It allows to
design efficient decentralized algorithms to optimize different objective functions,
for instance, the maximum idle time in monitoring or surveillance missions [1, 2].

We furthermore identify the possibility of applying this scheme (sharing in-
formation and taking decisions in blocks while alternating block-configurations)
in alternative scenarios where any type of information (which is not necessarily
related to task allocation) is propagated in order to optimize the global system
performance or a specific cost function (other than the robots spending an equal
amount of time to perform their subtasks).
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5.2.2 Convergence proof

The following conditions are assumed: the general task is divisible and paral-
lelizable, the communication graph is connected and the union of the selected
block-configurations is a covering of the set of edges of the communication graph.

The BIS strategy is an iterative approach where each iteration corresponds to
a different block-configuration of the team. Let us represent by T (j)

r the subtask
assigned to the robot Ur in the j-th iteration. If Ur belongs to block B in the j-th
iteration then the equation (5.3) is written as

T (j)
r = cr

∑
i∈B T

(j−1)
i∑

i∈B ci
.

In the following results we use the values:

M (j) = max
i

{
T

(j)
i

ci

}
and m(j) = min

i

{
T

(j)
i

ci

}
,

with i ∈ {1, . . . , n}.

Lemma 5.2.1. For all k ≥ 0 it follows that

m(j) ≤ T
(j+k)
i

ci
≤M (j) ∀i ∈ {1, . . . , n}.

Proof. We proceed to use mathematical induction in k. If k = 0, then m(j) ≤
T

(j+k)
i

ci
=

T
(j)
i

ci
≤ M (j) by definition of M (j) and m(j). Assume as an induction

hypothesis that for a fixed value k the claim is fulfilled, m(j) ≤ T
(j+k)
i

ci
≤M (j). Let

Ur be an arbitrary robot and let B be the block where Ur lies in the (j+ k+ 1)-th
iteration, then:

T (j+k+1)
r = cr

∑
i∈B T

(j+k)
i∑

i∈B ci
.
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From the hypothesis we deduce:

cim
(j) ≤ T

(j+k)
i ≤ ciM

(j)

∑
i∈B cim

(j) ≤
∑

i∈B T
(j+k)
i ≤

∑
i∈B ciM

(j)

m(j) ·
∑

i∈B ci ≤
∑

i∈B T
(j+k)
i ≤M (j) ·

∑
i∈B ci

m(j) ≤
∑

i∈B T
(j+k)
i∑

i∈B ci
≤M (j)

crm
(j) ≤ cr

∑
i∈B T

(j+k)
i∑

i∈B ci
≤ crM

(j)

crm
(j) ≤ T

(j+k+1)
r ≤ crM

(j)

and the result follows.

Lemma 5.2.2. For all k, l ≥ 0 it follows that:

(a) if m(j) <
T

(j+k)
i

ci
then m(j) <

T
(j+k+l)
i

ci

(b) if
T

(j+k)
i

ci
< M (j) then

T
(j+k+l)
i

ci
< M (j)

Proof. Only claim (a) is proven since the proof for claim (b) is analogous. Math-
ematical induction in l will be used. If l = 0, it follows that

T
(j+k+l)
i

ci
=
T

(j+k)
i

ci
> m(j).

Suppose as induction hypothesis that m(j) <
T

(j+k+l)
i

ci
for a fixed value l. Let Ur

be an arbitrary robot and let B be the block where Ur lies in the (j+ k+ l+ 1)-th
iteration, then:

T (j+k+l+1)
r = cr

∑
i∈B T

(j+k+l)
i∑

i∈B ci
> cr

∑
i∈B cim

(j)

∑
i∈B ci

=

= cr
m(j)

∑
i∈B ci∑

i∈B ci
= crm

(j)

and the result follows.

We are ready to prove the main result of this section.
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Theorem 5.2.3. The block-information-sharing strategy always converges to an
optimal task allocation for Problem 5.1.1.

Proof. Let T (∗)
i be the task assigned to Ui in an optimal task allocation. Since

the time required for every subtask in an optimal task allocation is the same, it is
enough to prove that the differences between the times converge to 0. Let ρ(j) be
the maximum time difference between the performances of every pair of robots in
the j-th iteration,

ρ(j) = max
i,l

{∣∣∣∣∣
T

(j)
i

ci
− T

(j)
l

cl

∣∣∣∣∣

}
= M (j) −m(j). (5.4)

Note that ρ(j) ≥ 0 for all j and that the maximum time difference between the
performance of every pair of robots in the optimal partition is 0 because all the
robots spend the same amount of time to perform their subtasks. We prove that
ρ(j) is a decreasing function and then

lim
j→∞

ρ(j) = 0.

Suppose that ρ(j) = c > 0, we prove that there exists a q > 0 such that
ρ(j+q) < ρ(j). Let G be the communication graph of the team. Let Ur and Up be

two adjacent nodes in G such that T
(j)
r

cr
= M (j) and T

(j)
p

cp
< M (j). These two nodes

exist since otherwise the graph G would not be connected or T
(j)
i

ci
= M (j) for all

the nodes and then ρ(j) = 0. The union of all the block-configurations contains
all the edges of G, so the edge (Ur, Up) is in some block of a block-configuration.
Let (j + k) with k > 0 be the index of the first iteration in which the team takes
this configuration and Ur and Up lie in the same block B. Since T

(j)
p

cp
< M (j), by

Lemma 5.2.2 we have
T

(j+k−1)
p

cp
< M (j). (5.5)

Also, from Lemma 5.2.1 follows T
(j+k−1)
i

ci
≤ M (j) for all i ∈ {1, . . . , n}, especially

for all i ∈ B, then ∑

i∈B

T
(j+k−1)
i ≤

∑

i∈B

ciM
(j). (5.6)

From p ∈ B, using (5.5) and (5.6), follows that:
∑

i∈B

T
(j+k−1)
i <

∑

i∈B

ciM
(j), then dividing by

∑

i∈B

ci

∑
i∈B T

(j+k−1)
i∑

i∈B ci
<

∑
i∈B ciM

(j)

∑
i∈B ci

= M (j). (5.7)
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Multiplying (5.7) by cb with b ∈ B and using equation (5.3) we conclude that

T
(j+k)
b = cb

∑
i∈B T

(j+k−1)
i∑

i∈B ci
< cbM

(j).

Since r ∈ B then T
(j+k)
r = cr

∑
i∈B T

(j+k−1)
i∑

i∈B ci
< crM

(j), that is, T
(j+k)
r

cr
< M (j).

Using the same argument for every robot Ui having
T

(j)
i

ci
= M (j) we induce that

there exists a value kM > 0 such that T
(j+kM )
i

ci
< M (j) for all i.

Analogously we can prove that there exists a value km > 0 such that m(j) <
T

(j+km)
i

ci
for all i.

Therefore, there exists q > 0 (q = max{km, kM}) such that for every robot

Ui in the team we have m(j) <
T

(j+q)
i

ci
< M (j), and ρ(j+q) = M (j+q) − m(j+q) <

M (j) −m(j) = ρ(j), proving the theorem.

5.3 A case study: structure construction

In this section the block-information-sharing paradigm is applied to the construc-
tion of a 3D structure using a team of cooperative robots. In line with the ob-
jectives of the ARCAS project1, which considers scenarios involving damaged in-
frastructure, we have chosen the example of a bridge: The structure is composed
of different assembling parts (bars) which must be assembled in a specific order
attending to restrictions of union, gravity, etc. (precedence constraints), see Fig-
ure 5.4. The basic component of the bridge is a cube and the length of a bridge is
given by the number of cubes composing it, see Figure 5.4.

The parts to be assembled have been deployed (i.e. air-dropped) in specific
locations which are referred to as stores. Robots should transport parts taken from
the stores to the structure site and assemble them correctly. In this scenario, it is
more convenient to use aerial robots to avoid obstacles on the ground (also while
the structure grows it is becoming an obstacle to the movement of the ground
robots). Furthermore, if the structure is multi-level, one bearing another, it is
easier for an aerial robot to place part on part in a stack. The aerial robots are
equipped with on-board manipulators for the assembly operations.

With the start of the mission, a subtask is assigned to each aerial robot (AR)
according to its capabilities. During the mission, a variety of incidents including
difficulties while assembling a part, battery degradation, and motor or dexterous
manipulator failure, may delay an AR’s schedule. In this case, the AR may have to

1http://www.arcas-project.eu
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Figure 5.4: Bridge structure. The numbers indicate a possible enumeration of the
parts.

abandon the mission and its subtasks must be reallocated to ensure the completion
of the task.

5.3.1 The Problem

Consider a team of ARs equipped with dexterous manipulators to assemble a bridge
(one level) as shown in Figure 5.4. Each AR has a wireless communication device
that allows the information interchange with its neighbors and each assembly part
has an embedded radio transmitter for its localization and identification. The
required sequence of assembly operations has been computed based on assembly-
by-disassembly techniques [67, 114] in advance. The assembly tasks should be
divided into subtasks which can be executed in a parallel manner, to avoid waiting
for the placement of all the supporting parts. The robots should also give higher
priority to the common parts in order to minimize the waiting time for their
neighbors. According to Problem 5.1.1, the goal is to keep an assembly operations
allocation among all available ARs in such a way that the maximum time an
AR spends to execute its subtasks is minimized in a fault-tolerant manner, that
is, considering that the number of robots and their capabilities can dynamically
change.

5.3.2 The strategy

A bridge is an elongated structure which can be conveniently divided into lon-
gitudinal sections, see Figure 5.5. This partition generates separated workspaces
in which ARs can operate in parallel with low collision risk. When the parti-
tion is given, a number of assembly parts is assigned to each AR according to its
capabilities. From this partition, the team can be represented by the sequence
U1, U2, . . . , Un where Ui is the AR corresponding to the i-th section of the bridge.



5.3. A CASE STUDY: STRUCTURE CONSTRUCTION 145

Ui Uj Uk

Figure 5.5: The bridge is divided into sections assigned to each AR of the team.

We proceed to the design of a decentralized algorithm based on the BIS strat-
egy. First, a sorted list of bridge parts P = {p1, p2, . . . , pm} is computed consid-
ering dependencies between them and their positions in the structure from left to
right (details of a possible ordering are given in Section 5.3.4). Every continuous
subsequence of P determines a longitudinal section of the bridge (see Figure 5.5).
Note that if the subsequence pj, pj+1, . . . , pj+r corresponds to Ui, then the subse-
quence corresponds to Ui+1 is pj+r+1, . . . , pj+r+s.

Since the workspaces are adjacent sections of the bridge, every robot, except the
robots working at the end points, has two neighbors. In Figure 5.6a, three robots
are shown: U1 and U2 are sharing information, and U2 is able to communicate with
U3 if they move closer to each other. In this scenario, the communication graph
in the team of ARs is a simple line as shown in Figure 5.6b.

U1 U2 U3

(a)

U1 U2 U3 U4 U5

. . .

(b)

Figure 5.6: The communication graph in a line.

A block in this graph is a continuous subsequence of nodes (ARs) composing a
line segment. Therefore, a block-configuration corresponds to a list of consecutive
segments. We will work with two block-configurations where all the blocks have the
same size except the first or last blocks. Figure 5.7a shows two block-configurations
with block size two, one in gray and the other in white. Note that these block-
configurations cover the set of edges entirely and can be used in a BIS strategy to
redistribute the workload among the team. Figure 5.7b shows a similar case with
blocks of size four.

The BIS strategy in this setting works as follows: In certain time intervals,
the members of a block share information on placed and unplaced pieces and
on their capabilities among them. Once all robots in a block receive this infor-
mation, a sorted list of unplaced pieces is computed and then a new allocation
according to the current capabilities of the available ARs (within the block) is
considered. Subsequently, the members of the team change according to the new
block-configuration.
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U1 U2 U3 U4 U5 U6 U7 U8
. . .

(a)

U1 U2 U3 U4 U5 U6 U7 U8
. . .

(b)

Figure 5.7: Block-configurations with blocks of length two (a) and four (b), re-
spectively.

To illustrate the strategy, consider the following example: Let U1, U2, . . . , U7

be a team of seven ARs having the same capability of normalized value one. Each
team member starts with 20 assembly parts and the time spent by an AR (with
capability one) to find and place an assembly part is 5u (five units of time), see
Figure 5.8. Suppose that, after 20u, the capability of U4 has decreased to 0.5 and
it has assembled 3 pieces while the others have assembled 4 pieces, see Figure 5.8.
With the new capability, U4 spends 10u to find and place an assembly part (twice
the time spent by others). If the team works without sharing information, the time
to complete the structure is the time spent by U4 to perform its subtask, 20u+17∗
10u = 190u. We now demonstrate that this can be improved when the BIS strategy
is applied: We assume that the team is using two block-configurations with blocks
of size four (see Figure 5.7b). The team alternates the block-configurations starting
with the gray one. Assume the ARs use an additional 2u to share information and
allocate the assembly operations into the block properly. We furthermore assume
that team members share information in periodic intervals of 20u. In the interval
20u-22u the team makes a division using the gray block-configuration and in the
interval 22u-42u each AR places four parts except U4 which assembles two parts.
After that, in the interval 42u-44u, the ARs update the balanced allocation of the
assembly operations applying the white block-configuration and so on. Following
this strategy (with no further changes in the team), it becomes obvious that the
team completes the structure in 120u. Note that the less time spent on information
exchange, the better the overall performance.

Let us now analyze a case where individual ARs fail. Obviously, if the team
does not share information, the structure will not be completed if one or more ARs
fail. To address this problem in the BIS strategy, the team proceeds as follows:
When an AR does not meet a neighbor then it moves in the same direction to
meet a new neighbor. When such a meeting occurs (or the AR reaches the end
of the bridge), the ARs which should be between the meeting ARs are considered
missing. In this way, the remaining robots obtain the new graph representation
and assume the tasks of the failed robots. For instance, in Figure 5.9 the robot
Ui+2 has failed. When Ui+1 and Ui+3 try to meet the right and left neighbors,
respectively, they meet each other and consider Ui+2 as missing. In the example
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16/1 17/0.520u

19/1 8/0.5 16/122u

15/1 6/0.5 12/1 12/1 12/142u

15/1 15/1 13/1 13/1 13/1 12/144u

...
...

...
...

...
...

...

11/1 11/1 9/164u

10/1 10/1 10/166u

20/10u

time
20/1 20/1 20/1 20/1 20/1 20/1

U1 U2 U3 U4 U5 U6 U7

16/1 16/1 16/1 16/1 16/1

19/1 19/1 16/1 16/1

15/1 15/1

6/0.5

4/0.5 9/1 9/1 8/1

5/0.5 9/1 9/1 8/1

Figure 5.8: Example of the evolution of allocated tasks of the team U1, U2, . . . , U7

using the BIS strategy with blocks of size four. Each cell contains information on
the robot in the column’s header at the time indicated by the row’s header. The
format of the cells is p/c, where p is the number of pieces assigned to the robot
and c is the capability coefficient.

of Figure 5.9, if the failure of Ui+2 is detected using the gray block-configuration,
then the other ARs in the block given by Ui, Ui+1 and Ui+3 resume the unfinished
assembly operations of Ui+2 in the reallocating process of the task and continue
the alternating process between the gray and white configurations.

. . . Ui Ui+1 Ui+2 Ui+3 Ui+4 Ui+5 . . .

. . . Ui Ui+1 Ui+3 Ui+4 Ui+5 . . .

Figure 5.9: The block-information-sharing strategy with a failure in Ui+2.

Unfortunately, the system cannot always recover so easily from failures. Let us
consider the same situation mentioned above, but now the AR Ui+3 also fails. In
this new situation, if the ARs try to keep the same block-configuration, the edge
(Ui+1, Ui+4) will be not present in any block (see Figure 5.10) and the convergence
to an optimal task allocation is not guaranteed.

. . . Ui Ui+1 Ui+2 Ui+3 Ui+4 Ui+5 . . .

. . . Ui Ui+1 Ui+4 Ui+5 . . .

Figure 5.10: Block-sharing method with failures in Ui+2 and Ui+3.

A generalization of this situation is used to explain how to solve this problem:
Assume a team of ARs working with regular block-configurations with blocks of
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size 2k. Figure 5.11 depicts this generalization: each dot-dashed rectangle with a k
inside represents a sequence of k ARs and consequently, two consecutive rectangles
form a block of size 2k. The problem appears when k consecutive ARs fail at the
extreme of a block, for example, the failure of the third sequence of k ARs in
Figure 5.11a. We can solve this issue by modifying the block-configuration in such
a way that every connection edge between two neighbors is covered. Figure 5.11b
shows the recovered system. Notice that the configuration remains unchanged
to the right of the bold vertical line whereas it is changed (inverted) to the left.
This reconfiguration can be applied the other way around, keeping the left side
and reversing the right side. In order to minimize the time to obtain a recovered
system in the propagation process, the shortest side should be modified. The new
block-configuration can be locally computed with a simple data structure on each
agent.

k
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3

k
4

k
5

k
6

(a)

k
1

k
2

k
4

k
5

k
6

(b)

Figure 5.11: Recovering of the BIS strategy using 2k block size when k consecutive
ARs are missing.

Finally, in case new robots join the team, it is assumed that they enter at the
endpoints of the communication line. With this assumption, the ARs can manage
the additions easily, making the respective updates in the blocks containing the
extremes at which the addition occurs.

5.3.3 Implementation

In this section we provide pseudo-code of two algorithms running on-board each
AR in parallel. One of them addresses the processing of the assembly operations
and the other one handles information sharing and reallocations of the assembly
operations into the corresponding blocks.

Algorithm 40 shows the steps to process the assigned list of assembly operations
to be performed. Each AR executes the same algorithm with local information.
The variables (in italic font), functions and procedures (in math font) used in the
algorithm are explained subsequently:

• P (i) is the list of assembly parts assigned to the AR Ui (local task to be
performed by Ui).
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• S is a description of the whole structure to be built; each part is unique and
corresponds to a specific place in S.

• searching indicates if the AR is searching for a part.

• carrying indicates if the AR is carrying a part with its robotic arm.

• p is the target part to pick or place.

• sharing indicates if the robot’s communication interface is open (this value
is managed by Algorithm 37).

• found(p) returns true if the robot is over the part p.

• load(p) activates the robotic arm and picks up part p.

• plan_to_put(S, p) elaborates and loads a flight plan to carry part p and
place it correctly into structure S.

• continue() follows the current flight plan.

• correct_place(S, p) returns true if the AR has reached the correct position
to place part p into S.

• put(p) places the part p in its position in S.

• next_piece(S, P (i)) selects the next piece of P (i) to assemble in S accord-
ing to the dependency rules and priority of the common parts preventing
neighbors from waiting.

• search(p) uses the radio signal of p to locate it and elaborates a flight plan
to reach it.

• release(p) is a protocol to release the part p in case of failure or other cases
of mission cancellation.

Algorithm 37 shows the logical steps to share information and reallocate the
assembly operations inside the blocks. It uses methods that encapsulate the ideas
exposed in the previous section.

• T is the time interval to share information; the AR must share information
every T units of time (this value is equal for all the ARs).

• t is the duration of the sharing process, t < T .

• Pp is the set of known placed parts.
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Algorithm 5:On-board algorithm to process the assigned list of assembly
parts.
Input : P (i), S

1 searching ← false
2 carrying ← false
3 p← none
4 while not ABORT do
5 if not sharing then
6 if searching then
7 if found(p) then
8 load(p)
9 searching ← false

10 carrying ← true
11 plan_to_put(S, p)

12 else
13 continue()
14 end
15 else
16 if carrying then
17 if correct_place(S, p) then
18 put(S, p)

19 p← next_piece(S, P (i))
20 if p is not none then
21 searching ← true
22 search(p)

23 end
24 carrying ← false
25 else
26 continue()
27 end
28 else
29 p← next_piece(S, P (i))
30 if p is not none then
31 searching ← true
32 search(p)

33 end
34 end
35 end
36 end
37 end
38 if ABORT and carrying then
39 release(p)
40 end
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• Ids is the list of identifiers of all ARs in the team. Ids[j] corresponds to the
identifier of Uj and is used to determine if an AR is new in the team or if
any AR has failed.

• BS stores a description of the block-configurations to use in the sharing
process, including block size and start positions of the blocks. It allows to
determine the members composing the block at any given time .

• sharing indicates if the communication interface of the robot is open.

• b indicates the current block-configuration in BS.

• Qe stores a list of detected events in the team: failures and incorporations.

• K stores the knowledge of the ARs in the team (placed and unplaced parts,
and current capabilities of the team members).

• time_to_share(T, t) returns true if it is time to share information.

• current_capabilities() estimates its own current capabilities using on-
board sensors and time spent performing the last operations.

• prepare_info(K,Pp, P (i), ci) prepares the local information for sharing (cur-
rent knowledge, known placed parts, unplaced parts in plan and its own
current capabilities).

• open_connections() activates and opens the communication interface (to
save energy, the communication interface only activated during sharing).

• time_to_close(T, t) returns true if it is time to close the communication
interface.

• close_connections() turns the communication interface off if the AR is
not sharing information.

• block(BS, b, Ids) elaborates a representation of the block to perform a re-
allocation of the assembly operations.

• pieces_in_block(B,K, S) computes the set of unplaced parts to assign in
the block.

• capabilities_in_block(B,K) returns the list of the capabilities of the
available members in the block.

• division(P,C) makes a division between the available members in the block
according to their capabilities.
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• update_team(Qe, Ids) updates the list of available ARs and the block-configurations
according to detected events (failures and incorporations).

• next_conf(b, BS) returns the next block-configuration to use (remember
that the block-configurations are alternating).

• meet_neighbor() connects with a neighbor if possible.

• graph_event(U, Ids) detects whether an event has occurred: If the identifier
of U is not present in Ids, then U is a new AR incorporated into the team.
If U is in Ids but the predecessor or successor is not, then the members
between them have failed. If U is none then all members from the current
position to the bridge end are considered failed.

• gen_event(U, Ids) returns a representation of the occurred event to put it
in the list of events.

• share(U,Qe, K) sends all the known information to U and returns the infor-
mation detected by U .

• merge_info(info,Qe, K, Ids) updates the detected information (Qe and K)
using the information received from U .

A video available at https://www.youtube.com/watch?v=BshZ9tSQt9I illus-
trates the evolution of the task allocation algorithm in a team using these algo-
rithms.

5.3.4 Simulations and computational results

In this subsection we provide a detailed description of the implementation of al-
gorithms 40 and 37 for a simulation of the case study presented above using the
BIS strategy. We furthermore analyze the effect of the block size on efficiency and
robustness and compare the results with state-of-the-art algorithms.

Parts assignment

In a first step, all parts are ordered so that a subsequence of the sorted list of
pieces corresponds to a section of the bridge. The pieces have been numerated
following the scheme of Figure 5.12 from left to right, see also Figure 5.4.

Subsequently, a precedence graph of three levels is constructed. The first level
describes bottom parts, the second one vertical parts and the third one top parts.
In each level, the pieces are sorted using the assigned index. The precedence graph
displaying the numbered parts of the bridge of Figure 5.4 is shown in Figure 5.13.
The idea behind this particular order is to be able to process the pieces in the
resulting graph from left to right without violations of the dependency rules. In the

https://www.youtube.com/watch?v=BshZ9tSQt9I
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Algorithm 6: Decentralized algorithm to keep a distribution of the as-
sembly parts according to the capabilities of the team members.
Input : T , t, P (i), S, Ids, BS

1 sharing ← false
2 b← 0
3 Qe ← [ ]
4 K ← {}
5 while not ABORT do
6 if not sharing then
7 if time_to_share(T, t) then
8 ci ← current_capabilities()

9 K ← prepare_info(K,Pp, P (i), ci)
10 open_connections()
11 sharing ← true
12 end
13 else
14 if time_to_close(T, t) then
15 close_connections()
16 B ← block(BS, b, Ids)
17 P ← pieces_in_block(B,K, S)
18 C ← capabilities_in_block(B,K)
19 d← division(P,C)

20 P (i) ← d[i]
21 [Ids,BS]← update_team(Qe, Ids)
22 b← next_conf(b, BS)
23 sharing ← false
24 else
25 U ← meet_neighbor()
26 if graph_event(U, Ids) then
27 e← gen_event(U, Ids)
28 Qe ← Qe ∪ {e}
29 end
30 info← none
31 if U is not none then
32 info← share(U,Qe, K)
33 end
34 [Qe, K]← merge_knowledge(info,Qe, K, Ids)

35 end
36 end
37 end
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ii+1

i+3
i+4

i+2

i+5

i+7

i+6

Figure 5.12: Enumeration of bridge’s parts.

example shown in Figure 5.13, the ordering is 1, 2, 4, 3, 5, 7, 9, 12, 6, 10, 11, 13, 8, . . . .
Note that every subsequence of this ordering corresponds to a section of the bridge.
Furthermore, in a sharing stage, the set of unplaced pieces is ordered using the
positions of the pieces in this total ordering and then is divided according to the
capabilities of every robot in the block in order to obtain a workspace division
in the new task allocation. Note that through working in this manner, the parts
assigned to each robot in the block belong to disjoint sections in the bridge.

1 2 3 9 10 11

4 5 12 13

6 7 8 14 15 16

Bottom parts

Vertical parts

Top parts

Figure 5.13: Precedence graph of the bridge’s parts.

Simulation architecture

The architecture of our simulation is shown in Figure 5.14: The robots are equipped
with an implementation of the previously presented algorithms. The environment
entity simulates all sensor-related processes of the robots. It manages the positions
of the robots and pieces, the state of the pieces and takes control of simulation
rules.

There are three states for pieces in a simulation:

• available (the piece is available to be taken by a robot),

• carrying (the piece has been loaded by a robot and it is moving towards the
structure), and

• placed (state reached when the robot carrying the piece has found the correct
position of this piece in the structure and placed it).
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Figure 5.14: Simulation architecture.

available carrying placed

Figure 5.15: Considered states of the pieces and the transitions between them.

Figure 5.15 shows the transitions between these states. A piece passes from
carrying state to available only when the carrying robot leaves the team.

We define six states for the ARs:

• idle (when the simulation starts, or when it finishes the current list of as-
signed parts),

• searching_piece (the robot is searching for a piece to place),

• picking_piece (the robot found the searched piece and is picking it up),

• carrying_piece (the robot picked up the target piece and is carrying it to the
bridge location),

• placing_piece (the robot found the final position of the piece and is placing
it, after that, the robot decides the next piece to place and passes to the
searching_piece state) and

• searching_neighbor (this state is reached from the states searching_piece
and placing_piece when the time frame to meet a neighbor has passed).

Figure 5.16 shows the transitions between robot states: If a robot is in placing_-
piece state and has completed the list of assigned assembly operations, it passes
to idle state. When a robot is in searching_neighbor state and meets a neighbor
or reaches the bridge end, it proceeds as follows: if there are assembly operations
to perform, it determines the next piece to place and passes to searching_piece
state, but if there are no assembly operations to perform (in its assigned list), it
passes to idle state.

In our simulation, we introduce the skill coefficient of a robot as a value to
model its ability to manipulate pieces. Higher values of ability correspond to
lower required time to lift or place a piece. A robot with a robotic arm with 6
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carrying piecepicking piecesearching piece

idle placing piece

searching neighbor

Figure 5.16: The states of each robot and the transitions between them.

degrees of freedom has a higher skill coefficient than a robot with 4 degrees of
freedom. Also, this coefficient can be interpreted as the operability state of the
robotic arm (a robotic arm with mechanical problems has a skill coefficient lower
than a robot in perfect working conditions).

The environment manages the transitions between the states. For instance,
a robot can only lift up a piece if the piece is available and the robot is flying
over the piece. It furthermore controls the advance and current state of the lifting
and placing operations according to the current skill coefficient of the robot, and
keeps track of the positions of the robots according to their motion directions and
speeds. Note, that in this case the capability coefficient of a robot is a combination
of speed and skill.

The other important entity in our simulation is the events generator, which
generates random events of mission abandonment, incorporation of members and
changes on the capabilities (speed or skill coefficient) of a specific robot.

Scenario description

We consider for the simulation a scenario where the bridge to be built is composed
of bars with a length of one meter. All pieces have been dropped in a single place
(store) at a distance of 20 meters from the bridge location. The communication
range of the robots is 8.0m, their initial speed ranges from 3.7m/s to 4.0m/s and
their initial skill coefficients are set between 2.9 and 3.0 (randomly distributed
following a uniform distribution). We are assuming that the needed effort to lift
and assemble a piece is 18 and 90, respectively. Thus, a robot with skill coefficient
3.0 spends 18/3.0 = 6s to lift a piece and 90/3.0 = 30s to place it in the structure.
Note that the measure of the effort to place a single piece correctly is a combination
of the effort to lift it, the required effort to transport it to the final location in the
structure and the effort to place it.

Figure 5.17 shows the different states of a team of eight robots during a sim-
ulation. At the beginning, robots are located above the structure location (Fig-
ure 5.17a) and have an initial assembly assignment. After assessing the first re-
quired piece, the robots head towards the store (Figure 5.17b and Figure 5.17c).
Note that various robots can be at the store simultaneously. In our simulation, the
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store is represented as a single point and we assume that the robots have imple-
mented a local strategy of collision avoidance. In real-word applications the store
is usually a region.
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Figure 5.17: Motion of the robots between the structure and the store.

Figures 5.17d and 5.17e show the robots on their way to the structure location
carrying the pieces to be placed. Note that the robots in the middle reach the
structure first and the robots closest to the bridge ends last. In Figure 5.17e it
can be seen that, while robot 3 is assembling a piece, robot 0 is still carrying a
piece to the correct place in the structure. In this simulation, the sharing process
is not marked by time intervals since a robot executes the local sharing process
when it has new information of all the members in the current block. To avoid
endless waits, a timeout for information sharing takes place when a member in the
block fails. Figure 5.17f shows an arbitrary instant illustrating how robots move
independently from the store to the structure, execute their assembly operations
and exchange information when connected with a neighbor near the structure (the
pair of robots (0, 1) and (6, 7) may be sharing information). The video https:
//youtu.be/0m6J1cqO1PI shows the initial stages of a simulation.

Results with different strategies

Two possible information sharing procedures can be applied to the scenario ap-
plied above, a local or a global information retrieval before the decision process.
So far, related approaches, the one-to-one and the centralized strategy, represent
strict versions of these choices. We compare such algorithms to the BIS strategy
introduced in this chapter. In the one-to-one strategy, the information is shared
between only two neighboring robots. This approach has been used frequently
in related literature [1, 3, 2]. On the other end of the spectrum are centralized

https://youtu.be/0m6J1cqO1PI
https://youtu.be/0m6J1cqO1PI
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algorithm with global knowledge, where a new allocation is created based on all
the information available in the entire system. However, the BIS strategy is de-
centralized and takes advantage of quick local decisions using a group of agents
to achieve global solutions. Note that the block size in the BIS strategy indicates
the degree of global knowledge in the reallocation process. Furthermore the three
algorithms can be integrated within the BIS strategy, namely, size 2 for one-to-one
and size n for the centralized approach, where n is the number of robots in the
team.

Using blocks of big size implies a more centralized approach which allows the
computation of a near optimal solution since global knowledge is taken into ac-
count. However, collecting, processing, and broadcasting all globally available
knowledge can be time consuming which limits the efficiency of the overall system.
Additionally, an almost centralized approach may not yield improvement: If some
agents in a large block leave the team, the task allocation cannot be completed
until the failure has been detected by all other block members. In contrast, a more
decentralized approach using small blocks achieves robustness to individual failures
and may gain a performance advantage through parallel computation. However,
the quality of the solution may decrease. In this section we explore this trade-off
between efficiency and robustness.

In order to analyze the balance of the task allocation in the team during a
mission we introduce some notations. Let Pi(t) and ci(t) be the number of unplaced
pieces (workload) assigned to the i-th robot and its capability coefficient at instant
t of the mission, respectively. From equation (5.2) it follows that in a team with
n robots at instant t, the task allocation is balanced if:

Pj(t)

cj(t)
=

n∑

i=1

Pi(t)

n∑

i=1

ci(t)

, for all 1 ≤ j ≤ n. (5.8)

Let ri(t) = Pi(t)/ci(t) be the ratio of workload and capability of the i-th robot
at instant t and let r∗(t) =

∑n
i=1 Pi(t)/

∑n
i=1 ci(t) be the optimum ratio of workload

and capability at time instant t according to (5.8).
In the scope of this study, we consider the following function to assess the

imbalance of the workload in the system:

ξ(t) =

√∑n
i=1(ri(t)− r∗(t))2

n
. (5.9)

Note that if the workload in the team is balanced then the value of ξ is zero, while
a higher value of ξ corresponds to a greater degree of imbalance.

Figure 5.18 depicts the comparison among different strategies for a setup with
8 robots and a bridge of 100 cubes length. The tested strategies are: one-to-
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one, centralized and BIS strategy. The latter was applied in two regular block-
configurations with blocks of size 4 and 6, respectively. We will denote by O-O,
CENT and BIS-k the strategies one-to-one, centralized and BIS strategy with
block size k, respectively. The results indicate that CENT is the most time con-
suming. The team spends 7554.5s with O-O, 7446.5s with BIS-4, 7433.5s with
BIS-6 and 8594.0s with CENT. During the simulation, the events generator pro-
duces two random fail-events (consequently information sharing is needed to finish
the construction of the bridge).
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Figure 5.18: Behavior of the function ξ in a simulation using different strategies:
the one-to-one strategy (O-O, dashed gray line); BIS strategy with block size 4
(BIS-4, dash-dotted red line); BIS strategy with block size 6 (BIS-6, continuous
black line) and centralized strategy (CENT, dash-dot-dotted blue line).

In Figure 5.18, every peak in a curve represents a disturbance in the workload
balance due to a sharing process. Initially, the team starts with an optimal task
allocation and thus, at the beginning of the simulation, the values of ξ are close to 0.
Around second 2400 of the simulation, we observe an abrupt increase of imbalance
for the team using the centralized strategy. The cause of this behavior is the
high volume of information which needs to be collected. The members of the team
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spend a relatively large amount of time retrieving information from all teammates.
In fact, when the leftmost robot receives the information of the rightmost robot,
the information is already outdated. Suppose the identifiers of the robots from
left to right are r1, r2, . . . , r8 and robot r8 shares information with its neighbor r7.
At this moment, r7 receives the information about the number of unplaced pieces
assigned to r8. At a certain instant in time, r7 passes this information to r6, and
so on until this information reaches r1. While the information about unplaced
pieces assigned to r8 is traveling to reach r1, r8 continues working. Therefore, at
the moment in which r1 receives the information about r8, the number of unplaced
pieces assigned to r8 that receives r1 is greater than the actual number of unplaced
pieces assigned to r8. This causes an alteration in the task allocation, assigning
some placed pieces to the robots as unplaced pieces.

Around instant 3250s of the simulation, an event occurs which produces an
imbalanced workload (note that all the curves have a strong disturbance). The
curve corresponding to the one-to-one strategy experiences stronger disruption
than the others due to the following reason: When a robot detects that its neighbor
has failed, it resumes the assembly task of its neighbor and its workload grows
significantly with respect to other workloads. However, using blocks of robots (with
sizes greater than 2) in the reallocation, the assembly task is divided between the
remaining members of the block thus obtaining better distribution (this argument
also applies to the centralized strategy).

Larger blocks imply fewer reallocation operations in order to obtain an optimal
task allocation. Therefore, in most cases faster convergence to an optimal partition
is guaranteed. Note in Figure 5.18 that the team using one-to-one spends more
time to reach a balanced task allocation from a peak than others. On the other
hand, if the changes in the system occur faster than the broadcast time in the
block, the convergence to an optimal task allocation may be put on hold. As an
example, see the behavior shown in Figure 5.18 around second 2400 of the simula-
tion using the centralized strategy. Also, using the BIS strategy with larger blocks
(or a centralized strategy) may cause larger time intervals between reallocations.
This may result in a problem if for instance a robot u is trying to place a piece
which requires another piece assigned to a neighbor u′, and u′ fails. Then u will be
locked trying to place its piece until the next reallocation occurs. Another unde-
sirable situation occurs if a robot u is idle (with no assigned pieces because it has
finished its assigned assembly operations) while its neighbor u′ still has pending
operations. In this case, u will be idle and waiting for a new assignment until the
next reallocation process occurs. Both situations may increase the execution time
of the global task as illustrated in Figure 5.18 by the curve corresponding to the
centralized strategy.

In summary, in this specific experiment, BIS-6 seems to be the most adequate
choice to maintain a balance between efficiency and robustness.

Finally, in order to analyze both, workload variability and total time needed to
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assemble the structure, for the chosen strategy, we performed several experiments
using a team starting with 10 robots. Different bridge lengths were tested: 40, 60,
80 and 100 cubes. For each length, we performed 50 runs using different strategies:
O-O, BIS-4, BIS-6, BIS-8 and CENT. We have implemented the scenario intro-
duced in subsection 5.3.4 and the occurrence of failures in the system has been
generated randomly.

Tables 5.1a, 5.1b, 5.1c and 5.1d show the obtained results for each bridge length.
We have considered three parameters: the total time to assemble the bridge (End
Time) in seconds, the mean value of function ξ (mean-ξ) and the maximum value
of function ξ (max-ξ). The tables show the average, best and worst cases (Avg, Best
and Worst, respectively) for each parameter. The best and worst average value of
these parameters have been highlighted in the tables. Figure 5.19 illustrates the
growth of the parameters using the average data.

The results (Tables 5.1a-5.1d) indicate that the centralized strategy is the worst
among the considered methods: it obtained the lowest efficiency and furthermore
ranked low with respect to balancing. The other strategies appear to have a similar
behavior regarding efficiency, whereas BIS shows a better performance with respect
to balancing compared to O-O.

5.4 Conclusions and future developments
In this chapter we have introduced the block-information-sharing strategy as a
new paradigm for performing task allocation in a decentralized manner. This
strategy is applicable to a variety of scenarios meeting the following conditions:
the general task should be divisible and parallelizable, the communication graph
should be connected and the union of the selected block-configurations should be
a covering of the set of edges of the communication graph. It has been proved
that if these conditions are fulfilled, the convergence to an optimal task allocation
can be guaranteed. Thus, the experimental proofs on the convergence in related
literature [1, 3, 2, 28] are now theoretically endorsed.

It has also been demonstrated that the block size is an important parameter in
this strategy which is directly related to the rate of convergence and robustness.
In an ideal scenario with instantaneous communication and no limit in the infor-
mation amount to be handled by one robot, the convergence rate increases with
increasing block size. However, in real applications, sharing with blocks of big size
may be expensive and the system can lose in efficiency and fault tolerance. In
fact, the memory of the robots is limited and time is spent while moving to ensure
the information sharing process. Thus, although the benefits of the BIS strategy
are visible in the computational experiments in both, surveillance tasks [28] and
assembling structures, the block size is a parameter that can be adequately set
based on prior studies and simulations for a given scenario. Indeed, the lack of a
priori knowledge of the block size for a specific communication graph is the bot-
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Figure 5.19: Performance of End Time (a), mean-ξ (b) and max-ξ (c).

tleneck of the BIS paradigm. In this work, the block size is considered an input
parameter, whereas the computation of an optimal value for a given configuration
remains an open problem.
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End Time (seconds) mean-ξ max-ξ

Avg Best Worst Avg Best Worst Avg Best Worst

O-O 1389.53 1325.00 1636.00 50.59 29.94 237.32 308.73 56.18 2666.22
BIS-4 1434.30 1311.00 2248.00 47.39 38.91 67.14 309.49 65.28 3008.07
BIS-6 1467.51 1315.50 1978.00 52.74 41.49 61.92 199.44 79.32 2827.56
BIS-8 1514.89 1322.50 3344.50 57.36 27.35 71.07 123.82 89.77 853.34
CENT 2031.71 1348.00 6587.50 64.84 43.11 86.07 856.64 94.70 2826.23

(a)

End Time (seconds) mean-ξ max-ξ

Avg Best Worst Avg Best Worst Avg Best Worst

O-O 2494.09 2222.50 3243.00 198.21 42.81 866.00 2344.04 72.68 4554.40
BIS-4 2523.77 2189.50 3351.50 87.18 46.38 226.73 2162.54 88.97 4180.97
BIS-6 2658.44 2222.00 4675.00 99.58 63.37 304.14 2176.64 114.84 5140.51
BIS-8 2694.95 2203.00 3937.00 88.02 56.37 153.99 2114.48 127.39 4647.83
CENT 3525.19 2256.00 4722.50 130.69 47.08 411.49 2904.37 105.25 4979.16

(b)

End Time (seconds) mean-ξ max-ξ

Avg Best Worst Avg Best Worst Avg Best Worst

O-O 4243.14 3523.50 6783.00 506.05 66.79 1376.72 5035.26 347.14 9060.06
BIS-4 4326.19 3469.00 6131.50 268.84 59.96 806.60 4994.50 112.68 7387.02
BIS-6 4232.80 3496.00 7645.50 206.53 77.42 595.44 4987.09 131.83 7424.13
BIS-8 4311.82 3501.00 6269.50 190.56 91.45 603.06 4854.98 169.49 7510.42
CENT 4989.96 3479.00 7415.5 331.48 62.51 827.66 4886.42 119.46 6950.91

(c)

End Time (seconds) mean-ξ max-ξ

Avg Best Worst Avg Best Worst Avg Best Worst

O-O 6500.33 5656.50 8622.00 1078.28 112.09 2518.39 6831.81 205.28 10282.73
BIS-4 6392.32 5494.00 8276.50 490.07 80.61 1181.09 6717.91 142.26 10380.09
BIS-6 6509.25 5564.00 8850.50 383.30 101.29 864.76 6546.49 174.50 9953.94
BIS-8 6436.99 5532.00 8896.00 336.21 119.54 876.99 6787.17 452.30 8624.41
CENT 6719.93 5740.00 8982.50 476.96 130.54 757.68 6618.10 217.68 9027.23

(d)

Table 5.1: Summary of end time, mean value of function ξ and maximum value of
function ξ using different strategies for a setup with 10 robots and different bridge
lengths. The average, best and worst value of each of these parameters is shown.
The tables (a), (b), (c) and (d) corresponds to bridges of 40, 60, 80 and 100 cubes
length, respectively.
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Chapter 6
Summary and future work

Motivated by the growing interest on problems that appear in aerial robotics sys-
tems and its applications, which often are not studied from a formal and general
point of view, this thesis addressed several challenges on aerial multi-robot systems
from a discrete and combinatorial optimization perspective. The presented work
has been developed in the framework of several research projects focused on aerial
robotics systems and, it is centered in the theoretical analysis of some problems
related to these projects, rather than focusing on the engineering part related to
the hardware, implementation and commissioning of these systems.

The goal of this thesis, presented as an applied mathematical work, is two-fold.
One is to solve robotics problems using mathematical resources and, another one is
to post theoretical concepts and problems, inspired by aerial robotics applications,
that could be of great interest to solve for mathematicians. More specific objectives
of the thesis are: (1) the synchronization problem, which asks for a coordination
strategy that allows periodical communication between the members of a coop-
erative team while performing a task in a scenario with limited communication
range. (2) To study the robustness of the strategy proposed as a solution for the
synchronization problem, it must be able to recover in case of catastrophic failures
of some robots. And, (3) online (periodical) task allocation in a cooperative team
of aerial robots with limited communication range.

Chapter 2 is dedicated to the synchronization problem. According to our
methodology, it starts by formally posting the problem and, after that, a simplifi-
cation by using unit circular trajectories is considered. Using this simple model,
we make a rigorous study of the problem and we present synchronized systems as
a solution. In this chapter, we present a characterization of the optimal solutions
and propose an algorithm to find them. We also show how to extend our results
in the simplified model to more general scenarios. In order to address the sec-
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ond of the specific objectives of the thesis, we introduce the shifting strategy as
a deterministic protocol to recover the system when some robots leave. Finally,
in order to validate our proposals, we include the results of several computational
simulations and a preliminary real experiment. Future research lines in this area
include the study of other variations of the proposed problem considering non-
simple trajectories and allowing more than one communication link between two
trajectories. Also, it could be interesting to study recovery strategies to deal with
the inability of an agent to properly maintain its schedule along its trajectory.

Although the robustness of a synchronized system was initially addressed in
Chapter 2, it is more deeply analyzed in Chapters 3 and 4. The computational
simulations at the end of Chapter 2 show a good performance of the shifting
strategy when a small set of drones leave the system. However, it is shown in
Chapter 3 that in the worst cases, the leaving of some robots causes that some
trajectory points are no longer visited, or some robots never meet another one, or
the system loses the ability to relay messages between any pair of robots. Chapter 3
contains the most theoretical part of the thesis. It starts mathematically defining
a synchronized communication system (SCS) as a dynamic structure where the
robots move following some strict rules. Then, combinatorial problems on the
resilience of a SCS are stated: What is the minimum number of robot that must
fail such that

1. some trajectory point is not longer visited?

2. k of the surviving robots will never meet another robot to share information?

3. the system is not able to relay a message between some pair of surviving
robots?

These problems could be interesting for engineers because they allow to mea-
sure the robustness of a system: the greater the resilience values are, the most
robust the system is. However, due to the problem statement itself and, the aes-
thetic beauty of the structures and techniques to solve them, these problems are
also attractive for mathematicians. Throughout this chapter we showed connec-
tions of these problems with number theory, graph theory, circulant graphs and
polynomial multiplication. From the theoretical point of view, as future research,
we could study other properties (not necessarily related with robustness) of the
synchronized systems. For example, at the end of Chapter 3, the design of a more
specific algorithm to compute the vertex-connectivity of the graph that models the
communications between the robots, is suggested as a future research line.

Chapter 4 introduces some stochastic behavior for the drones in order to avoid
the drawbacks mentioned above. Also, some measures, commonly used in the
literature, are considered to evaluate the performance of a system. These measures
are:
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• idle-time: the average time that trajectory points remain unobserved by a
robot,

• isolation-time: the average time that robots spend without communicating
with any other robot, and,

• broadcast-time: the average time elapsed from the moment a robot emits a
message until it is received by all robots.

Two random strategies are proposed as alternatives for the deterministic recovery
strategy introduced in Chapter 2. One of these strategies is easier to implement
in practical scenarios because the robots fly in separate regions. The other one
allows that two or more robots fly together in the same region, thus, it requires
some protocol to avoid collisions. However, this last strategy is easier to study
theoretically because it generates a classical random walk for each active robot.
A section of Chapter 4 is dedicated to this study and we prove some bounds for
the expected values of the measures stated above. Moreover, several statistical
experiments were performed showing that the two random strategies have a very
similar performance and are much better than the deterministic one, specially
if the number of robots in the system is small with respect to the number of
trajectories. Future research could focus on a study on the influence of the decision
probability factor p (fixed as 0.5 in this work) in different topologies of the system
communication graph.

In Chapter 5, the block-information-sharing (BIS) strategy is formally pre-
sented as a generalization of the one-to-one strategy introduced in [2, 1]. Having
a team of robots with limited communication range, which are operating in a
large scenario where is not possible to maintain a permanent communication, the
BIS strategy addresses the problem of maintain a balanced task allocation among
the robots by using intermittent and periodical communications. We have for-
mally proven that the it converges to an optimal task allocation in an abstract
and general scenario. Additionally, we have shown how to use this approach to
design a fault-tolerant decentralized algorithm for structure construction using a
cooperative team of aerial robots.

The BIS strategy and the synchronized communication systems with random
behavior showed very promising results with respect to performance and robust-
ness. However, they require a lot of engineering work to be implemented in real
systems, in fact, several issues related to sensor precision, error management and
communication should be addressed to implement these solutions on reliable sys-
tems. Notice that, although these strategies emerged from aerial multi-robot ap-
plications, they could be extended and generalized to any kind of multi-robot
system (e.g., ground robots, underwater robots, etc.). Also, the proposed strate-
gies could be useful to develop other variants in specific scenarios or may inspire
new heuristics.
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Lastly, we would like to mention that, we have recently been involved in a new
project consisting on filming a sport event with a team of aerial robots. The main
underlying problem of this project is: given a filming plan consisting of several
scenes (a scene is a filming location or a continuous sequence of filming locations
with an associated time window), schedule a flight plan for every available robot
such that all the scenes are filmed. Some variants of this problem have been
studied before by using directed graphs, however, the main novelty in our scenario
is that the drones have a limited battery and they need to periodically return to
a charging station. This is another promising scenario for future works in the
interplay between mathematics and robotics.
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