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Abstract
This paper examines how control engineering and risk management techniques can be applied in
the field of behavioral health through their use in the design and implementation of adaptive
behavioral interventions. Adaptive interventions are gaining increasing acceptance as a means to
improve prevention and treatment of chronic, relapsing disorders, such as abuse of alcohol,
tobacco, and other drugs, mental illness, and obesity. A risk-based Model Predictive Control
(MPC) algorithm is developed for a hypothetical intervention inspired by Fast Track, a real-life
program whose long-term goal is the prevention of conduct disorders in at-risk children. The
MPC-based algorithm decides on the appropriate frequency of counselor home visits, mentoring
sessions, and the availability of after-school recreation activities by relying on a model that
includes identifiable risks, their costs, and the cost/benefit assessment of mitigating actions. MPC
is particularly suited for the problem because of its constraint-handling capabilities, and its ability
to scale to interventions involving multiple tailoring variables. By systematically accounting for
risks and adapting treatment components over time, an MPC approach as described in this paper
can increase intervention effectiveness and adherence while reducing waste, resulting in
advantages over conventional fixed treatment. A series of simulations are conducted under varying
conditions to demonstrate the effectiveness of the algorithm.
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INTRODUCTION
Behavioral interventions play a prominent role in the prevention and treatment of a wide
number of public health disorders, among these abuse of alcohol, tobacco, and other drugs,
mental illness, and obesity. Traditional fixed interventions provide the same dosages of
prevention or treatment components to all program participants, without taking into account
any individual features. Recent efforts in the fields of medicine and behavioral health have
suggested that tailoring treatment to the specific needs of an individual participant may
enable delivery of interventions with greater degrees of efficacy and adherence, and less
waste [1]; this is the motivating principle for adaptive interventions (also known as
contingency management, stepped care programs, and case management, [2]). In an adaptive
intervention, different dosages of prevention or treatment components are assigned to
different individuals across time, with dosage varying in response to the needs of the
individual. Adaptive interventions are time-varying when the dosage is revised repeatedly
throughout the intervention. Time-varying adaptive interventions are particularly well-suited
for addressing chronic disorders that are relapsing in nature; contributions of adaptive
interventions for the treatment of hypertension [3], depression [4], substance abuse [5], [6],
[7], [8], Alzheimer’s disease [9] and infectious diseases [10] have been reported.

The work in [2] presents a conceptual framework for adaptive interventions and discusses
principles that underlie the design and evaluation of such interventions. This work serves as
the basis for the analysis in [11], which demonstrates that adaptive interventions are
feedback control systems, and as such will benefit from a control-theoretic approach. The
objective of this paper is to extend the work reported in [11] by incorporating a risk-
management perspective within a Model Predictive Control (MPC) framework. The
proposed control-oriented framework replaces the “IF-THEN” and PID control-based
decision rules presented in [11] with a formal framework that incorporates risks based on
Model Predictive Control.

Risk management is a relatively new perspective that was first applied to natural disasters
[12], but in the last decade has been extended to the fields of project management and
financial policies, in which it is generating a growing interest [13], [14]. Risk management
can be summarized as the identification of risks, their ranking or prioritization, the
resolution of those deemed significant and their monitoring through their applicable life.
Methods and disciplines that address risk management are becoming more highly accepted
by companies, as those organizations which better understand the nature of risks (and can
thus manage them more effectively) can not only avoid unforeseen disasters, but can also
operate with tighter margins and less contingency [15].

In this paper we illustrate a risk-based, control-oriented framework for decision-making in
adaptive interventions by means of a hypothetical yet meaningful simulated intervention. By
using a risk-based approach, information about additional factors that may affect the
evolution of the participant state during the intervention period can be considered. The
controller incorporates additional manipulated variables which represent mitigation actions
that can be undertaken in order to reduce risk exposure. These actions can either increase or
decrease the treatment dosage, or result in a switch to other treatment options if risks take
place. MPC, the control methodology that executes these decisions, has been widely used in
applications as diverse as manufacturing [16], economic systems [17] and medicine [18].
Among the reasons for use of MPC include the ease with which it handles constraints, its
ability to naturally incorporate a model representing the problem phenomena, and its ready
extension to the multivariable case.

Zafra-Cabeza et al. Page 2

IEEE Trans Control Syst Technol. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The hypothetical adaptive intervention considered in this paper is patterned after the Fast
Track program [19], [20], [21]. The long-term objective of this program is to prevent
conduct disorder in at-risk children. Whereas the core intervention components in Fast
Track were fixed, a series of components were delivered adaptively. We focus in this paper
on the frequency of home-based counseling visits, which were assigned to each family
during the course of the intervention depending upon the level of parental functioning. In the
formulation of the Case Study we rely on risks identified by the Social Development
Research Group (SDRG) at the University of Washington [22], [23], an organization
focused on prevention and treatment programs geared for youth.

This paper is organized as follows. Section II describes a hypothetical time-varying adaptive
intervention inspired by Fast Track. The section presents a dynamic model representation of
this process and how the intervention can be conceptualized as a closed-loop dynamical
system. Section III presents the proposed risk modeling approach, while Section IV
describes the risk-based optimal control algorithm based on MPC. A case study is presented
and discussed in Section V where a series of nominal and Monte Carlo simulations are
presented to show the benefits of the method. Some concluding remarks are highlighted in
Section VI.

II. ADAPTIVE BEHAVIORAL INTERVENTIONS AS CLOSED-LOOP
DYNAMICAL SYSTEMS

As a representative example of a time-varying adaptive intervention we examine the Fast
Track program developed by the Conduct Problems Prevention Research Group (CPPRG)
[19], [20], [21]. Fast Track was a multi-year, multi-component program designed to prevent
conduct disorder in at-risk children. Youth showing conduct disorder are at increased risk
for incarceration, injury, depression, substance abuse, and death by homicide or suicide. In
Fast Track, some intervention components were delivered universally to all participants,
while other specialized components were delivered adaptively. In this paper we base our
hypothetical examples on the family counseling component of Fast Track, which was
provided to families on the basis of parental functioning.

There are several possible levels of intensity, or doses, of family counseling. The objective
of our hypothetical intervention is to vary the doses of family counseling depending on the
needs of the family, in order to avoid providing an insufficient amount of counseling for
very troubled families, or wasting counseling resources on families that may not need them
or may be stigmatized by excessive counseling. The decision about which dose of
counseling to offer each family is based primarily on the family’s level of functioning,
assessed by a family functioning questionnaire completed by the parents. The score on the
family functioning questionnaire is referred to in [2] as the tailoring variable, because it is
used to determine the particular level of treatment provided to the individual family.
Another factor which may affect the value of the tailoring variable is the judgment of a
clinician familiar with the family’s case. Based on the questionnaire and the clinician’s
assessment, family functioning is determined to fall in one of the following categories: very
poor, poor, near threshold, or at/above threshold. A corresponding decision rule that can be
applied is as follows: families with very poor functioning are given weekly counseling;
families with poor functioning are given biweekly counseling; families with near threshold
functioning are given monthly counseling; and families at or above threshold are given no
counseling. Family functioning is reassessed at a review interval of three months, at which
time the intervention dosage may change. This goes on for three years, with twelve
opportunities for a dose of family counseling to be assigned.
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This adaptive intervention has previously been studied from a control perspective in [11]. In
a control engineering context, the frequency of counseling visits (the intervention dosage) is
the manipulated variable, while parental function is the state variable. Measured parental
function (performed at quarterly intervals) is the controlled variable and serves as the
tailoring variable for the intervention. Decision rules correspond to controllers that take
values of the tailoring variable and correspondingly assign intervention dosages.
Disturbances represent exogeneous factors that influence parental function during the course
of an intervention. While some disturbances can be considered as beneficial in character
(e.g., new job, pay raise, or vacation time), we will focus in this paper on disturbances that
negatively affect parental function (e.g., job loss, stress, or illness). Disturbances were
described generically in [11], but these will be defined more explicitly in the form of risks in
Section V of the present paper. Figure 1(a) depicts a block diagram corresponding to the
representation of an adaptive intervention as a feedback control system (as discussed in [11])
and Figure 1(b) shows the corresponding fluid analogy.

An important consideration in applying a control engineering perspective to this problem is
how to model the open-loop dynamics of the closed-loop system depicted in Figure 1(a). In
this paper we rely on the work in [11] to apply a fluid analogy to describe the “open-loop”
dynamics of the adaptive intervention:

(1)

(2)

(3)

where uI(t) is the frequency of counselor home visits and represents the manipulated
variable, x(t) is the parental function and represents the tailoring or controlled variable for
the intervention, D(t) is the disturbance or depletion signal, considered as a collective effect
of multiple events, N(t) is the measurement noise, KI is the intervention gain, and θ
represents the time delay between the intervention and its actual effect on parental function.
The model according to Equations 1–3 corresponds to conservation of mass in a production-
inventory system, which denotes a parallel between this problem and inventory management
in supply chains. In the latter problem, fluid analogies and control-oriented approaches have
led to sound, practical solutions, despite conditions of stochasticity and uncertainty [24],
[25].

The design of a time-varying adaptive intervention is a process that may involve
considerable uncertainty. Uncertainty may stem in part from the nature of the measurements,
which may rely on clinical staff judgement and error-prone assessment instruments such as
questionnaires. There may also be variations in response between individuals (e.g., the same
intervention dosage may provide different results in two different individuals) and variation
in an individual’s response when examined at different times. The response of the system
will depend heavily on external factors. The following section describes how a risk
management approach provides a means to model the effect of the unknown factors.
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III. RISK MANAGEMENT IN ADAPTIVE INTERVENTIONS
Many studies have put forth efforts to identify risk factors associated with behavioral health.
One example is [26], where a telephone-based intervention appears to be an effective form
of step-down treatment for participants with alcohol and cocaine dependence who complete
an initial stabilization treatment. Prior to providing the intervention to a participant,
individual risk factors are analyzed to determine its suitability.

External risk factors may be considered as disturbances in the sense that they can change the
expected outcomes. If these disturbances are not taken into account, decision making on the
control variable may not be as effective. Risk management is aimed at making decisions in
systems where limited knowledge about the process, system complexity and the presence of
uncertainties at critical points in time have a decisive role. In this paper, particular
disturbances that can be identified a priori will be referred to as risks. Risk modeling as
applied to an adaptive intervention is described in the ensuing subsections.

A. Risk Modeling
In this work, the term risk is defined as an event that could take place and cause impacts to a
participant seeking treatment. Therefore, the first step in applying risk management is to
carry out an identification of the possible risks (Ri). We define R = {R1, …, Rm} as the set of
identified risks for a specific participant. Each risk is characterized by a probability of
occurrence in each time period (pi(t)) and some impacts (Ii) which may affect the individual
by decreasing or increasing the efficiency of the interventions, if the risk were to occur and
no mitigating actions are taken.

Once risk identification has been performed, the next step to undertake is the design of a
strategic mitigation plan from a clinical point of view. This makes possible the impact
reduction of the identified risks and hence, the adaptation of the treatment for each
individual. In this way, each risk can be associated with a set of actions (Ai) that could
mitigate these risks. Figure 2 shows an example of a Risk-Based Structure (RBS) that
illustrates the relationship between risks and actions in a possible strategic plan.

It can be observed that a participant (Pi) may be associated with some specific risks (i.e.,
participant 1 is susceptible to risks R1 and R2); a risk can be mitigated by different actions.
In Figure 2 for example, R2 is mitigated by A1, A2 and Ap−1. One action may mitigate
different risks; note in Fig. 2 how A1 mitigates R1 and R2. Mitigating actions will reduce the
initial impact of a risk, but usually, the system will incur additional costs as a result. Even if
the impact is stochastic in nature (i.e., assessed only if the risk actually occurs), costs
associated with mitigating actions will be incurred regardless. There is an arc from
participant Pj to risk Ri labeled by PRji if participant Pj incurs risk Ri; PRji = 0 if participant
Pj does not incur risk Ri. On the other hand, there is an arc from risk Ri to action Ak, labeled
by RAik if Ri is mitigated by action Ak; RAik = 0 if action Ak does not mitigate risk Ri.

We assume the mitigation action set as A = {A1, …, Ap} with p representing the number of
mitigation actions. Formally, each mitigation action is described by a set of three elements:

(4)

where the decision variable for the action (Ai) is denoted by uFi· fi(uFi) : ℜ → ℜ is a
function that determines the risk impact reduction as a function of uF in each unit time; thus,
fi is the reduction of the initial impact when the action (Ai) is applied. Actions that are
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chosen to mitigate risks may have an associated cost of execution; this feature is modelled
by defining functions gi(uFi) : ℜ → ℜ that will later enter in the objective function.

In previous work [27], decisions about mitigation actions were in the form of binary
execute/do not execute decisions. In many instances, the intensity of the action has to be
taken into account when deciding how to execute the action; that decision will depend on the
nature of the mitigation action control variable uFi, which could either be a continuous (uFi
∈ ℜ) or integer (uFi ∈ ℵ) variable. As noted previously, examples of mitigation actions in an
adaptive intervention context can include either augmenting or decreasing the frequency of
counseling visits, or taking alternative actions that are considered clinically appropriate.

We define u = [uI uF] as the decision variable vector. uI (t) is the decision variable from the
original problem (frequency of counselor home visits) and uF = [uF1, …, uFp ] is the
decision variable vector that represents the additional mitigation actions to reduce the risks.

The initial model for the dynamics of parental functioning presented in equation (1) can be
reformulated by considering risks and risk reduction as a feedforward signal.

(5)

The term D(t) is a function of the risk exposure (RE), which in turn, is a function of the risk
impact Ii and the probability (pi) defined as:

(6)

where the number of identified risks is denoted by m. REi(t) models the effect of the risk Ri
at time t where pi(t) is the probability of the risk Ri at instant t. The additional term F(t)
introduced in (5) is the feedforward control signal, which is a function of risk reduction
when risk mitigation actions are applied:

(7)

where

(8)

The sum of functions f represents the reduction of the initial impact by executing mitigation
actions. RA(i, j) = 1 if risk Ri is mitigated by action Aj; otherwise RA(i, j) = 0. The total cost
of the mitigation actions takes the form:

(9)

where gj(uFj) is the cost for an individual mitigating action Aj.
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IV. OPTIMIZATION PROBLEM FORMULATION FOR MODEL PREDICTIVE
CONTROL

MPC is an optimal control strategy based on the explicit use of a dynamic model to predict
the process output at future time instants [28]. The future time interval considered in the
optimization is called the prediction horizon, N. The set of future control signals is
calculated by optimizing a determined criterion or objective function that usually is
quadratic. The predicted outputs depend on the known past input and output values up to
instant t and on the future control signals. Only the control signal calculated for instant t is
sent to the process while the other control actions are not implemented. Some advantages
that MPC presents over other optimization control methods include the relative ease of
implementation, the ready extension to the multivariable case, and the natural addition of
constraints in the optimization. MPC also represents a natural approach to address the
modeling formulation involved in this work.

The MPC objective function considered in this paper is to minimize a multicriteria weighted
function where the error between the predicted output and the reference, the control effort
and the cost of mitigation actions are involved. The objective function corresponds to:

(10)

where N is the prediction and control horizon and ŷ(t + j|t) is the predicted output at instant t
+ j obtained at instant t. yGoal(t + j) is the reference to follow at instant t + j and Δu(t + j − 1)
the control effort. δ(j) is the penalty weight on the control effort, λ(j) is the move
suppression, and β are weights on each of the three main summation terms of the objective
function. The move suppression values λ(j) and weight β2 will be crucial to the performance
of the adaptive intervention, as these will influence the rate at which dosages change from
one review period to another. When the manipulated variable is assigned to discrete values
while the controlled variable y(t) is a continuous variable, the result of solving (10) is a
hybrid Model Predictive Controller [29].

Equations (5), (6) and (7) can be rearranged and the parental function (y(t)) can be expressed
as the following 1-output, (p + 1)-input model:

(11)

where A(q−1) = 1 − (q−1), B(q−1) is a (p + 1) × 1 polynomial vector and D(t) is an offset
term including the value of impacts for the corresponding time period, independent of
control actions and constant in time t. q−1 is the backward shift operator and B(q−1) is time-
varying and is calculated in each step; the model changes at each time instant as a
consequence of the participant state, risk occurrence and their probabilities.

One of the main advantages of MPC is its ability to incorporate constraints. The
optimization problem associated with MPC is usually subject to constraints on the
manipulated and controlled variables which can be expressed as:
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In addition to upper and lower bounds on these signals, it is also possible to constrain their
rates of change. Such constraint handling is particularly useful in insuring that intervention
dosages do not drastically change between review intervals.

V. SIMULATED CASE STUDY
The case study consists of a hypothetical adaptive intervention inspired by Fast Track [19],
[20], [21]. Risks and mitigation actions for the case study were selected based on work of
the Social Development Research Group (SDRG) at the University of Washington, which
focuses on developing prevention and treatment programs geared for youth [22]. Among
these is the Communities that Care program [23].

The first step is to identify the risks affecting participant Pj. A risk set R = {R1, …, R7} is
identified for a particular participant. Table I contains the description of the risks including
the estimation of the occurrence probabilities and their impacts on parental functioning.
These values are obtained based on the judgment of clinical staff and the results of a
questionnaire completed by one of the parents. This process could be reassessed during each
revision period. For risks R1 and R3 the probability of occurrence increases with time; the
impact is constant for all the risks and for all revision periods.

Following risk identification, the next task is to define a plan for the mitigation actions that
will reduce the impact of the risks. The risk-based structure (RBS) that relates risks and
actions is illustrated in Fig. 3. Table II shows the action set A = {A1, A2, A3} to undertake for
the mitigation. The intervention potency of action A1 (frequency of home visits) is assumed
to be scaled and is defined according to uI(weekly) = 3, uI(biweekly) = 2 and uI(monthly) = 1.
Actions A2 (mentoring with contingent reinforcement) and A3 (after-school recreation) are
considered to compensate the depletion in parental function as a consequence of the possible
risks that could occur. These actions are denoted by the variables uF1 and uF2, respectively.
Mentoring is assumed to be scaled according to uF1(weekly) = 3, uF1(biweekly) = 2 and
uF1(monthly) = 1. After-school recreation uF2 is expressed as a boolean variable taking the
values 1 or 0 for the case of requiring the activity or not, respectively.

The system model is based on Equation (5), as described in Section II. Parental function y(t)
is treated as a continuous measurement and normalized in the range of 0 to 100%, as
described in [11]. The gain and delay values considered are KI = 1.665 and θ = 0,
respectively. These values would normally be determined from an efficacy trial or similar
study prior to the intervention. The process under analysis is a first-order linear system
without dead time and therefore B(q−1) = B0(t). Note that B0(t) is a 3 × 1 matrix and D(t) is a
1 × 1 vector. Next, B0(t) and D(t) are defined as:

(12)

(13)

The objective function follows (10) with β1 = β2 = 1 and β3 = 0; the cost of mitigation
actions is not considered. The constraints that are enforced are the following:
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(14)

(15)

All decision variables in the problem are discrete-valued, but the control error is continuous,
resulting in a hybrid MPC controller as noted previously.

A. Test cases
This section describes five simulated scenarios (four nominal test cases and one Monte
Carlo) that were done to demonstrate how a risk-based MPC algorithm can be used to
control a time-varying adaptive intervention. In all the cases the family receiving the
intervention begins with a parental function score at 0. The objective is to reach a parental
function of at least 50 percent (yGoal) prior to the third year of the intervention.

The first test case, represented in Figure 4(a), simulates an adaptive intervention as
described in the previous section. The top panel of this figure displays the outcome as a
function of time in months. The magenta bold line represents the parental function through
the course of the intervention by considering risks. The blue dashed line shows the evolution
of the system in the case of no risks, in other words, when the occurrence probabilities of the
risks are set to 0. The solid red line is the reference to reach (yGoal). The lower three panels
in Figure 4(a) represent the three mitigating actions. The magenta bold line represents the
mitigating actions taken in response to risk, and the blue dashed line represents the actions
taken by the adaptive intervention when risks are not considered. In both cases, the control
system recommends higher dosages during the start of the intervention, which becomes less
necessary as parental function improves and reaches towards the goal. The salutary effect of
the additional mitigating actions A2 and A3 in the risk-based approach is demonstrated by
lower dosages of family counseling needed to achieve a desired parental function goal.
However, the adaptive intervention displays oscillatory behavior in parental function and the
mitigating actions. This is remedied in Test Case 2, represented in Figure 4(b), by increasing
the objective function horizon to N = 5, and increasing the move suppression (λ = 50). The
parental function in this tuning of the adaptive intervention settles at the goal much earlier
than in Test Case 1, with reduced oscillations in y(t) and greater uniformity in dosage
assignments.

Test Case 3 (Figure 5) shows the results that would be obtained if monthly clinical revisions
were used in lieu of quarterly ones. The results show that as a result of more frequent
revisions, the parental function response experiences less overshoot and reaches the goal in a
shorter amount of time. However, the increased number of revisions/faster sampling time
demands more effort and resources from the clinical staff in making assessments of parental
function and implementing dosage changes. In practice, the benefits of a smoother, more
effective intervention would have to be weighted against the extra costs associated with
more frequent measurement and faster control action.

For Test Case 4, shown in Figure 6, a scenario involving quarterly clinical revisions and
time delay of θ = 3 months (one revision period) is evaluated. The control parameters
settings are N = 5, λ = 50, δ = 0.5. As in any feedback system, the presence of delay
introduces an inevitable lag and degradation in the parental function response; nonetheless,
the controller is able to assign dosages of mitigating actions leading to satisfactory
outcomes. Because of the discrete-valued nature of the intervention and mitigating actions,
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perfect setpoint tracking is not accomplished in this case; however, the parental function
response has exceeded the goal after only 11 months.

B. Monte Carlo Simulation
The next experiment shows the results that are obtained when a Monte Carlo simulation is
applied. The scenarios have been generated by varying the occurrences of the risks in
participants and applying the interventions obtained in the case of quarterly clinical
revisions and three month delay (Fig. 6). 200 scenarios are considered following the formula
in [30] where a lower bound of the sample complexity is provided in order to be
approximately correct to accuracy ε and confidence δ. This bound is polynomial with the
dimension of the problem. Figure 7 illustrates the results when Monte Carlo simulation is
applied; the parental functioning mean for the different scenarios is the solid blue line. Note
that at each monthly time step an identification of the mean and deviation according to a
normal distribution has been obtained. The magenta lines with stars and squares represent
the upper and lower bound respectively of the 95% interval [μi −1.96σi, μi + 1.96σi] of the
output in the scenarios, with μi and σi the mean and deviation in the period i. The dotted
green line represents the means of the normal distributions that are obtained for each month
in the case of no mitigation.

VI. SUMMARY AND CONCLUSIONS
Adaptive interventions individualize therapy by the use of decision rules for how the therapy
level and type should vary according to measures of adherence, treatment burden, and
response collected during past treatment. This paper describes a control-based methodology
for decision-making in adaptive interventions meaningful to addressing prevention and
treatment problems in behavioral health. The objective of the control system is to assign
dosages of intervention components to achieve a desired participant state, taking into
account explicitly modeled risks that can be identified prior to the intervention procedure.
By systematically accounting for risks and adapting treatment components over time, an
MPC approach as described in this paper has the potential to increase intervention potency
and adherence while reducing waste, resulting in more effective interventions than
conventional fixed treatment.

Risk modeling involves risk identification, assigning probabilities, and devising a strategic
plan to mitigate risks; therefore, getting information from clinical staff and other trained
personnel to generate these models is crucial to the success of this approach. Likewise,
system identification methods that enable understanding the transient and delayed
relationship between intervention dosages and outcomes is a necessary component to this
work. In this paper, a hypothetical intervention was developed using information obtained
from two real-life programs (Fast Track and Communities that Care) which are associated
with the prevention of substance use and conduct disorder in youth and at-risk children.

The presented approach provides recommendations on the actions to undertake in order to
mitigate risks that could appear during each review period. Various experiments have been
performed corresponding to different scenarios; these include changes in controller tuning,
revision periods, and delays in the dynamic response of the interventions. This procedure
can be considered as a helpful tool to assist clinicians in evaluating different dosage
assignments before providing a definitive intervention to a participant.
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Fig. 1.
Block-diagram representation (a) and corresponding fluid analogy (b) of a hypothetical
family counseling-home visits adaptive intervention patterned after the Fast Track program.
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Fig. 2.
Illustration of a Risk-Based Structure (RBS) for participants P1, P2, …, Pn receiving an
intervention
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Fig. 3.
Risk-based structure (RBS) for the Case Study

Zafra-Cabeza et al. Page 15

IEEE Trans Control Syst Technol. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
(a) Results obtained for the MPC controller with base tuning parameters (Test Case 1 N = 1,
δ = 1, λ = 10; upper diagram). (b) Test Case 2 results obtained for the MPC controller with
improved tuning parameters (N = 5, δ = 1, λ = 50).
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Fig. 5.
Test Case 3. Adaptive intervention response in the case of monthly clinical revisions (N = 5,
δ = 1, λ = 10)
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Fig. 6.
Test Case 4. Adaptive intervention response in the case of quarterly clinical revisions and
three months (one revision period) delay in participant response (N = 5, λ = 50, δ = 0.5).
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Fig. 7.
Monte Carlo simulation on the parental function. The solid blue line is the mean of the
parental function in each month. The magenta lines with stars and squares represent the
upper and lower bound, respectively, of the 95% values in the simulation, for the different
scenarios. The dotted green line is the case of no mitigation.
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TABLE I

IDENTIFIED RISKS, CASE STUDY. THE VARIABLE t DENOTES TIME.

Risk Description Probability (pi) Impact (Ii)

R1 Availability of drugs 0.5+0.001t 8

R2 Family history of problem behavior 0.01 3

R3 Friends who engage in problem behavior 0.2+0.001t 2.7

R4 Extreme economic deprivation 0.4 3

R5 Poor family management practice 0.9 4.7

R6 Lack of commitment to school 0.2 4.3

R7 Early and persistent antisocial behavior 0.17 2.8
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TABLE II

MITIGATION ACTION DESCRIPTION, CASE STUDY.

Ac Description Impact Reduction Values

A1 Counselor Home Visits f1(uI) = 3.9uI uI ∈ {0, 1, 2, 3}

A2 Mentoring with Contingent Reinforcement f2(uF1) = 2.4uF1 uF1 ∈ {0, 1, 2, 3}

A3 After-school recreation f3(uF2) = 2uF2 uF1 ∈ {0, 1}
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