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FACTORS AFFECTING THE ADOPTION OF BIG 
DATA ANALYTICS IN COMPANIES
Fatores que afetam a adoção de análises de Big Data em empresas 

Factores que afectan a la adopción del análisis Big Data en empresas

ABSTRACT
With the total quantity of data doubling every two years, the low price of computing and data storage, make Big 
Data analytics (BDA) adoption desirable for companies, as a tool to get competitive advantage. Given the avai-
lability of free software, why have some companies failed to adopt these techniques? To answer this question, 
we extend the unified theory of technology adoption and use of technology model (UTAUT) adapted for the BDA 
context, adding two variables: resistance to use and perceived risk. We used the level of implementation of 
these techniques to divide companies into users and non-users of BDA. The structural models were evaluated 
by partial least squares (PLS). The results show the importance of good infrastructure exceeds the difficulties 
companies face in implementing it. While companies planning to use Big Data expect strong results, current 
users are more skeptical about its performance.
KEYWORDS | Big Data, intention behavior, unified theory of acceptance and use of technology, resistance to 
use, perceived risk.

RESUMO
Com a quantidade total de dados duplicando a cada dois anos, o baixo preço da computação e do armazena-
mento de dados tornam a adoção de análises de Big Data (BDA) desejável para as empresas, como aquelas 
que obterão uma vantagem competitiva. Dada a disponibilidade de software livre, por que algumas empresas 
não adotaram essas técnicas? Para responder a essa pergunta, estendemos a teoria unificada de adoção e uso 
de tecnologia (UTAUT) adaptado para o contexto do BDA, adicionando duas variáveis: resistência ao uso e risco 
percebido. Usamos a nível da implementação da tecnologia para dividir as empresas em usuários e não usuá-
rios de técnicas de BDA. Os modelos estruturais foram avaliados por partial least squares (PLS). Os resultados 
mostram que a importância de uma boa infraestrutura excede as dificuldades que as empresas enfrentam para 
implementá-la. Enquanto as empresas que planejam usar Big Data esperam resultados fortes, os usuários 
atuais são mais céticos em relação ao seu desempenho.
PALAVRAS-CHAVE | Big Data, intenção de usar, teoria unificada de adoção e uso de tecnologia, resistência ao 
uso, risco percebido.

RESUMEN
Con la cantidad total de datos duplicándose cada dos años, el bajo precio de la informática y del almacena-
miento de datos, la adopción del análisis Big Data (BDA) es altamente deseable para las empresas, como un 
instrumento para conseguir una ventaja competitiva. Dada la disponibilidad de software libre, ¿por qué algu-
nas empresas no han adoptado estas técnicas? Para responder a esta pregunta, ampliamos la teoría unificada 
de la adopción y uso de tecnología (UTAUT) adaptado para el contexto BDA, agregando dos variables: resisten-
cia al uso y riesgo percibido. Utilizamos el grado de implantación de estas técnicas para dividir las empresas 
entre: usuarias y no usuarias de BDA. Los modelos estructurales fueron evaluados con partial least squres (PLS). 
Los resultados muestran que la importancia de una buena infraestructura excede las dificultades que enfrentan 
las empresas para implementarla. Mientras que las compañías que planean usar BDA esperan muy buenos 
resultados, las usuarias actuales son más escépticos sobre su rendimiento.
PALABRAS CLAVE | Big Data, intención de uso, teoría unificada de la adopción e uso de tecnología, resistencia 
al uso, riesgo percibido.
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INTRODUCTION

Currently, society generates data about our activities at an 
exponential rate of growth. This data covers, for example, our 
mobile phones and their location, any online transactions, the 
Internet of things, social networks, wearables, etc. Firms that 
can transform these data into real-time information about their 
customers gain a substantial competitive advantage (Sivarajah, 
Kamal, Irani & Weerakkody, 2016). User data allows firms to know 
when their customers consume their products, the best times 
for promotions, and how to improve brand sentiments. Firms 
using Big Data analytics (BDA) (McAfee & Brynjolfsson, 2012) 
can process huge quantities of data, almost in real time, and 
become leaders in the market.

The adoption, implementation, and management of BDA 
requires companies to acquire new skills. New career profiles 
such as data scientist, which combines engineering, statistics, 
and a deep knowledge of business, are among the most sought-
after jobs nowadays. Employees with these skills help companies 

mine data generated by the companies themselves and their 
customers. This changes how decisions are made, favoring a data-
driven approach over one based on the personal experience of 
CEOs (McAfee & Brynjolfsson, 2012).

Firms using BDA must address the challenges that arise 
in the so-called data cycle of life: questions about the data 
themselves, difficulties processing the data, and concerns about 
data management (Akerkar, 2014; Zicari, 2014). Questions about 
the data themselves revolve around their volume, variety, velocity, 
veracity, volatility, value, and visualization. Data processing tasks 
include the techniques related to data acquisition, storage in 
databases, cleaning and transforming existing data, correct model 
selection, and presentation of the results. Finally, proper data 
management involves ethical considerations, including respect 
for user privacy and security.

Because decision-making is increasingly data-driven, 
companies must obtain valuable information in an efficient way 
from a rapidly changing data environment. This process, detailed 
by Agrawal, Bernstein, & Bertino (2011) as it shows in Figure 1.

Figure 1. Big Data processes

Analysis and 
modeling InterpretationAcquisition

and recording
Extraction,

cleaning and 
annotation

Integration,
aggregation and
representation

Data management

Big Data Processes

Data analytics

As Figure 1 shows, companies’ use of BDA involves two 
major processes: data management and data analytics.  While 
data management raises questions of engineering, data analytics 
speaks more directly to our interests as marketers.  BDA is the 
process of getting value from data by finding hidden patterns 
that support data-driven decision making.

Companies considering BDA adoption face several barriers 
such as lack of knowledge, fear, resistance to change, and the 
technology’s own limitations (Yaqoob et al., 2016). However, BDA 
improves their decision-making, utilizing techniques and software 
that are free and open source. This leads us to ask two questions. 
First, what affects its adoption? Second, why are there many 
companies that do not use BDA yet?  Most of the literature on BDA 
focuses on technical aspects related to its ecosystem: application 
development, data mining, analytics, prediction, prescription, or 
statistical modeling (Sivarajah et al., 2016). There is little research 

about BDA adoption inside companies (Kwon, Lee, & Shin, 2014; 
Brünink, 2016; Rahman, 2016; Demoulin & Coussement, 2018; 
Huang, Liu, & Chang, 2012; Verma, Bhattacharyya, & Kumar, 2018).

This study, based on the unified theory of acceptance 
and use of technology (UTAUT) model (Venkatesh, Morris, Davis, 
& Davis, 2003), considers the impact of two new variables, 
resistance to use and perceived risk, on the adoption of BDA. 
The aim of this study is to explain the adoption and use of this 
new technology by companies and to understand implementation 
problems in order to give recommendations to practitioners. This 
is why we differentiate between user and non-user companies 
of this technology and look for different factors that affect its 
acceptance and use.

The second section of the paper describes the theoretical 
foundations of the proposed model. The third section describes 
the methodology we use. The fourth section analyzes the results 
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obtained from the application of the model to a sample of 
companies. Finally, we present the main theoretical and practical 
conclusions, as well as the limitations, of our research.

THEORETICAL BACKGROUND AND 
HYPOTHESES OF THE PROPOSED MODEL 

Big Data analytics and marketing

Big Data has revolutionized marketing analytics and marketing in 
general. It has provided new concepts and new ways of doing things 
(Watson, 2019; Wedel & Kannan, 2016) to generate a competitive 
advantage. BDA enables service innovation that creates strategic 
value for companies (Chiang, Grover, Liang, & Zhang, 2018).

Currently, BDA is being used for marketing campaigns 
oriented toward increasing customer engagement (Liu, Shin, & 
Burns, 2019). The literature review shows an increasing number of 
publications on the use of Big Data techniques aimed at creating 
relational marketing benefits. (Amado, Cortez, Rita, & Moro, 2018).

Marketing management can use the huge amount of data 
available (for example, in social media) to gain valuable insights 
from their customers. Companies that exploit Big Data from social 
media gain competitive advantages because they know customers 
better  (Ducange, Pecori, & Mezzina, 2018). Studies show that, 
using BDA for business intelligence (Sun, Sun, & Strang, 2018) 
and to maintain customer privacy (Palmatier & Martin, 2019) 
creates important assets in relationship marketing.

However, the literature of BDA adoption is relatively 
sparse, and it is focused on the industry level (Rehman, Chang, 
Batool, & Wah, 2016; Wright, Robin, Stone, & Aravopoulou, 2019; 
Yadegaridehkordi et al., 2018; Lai, Sun, & Ren, 2017). Few authors 
have researched which factors affect BDA adoption in companies.

Acceptance models of Big Data analytics

Technology adoption by companies and consumers is critical for 
success. Numerous models of technology adoption have been 
developed and tested, including the theory of planned behavior 
(TPB) (Ajzen, 1991) and the technology adoption model (TAM) 
(Davis, 1985). But, without doubt, the UTAUT model (Venkatesh et 
al., 2003) is the most comprehensive model. This model integrates 
previous models and theories in order to analyze technology 
adoption and acceptance.

Previous studies of BDA adoption in companies (Kwon 
et al., 2014; Brünink, 2016; Rahman, 2016; Demoulin & 

Coussement, 2018; Huang et al., 2012; Verma et al., 2018) have 
used the original TAM (Davis, 1985), TAM2 (Venkatesh & Davis, 
2000), TAM3 (Venkatesh & Bala, 2008), or the UTAUT model 
without any added variables. Acceptance models have been 
upgraded since their introduction and have even evolved into 
new models. Because the UTAUT model is already a mature 
model, we enhance it with two new variables (discovered to 
be significant in this research), which help explain whether 
companies choose to adopt BDA.

The behavioral reasoning theory (Claudy, Garcia, & 
O’Driscoll, 2015) provides a framework in which user involvement 
is very important for successful technology adoption (Ives & Olson, 
2008). Users who are predisposed to change have less resistance 
to adopting a new technology (Laumer, Maier, Eckhardt, & Weitzel, 
2016). Different attitudes shape the adoption process of a new 
technology (Gargallo López, Suárez Rodríguez, & Almerich Cerveró, 
2006). This research led us to search for different patterns among 
users or non-users in our sample of companies.

Our proposed model includes four independent variables 
drawn from the UTAUT model. First, performance expectancy is 
defined as the degree to which the use of technology is expected 
to offer benefits for the company. Second, effort expectancy  
measures the ease of use expected for a technology. Third, social 
influence measures how individuals perceive that friends and 
family think that they should use a technology. Fourth, facilitating 
conditions is defined as the extent to which consumers perceive 
that resources and support will be available to develop a behavior. 
The model proposes a direct influence of the first three variables 
on behavioral intention, while facilitating conditions affects 
behavioral intention and usage behavior. Arenas-Gaitán, Peral-
Peral, and Villarejo-Ramos (2016) indicate that the value of 
this model is its capacity to identify which factors are the main 
determinants of adoption. The model allows the inclusion of 
different moderating variables that affect the influence of the 
model’s key constructs.

We add resistance to use and perceived risk to the UTAUT 
constructs. Resistance to use consists of negative reactions 
to change or new system implementation (Kim & Kankanhalli, 
2009). Perceived risk is the potential for losses as a result of 
the implementation of a new technology or information system 
(Featherman & Pavlou, 2003).

Hypotheses of the proposed model

We propose several hypotheses based on the extended UTAUT 
model for the acceptance and use of BDA in companies.
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Performance expectancy refers to the perception of the 
performance that the technology is going to have and is one of 
the most influential constructs regarding behavioral intention. 
Several studies (Brünink, 2016; Chauhan & Jaiswal, 2016; Yu, 
2012) besides the original work (Venkatesh et al., 2003) support 
this positive relationship. Therefore, we propose as a hypothesis:

H1: Performance Expectancy positively influences the 
behavioral intention to use BDA.

Effort expectancy refers to the ease of learning and use of 
this new technology. According to the UTAUT model, the degree to 
which BDA will be adopted depends on the ease or difficulty of its 
use. Several studies find support for this relationship (Al-Gahtani, 
Hubona, & Wang, 2007; Chauhan & Jaiswal, 2016; Kim, Chan, & 
Gupta, 2007; Lee & Song, 2013; Yu, 2012) and confirm the effect 
of effort expectancy on behavioral intention. Thus, we offer as a 
second hypothesis of the model:

H2: Effort Expectancy, or ease of use, positively affects the 
behavioral intention to use BDA.

The concept of social influence developed in the original 
work of Venkatesh et al. (2003) and  extended in UTAUT2 
(Venkatesh, Thong, & Xu, 2012) measures the effect of what others 
(friends and family) think about this technology. In a professional 
environment, what managers and colleagues think is also very 
important (Al-Gahtani et al., 2007; Brünink, 2016; Chauhan & 
Jaiswal, 2016; Gupta, Huang, & Niranjan, 2010; H. W. Kim et al., 
2007; Lee & Song, 2013). Therefore, we propose as a hypothesis:

H3: Social Influence positively affects the behavioral 
intention to Use BDA. 

Resistance to use consists of opposition or negative 
reactions to the implementation of a new technology. As Gibson 
(2004) finds, the introduction of many new technologies have 
failed due to the opposition of users to their implementation. 
Although current literature recognizes resistance to use (Kim 
& Kankanhalli, 2009; Lapointe & Rivard, 2007), there are few 
studies that integrate it into the UTAUT model. Nevertheless, 
there are precedents for using it to explain behavioral intention 
(Hsieh, 2015). Norzaidi, Salwani, Chong, and Rafidah (2008) verify 
the relationship between user resistance and usage, a finding 
confirmed by other studies that do not use the UTAUT model 
(Bhattacherjee & Hikmet, 2007; Poon et al., 2000). Therefore, 
we offer as a hypothesis:

H4: Resistance Use negatively affects behavioral intention 
to use BDA.

Perceived risk consists of the potential for losses in the 
implementation of a new technology. In addition to the work of 
Featherman and Pavlou (2003) which includes the measurement 
scale that we use,  many studies about perceived risk as a negative 
antecedent of behavioral intention (Kim, Ferrin, & Rao, 2008; Lee 
& Song, 2013; Martins, Oliveira, & Popovič, 2014). Therefore, we 
propose as a hypothesis:

H5: Perceived Risk negatively affects behavioral intention 
to use BDA.

Facilitating conditions are favorable when there is easy 
access to the resources needed to use a new technology and 
to subsequent support (Venkatesh et al., 2003). In later studies 
using UTAUT2, Venkatesh et al. (2012) found that this construct 
has a significant effect on the behavioral intention to use a new 
technology. Also, more recent studies have verified this positive 
effect on behavioral intention (Duyck et al., 2010; Hung, Wang, 
Cho, & Chou, 2007; Wu, Tao, & Yang, 2007). Thus, we offer as a 
hypothesis:

H6: Facilitating Conditions positively influence the 
behavioral intention to use BDA.

Both TPB (Ajzen, 1991) and UTAUT (Venkatesh et al., 2003) 
have been used to show how favorable facilitating conditions 
positively affect the use of a new technology. Various subsequent 
works (Al-Gahtani et al., 2007; Brünink, 2016; Chauhan & Jaiswal, 
2016; Duyck et al., 2010; Kim et al., 2007) also support this 
relationship. Therefore, we propose as a hypothesis:

H7: Facilitating Conditions positively affect the use of BDA.

The main technology acceptance models (TRA, TAM, 
UTAUT, and UTAUT2) show a direct relationship between 
behavioral intention and the use of technologies (Fishbain & 
Ajzen, 1975; Davis, 1985; Venkatesh et al., 2003; 2012). This 
influence has been demonstrated in contexts similar to the 
adoption of BDA, such as internet banking (Martins et al., 2014), 
online flight purchasing (Escobar-Rodríguez & Carvajal-Trujillo, 
2014), electronic document management systems (Afonso, 
Gonzalez, Roldán, & Sánchez-Franco, 2012) and ERP (Enterprise 
Resource Planning) (Chauhan & Jaiswal, 2016). Therefore, we 
can enunciate as a hypothesis:

H8: The behavioral intention to use BDA positively affects 
its use.

In Figure 2, we show the proposed model of the acceptance 
and use of BDA with pathways identified in our hypotheses.
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Figure 2. Big Data Acceptance model in companies
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RESEARCH METHODOLOGY

Sample description

Our survey, collected between September and October of 2017 via personal emails and phone, sampled 199 responses of company 
CEOs and managers of different areas, such as human resources, finance, marketing, and sales.  A pre-test of the survey was carried 
out with five volunteer managers and several expert researchers, who completed the questionnaire and provided feedback about 
the questions. In Table 1, we classify the companies of the respondents according to their revenues and sectors.

Table 1. Companies of the sample according to revenue and activity sector

  < 2M€ 2M€<X<10M€ 10M€<X<43M€ > 43 M€ (not answered) Total

Agriculture 1 3 2 1 7

Commerce and 
distribution 5 4 1 10 20

Telco 6 2 4 14 1 27

Construction 2 1 4 7

Education 2 1 2 5

Energy 1 3 4

Finance 1 2 8 11

Industrial 5 3 2 6 16

Others 10 10 6 13 2 41

Health 3 2 5

Services 24 12 9 10 55

(not answered) 1 1

Total general 60 35 27 73 4 199
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Measurement scales

For the UTAUT constructs, we adapt scales from Venkatesh et al. 
(2003) to BDA. Resistance to use was measured with the scale 
proposed by Bhattacherjee and Hikmet (2007), while perceived 
risk was measured with the scale from Featherman and Pavlou 
(2003). Seven point Likert scales were used in all cases. 

Statistical tools

To estimate the structural model, we used partial least squares 
(PLS), (Chin & Dibbern, 2010; Hair et al., 2012) with the statistical 
software Smart PLS 3.2.3 (Ringle, Wende, & Becker, 2015). To 
avoid measurement bias, or common method bias (CMB), in the 
observed sample, we followed the recommendations of Burton-
Jones (2009). We have also follow Podsakoff, MacKenzie, Lee, & 
Podsakoff (2003), MacKenzie, Podsakoff, & Podsakoff (2011); 
Podsakoff, MacKenzie, & Podsakoff (2012), and Kock & Lynn (2012). 
Because the study focuses on CMB and PLS for structural equation 
models. We follow Kock (2015) and add unrelated questions in 
order to create a new latent variable with these indicators and 

the other variables as antecedents. This CMB variable acts as the 
dependent variable for all of the others in the model. The variance 
inflation factors estimated by this method must be lower than 
3.3 to confirm that the sample does not have CMB. In Table 2, we 
show that our sample complies with this requirement.

Table 2. VIF from all variables to check CMB

  Variable_CMB

Behavioral intention 2.423

Effort expectancy 1.631

Facilitating conditions 2.472

Perceived risk 1.288

Performance expectancy 1.994

Resistance to use 1.852

Social influence 1.675

Usage behavior 1.996

RESULTS
We checked the reliability of all of the constructs. Current literature suggests that for measurement models to be considered reliable 
and valid, each factor loading should exceed 0.7 (Roldán & Sánchez-Franco, 2012; Henseler, Ringle, & Sarstedt, 2014). In Table 3, 
we show that each loadings was over 0.7, except for the third indicator for facilitating conditions (FC3), which was dropped.

Table 3. Reliability of measurement scales (loadings)

  Behavioral 
intention

Effort 
expectancy

Facilitating 
conditions

Perceived 
risk

Performance 
expectancy

Resistance 
to use

Social 
influence

Usage 
behavior

BI1 0.970              

BI2 0.986              

BI3 0.984              

BI4 0.974              

EE1   0.777            

EE2   0.887            

EE3   0.898            

EE4   0.874            

EE5   0.806            

FC1     0.874          

FC2     0.892          

FC4     0.847          

PR1       0.927        

Continue
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  Behavioral 
intention

Effort 
expectancy

Facilitating 
conditions

Perceived 
risk

Performance 
expectancy

Resistance 
to use

Social 
influence

Usage 
behavior

PR2       0.924        

PR3       0.877        

PE1         0.899      

PE2         0.868      

PE3         0.909      

PE4         0.918      

PE5         0.785      

PE6         0.829      

PE7         0.784      

RU1           0.931    

RU2           0.964    

RU3           0.938    

RU4           0.902    

SI1             0.741  

SI2             0.877  

SI3             0.817  

SI4             0.792  

SI5             0.724  

UB               1.000

Next, we analyzed construct reliability using composite reliability indicators and Cronbach’s Alpha. In all cases, the values of 
our indicators were above 0.7 as suggested by Nunnally (1978). We assured convergent validity by analyzing the average variance 
extracted. All of the values were above the 0.5 threshold proposed by Straub, Detmar, Boudreau, and Gefen (2004). These indicators, 
shown in Table 4, meet the requirements.

Table 4. Composite Reliability and Convergent Validity 

  Cronbach’s Alpha rho_A
Composite
reliability

Average
Variance Extracted 

(AVE)

Behavioral intention 0.985 0.986 0.989 0.958

Effort expectancy 0.906 0.934 0.928 0.722

Facilitating conditions 0.841 0.843 0.904 0.759

Perceived risk 0.896 0.909 0.935 0.828

Performance expectancy 0.940 0.947 0.951 0.736

Resistance to use 0.951 0.954 0.965 0.872

Social influence 0.851 0.874 0.893 0.627

Usage behavior 1.000 1.000 1.000 1.000

Table 3. Reliability of measurement scales (loadings) Conclusion
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Next, we evaluated the discriminant validity of the measurement model in two ways. First, we conducted Fornell and Larcker’s 
test (Barclay, Higgins, & Thompson, 1995). Second, using the Heterotrait-Monotrait (HTMT) ratio (Henseler et al., 2014), we ensured 
that in all cases all of the values were below 0.9. The results of both tests are shown in Tables 5 and 6.

Table 5. Discriminant validity (Fornell-Larcker's test)

 
Behavioral 
intention

Effort 
expectancy

Facilitating 
conditions

Perceived 
risk

Performance 
expectancy

Resistance 
to use

Social 
influence

Usage 
behavior

Behavioral intention 0.979              

Effort expectancy 0.384 0.850            

Facilitating conditions 0.628 0.587 0.871          

Perceived risk -0.331 -0.185 -0.283 0.910        

Performance expectancy 0.544 0.434 0.373 -0.195 0.858      

Resistance to use -0.506 -0.258 -0.343 0.408 -0.566 0.934    

Social influence 0.497 0.459 0.483 -0.246 0.479 -0.234 0.792  

Usage behavior 0.630 0.361 0.624 -0.276 0.402 -0.400 0.449 1.000

Table 6. Discriminant validity (Ratio Heterotrait-Monotrait -HTMT)

 
Behavioral 
intention

Effort 
expectancy

Facilitating 
conditions

Perceived 
risk

Performance 
expectancy

Resistance 
to use

Social 
influence

Usage 
behavior

Behavioral intention                

Effort expectancy 0.380              

Facilitating conditions 0.690 0.649            

Perceived risk 0.349 0.202 0.324          

Performance expectancy 0.559 0.449 0.411 0.206        

Resistance to use 0.521 0.269 0.383 0.443 0.597      

Social influence 0.532 0.507 0.567 0.297 0.524 0.254    

Usage behavior 0.635 0.355 0.679 0.287 0.405 0.408 0.476  

The values of R2 for the second order constructs (behavioral intention and usage behavior) are shown in Table 7.

Table 7. R2 of the model

  R squared
Adjusted 

R squared

Behavioral intention 0.560 0.546

Usage behavior 0.483 0.478
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Figure 3 shows the values for every loading and path of the model.

Figure 3. Results of the model
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To evaluate the structural model, we analyzed the values of the path coefficients and the explained variance of the endogenous 
variables (R2). The path coefficients show the intensity of the relationship between the independent and dependent variables. We 
used a bootstrapping technique with 5,000 samples to find the reliability of the estimated path coefficients, as shown in Table 8.

Table 8. Structural Model Estimates (Path Coefficients)

Whole sample Original Sample (O) P Values

Behavioral Intention -> Usage Behavior 0.393 *** 0.000

Effort Expectancy -> Behavioral Intention -0.114   * 0.032

Facilitating Conditions -> Behavioral Intention 0.449 *** 0.000

Facilitating Conditions -> Usage Behavior 0.377 *** 0.000

Perceived Risk -> Behavioral Intention -0.063 (n .s.) 0.112

Performance Expectancy -> Behavioral Intention 0.230 *** 0.001

Resistance to Use -> Behavioral Intention -0.187  ** 0.006

Social Influence -> Behavioral Intention 0.163 ** 0.003

***p<0.001, **p<0.01, *p<0.05. (bootstrapping with 5,000 sub-samples and 1-tailed test).
Significant relationships with path coefficients and p value in bold.
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We calculated the SRMR (Standardized Root Mean-square 
Residual) indicator to assess model fit. The value obtained, 
0.065, was less than the 0.08 threshold proposed by Henseler 
et al. (2014), which suggests a good fit for the model. The model 
explains  47.85% of the variation in usage and 54.6% of the 
variation in behavioral intention (see Table 7), both of which 
exceed the minimum level of 10% recommended by Falk and 
Miller (1992).

The results support most of the hypotheses, except for H5 
(perceived risk) and H2 (effort expectancy). The coefficients for 
supported hypothesis are significant at the 1% level. Although 
effort expectancy is significant at the 5% level, we have found 
a negative relationship that is due to a suppressor effect (Falk 
& Miller, 1992) produced by the new relationship facilitating 
conditions on behavioral intention so we can reject H2. In order 
of influence, we can see that facilitating conditions contributes 
most to behavioral intention and the second most to usage. 
The second contributor to behavioral intention is performance 
expectancy while the first contributor to usage is behavioral 
intention. We also note that the coefficient for behavioral intention 
on usage is significant at the 0.1% level. The coefficient for the 
effect of resistance to use on behavioral intention is significant 
and negative.

We also calculated the Stone-Geisser Q2 to evaluate the 
predictive capacity of the model (Gefen, Rigdon, & Straub, 2011). 
The results are shown in Table 9.

Table 9. Prediction of latent variables

  RMSE Q2

Behavioral Intention 0.558 0.502

Usage Behavior 0.522 0.397

We conclude that the model has predictive relevance as the 
values of Q2 in Table 9 are greater than zero (Roldán & Sánchez-
Franco, 2012).

We considered the possibility of heterogeneity in the 
sample. Following Becker, Rai, Ringle, and Völckner (2013), we ran 
a PLS-POS latent class segmentation and also a FIMIX latent class 
segmentation. We find no differences in groups with a posteriori 
segmentation.

Next, we tried several a priori segmentations with different 
criteria (e.g., company size, use of Big Data, activity sector, finding 
no differences between these sub-samples. However, we did 
find different behaviors in companies when we asked about the 
maturity level of the implementation of BDA. We used the scale 

proposed by Paulk, Curtis, Chrissis and Weber (1993), which has 
been widely used (Berg, Leinonen, Leivo, & Pihlajamaa, 2002; 
Khatibian, Hasan, & Jafari, 2010; Urwiler & Frolick, 2008) and has 
five levels: initial, repeatable, defined, managed, and optimizing. 
We assigned companies that had not implemented BDA or were 
in the first two levels to Segment 1 and those in the last three 
levels to Segment 2. As shown in Table 10 for Segment 1 and in 
Table 11 for Segment 2, there are significant differences between 
these two segments and the whole sample (see Table 8).

Table 10. Segment 1. Structural Model Estimates 
(Path Coefficients)

NON-USERS and 
BEGINERS 
Segment 1. Size: 152 
companies

Original Sample (O) P Values

Behavioral Intention -> 
Usage Behavior

0.387 *** 0.000

Effort Expectancy -> 
Behavioral Intention

-0.092 (n. s.) 0.094

Facilitating Conditions 
-> Behavioral Intention

0.344 *** 0.000

Facilitating Conditions 
-> Usage Behavior

0.237 ** 0.002

Perceived Risk -> 
Behavioral Intention

-0.073 (n. s.) 0.106

Performance 
Expectancy -> 
Behavioral Intention

0.330 *** 0.000

Resistance to Use -> 
Behavioral Intention

-0.227 ** 0.002

Social Influence -> 
Behavioral Intention

0.189 ** 0.002

***p<0.001, **p<0.01, *p<0.05. (bootstrapping with 5,000 sub-samples and 1-tailed test).
Significant relationships with path coefficients and p value in bold.
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Table 11. Segment 2. Structural Model Estimates 
(Path Coefficients)

USERS and HEAVY USERS 
Segment 2. Size: 47 
companies

Original Sample 
(O) P Values

Behavioral Intention -> 
Usage Behavior 0.561 *** 0.001

Effort Expectancy -> 
Behavioral Intention -0.186 (n. s.) 0.084

Facilitating Conditions -> 
Behavioral Intention 0.648 *** 0.001

Facilitating Conditions -> 
Usage Behavior 0.128 (n .s.) 0.188

Perceived Risk -> 
Behavioral Intention -0.188 (n. s.) 0.106

Performance Expectancy 
-> Behavioral Intention -0.214 (n. s.) 0.174

Resistance to Use -> 
Behavioral Intention -0.207 (n. s.) 0.172

Social Influence -> 
Behavioral Intention 0.056 (n. s.) 0.354

***p<0.001, **p<0.01, *p<0.05. (bootstrapping with 5,000 sub-samples and 1-tailed test).
Significant relationships with path coefficients and p value in bold.

We performed an ANOVA test and confirmed the significant 
differences between the sub-samples. For companies that were 
non-users or beginners (Segment 1), all relationships were 
significant except for the effects of perceived risk and effort 
expectancy on behavioral intention. Facilitating conditions 
and performance expectancy were the strongest contributors 
to behavioral intention with high levels of significance. The 
coefficients for resistance to use and social influence were also 
large and significant. For users and heavy users (Segment 2), 
none of the relationships was significant except the effect of 
facilitating conditions on behavioral intention. It had the strongest 
effect of all the relationships in this study. Curiously, performance 
expectancy was not significant.

DISCUSSION, CONCLUSIONS AND 
LIMITATIONS
Our research extends the UTAUT model for Big Data with a new 
variable, resistance to use. With this extension, we contribute to 
the generalization of the model and to a better understanding 
of technology acceptance. Our model adds to previous research 
on BDA by including a new independent variable, resistance to 

use, to the UTAUT model and including usage behavior of BDA 
as an outcome variable. Brünink (2016) uses the UTAUT model 
without adding resistance to use or explaining actual usage 
behavior. Other studies (Demoulin & Coussement, 2018) focus 
on management support for the use of Big Data applications, 
using models such as TAM, TAM2, or TAM3 (Brown & Venkatesh, 
2005; Huang et al., 2012; Verma et al., 2018) These models explain 
the adoption and actual use of BDA in companies, but are more 
limited than the UTAUT model.

Our results show that the behavioral intention to use BDA 
in companies is determined by four factors. First, performance 
expectancy, the perception that implementation of this technology 
will achieve good results, increases adoption, as shown in 
previous studies (Lee & Song, 2013; Yu, 2012). Second, social 
influence has a positive effect on the intention to use BDA, as 
demonstrated in previous papers (Bozan, Parker, & Davey, 2016). 
Third, facilitating conditions, company provision of support 
and necessary resources for usage, increases both behavioral 
intention and usage (Alharbi, 2014). Finally, resistance to use 
decreases behavioral intentions to use BDA in companies, with 
a stronger effect than social influence.

We also find that although the use of BDA is perceived to 
be difficult (effort expectancy), the influence of this perception 
on behavioral intention is small and contained into other 
relationship: facilitation conditions on behavioral intention 
(suppressor effect abovementioned).

We also find a positive effect of facilitating conditions on 
the usage behavior of the new technology with a similar loading 
for behavioral intention. Thus, we can say that the findings are 
consistent with all of the hypotheses of the UTAUT model, except 
for H5 (perceived risk). Because we find it has a significant effect, 
we propose adding resistance to use to the original model, in 
order to improve explanations of the acceptance and use of BDA 
in companies.

Finally, we highlight the differences in behavior between 
companies that are not using these techniques or are beginning to 
use them (Segment 1) and the companies that have already been 
using them for a long time (Segment 2). For the beginners or non-
user companies, performance expectancy, social influence, and 
facilitating conditions have strong positive effects on behavioral 
intention and usage behavior, while resistance to use has a strong 
negative effect on both variables. Among user and heavy user 
companies, only facilitating conditions has an effect on behavioral 
intention, while the rest of relationships are not significant. This 
may suggest that established users know what they can achieve 
with these techniques so the only thing they care is about having 
good facilitating conditions while beginners still do not know 
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all the capabilities of this technology so they take into account 
more issues.

As to professional implications, the results suggest that 
executives assume that every technology has its own learning 
curve, and this issue does not affect its adoption whenever 
great results are expected, as in the case of Big Data (Cabrera-
Sánchez & Villarejo-Ramos, 2018). Likewise, if the company has 
the appropriate infrastructure, it does not lose anything if it tests 
the technology. In any case, overcoming the resistance to use 
it still requires clear information about its benefits. Therefore, 
we recommend two steps for managers. First, they should be 
informed that most software associated with these techniques is 
free and that if they already have hardware resources, they should 
test it. Second, there should be communication with managers 
about the benefits of using Big Data, including examples of 
companies using it in the same areas. This second action is very 
important for companies who are currently using Big Data because 
we can infer that they are not squeezing all of the potential from 
the technology. They are somewhat upset about the technology, 
and they have a very poor performance expectancy when this 
just the opposite should be true. Therefore, we must inform them 
about the technology and how it can be used to generate profits 
in each sector. 

The use of BDA in companies can be a very important 
advance in information management to improve customer 
relationships. As it is more than a customer relationship 
management tool, BDA gives companies relevant information and 
increases customers’ knowledge, improving their engagement.

Although the UTAUT model is well-tested and mature, we 
have included two variables to extend it. However, there may 
be many more variables that are relevant. For this technology, 
there are constructs from the original model such as performance 
expectancy that have a lower influence on behavioral intention 
than one of the constructs we added, resistance to use. Because 
other new variables with strong effects may exist, the UTAUT model 
must continue to evolve in order to provide better explanations for 
the acceptance of new technologies. Future research on Big Data 
should seek to identify these variables. Also, it seems necessary 
to explore new moderator variables with the aim of analyzing 
possible effects not previously taken into account.

Finally, larger sample sizes will allow us to establish 
differences in behavior between groups of companies, which 
we can analyze via an a posteriori segmentation technique, such 
as Posteriori Oriented Segmentation- Partial Least Squares (POS-
PLS). So, if we get a bigger sample of companies that are using (or 
are intending to use) Big Data, we will have a better performance 
of this model and more informative results.
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