
marine drugs 

Review

Halophiles and Their Biomolecules: Recent Advances
and Future Applications in Biomedicine

Paulina Corral 1,2 , Mohammad A. Amoozegar 3 and Antonio Ventosa 2,*
1 Department of Biology, University of Naples Federico II, 80126 Naples, Italy; pcv@us.es
2 Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla,

41012 Sevilla, Spain
3 Department of Microbiology, School of Biology, College of Science, University of Tehran,

Tehran 14155-6955, Iran; amoozegar@ut.ac.ir
* Correspondence: ventosa@us.es; Tel.: +34-954556765

Received: 30 November 2019; Accepted: 28 December 2019; Published: 30 December 2019 ����������
�������

Abstract: The organisms thriving under extreme conditions better than any other organism living on
Earth, fascinate by their hostile growing parameters, physiological features, and their production of
valuable bioactive metabolites. This is the case of microorganisms (bacteria, archaea, and fungi) that
grow optimally at high salinities and are able to produce biomolecules of pharmaceutical interest for
therapeutic applications. As along as the microbiota is being approached by massive sequencing,
novel insights are revealing the environmental conditions on which the compounds are produced in
the microbial community without more stress than sharing the same substratum with their peers, the
salt. In this review are reported the molecules described and produced by halophilic microorganisms
with a spectrum of action in vitro: antimicrobial and anticancer. The action mechanisms of these
molecules, the urgent need to introduce alternative lead compounds and the current aspects on the
exploitation and its limitations are discussed.

Keywords: halophilic bacteria; archaea and fungi; biomolecules; biomedicine; antimicrobial
compounds; anticancer compounds

1. Halophilic Microorganisms

Halophiles are organisms represented by archaea, bacteria, and eukarya for which the main
characteristic is their salinity requirement, halophilic “salt-loving”. Halophilic microorganisms
constitute the natural microbial communities of hypersaline ecosystems, which are widely distributed
around the world [1]. They require sodium ions for their growth and metabolism. Thus, based on
the NaCl optimal requirement for growth the halophiles are classified in three different categories:
slight (1–3%); moderate (3–15%); and extreme (15–30%) [2,3]. In contrast to halotolerant organisms,
obligate halophiles require NaCl concentrations higher than 3% NaCl or above of seawater, with about
3.5% NaCl [4]. The tolerance parameters and salt requirements are dependent on temperature, pH,
and growth medium. In this way, the halophiles are adapted and limited by specific environmental
factors. Those microorganisms able to survive and optimally thrive under a wide spectrum of extreme
environmental factors are designed polyextremophiles [5,6]. In fact, a halophilic microorganism can
also be alkaliphile, designated as haloalkaliphile, growing optimally or very well at pH values above
9.0, but cannot grow at the near neutral pH value of 6.5 [7].

The general features of halophilic microorganisms are the low nutritional requirements and resistance
to high concentrations of salt with the capacity to balance the osmotic pressure of the environment [8].
Their mechanisms of haloadaptation are based on the intracellular storage of KCl over 37% (5 M) (salt-in
strategy) or the accumulation of compatible solutes (salt-out strategy) to keep the balance of sodium into the
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cytoplasm and counteract the osmotic pressure of the external environment given by the high salinity [9].
They are physiologically diverse; mostly aerobic and as well anaerobic, heterotrophic, phototrophic,
and chemoautotrophic [10,11]. Ecologically, the halophilic microorganisms inhabit different ecosystems
characterized by a salinity higher than seawater, i.e., 3.5% NaCl, these niches go from hypersaline soils,
springs, salt lakes, sabkhas, and other naturally-occurring coastal saline habitats, marshes, marine abyssal
sediments to endophytes [12]. Other known habitats are the result of human intervention like salted foods,
brines, oil fields, saltern ponds and tanneries [13]. The high salinity reduces the number of organisms
where just halophilic or halotolerant ones can survive in such hypersaline ecosystem, with archaea
typically dominating the higher salinity environments. The predominant natural habitats better studied
are the hypersaline lakes of oceanic (thalassohaline) or non-oceanic (athalassohaline) origin and solar
salterns [14–16]. The better known hypersaline environments are the Great Salt Lake and the Dead Sea,
with pH values around 7, and soda lakes with highly alkaline values of pH 9–11, among them are the
Lake Magadi in Kenya, the Wadi Natrun lakes in Egypt, Mono Lake, Big Soda Lake, Soap Lake in Western
USA, and Kulunda Steppe soda lakes in Russia [17]. Many new species of bacteria and archaea have
been reported from various hypersaline regions located in different countries, mainly China, Spain, USA,
Austria, Australia, Egypt, Korea, Japan, Iran, Thailand, Indonesia, Russia, Argentina, Kenya, Mexico,
France, Poland, Philippines, Taiwan, Romania, and India [10,18,19]. The vast majority of halophilic
bacteria and archaea produce carotenoid pigments, present in high amount in their membranes. The
dense community of halophiles and the algae Dunaliella, also producer of carotenoids, are the responsible
of the typical pink, red, and purple coloration of the hypersaline environments [20].

2. Biotechnological Importance/Interest of Haloarchaea and Halophilic Bacteria

The exploitation of extremophiles is having special importance in the development of new molecules
with potential applications in biomedicine. Current efforts are focused primarily to cover the urgent
health needs, especially those that represent the main global threats, cancer and antibiotic resistance. The
great metabolic versatility of halophilic microorganisms, their low nutritional requirements and their
genetic machineries of adaptation to harsh conditions, like nutrient starvation, desiccation, high sun
radiation, and high ionic strength, make them promising candidates and a hope for drug discovery [21].
Continuous advances in “omics” and bioinformatic tools are revealing uncountable encoding genes for
the production of several active compound in response to the extreme conditions [22,23]. The concomitant
application of cutting-edge technologies is helping to deciphering the molecular, physiological, and
metabolic mechanisms for the production of new bioactive compounds [24].

Halophilic microorganisms are recognized producers of carotenoid pigments, retinal proteins,
hydrolytic enzymes, and compatible solutes as macromolecules stabilizers, biopolymers, and
biofertilizers [19,25]. Halophilic bacteria and extremely halophilic aerobic archaea, also known as
haloarchaea, play a significant role in the industry with a large number of applications like fermented
food products, cosmetics, preservatives, manufacturing of bioplastics, photoelectric devices, artificial
retinas, holograms, biosensors, etc. [26–31].

In this review, we focus on the biomolecules described as antimicrobial or anticancer compounds
produced by halophilic bacteria, archaea, or fungi and discuss current and future perspectives in this field.

3. Antimicrobial Compounds

The current situation of antibiotic resistance propagation poses a global threat to public health.
Over the past decades, antibiotics have saved millions of lives, but their misuse has led to the
emergence of multi-drug resistant bacteria (MDR), reducing or nullifying their effectiveness. Recently,
the continuous increase in antibiotic resistance is reaching critical levels, which implies an increase in
morbidity in the healthy population and an imminent risk for hospitalized patients [32,33]. In fact,
the main cause of death of inpatients are attributable to complications due to MDR infections [34].
Preventing the return to the pre-antibiotic era is one of the main challenges for science. The urgent
need to introduce new effective antimicrobial therapies is leading to the exploitation of all possible
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natural and sustainable resources, including extreme environments as a promising resource for new
antibiotic discovery.

The first antimicrobial compounds from halophilic microorganisms were reported in 1982 by
Rodriguez-Valera et al. Halocin was the term coined for substances secreted by several members of the
genus Halobacterium capable of causing death and lysis of the surrounding microbiota. Halocins are the
proteins and antimicrobial peptides (AMPs) produced by haloarchaea [35,36]. Despite the ecological
and environmental role of several halocins, their action against human pathogens has been less studied.

In the fight against time, the clinical significance of halophilic microorganisms is minorly
reported and the antimicrobial action against the most important risk group of human pathogens
ESKAPE: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and
Pseudomonas aeruginosa, still remains as a potential.

According to the data inferred, the antagonistic action identified and the production of bioactive
compounds by halophilic microorganisms are derived from bacteria, archaea, and fungi. In the
chronology of AMPS discovery, several authors have gone beyond the primary screenings deciphering
the chemical structure of the molecules in bacteria (Table 1), while the vast majority of inhibitory
studies are solely limited to the activity (Table 2).

3.1. Bacteria

Members of the phylum Actinobacteria are mainly responsible for the inhibitory activity against
human pathogens with clinical significance. As in non-extreme environments, in saline and hypersaline
environments heterotrophic bacteria are also present in soils, being Actinobacteria frequently isolated from
solar salterns, mangroves, and seafloor sediments [37,38]. The most frequent producers of metabolites
reported come from species of the genus Nocardiopsis and Streptomyces, hence constituting the main
producers of bioactive compounds. In fact, members of the genus Streptomyces are widely recognized as
fruitful producers of natural compounds [39]. The chemical elucidation of molecules known from halophilic
members of Nocardiopsis are: (i) pyrrolo (1,2-A (pyrazine-1,4-dione, hexahydro-3-[2-methylpropyl]-)
and Actinomycin C2, two compounds produced by the haloalkaliphilic strain Nocardiopsis sp. AJ1,
isolated from saline soil of Kovalam solar salterns in India [40]; (ii) Angucyclines and Angucyclinones
are produced by Nocardiopsis sp. HR-4, isolated from a salt lake soil in Algerian Sahara, the new
natural compound was established as 7-deoxy-8-O-methyltetrangomycin, which is also effective against
Methicillin-Resistant Staphylococcus aureus (MRSA) ATCC 43300 [41]; (iii) Borrelidin C and D are produced
by Nocardiopsis sp. HYJ128, isolated from topsoil saltern in Jeungdo, Jeollanamdo, Republic of Korea,
exhibited antimicrobial action against Salmonella enterica ATCC 14028 [42]; (iv) Quinoline alkaloid
(4-oxo-1,4-dihydroquinoline-3-carboxamide) was identified as a new natural product from Nocardiopsis
terrae YIM 90022 isolated from saline soils in China. The antibacterial activity of the quinolone was
reported in S. aureus, B. subtilis and E. coli; the quinolone has also antifungal activity against the pathogenic
fungi, as it was observed against Pyricularia oryzae. Another five known compounds were also produced
by N. terrae YIM 90022 [43]; (v) new p-terphenyls: p-terphenyl 1 and a novel p-terphenyl derivative
bearing a benzothiazole moiety are produced by halophilic actinomycete Nocardiopsis gilva YIM 90087,
isolated from a hypersaline soil Xinjiang, China. Furthermore, of the antimicrobial activity against clinical
strains, these compounds exhibit antifungal activity against species of Fusarium, Trichophyton, Aspergillus,
Candida, and Pyricularia. Known molecules like p-terphenyl 2, novobiocin, cyclodipeptides, and aromatic
acids are also produced by N. gilva YIM 90087, which is considered as a new source for novobiocin [44].

Regarding the metabolites produced by members of the genus Streptomyces, only a low number of
strains has been isolated from hypersaline environments; however, members of this genus are frequently
isolated from marine deep or coastal sediments where the salinity is higher than that of seawater.
Among the molecules identified are: (i) 1-hydroxy-1-norresistomycin, this quinone-related antibiotic
was extracted from Streptomyces chibaensis AUBN1/7, isolated from marine sediment samples of the
Bay of Bengal, India. This compound exhibited antibacterial activities against Gram-positive and
Gram-negative bacteria, besides of a potent in vitro cytotoxic activity against cell lines HMO2 (gastric
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adenocarcinoma) and HePG2 (hepatic carcinoma) [45]; (ii) Himalomycin A and Himalomycin B, two
new anthracycline antibiotics produced by Streptomyces sp. strain B692, isolated from sandy sediment of
a coastal site of Mauritius (Indian Ocean). In addition, known metabolites like rabelomycin, fridamycin
D, N benzylacetamide, and N-(2′-phenylethyl) acetamide were also produced by Streptomyces sp. strain
B692 [46]; (iii) 7-demethoxy rapamycin was produced by a moderately halophilic strain Streptomyces
hygroscopicus BDUS 49, isolated from seashore of Bigeum Island, South West coast of South Korea; the
molecule displayed a broad spectrum antimicrobial activity against Gram-positive and Gram-negative
bacteria. Antifungal and cytotoxic action was also identified on this strain [47]; (iv) Streptomonomicin
(STM) is an antibiotic lasso peptide from Streptomonospora alba YIM 90003, isolated from a soil sample in
Xinjiang province, China. STM is active against several Gram-positive bacteria, in particular species of
Bacillus, Listeria, Enterococcus, Mycobacterium and Staphylococcus. Despite that STM has an inhibitory
action against a wide panel of Gram-positive pathogens, the activity against fungi and Gram-negative
bacteria was not evidenced [48].

In addition to the mentioned genera of Actinobacteria (Nocardiopsis and Streptomyces), recognized as
the more prolific producers of natural substances, other halophilic species belonging to different genera
have also been described as producers of molecules like: (i) cyclic antimicrobial lipopeptides: Gramicidin S
and four cyclic dipeptides (CDPs), named cyclo(l-4-OH-Pro-l-Leu), cyclo(l-Tyr-l-Pro), cyclo(l-Phe-l-Pro),
and cyclo(l-Leu-l-Pro), were extracted from Paludifilum halophilum strain SMBg3, which constitute a
new genus of the family Thermoactinomycetaceae, isolated from superficial sediment collected from Sfax
marine solar saltern in Tunisia. These CDPs possess an inhibitory effect against the plant pathogen
Agrobacterium tumefaciens and the human pathogens Staphylococcus aureus, Salmonella enterica, Escherichia coli,
and Pseudomonas aeruginosa [49]; (ii) A semi synthetic derivative N-(4-aminocyclooctyl)-3,5-dinitrobenzamide,
obtained from the precursor of the novel natural product cyclooctane-1,4-diamine and a known compound
3-([1H-indol-6-yl] methyl) hexahydropyrrolo [1,2-a] pyrazine-1,4-dione were obtained from Pseudonocardia
endophytica VUK-10, isolated from sediment of Nizampatnam mangrove ecosystem in Bay of Bengal, India.
The new compound, semi synthetic derivative N-(4-aminocyclooctyl)-3,5-dinitrobenzamide showed a strong
antimicrobial and antifungal activity against Streptococcus mutans, Pseudomonas aeruginosa, Candida albicans,
and Aspergillus niger. Significant anticancer activities at nanomolar concentrations were also observed in
carcinoma cell lines MDA-MB-231 (breast), HeLa (cervical), OAW-42 (ovarian), and MCF-7 (breast) reported
as resistant to cancer drugs [50]. In minor grade, other halophilic bacteria not belonging to the phylum
Actinobacteria produce antimicrobial compounds, as for example halophilic strains of the genus Vibrio,
like Vibrio sp. A1SM3-36-8, isolated from Colombian solar salterns, which produces 13-cis-docosenamide
with special antimicrobial action against Methicillin-resistant Staphylococcus aureus (MRSA) and cytotoxic
activity against cervical adenocarcinoma (SiHa) and lung carcinoma (A-549) [51]. Within this genus,
Vibrio parahaemolyticus strain B2 is recognized by producing Vibrindole A, and was also effective against
Staphylococcus aureus [52].

Finally, Bacillus sp. BS3 [53] and Halomonas salifodinae MPM-TC [54] showed antimicrobial action
against Pseudomonas aeruginosa. Both strains were isolated from solar salterns in Thamaraikulam, Tamil
Nadu, India. In the case of Halomonas salifodinae MPM-TC, besides of the inhibition of bacterial growth
also exhibits an antiviral action against the White Spot Syndrome Virus (WSSV) in the white shrimp
Fenneropenaeus indicus. The effect suppressor of the virus and the boosting of immune system of the
shrimps make of the extracted compound a feasible alternative to commercially banned antibiotics and
excellent candidate to develop new antiviral drugs against shrimp viruses such as WSSV.

A genome-mining study conducted on 2699 genomes across the three domains of life demonstrated
the widespread distribution of non-ribosomal peptide synthetase (NRPSs) and modular polyketide
synthase (PKSs) biosynthetic pathways. Among 31 phyla of bacteria inferred, Actinobacteria is the most
representative exhibiting the presence of 1225 gene clusters between NRPS, PKS and hybrids from a
total of the 271 genomes studied. It was observed that Salinispora arenicola CNS-205 and Salinispora
tropica CNB-440 harbor PKS and NRPS gene clusters, respectively. The halophilic bacterium Halomonas
elongata DSM 2581 also contains NPRS [55].
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Table 1. Chronological report of halophilic bacteria and their molecules with antimicrobial activity in vitro against human pathogens.

Isolation Source Genus Antimicrobial Activity Molecule Formula Reference

Saline soil of Kovalam solar
salterns India

Nocardiopsis sp. AJ1

E. coli,
S. aureus,
P. aeruginosa,
V. parahaemolyticus,
A. hydrophila

Pyrrolo (1,2-A (pyrazine-1,4-dione,
hexahydro-3-(2-methylpropyl)-) C11H18N2O2

[40]
Actinomycin C2 C63H88N12O16

Sfax solar saltern, Tunisia
Paludifilum halophilum
SMBg3

E. coli BW25113,
S. henoxaz ATCC43972,
P. aeruginosa ATCC 49189
Gram-positive M. luteus LB 14110,
S. aureus ATCC6538, and
L. ivanovii BUG 496)

Cyclic lipopeptide:

[49]

Gramicidin S C60H92N12O10

Cyclic dipeptides (CDPs):

Cyclo(l-4-OH-Pro-l-Leu) C11H18N2O3

Cyclo(l-Tyr-l-Pro) C14H16N2O3

Cyclo(l-Phe-l-Pro) C14H16N2O2

Cyclo(l-Leu-l-Pro) C11H18N2O2

Brine and sediments from
Manaure solar saltern. La
Guajira, Colombia

Vibrio sp. A1SM3–36-8
Methicillin-resistant
S. aureus (MRSA) ATCC BAA-44,
B. subtilis ATCC 21556

13-cis-docosenamide C22H43NO [51]

Salt lake soil, Algerian Sahara.
Algeria

Nocardiopsis sp. HR-4
S. aureus ATCC 25923,
Methicillin-Resistant
S. aureus (MRSA) ATCC 43300,
M. luteus ATCC 4698,
E. faecalis ATCC 29212

Angucyclines and angucyclinones:
[41]Compound 1:

(−)-8-O-methyltetrangomycin C20H16O5

Compound 2:
(−)-7-deoxy-8-O methyltetrangomycin C20H18 O5

Topsoil saltern in Jeungdo,
Jeollanam-do, Republic of
Korea

Nocardiopsis sp. HYJ128 Salmonella enterica ATCC 14028
Borrelidin C C28H43NO7 [42]
Borrelidin D C28H43NO7

Sediments of mangrove
Nizampatnam, Bay of Bengal,
Andhra Pradesh, India

Pseudonocardia endophytica
VUK-10

B. cereus (MTCC 430),
S. mutans (MTCC 497),
S. aureus (MTCC 3160),
S. epidermis (MTCC 120),
B. subtilis (ATCC 6633),
B. megaterium (NCIM 2187),
E. coli (ATCC 35218),
P. aeruginosa (ATCC 9027),
P. vulgaris (MTCC 7299),
S. marcescens (MTCC 118),
X. campestris (MTCC 2286),
X. malvacearum (NCIM 2954)
and S. typhi (ATCC 14028)

N-(4-aminocyclooctyl)-3,5-dinitrobenzamide C15H20N4O5

[50]3-((1H-indol-6-yl) methyl)
hexahydropyrrolo [1,2-a] pyrazine-1,4-dione C16H17N3O2
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Table 1. Cont.

Isolation Source Genus Antimicrobial Activity Molecule Formula Reference

Soil sample, Xinjiang Province,
China

Streptomonospora alba YIM
90003

B. anthracis,
B. halodurans,
B. cereus ATCC 4342, ATCC 13472,
B. subtilis,
L. monocytogenes,
E. faecalis,
S. aureus
and M. smegmatis

Streptomonomicin (STM) C107H160N22O30 [48]

Great Barrier Reef (GBR)
sponges, Queensland,
Australia

Salinisporaarenicola
M. avium,
M. leprae,
M. lepromatosis,
M. tuberculosis

Rifamycin B C39H49NO14
[56]Rifamycin S C37H45NO12

Rifamycin W C35H45NO11

Saline soil, Qaidam Basin,
north-west China

Nocardiopsis terrae YIM
90022

S. aureus,
E. coli
and B. subtilis

Quinoloid alkaloid
4-oxo-1,4-dihydroquinoline-3-carboxamide C10H7N2O2

[43]
p-hydroxybenzoic acid C7H6O3

N-acetyl-anthranilic acid C9H9NO

Indole-3-carboxylic acid C9H7NO2

Cyclo (Trp-Gly) C13H13N3O2

Cyclo (Leu-Ala) C9H16N2O2

Condenser water, solar salt
works in Thamaraikulam,
Kanyakumari district, Tamil
Nadu, India

Bacillus sp. BS3

E. coli,
S. aureus,
P. aeruginosa
and S. typhi

Lipopeptide biosurfactants

[53]

13-Docosenamide, (Z) CH3(CH2)7CH=CH(CH2)11CONH2

Mannosamine C6H13NO5.HCl

9-Octadecenamide, (Z) C18H35NO

2-Octanol, 2-methyl-6-methylene C12H22O2

Cylohex-1,4,5-triol-3-one-1-carbo C5H8FN3

2-Butanamine, 2-methyl- C5H13N

1,2-Ethanediamine, N,N,N′,N′-tetramethyl- C6H16N2

Hypersaline soil, Xinjiang,
China

Nocardiopsis gilva YIM
90087

B. subtilis,
S. aureus

p-Terphenyl:
6′-Hydroxy-4,2′,3′,4′′-tetramethoxy-p-terphenyl C22H22O5

[44]p-Terphenyl derivative:
4,7-bis(4-methoxyphenyl)-6-hydroxy-
5-methoxybenzo[d]thiazole

C22H19NO4S
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Table 1. Cont.

Isolation Source Genus Antimicrobial Activity Molecule Formula Reference

Solar salt condenser,
Thamaraikulam solar saltern,
Kanyakumari district, Tamil
Nadu, India

Halomonas salifodinae
MPM-TC

V. harveyi,
V. parahaemolyticus,
P. aeruginosa
and A. hydrophila

Perfluorotributylamine C12F27N

[54]

Cyclopentane, 1-butyl-2-ethyl- C11H22

1,1′-Biphenyl]-3-amine C12H11N

Pyridine, 4-(phenylmethyl)- C12H11N

Hexadecane, 2-methyl- C17H36

Nonadecane C19H40

Phytol C20H40O

Seashore soil, Bigeum Island,
South West coast of South
Korea

Streptomyces hygroscopicus
BDUS 49

B. subtilis,
S. aureus,
E. coli,
S. typhi

7-Demethoxy rapamycin C50H75NO12 [47]

Marine sediment of Mission
Bay, San Diego, South
California

Marinispora sp. NPS12745

S. aureus ATCC 29213-MSSA,
S. aureus ATCC 43300-MRSA,
S. epidermidis ATCC 700578,

S. epidermidis ATCC 700582,

S. pneumoniae ATCC 49619-Penicillin
sensitive,
S. pneumoniae ATCC 51915-Penicillin
resistant,
E. faecalis ATCC 29212-Vancomycin sensitive,
E. faecium ATCC 700221-Vancomycin
resistant,
Haemophilus influenzae ATCC 49247,
Haemophilus influenzae ATCC 49766
E. coli permeable mutant

Chlorinated bisindole pirroles:

[57]

Lynamicin A C22H16N3O2Cl2

Lynamicin B C22H14N3O2Cl3Na

Lynamicin C C20H12N3Cl4

Lynamicin D C24H18N3O4Cl2

Lynamicin E C24H19N3O4Cl

Platinum Coast on the
Mediterranean Sea, north of
Egypt

Streptomyces sp. Merv8102

E. coli ATCC 10536,
P. aeruginosa ATCC 10145),
B. subtilis ATCC 6051,
S. aureus ATCC 6538
and M. luteus ATCC 9341

Essramycin
Triazolopyrimidine
[1,2,4] Triazolo[1,5-a]pyrimidin-7(4H)-one,
5-methyl-2-(2-oxo-2-phenylethyl)-

C14H12N4O2 [58]

Marine sediment, La Jolla,
California

Streptomyces sp. CNQ-418 Methicillin-resistant S. aureus (MRSA) Marinopyrroles A C22H12Cl4N2O4
[59]

Marinopyrroles B C22H11BrCl4N2O4
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Table 1. Cont.

Isolation Source Genus Antimicrobial Activity Molecule Formula Reference

Sediment of Bay of Bengal,
India

Streptomyces chibaensis sp.
AUBN1/7

B. subtilis ATCC 6633,
B. pumilus ATCC 19164,
S. aureus ATCC 29213,
E. coli ATCC 25922,
P. aeruginosa ATCC 27853
P. vulgaris ATCC 6897

1-Hydroxy-1-norresistomycin C21H14O7 [45]

Sediment of the Lagoon de
Terminos at the Gulf of Mexico

Streptomyces
B8005Streptomyces B4842

E. coli,
S. aureus,
S. viridochromogenes

Resistomycin
1-Hydroxy-1-norresistomycin C21H14O7

[60]Resistoflavin
Resistoflavin methyl ether C23H18O7

Marine sediment from Scripps
Canyon. La Jolla, California,
Pacific Coast, United States

Streptomyces nodosus
NPS007994

Drug-sensitive and drug-resistant
Gram-positive reaction bacteria

Lajollamycin
Nitro-tetraene Spiro-β-lactone-γ-lactam C36H53N3O10 [61]

Sediment of Jiaozhou Bay,
China

Actinomadura sp. M048
S. aureus,
B. subtilis,
and S. viridochromogenes

Chandrananimycin A
Acetamide,
N-(9-hydroxy-3-oxo-3H-phenoxazin-2-yl)-

C14H10N2O4

[62]
Chandrananimycin B
Acetamide,
2-hydroxy-N-(3-oxo-3H-phenoxazin-2-yl)-

C14H10N2O4

Chandrananimycin C
1-Methoxy-3-methyl-1,2,3,4-tetrahydro-5H-pyrido[3,2
a]phenoxazin-5-one

C17H16N2O3

Sandy sediment, coastal site of
Mauritius, Indian Ocean

Streptomyces sp. B6921
S. aureus,
E. coli,
B. subtilis,
and S. viridochromogenes

Fridamycin D C31H32O12
[46]Himalomycin A C43H52O16

Himalomycin B C43H56O16

Mucus secreted by the box-
fish Ostracion cubicus, Israel Vibrio parahaemolyticus B2

S. aureus,
S. albus
and B. subtilis

Vibrindole A C18H16N2 [52]
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Table 2. Chronological report of bacteria with antimicrobial activity in vitro against human pathogens which molecules have not been chemically identified.

Isolation Source Genus Antimicrobial Activity Reference

Khewra Salt Range, Punjab, Pakistan
Aquisalibacillus elongatus MB592,
Salinicoccus sesuvii MB597,
and Halomonas aquamarina MB598

B. subtilis,
B. pumilus,
E. faecalis,
B. cereus,
K. pneumoniae,
Alcaligenes faecalis,
P. geniculata,
E. faecium

[63]

Hypersaline soils (solonchaks, solonetz and takyr) from
Kostanay, Auliekol and Mendykara. Almaty region, Balkhash,
Kazakhstan

Actinomycetes spp. S. aureus MRSA,
E. coli (pMG223) [64]

Marine water, Gujarat, Western India Kocuria sp. strain rsk4 Antibiotic-resistant S. aureus [65]

Crystallizer pond sediments of Ribandar saltern, Goa, India

Streptomyces radiopugnans
S. typhimurium,
P. vulgaris,
E. coli

[66]Streptomyces sporocinereus S. typhimurium, P. vulgaris, E. coli

Kocuria palustris S. aureus

Micromonospora sp. V. cholerae

Nocardiopsis sp. S. citreus

Coastal Solar Saltern, India Nonomuraea sp. JAJ18

Methicillin-Resistant S. aureus (MRSA),
B. subtilis MTCC 441,
K. pneumonia MTCC 109,
S. typhi MTCC 733,
and P. vulgaris MTCC 426

[67]

Sediment of estuarine coastal brackish, Chilika Lake, Khurdha
Odisha, India Streptomyces chilikensis RC 1830

E. coli,
S. aureus,
B. cereus
and S. typhi

[67]

Mangrove sediment of Visakhapatnam, Andhra Pradesh, India Streptomyces sp.

S. aureus,
B. subtilis,
B. cereus,
E. coli,
P. aeruginosa,
P. vulgaris

[68]

Mangrove sediment, Nizampatnam, Andhra Pradesh, India Pseudonocardia VUK-10

S. aureus,
S. mutans,
B. subtilis,
E. coli,
E. faecalis,
P. aeruginosa

[69]
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Table 2. Cont.

Isolation Source Genus Antimicrobial Activity Reference

Salt pans Batim and Ribandar, Goa, India Bacillus spp.
Virgibacillus spp.

A. baumanii,
A. hydrophila,
Citrobacter diversus,
Citrobacter freundii,
E. coli ATCC 25922,
K. pneumoniae,
Morganella morganii,
P. mirabilis,
P. ATCC 27855,
P. spp.,
S. paratyphi A,
S. typhi,
S. typhimurium,
S. boydii, S. flexneri,
V. cholerae,
Methicillin Resistant S. aureus (MRSA),
Methicillin Sensitive S. aureus (MSSA),
S. aureus ATCC 25923,
S. citreus

[70]

Salt pans, Kodiakarai, Tamil Nadu, India Streptoverticillium album S. aureus, K. pneumoniae and E. coli [71]

Nonrhizospheric soil, Saharan regions, south of Algeria

Actinopolyspora spp.
A. halophila,
A. mortivallis,
A. erythraea,
A. xinjiangensis,
A. alba.Nocardiopsis spp.
N. litoralis,
N. xinjiangensis
N. valliformis
and N. exhalans
Saccharomonospora spp.
S. paurometabolica,
S. halophila
Streptomonospora spp.
S. alba,
S. amylolytica,
S. flavalba
Saccharopolyspora sp.

B. subtilis,
S. aureus,
M. luteus,
K. pneumoniae,
L. monocytogenes

[72]
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Table 2. Cont.

Isolation Source Genus Antimicrobial Activity Reference

Crystallizer pond, Madurai, India Nocardiopsis sp. JAJ16

S. aureus,
B. subtilis,
S. typhi,
Methicillin-resistant S. aureus (MRSA),
K. pneumoniae,
Enterobacter sp.
and P. aeruginosa

[73]

Bay of Bengal coast of Puducherry and Marakkanam, India Streptomyces sp. VITSVK9

B. subtilis,
Escherchia coli,
K. pneumoniae,
S. aureus
and S. species

[74]

Marine sediment of Marakkanam, Bay of Bengal Coast, Tamil
Nadu. India Saccharopolyspora salina VITSDK4

S. aureus ATCC 25923,
B. subtilis ATCC 6633,
E. coli ATCC 25922,
K. pneumoniae ATCC 10273

[75]

Marakkanam coast of Tamil Nadu, India Streptomyces sp. VITSDK1

S. aureus ATCC 25923,
B. subtilis ATCC 6633,
E. coli ATCC 25922,
K. pneumoniae ATCC 10273

[76]

Salt Lake Hami in Xinjiang, China Actinomyces sp. B. subtilis [77]

Salt lakes of Bay of Bengal, India Actinomyces sp.
Streptomyces sp.

P. aeruginosa,
B. subtilis,
S. epidermidis,
E. coli

[78]

Water samples Asen fjord in the Trondheim fjord and
Steinvikholmen, Norway Streptomyces sp. Gram-negative and Gram-positive bacteria [79]

Salt Lake Bardawil, Egypt Streptomyces viridiviolaceus

E. coli,
Edwardsiella tarda,
Corynebacterium michiganese B-33,
P. solanacearum B-3212
and Staphilococcus spp.

[77]
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Table 2. Cont.

Isolation Source Genus Antimicrobial Activity Reference

Soil from salt pan regions of Cuddalore and Parangipettai
(Porto-Novo). Tamil Nadu, India

Streptomyces sp.,
Saccharomonospora sp.

E. coli,
K. pneumoniae,
P. aeruginosa,
V. cholerae,
S. typhi,
S. aureus,
and S. dysenteriae

[80]

Bismarck and Solomon Sea off the coast of Papua New Guinea
Micromonospora nigra DSM 43818,
Micromonospora rhodorangea,
Micromonospora halophytica DSM 43171

Multidrug-resistant (MDR) Gram-positive
pathogens, vancomycin-resistant enterococci
(VRE), and methicillin-resistant S. aureus
(MRSA)

[81]

Marine sediment, Alibag coast, Maharashtra, India

Actinopolyspora spp. AH1,
A.halophila,
A. mortivallis,
A. iraqiensis

S. aureus,
S. epidermidis,
B. subtilis

[82]

Noted: American Type Culture Collection (ATCC); Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ); Multidrug-resistant (MDR); Microbial Type Culture Collection
and Gene Bank (MTCC). Microorganisms: Acinetobacter (A.): A. baumanii. Aeromonas (A.): A. hydrophila. Alcaligenes (A.): A. faecalis. Bacillus (B.): B. cereus, B. halodurans, B. megaterium, B.
pumilus, B. subtilis. Burkholderia (B.): B. metallica. Candida (C.): C. albicans. Citrobacter (C.): C. diversus, C. freundii. Corynebacterium (C.): C. michiganese. Edwardsiella (E.): E. tarda. Enterobacter
(E.): E. aerogenes. Enterococcus (E.): E. faecalis, E. faecium, Vancomycin resistant Enterococcus faecium (VREF), Vancomycin sensitive Enterococcus faecalis (VSEF), Vancomycin resistant
enterococci (VRE). Escherichia (E.): E. coli. Haemophilus (H.): H. influenzae. Klebsiella (K.): K. pneumonia. Listeria (L.): L. ivanovii, L. monocytogenes. Micrococcus (M.): M. luteus. Morganella (M.):
M. morganii. Mycobacterium (M.): M. avium, M. leprae, M. lepromatosis, M. smegmatis, M. tuberculosis. Proteus (P.): P. mirabilis, P. vulgaris. Pseudomonas (P.): P. aeruginosa, P. geniculata, P.
solanacearum. Salmonella (S.): S. henoxaz, S. paratyphi, S. typhi, S. typhimurium. Serratia (S.): S. marcescens. Shigella (S.): S. boydii, S. dysenteriae, S. flexneri. Staphylococcus (S.): S. aureus, S. citreus,
S. epidermidis, Antibiotic-resistant Staphylococcus aureus (ARSA), Methicillin Sensitive Staphylococcus aureus (MSSA), Methicillin-resistant Staphylococcus aureus (MRSA). Streptococcus (S.): S.
mutans, S. pneumoniae, Penicillin resistant Streptococcus pneumoniae (PRSP), Penicillin sensitive Streptococcus pneumoniae (SPPS). Streptomyces (S.): S. viridochromogenes. Vibrio (V.): V. cholerae,
V. harveyi, V. parahaemolyticus. Xanthomonas (X.): X. campestris, X. malvacearum.
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The biotechnological potential of halophilic bacteria, especially for antimicrobial exploitation, still
remains in progress, in spite that the occurrence of new several groups of microorganisms is high, the
rate of discovery of new biomolecules is low compared with non-halophilic bacteria. Despite periodic
descriptions of new species and attempts to culture hidden microbiota, there are no significant studies
focused on the discovery of new bioactive metabolites produced by microorganisms from hypersaline
ecosystems. The genome-guided studies are currently the best support to take novel strategies in
drug discovery. All the antimicrobial compounds described herein derived from halophilic bacteria in
which the molecule has been elucidated are summarized in Table 1 and the strains capable of inhibiting
pathogens in primary tests whose molecules are unknown are shown in Table 2.

3.2. Archaea

Since the discovery of halocins and their action against the surrounding microbiota in their
habitats [35] no new or known antimicrobial compounds derived from archaea capable of inhibiting
human pathogens have been reported in the literature to date. At an ecological level, the role of
archaeocins in microbial communities is the interspecies competition, the antimicrobial activity of
halocins suggests that its function is to dominate a given niche occupied by microorganisms having
similar adaptations and nutritional requirements [83–85]. Members of Halorubrum and Haloferax have
been identified as the preponderant halocin-producing genera, the cross-domanin antimicrobial action
was observed against bacterial members of the genera Halomonas, Rhodovibrio, Salisaeta, or Pontibacillus,
all isolated from hypersaline samples [86].

To understand the current situation, it is necessary that a comprehensive analysis of the possible
reasons why haloarchaea are under-explored at the biotechnological level and why the antimicrobial
exploitation is scarce in comparison with other microorganisms prevenient of non-halophilic
environments. The first limitation found is the cultivation time of haloarchaea, observed at around 5
to 30 days to yield colonies or cellular density in broth cultures [12]. Once the cultivation is reached,
the upcoming drawback is the evaluation of the inhibitory capacity of haloarchaea against a panel of
human pathogens. The main obstacle to overcome is when the primary screening (isolate vs. pathogen)
is performed due to the high salinity requirements of haloarchaea to grow, greater than 20% of NaCl
until saturation, while in halophilic bacteria the screening can be adapted at lower range of salinity,
under 15% of NaCl.

Tests such a direct spot-inoculation of the supernatant, diffusion discs, and cross-streak require
the adaptation of an appropriate protocol. Finding the same and suitable conditions to test both
microorganisms drive to set-up alternative technical procedures, like dual-media and crude extracts
for testing those strains growing above the seawater salinity, ca. 3.5 % [87]. Another possible reason
is that the study of extremophilic microbiota has been approached at an ecological level and the
vast biotechnological exploitation of these extremophiles is more recognized on their enzymes and
compatible solutes. The low metabolic requirements, the hypersaline conditions where they thrive,
or the low competition for nutrients with their peers determine their behavior, i.e., the production of
halocins, which action is limited to the closest members inhabiting in the same environment [88,89].
This could explain that the production of antimicrobials against the non-halophilic community of
microorganisms seems to be unnecessary.

Constituted as a powerful tool, “omics” approaches as metagenomics and genomics
effectively support ecological and bioprospecting studies deciphering new insights into halophilic
microorganisms [90–92]. Extremely rare is the interdomain horizontal gene transfer (IHGT) across
bacteria, archaea, and fungi of homologous DNA. However, a genomic-guided study revealed for the
first time a potent antibacterial gene encoding a glycosyl hydrolase 25 muramidases (GH25-muramidase)
identified in archaea after co-cultivation with a bacterial competitor [93]. In the genome-mining study
conducted by Wang et al. (2014), an atlas of nonribosomal peptide synthetase (NRPSs) and modular
polyketide synthase (PKSs) gene clusters was built based on 2699 genomes of bacteria, archaea, and
fungi. In this study, were included 25 members of Halobacteria: Haloarcula hispanica ATCC 33960,
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Halalkalicoccus jeotgali B3, Haloarcula marismortui ATCC 43049, Halobacterium sp. NRC-1, Halobacterium
salinarum R1, Haloferax mediterranei ATCC 33500, Haloferax volcanii DS2, Halogeometricum borinquense
DSM 11551, Halomicrobium mukohataei DSM 12286, Halopiger xanaduensis SH-6, Haloquadratum walsbyi
C23, Haloquadratum walsbyi DSM 16790, Halorhabdus tiamatea SARL4B, Halorhabdus utahensis DSM
12940, Halorubrum lacusprofundi ATCC 49239, Haloterrigena turkmenica DSM 5511, Halovivax ruber XH-70,
Natrialba magadii ATCC 43099, Natrinema sp. J7-2, Natrinema pellirubrum DSM 15624, Natronobacterium
gregoryi SP2, Natronococcus occultus SP4, Natronomonas moolapensis 8.8.11, Natronomonas pharaonis DSM
2160, Salinarchaeum sp. Harcht-Bsk1. Of a total of 3339 cataloged gene clusters, no PKS, NPKS or hybrid
in Halobacteria were reported. Within the studied archaea, only two and one NRPS were identified in
Methanobacteria and Methanomicrobia, respectively [55]. Despite these results and considering that the
class Halobacteria is wide represented with seven families, these results do not exclude the biosynthetic
capacity of nonribosomal peptide and polyketide, and nor discourage the biotechnological interest of
haloarchaea for future natural product discovery.

3.3. Fungi

Along the years of research on natural products, fungi represent the basis of antimicrobial
discovery. Halotolerant and halophilic fungal communities that inhabit the natural hypersaline
environments are not strictly salt requiring, as they can grow and adjust to the whole salinity range,
from freshwater to almost saturated NaCl solutions [94,95]. Despite this versatility, the vast majority of
antimicrobial molecules from halophilic fungi have been produced under low or moderate salinity
conditions since the primary screenings against SKAPE microorganisms are easier without NaCl. The
mycobiota of hypersaline environments is dominated by members of Aspergillus, Penicillium, and other
genera, such as Alternaria, Cladosporium, Fusarium, Debaryomyces, Scopulariopsis, Chaetomium, Wallemia,
and Hortaea, which are well represented in ecological and biodiversity studies [96,97]. The species
Gymnoascus halophilus, Aspergillus penicillioides, Hortaea werneckii, Phaeotheca triangularis, Aureobasidium
pullulans, Trimmatostroma salinum, and some species of the genus Wallemia, like W. ichthyophaga, are
recognized as obligately halophilic, or require high levels of salt above that of seawater [98,99].
However, antimicrobial compounds have not been reported from these species.

The halophilic species of the genus Aspergillus are the most prolific and several strains of Aspergillus
sp. have been isolated from Arctic sub-sea sediments from the Barents Sea (Table 3). In particular,
strain 8Na identified as A. protuberus, a polyextremophilic fungus able to grow in a wide range of
pH, temperature and salinity (up to 25% (w/v)) showed an antimicrobial efficacy against human
pathogens. The strongest power inhibitory action was observed against Staphylococcus aureus. The
molecule responsible of the activity was identified as Bisvertinolone, a compound member of the
family Sorbicillinoid [87]. Aspergillus flocculosus PT05-1 and Aspergillus terreus PT06-2, both isolated
from sediment of Putian sea saltern of Fujian, China, showed antimicrobial activity against Enterobacter
aerogenes, Pseudomonas aeruginosa, and Candida albicans. Strain PT05-1 produces 11 metabolites among
which two are new ergosteroids and pyrrole derivative compounds [100], and strain PT06-2 produces
the novel compounds: Terrelactone A and Terremides A and B [101]. Other strains of the genus
Aspergillus, like A. terreus Tsp22 [101–103], A. flavus, A. gracilis, and A. penicillioids [102] have antibacterial
and antioxidant activities in crude extracts but the molecule has not been identified. In the atlas of
Wang et al. (2014), 360 fungi were genome-mined cataloguing a total of 307 gene clusters from 30
strains of the phylum Ascomycota. Within this group, strains of the genus Aspergillus: A. nidulans FGSC
A4, A. fumigatus, A. niger CBS 513 88, and A. oryzae RIB40 harbor NRPSs, PKSs and hybrids gene
clusters [55]. These results confirm that the genus Aspergillus is among the most prolific producers of
antimicrobial metabolites. In spite of the prosperous production of compounds from fungi, the active
molecules derived from extremely halophilic fungi are still scarce (Table 3). It is highly probable that
through genome-driven studies in halophilic fungi, NRPSs and PKSs are substantially present as their
peers providing new insights into the fungal biosynthetic pathways.
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Table 3. Halophilic fungi showing antimicrobial activity.

Isolation Source Species Antimicrobial Activity Molecule Formula Reference

Abyssal marine sediment. Barents
Sea. Arctic Ocean Aspergillus protuberus MUT 3638

S. aureus,
K. pneumoniae,
A. baumanii
and B. metallica

Bisvertinolone C28H33O9 [87]

Solar saltern, Phetchaburi, Thailand
Aspergillus flavus,
Aspergillus gracilis,
and Aspergillus penicillioids

Antibacterial and
antioxidant Crude extracellular compounds NR [102]

Putian saltern of Fujian, China Aspergillus flocculosus PT05-1
E. aerogenes,
P. aeruginosa,
and C. albicans

Ergosteroids:
(22R,23S)-epoxy-3b,11a,14b,16b-tetrahydr-
oxyergosta-5,7-dien-12-one

C28H42O6

[100]
Pyrrole derivates:
6-(1H-pyrrol-2-yl)
hexa-1,3,5-trienyl-4-methoxy-2H-pyran-2-one

C16H15NO3

Putian saltern of Fujian, China Aspergillus terreus PT06-2
E. aerogenes,
P. aeruginosa,
and C. albicans

Terremide A C21H17N3O5

[101]Terremide B C21H15N3O4

Terrelactone A C24H26O8

Semiarid saltpans in Botwana Aspergillus terreus Tsp22 B. megaterium
and S. aureus Crude extracellular compounds NR [103]

Abbreviations: Not reported (NR). Microorganisms: Acinetobacter (A.): A. baumanii. Bacillus (B.): B. megaterium. Burkholderia (B.): B. metallica. Candida (C.): C. albicans. Enterobacter
(E.): E. aerogenes. Escherchia (E.): E. coli. Haemophilus (H.): H. influenzae. Klebsiella (K.): K. pneumonia. Pseudomonas (P.): P. aeruginosa. Staphylococcus (S.): S. aureus.
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4. Anticancer Compounds

Natural products are relevant anticancer drugs, which are also called bioactive molecules,
produced by organisms. Although, earlier and the well-established anticancer natural products have
been obtained from plant cells originally, microorganisms are an excellent alternative, due to the
diversity of the microbial world, their easy manipulation, and they can be screened physiologically
to discover new natural products with antitumor activity. Although bacterial cells have different
communication methods with tumor cells other than metabolites experimentally, bacterial metabolites
have been considered the most conventional way against cancer cells viability. Today, more attention is
focused on extremophiles as a new source of novel biomolecules [104,105]. Among extremophiles,
halophilic and halotolerant microorganisms, which inhabit hypersaline environments, are considered
as reliable sources of antitumor metabolites with fewer side effects. In recent years, several studies have
been focused on the importance of metabolites from halophilic microorganisms on cancer treatment.
The halophilic bacteria, archaea, and fungi involved on the production of anti-cancer biomolecules are
summarized in Table 4.

4.1. Bacteria

Since the last two decades, halophilic bacteria have attracted the interests of researchers due to
their adaptability to a wide range of salinities. Some studies have been carried out to determine the role
of halophilic bacteria in cancer treatment. In one of these studies, Chen et al. (2010) assayed fourteen
crude extracts from 45 halophilic bacterial strains and showed cytotoxic activity against human liver
cancer cell line Bel 7402 with a half maximal inhibitory concentration (IC50) of 500 µg/mL and five of
them showed remarkable activities with IC50 lower than 40 µg/mL [106]. The antineoplastic antibiotic
known as tubercidin, was isolated from the halophilic actinobacterium Actinopolyspora erythraea YIM
90600, this compound exhibited the capability to stabilize the tumor suppressor Programmed Cell Death
Protein 4 (Pdcd4), which is known to antagonize critical events in oncogenic pathways. Tubercidin,
significantly inhibited proteasomal degradation of a model Pdcd4-luciferase fusion protein, with an
IC50 of 0.88 ± 0.09 µM, unveiling a novel biological activity for this well-studied natural product [107].

In two studies on different extracts of halophilic and halotolerant bacteria isolated from
brine-seawater interface of the Red Sea, Sagar et al. (2013) tested the cytotoxic and apoptotic
activity of their extracts against three human cancer cell lines, including HeLa (cervical carcinoma),
MCF-7 (breast adenocarcinoma) and DU145 (prostate carcinoma). In one of their studies, a total of
20 lipophilic (chloroform) and hydrophilic (70% ethanol) extracts from twelve different strains were
assessed. Among these, twelve extracts were found to be very active after 24 h of treatment, which
were further evaluated for their cytotoxic and apoptotic effects at 48 h. The extracts from the isolates
Halomonas sp. P1-37B, Halomonas sp. P3-37A, and Sulfitobacter sp. P1-17B were found to be the most
potent against tested cancer cell lines [108]. In the other study, ethyl acetate extracts of 24 strains were
assayed and the results showed that most extracts were cytotoxic against one or more cancer cell lines.
Out of the thirteen most active microbial extracts, six extracts induced significantly higher apoptosis
(>70%) in cancer cells. Molecular studies revealed that extracts from Chromohalobacter salexigens
strains P3-86A and P3-86B followed the sequence of events of apoptotic pathway involving matrix
metalloproteinases (MMP) disruption, Caspase-3/7 activity, Caspase-8 cleavage, polymeric adenosine
diphosphate ribose polymerase 1 (PARP-1) cleavage, and phosphatidylserine exposure, whereas the
extracts from another Chromohalobacter salexigens strain K30 induced Caspase-9 mediated apoptosis.
The extracts from Halomonas meridiana strain P3-37B and Idiomarina loihiensis strain P3-37C were unable
to induce any change in MMP in HeLa cancer cells and thus suggested a mitochondria-independent
apoptosis induction. However, further detection of a PARP-1 cleavage product and the observed
changes in Caspase-8 and Caspase-9 suggested the involvement of caspase-mediated apoptotic
pathways [109]. An ethyl acetate extract from Streptomyces sp. WH26 showed significant cellular
toxicity. Two new compounds, 8-O-methyltetrangulol and naphthomycin A, were isolated from this
extract via silica gel column chromatography and high-pressure liquid chromatography (HPLC). These
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two compounds showed potent cytotoxic activity against several human cancer cell lines including
A549, HeLa, BEL-7402, and HT-29 [110]. Novel anticancer molecules, Salternamide A–D, were isolated
from a halophilic Streptomyces sp. isolated from a saltern on Shinui Island, in the Republic of Korea,
and exhibited an extensive viability reduction in several cancer cell lines [111]. Among these molecules,
Salternamide A inhibited the hypoxia-induced accumulation of HIF-1α in several cancer cell lines and
suppressed the HIF-1α by downregulation of its upstream signaling pathways such as PI3K/Akt/mTOR,
p42/p44 MAPK, and STAT3. Moreover, in human colorectal cancer cell lines, salternamide A caused
cell death by arresting the cells in the G2/M phase and lead to apoptosis [112]. A halophilic bacterium,
Vibrio sp. strain A1SM3-36-8, isolated from Manaure solar saltern in Colombia, showed a high
potential to inhibit methicillin-resistant Staphylococcus aureus and causing a slight inhibition of lung
cancer cell lines [51]. In another study, among nine moderately halophilic bacteria isolated from
saline environments of Iran, the supernatant of four strains showed ability to reduce the viability of
HUVEC cancer cell line while one of these supernatants induced the proliferation of adipose-derived
mesenchymal stem cells [113]. The actinobacterium Nocardiopsis lucentensis DSM 44048 isolated from
Salt marsh soil in Alicante, Spain produces a new benzoxazole derivatives, Nocarbenzoxazole G.
The compound showed cytotoxic activity against liver carcinoma cells (HepG2) and HeLa cancer
cells with IC50 values of 3 and 1 µM, respectively [114]. A halotolerant Bacillus sp. KCB14S006,
which was isolated from a saltern, produced three new lipopeptides with cytotoxic activity. These
new lipopeptides lead to a ~30% decrease in the viability of HeLa and src(ts)-NRK cells [115]. In
another study, the methanolic extracts of Bacillus sp. VITPS14 and Bacillus sp. VITPS16 showed
cytotoxicity against HeLa cancer cell line but not against A549 cells. These halophilic strains were
isolated from soil samples of Marakkanam saltern and Pichavaram mangrove forest, India, respectively.
Another halophilic strain, Bacillus sp. VITPS7, isolated from this area showed significant antioxidant
activity. The presence of β-carotene and flavonoids was confirmed in these extracts [116]. In another
study, twenty-four novel halophilic bacteria isolated from the surrounding of active volcanic Barren
Island Andaman and the Nicobar Islands in India were examined for their cytotoxic activity against
MDA-MB-231 breast cancer cell line. About 65% of these bacterial strains decreased the viability of this
cell line to 50% or lower [117]. Metabolites from Piscibacillus sp. C12A1 isolated from Sambhar Lake,
India, decreased the viability of MDA-MB-231 breast cancer cell line with downregulation of Bcl-xL
and CDK-2 expression. Furthermore, cell migration and colony formation of the cells were inhibited in
the presence of these metabolites [118].

Biosurfactants produced by microorganisms are active molecules that create an amphipathic
surface containing hydrophilic and hydrophobic moieties. In recent years, these biomolecules were also
found to possess several interesting properties of therapeutic and biomedical importance. Biosurfactants
from the halophilic bacteria Bacillus sp. BS3 and Halomonas sp. BS4 had the ability to reduce the
viability of mammary epithelial carcinoma cells to 24.8% and to 46.8 significantly (p < 0.05) at 0.25
µg/mL and 2.5 µg/mL concentrations, respectively [53,119].

Extracellular polymeric substances (EPS) have recently been attracting considerable attention
because of their potential applications in many fields, including biomedicine. EPSs are heterogeneous
polymers that contain a wide range of homo- or hetero-carbohydrates as well as organic and inorganic
substituents. EPSs produced by both halophilic bacteria and archaea showed remarkable anticancer
activity. Also, these polysaccharide polymers have been introduced as important agents for developing
nanocarrier systems for anti-cancer drugs. For example, in 2011, Ruiz-Ruiz et al. showed that at a
concentration of 500 µg/mL, the over sulfated exopolysaccharide of the halophilic bacterium Halomonas
stenophila strain B100 completely blocked the proliferation of the human T leukemia cells (Jurkat cells) in
a dose-response manner. Also, they revealed the positive effect of sulfate groups in viability reduction
of Jurkat cells [120]. Moreover, in another study, the anti-cancer activity of the polysaccharide levan
and its aldehyde-activated derivatives was reported. This polysaccharide was isolated from Halomonas
smyrnensis AAD6 and its anticancer activity against human cancer cell lines such as lung (A549), liver
(HepG2/C3A), gastric (AGS), and breast (MCF-7) cancer cells (Table 4) has been investigated. In this
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study, all evaluated cells were treated with levan samples at a broad concentration ranging from 10
to 1000 µg/mL. All samples were found to display growth inhibition against cancer cell lines at the
highest dose (1000 µg/mL). Unmodified levan showed higher anti-cancer effect against AGS cells
against other cancer cell lines. Aldehyde-activated levan showed higher anti-tumor activity than
unmodified levan against all cancer cell lines. Oxidized levan samples showed higher anticancer
activity against A549 and HepG2/C3A cells. By increasing the oxidation degree, the anti-cancer activity
also increased. Therefore, it was clearly demonstrated that the introduction of the chemically modified
group, aldehydes, into the linear levan molecule could significantly enhance the antitumor activity of
levan polysaccharide [121].

Recent preclinical and medicinal studies have shown an inverse relationship between dietary
uptake of carotenoids and cancer occurrence. It was reported that the extracted carotenoid from the
halotolerant bacterium Kocuria sp. QWT-12, isolated from industrial tannery wastewater in Qom, in
Iran, had the ability to reduce the viability of human breast cancer cell lines MCF-7, MDA-MB-468, and
MDA-MB-231 with an IC50 of 1, 4, and 8 mg/mL, respectively. Also, this carotenoid decreased the
viability of human lung cancer cell line A549, with IC50 of 4 mg/mL. This carotenoid did not reduce
the viability of normal fibroblast cell line at these concentrations [122].

Among all anticancer enzymes, l-asparaginase and l-glutaminase are enzymes with the ability to
inhibit acute lymphoblastic leukemia and other cancer cells. Halophilic and halotolerant bacteria are
novel sources of these anticancer enzymes. For example, a screening from 85 halophilic strains from the
hypersaline Urmia Lake in Iran revealed that 16 (19%) and three strains (3.5%) showed l-asparaginase
and l-glutaminase activity, respectively. It was shown that l-asparaginase was produced mainly
by strains belonging to the genus Bacillus, while l-glutaminase was produced mainly by strains of
the genus Salicola [27]. In another study, it was reported that from 110 halophilic strains isolated
from different saline environments of Iran, a total of 29, four, and two strains produced anticancer
enzymes including l-asparaginase, l-glutaminase, and l-arginase, respectively. These strains belonged
to the genera Bacillus, Dietzia, Halobacillus, Rhodococcus, Paenibacillus, and Planococcus, as Gram-positive
bacteria, and Pseudomonas, Marinobacter, Halomonas, Idiomarina, Vibrio, and Stappia as Gram-negative
bacteria [123]. From these strains, the anti-cancer activity of a novel recombinant l-asparaginase
enzyme produced by Halomonas elongata strain IBRC M10216 was assayed against human lymphoblastic
and myeloid leukemia cell lines, Jurkat and U937 (Table 4). This enzyme enhanced the viability of
these cancer cell lines with IC50 values of 2 and 1 U/mL, respectively, but at these concentrations had
no effect on the viability of normal HUVEC cell line [124].
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Table 4. Halophilic bacteria, archaea, and fungi and their relation to cancer treatment.

Anticancer Activity
of: Isolation Source Halophilic Strain Cancer Cell Lines Molecule Formula Reference

Bacteria

Metabolite

Marakkanam saltern and Pichavaram
mangroveForest in India

Bacillus sp. VITPS16 Cervical carcinoma
Squalene C30H50

[116]
3-Methyl-2-(2-oxopropyl) furan C8H10O2

Methyl hexadeconate C17H34O2

Topsoil saltern in Jeungdo,
Jeollanam-do, Republic of Korea

Nocardiopsis sp.
HYJ128 Stomach and Leukemia carcinoma

Borrelidin C C28H43NO7 [42]
Borrelidin D C28H43NO7

Saltern in Incheon in Korea Bacillus sp.
KCB14S006

Cervical carcinoma
Myeloid leukemia

Iturin F1 C51H80N12O15Na

[115]
Iturin F2 C51H80N12O15Na

Iturin A8 C51H80N12O14Na

Iturin A9 C51H80N12O14Na

A saltern on Shinui Island in Korea Streptomyces sp. Colorectal cancer
Gastric cancer Salternamide A C23H32ClNO5 [111]

Salt marsh soil, Alicante, Spain Nocardiopsis
lucentensis DSM 44048

Liver cancer
Cervical cancer cells Nocarbenzoxazole G C15H13NO4 [114]

- Brine-seawater interface of the Red Sea 12 halophilic marine
strains

Breast adenocarcinoma
Cervical carcinoma
Prostate carcinoma

Crude extract NR [108]

- Deep-sea brine pools of the Red Sea 24 halophilic marine
strains

Breast adenocarcinoma
Cervical carcinoma
Prostate carcinoma

Crude extract NR [109]

- Weihai Solar
Saltern in China

Streptomyces sp.
WH26

Lung adenocarcinoma
Liver hepatocellular adenocarcinoma
Cervical carcinoma
Colorectal cancer

8-O-Methyltetrangulol C20H14O4 [110]

- Naphthomycin A C40H46ClNO9

-
Baicheng salt field, Xingjiang Province,
China

Actinopolyspora
erythraea YIM 90600

Tumor suppressor Programmed Cell Death Protein 4
(Pdcd4)

Actinopolysporins A C15H28O4

[107]Actinopolysporins B C16H30O4

Actinopolysporins C C16H30O2

Weihai Solar
Saltern in China

45 moderately
halophilic strains Liver hepatocellular adenocarcinoma Crude extracts NR [106]



Mar. Drugs 2020, 18, 33 20 of 33

Table 4. Cont.

Anticancer Activity
of: Isolation Source Halophilic Strain Cancer Cell Lines Molecule Formula Reference

Supernatant
metabolite

Sambhar Lake in India Piscibacillus sp.
C12A1 Breast adenocarcinoma Crude extract NR [118]

Brine and sediment of the Manaure
solar saltern in Colombia Vibrio sp. A1SM3-36-8 Lung adenocarcinoma 13-cis-docosenamide C22H43NO [51]

Different hypersaline lakes in Iran 9 moderately
halophilic strains Umbilical vein endothelial cancer cell Crude extract NR [113]

Biosurfactant

Thamaraikulam solar salt works in
India

Halomonas sp. BS4 Mammary epithelial carcinoma

1,2-Ethanediamine, N,N,N’,N’-tetra C6H16N2

[119]8-Methyl-6-nonenamide C10H19NO

9-Octadecenamide, (Z) C18H35NO

Solar salt works in India Bacillus sp. BS3 Mammary epithelial carcinoma

13-Docosenamide, (Z) CH3(CH2)7CH=CH(CH2)11CONH2

[53]

Mannosamine C6H13NO5·HCl

9-Octadecenamide, (Z) C18H35NO

2-Octanol,2-methyl-6-methylene C12H22O2

Cylohex-1,4,5-triol-3-one-1-carbo C5H8FN3

2-Butanamine, 2-methyl- C5H13N

1,2-Ethanediamine,
N,N,N′,N′-tetramethyl- C6H16N2

Exopolysaccharide Çamalti saltern area in Turkey Halomonas smyrnensis
strain AAD6

Breast adenocarcinoma
Lung adenocarcinoma
Liver hepatocellular adenocarcinoma
Gastric adenocarcinoma

Levan C18H32O16 [121]

Sabinar saline wetland in Spain Halomonas stenophila
strain B100 Lymphoblastic leukemia

Single acidic exopolysaccharide
with glucose, mannose
and galactose

NR [120]

Carotenoid Industrial tannery wastewater in Iran Kocuria sp. MA-2 Prostate carcinoma Neurosporene C40H58 [122]

Enzyme Hypersaline soil in Iran Halomonas elongata
IBRC-M 10216

Lymphoblastic leukemia
Myeloid leukemia l-asparaginase C1377H2208N382O442S17 [124]
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Table 4. Cont.

Anticancer Activity
of: Isolation Source Halophilic Strain Cancer Cell Lines Molecule Formula Reference

Archaea

Supernatant
metabolite Aran Bidgol hypersaline lake in Iran

Halobacterium
salinarum IBRC-M
10715

Prostate carcinoma Crude extract NR [105]

Exopolysaccharide Urmia Lake in Iran Halorubrum sp.
TBZ112 Gastric adenocarcinoma

Monosaccharide composition
mainly composed of mannose,
glucosamine, galacturonic acid,
arabinose, and glucuronic acid

NR [125]

Carotenoid
Marine solar saltern in eastern China

Halogeometricum limi
strain RO1-6
Haloplanus vescus
strain RO5-8

Liver hepatocellular adenocarcinoma Bacterioruberin C50H76O4 [127]

Tunisian solar saltern Halobacterium
halobium Liver hepatocellular adenocarcinoma Bacterioruberin C50H76O4 [126]

Fungi

Metabolite Weihai Solar
Saltern in China

Aspergillus sp. F1
Lung adenocarcinoma
Liver hepatocellular adenocarcinoma
Cervical carcinoma
Colorectal cancer

Cytochalasin E C28H33NO7
[128]Ergosterol C28H44O

Rosellichalasin C28H33NO5

Abbreviations: Not reported (NR).



Mar. Drugs 2020, 18, 33 22 of 33

4.2. Archaea

Although most studies in this field have been focused on halophilic bacteria, some studies
investigated the potentials of haloarchaea. In one of these studies, among nine haloarchaeal strains
isolated from Aran-Bidgol Salt Lake, in Iran, supernatant metabolites from Halobacterium salinarum
IBRC M10715 had the most potent cytotoxic effect on prostate cancer cell lines (DU145 and PC3,
IC50 = 0.5 mg/mL) without any effects on normal fibroblast cells (HFF-5). Moreover, the selective
metabolite significantly increased both early and late apoptosis (about 11% and 9%, respectively) in the
androgen-dependent PC3 cell line and reduced sphere formation ability of both cancer cell lines with
down-regulation of SOX2 gene expression. Furthermore, prostate cancer cell tumors developed in
nude mice significantly shrank post intratumor injection of the metabolite from Halobacterium salinarum
IBRC M10715 [105]. Halorubrum sp. TBZ112 is a haloarchaeal species isolated from the Urmia Lake,
Iran. It was reported that this strain could produce EPSs. The isolated EPSs possess a relatively low
molecular weight in comparison with those EPSs isolated from other extreme environments (5 vs.
≥100 kDa, respectively) and the absence of sulfate functional groups in their structure was reported.
The anticancer activity of the EPSs from Halorubrum sp. TBZ112 was examined and the results did
not show any significant changes in the viability of gastric cancer cells (MKN-45) and normal human
dermal fibroblast cells (HDF) at concentrations of 100, 250, 500, and 1000 µg/mL after 24 and 48 h of
treatment. As the existence of sulfate functional groups and the EPSs bioactivities are directly related,
the low cytotoxicity potential of the EPSs from Halorubrum sp. TBZ112 was not unexpected [125].

Both in vivo and in vitro studies confirm chemoprevention effects of some carotenoids anticancer
activity. Halophilic microorganisms showed great potential toward the production of various
carotenoids such as β-carotene, bacterioruberin, and xanthophylls. In recent years, some investigations
were carried out to determine the role of carotenoids or other bioactive molecules produced by
halophiles on cancer treatment. The effects of Halobacterium halobium carotenoid extract on the viability
of human hepatoma, HepG2, have been analyzed. This haloarchaeal strain was isolated from a Tunisian
solar saltern and the results emphasized that increasing concentrations of the carotenoid extract of this
halophilic archaeon decreased significantly the viability of the HepG2 cancer cell line [126]. Carotenoids
from the haloarchaea Halogeometricum limi strain RO1-6 and Haloplanus vescus strain RO5-8 showed
a potent antioxidant activity in comparison with β-carotene. In addition, these carotenoid extracts
inhibited HepG2 cells in vitro, in a dose-dependent manner. Bacterioruberin was the predominant
carotenoid extracted from these haloarchaea [127].

4.3. Fungi

The biotechnological applications of halophilic fungi are remarkedly less studied in comparison
with halophilic bacteria. There is only one study focused on the cytotoxic effect of metabolites
from a moderately halophilic fungal strain, Aspergillus sp. F1 [128]. Based on this publication, this
strain produced three compounds with anticancer activity including cytochalasin E, ergosterol, and
rosellichalasin, and higher salt concentrations increased the production of these compounds. All
isolated compounds decreased the viability of A549, Hela, BEL-7402, and RKO human cancer cell
lines and the inhibition effect of ergosterol on human colon cancer cell line, RKO, was the most potent
cytotoxic report in this study.

Table 4 summarize all the mentioned reports in Section 4, which are related to the anticancer effect
of halophilic bacteria, archaea, and fungi isolated from different saline and hypersaline environments
in the world.

The following table (Table 5) gathers the most promising new compounds derived from halophilic
microorganisms. The minimum inhibitory concentration (MIC) and the half maximal inhibitory
concentration (IC50) are shown, based on their in vitro bioactivity. The results suggest that these
compounds could be candidates for preclinical trials.
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Table 5. Promising new compounds derived from halophilic microorganisms candidates for preclinical trials.

Compound Structure
Antibiotic Activity Anticancer Activity

Reference
Microorganism MIC (µM) Cell Lines IC50 (µM)
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Table 5. Cont.

Compound Structure
Antibiotic Activity Anticancer Activity

Reference
Microorganism MIC (µM) Cell Lines IC50 (µM)
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5. Future Perspectives

As the prevalence of antimicrobial resistance increases, researchers are developing new
technologies and strategies to find alternatives that reduce the morbidity and mortality caused by the
MDR bacteria. Categorizing the need for obtaining new molecules, the most requested by the public
health are antimicrobial and anticancer compounds according to the data annually reported by the World
Health Organization (WHO). The current and future of natural product discovery is the application of a
combination of multi-omics approaches. Depending on the phase of the study, it is foreseen genomics,
metagenomics, transcriptomics, proteomics, and metabolomics to reveal the biosynthetic capabilities
of a single microorganism or microbial communities in hypersaline environments.

The discovery of novel lead compounds requires more that in silico predicted genes and large
promising data. The current problem with massive approaches is precisely the lack of concrete results
traduced in novel lead compound derived of “meta-omics” studies. The heterologous expression of
biosynthetic genes is the bottleneck since in several cases the recombinant product and its expression is
totally different from what was expected. However, it is important to emphasize that the cultivation of
hidden and uncultivable microbiota is improving with the assessment of metagenomic studies [129,130].

Genome mining has been implemented as a mandatory tool widely used to characterize the
genetic basis of secondary metabolite biosynthesis based on the features of secondary metabolites
organized as biosynthetic gene clusters (BGCs), especially the profile of gene encoding key signature
enzymes [131–133]. The application of Next Generation Sequencing (NGS) allows the study of microbial
diversity every day more accessible and affordable that allows the prediction of cryptic metabolic
pathways and genes involved in the activity. The genome-guided discovery relies on sophisticated
methods for identification of knew gene families related clusters. The accurate prediction and analysis
of relevant genes for secondary metabolite biosynthetic pathways in microbes is performed through
the tool based on the Antibiotics and Secondary Metabolites Analysis Shell (antiSMASH) [134].

Due to the high rate of rediscovery of known compounds, the dereplication is an essential approach
that allows the identification of duplicate molecules. Dereplication is relying on finding a matching of
mass spectra with those present in the mass spectrometry data repository. The development of new
computational tools like the algorithm searching spectral, DEREPLICATOR+ is helping to identifying
in one order of magnitude peptidic natural products (PNPs) that include nonribosomal peptides
(NRPs), and ribosomally synthesized and post-translationally modified peptides (RiPPs). The matching
is extended to the identification of polyketides, terpenes, benzenoids, alkaloids, flavonoids, and other
classes of natural products. One of the utilities of DEREPLICATOR+ is the enabling of cross-validation
of genome-mining and peptidogenomics/glycogenomics results [135].

Several laboratories working in microbial bioprospecting keep their private collection once the
antimicrobial, anticancer, antifungal, etc. activity is detected. In many cases, these positive isolates
derived from primary screenings are not further studied by genome sequencing and dereplication.
A common issue is the obtaining of the purified active compound under laboratory conditions
with limited facilities and handling large data with a proper analysis. Moreover, it is important to
consider the dereplication costs and time-consuming interpreting. The mentioned facts delay the
biodiscovery attempts and constitute the reasonable causing of keeping a stored library of potential
compounds. The projection of drug discovery product research is the simplification and accessibility
to all these tools faster and with less effort. The power of genome mining in studying natural product
biosynthesis by showing the widespread distribution of NRPS/PKS gene clusters and by the elicitation
of previously unidentified pathways has been demonstrated. It is clear that coupling genome mining
and dereplication will accelerate the biodiscovery at initial steps. The integration and linking of
computational approaches are certainly the future of natural product research.

In this review, we have focused in all anticancer molecules reported from halophilic
microorganisms. According to the cellular lines used, the focus of primary screenings is addressed
to the leading cancer types that affect the global population. However, it is important that further
screenings should include cellular lines with intrinsic chemoresistance, like sarcoma and glioblastoma,
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characterized by aggressive overproliferation. The future of novel anticancer agents seems to be a
combination of high-throughput screening assessed by predictive biomarkers.
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