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Abstract: In this work, we introduce a new iterative design method for a coalitional
control scheme for linear systems recently proposed. In this scheme, the links in the network
infrastructure are enabled or disabled depending on their contribution to the overall system
performance. As a consequence, the local controllers are divided dynamically into sets or
coalitions that cooperate in order to attain their control tasks. The new design method allows
the control system designer to include new constraints regarding the game theoretical tools of
the control architecture, while optimizing the matrices that define the controller.
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1. INTRODUCTION

During the last years, a lot of effort has been devoted to
the development of non-centralized control techniques in
order to take advantage of the new capabilities provided
by information and communication technologies. This type
of schemes presents very interesting features such as their
inherent scalability and modularity, which make them
appropriate for the control of large-scale systems such as
traffic, water, or power networks (Negenborn et al., 2006).

The rationale behind non-centralized control is to partition
a global control problem into several pieces that are
assigned to local controllers –also known as agents– which
may communicate to coordinate their control tasks. In case
the controllers communicate, we will refer to distributed
control. Otherwise, i.e., if there is no communication at
all, the term decentralized control is used.

Literally, many schemes have been proposed during the
last decade, very particularly under the framework of
model based control (see for example Maestre and Negen-
born (2014) for a survey of distributed model predictive
control techniques). The key idea is to use a model of
the system to predict and optimize a behavior according
to the designer’s goals. In this way, it is possible to deal
explicitly with the interactions between the different con-
trollers. Given that these interactions are not static, i.e.,
the groups of controllers whose control tasks are coupled
vary with time, control schemes that also govern the com-
munication between controllers have been developed lately.
Examples of this type of control schemes are: Jilg and
Stursberg (2013), where the coupling of the plant is used
to partition it into hierarchically coupled clusters; Trodden
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and Richards (2009), where groups of cooperative agents
are formed using the set of active constraints; or Nuñez
et al. (2013), where several possible hierarchical control
structures are considered in order to implement the most
appropriate one. Recently, this setting has been extended
to a MPC framework in Fele et al. (2013).

In this work, we develop the properties of the coalitional
scheme proposed by Maestre et al. (2011, 2013). In particu-
lar, in these works it is shown that the links of the network
can be interpreted as players of a cooperative game whose
characteristic function is given by a bound on the cost-to-
go of the closed-loop system. Therefore, a solution concept
of the game can provide information regarding the cost
associated to the use of each link. In particular, we focus
on the Shapley value of the game (Shapley, 1953) because
it is the best known solution concept and it deals with the
averaged contribution of each link, which is interesting in
order to obtain information when considering all the dif-
ferent network topologies by the link game. In addition, if
the cost function has an economical meaning, the Shapley
value also provides a reasonable way of distributing the
costs among the agents through the position value (Borm
et al., 1992).

The main contribution of this work is an improvement of
the controller design procedure proposed by Maestre et al.
(2011, 2013) so that restrictions regarding the Shapley
value can be considered. In this way, it is possible to
design a coalitional control scheme that guarantees that
the cost assigned to a given link is greater or lower than a
certain threshold, or assures that a certain link will assume
more (or less) cost than another one. In addition, we
propose an iterative algorithm that allows us to improve
the performance of the matrices calculated during the
controller design phase.
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The rest of the paper is organized as follows. First, the
problem setting is provided. Second, an iterative con-
troller design procedure based on linear matrix inequalities
(LMIs), which includes conditions on the Shapley value, is
presented. Next, a simple academical example is used to
illustrate the proposed approach. Finally, conclusions and
comments about future research are presented.

2. PROBLEM SETTING

In this section, we first present the model used to represent
the system dynamics. Next, a description of the control
scheme used is introduced. Finally, connections of this
scheme with cooperative game theory are provided.

2.1 System Description

Consider the class of distributed linear systems composed
of a set of N = {1, 2, . . . , N} interconnected subsystems.
The dynamics of the subsystem i ∈ N can be described
mathematically as

xi(k + 1) = Aiixi(k) + Biiui(k) + di(k),

di(k) =
∑
j 6=i

[Aijxj(k) + Bijuj(k)] , (1)

where xi(k) ∈ Rnxi is the state of the subsystem i, ui(k) ∈
Rnui is its corresponding input, and Aij ∈ Rnxi

×nxj ,Bij ∈
Rnxi

×nuj are, respectively, the state transition and the
input to state matrices. Notice that we use di(k) to denote
the influence of other subsystems in the subsystem i.

The overall system can be described as

xN (k + 1) = ANxN (k) + BNuN (k), (2)

where xN (k) =
[
x1(k), . . . ,x|N |(k)

]T ∈ RnxN , uN (k) =[
u1(k), . . . ,u|N |(k)

]T ∈ RnuN are, respectively, the global
state and global input vectors, and AN = [Aij ]i,j∈N ∈
RnxN×nxN , BN = [Bij ]i,j∈N ∈ RnxN×nuN are the state

transition and the input to state global matrices.

2.2 Control Architecture

Each subsystem is governed by a local controller that has
complete knowledge of its local model and state xi(k),
and it is able to manipulate the control action ui(k). The
agents can communicate by means of a network whose
topology is described by a graph (N , E), with E ⊆ EN =
N×N the set of edges corresponding to the physical paths
between the agents in N (notice that ij and ji represent
the same communication link). We assume that each link
l ∈ E can be enabled or disabled at a time step, assuming
a fixed cost c ∈ R+ in case it is enabled.

Definition 1. We call network mode or network topology
denoted by Λ(k) the set of enabled links in a time step
k. Notice that there are 2|E| different network modes
in a given network (N , E), which will be denoted as
Λ0(k),Λ1(k), . . . ,Λ2|E|−1(k).

Example 1. Consider the 4-link networks shown in Fig-
ure 1, where we use arabic numbers for the agents and
roman letters for the links. The network modes and the
corresponding maximal connected agent coalitions or com-
ponents for each network are represented in Table 1.

Fig. 1. Two different cases of 4-link networks (N , E)

Table 1. Network modes and components

Network modes
Components

(N ,E)a (N ,E)b

Λ0(k) {∅} {1},{2},{3},{4},{5} {1},{2},{3},{4}
Λ1(k) {I} {1,5},{2},{3},{4} {1,2},{3},{4}
Λ2(k) {II} {1},{2,5},{3},{4} {1},{2,3},{4}
Λ3(k) {III} {1},{2},{3,5},{4} {1},{2},{3,4}
Λ4(k) {IV } {1},{2},{3},{4,5} {1,4},{2},{3}
Λ5(k) {I,II} {1,2,5},{3},{4} {1,2,3},{4}
Λ6(k) {I,III} {1,3,5},{2},{4} {1,2},{3,4}
Λ7(k) {I,IV } {1,4,5},{2},{3} {1,2,4},{3}
Λ8(k) {II,III} {1},{2,3,5},{4} {1},{2,3,4}
Λ9(k) {II,IV } {1},{2,4,5},{3} {1,4},{2,3}
Λ10(k) {III,IV } {1},{2},{3,4,5} {1,3,4},{2}
Λ11(k) {I,II,III} {1,2,3,5},{4} N
Λ12(k) {I,II,IV } {1,2,4,5},{3} N
Λ13(k) {I,III,IV } {1,3,4,5},{2} N
Λ14(k) {II,III,IV } {1},{2,3,4,5} N
Λ15(k) E N N

We assume that, at each time step, the control goal is to
minimize the following cost function:

J(k)=

Js(k)︷ ︸︸ ︷(
∞∑
j=0

[xT
N (k+j)QNxN (k+j)+uT

N (k+j)RNuN (k+j)]

)
+

Jc(k)︷ ︸︸ ︷
c|Λ(k)|,

(3)

with Js(k), Jc(k) ∈ R+ being, respectively, the cost-to-go
and the communication cost, and QN ∈ RnxN×nxN ,RN ∈
RnuN×nuN positive definite and semi-definite weighting
matrices 1 . To this end, the following topology-dependant
overall control law is applied

uN = KΛxN , (4)

where KΛ ∈ RnuN×nxN .

The problem of minimizing (3) can be formulated as a
dynamic programming problem with mixed-integer op-
timization variables, which belongs to the class of NP-
complete problems. In general, it is not possible to solve
this problem easily because it is not convex. Hence, the
goal is to calculate at least a suboptimal solution of the
original problem. In this way, we introduce the following
assumption.

Assumption 1. There exists a positive definite matrix
PΛ ∈ RnxN×nxN that provides a Lyapunov function
f(xN ) = xT

NPΛxN of the closed-loop system (when the
feedback law (4) is applied), and it also satisfies, ∀xN ,Λ

xT
NPΛxN ≥ Js. (5)

Note that, following Maestre et al. (2013), KΛ and PΛ are
related by

≥J
+
s︷ ︸︸ ︷

x
T+
N PΛx

+
N +

stage cost︷ ︸︸ ︷
x

T
NQNxN + x

T
NK

T
ΛRNKΛxN ≤

≥Js︷ ︸︸ ︷
x

T
NPΛxN , (6)

where superindex + refers to dependence on k + 1.
1 In the following, we will omit the dependence of states and inputs
on time step k for the sake of clarity.
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Notice that a different KΛ and PΛ have to be found for
each network topology Λ. Likewise, if there is no physical
path between two local controllers i and j in the topology

defined by Λ, which is denoted by i
Λ= j, then the sub-

blocks of KΛ and PΛ that connect agents i and j, denoted
respectively as Kij

Λ ,K
ji
Λ and Pij

Λ ,P
ji
Λ , are zero.

Based on Assumption 1, and according to Maestre et al.
(2013), we can define the following upper bound on the
cost function J :

rv(Λ,xN ) = xT
NPΛxN + c|Λ|, (7)

which can be minimized with respect to Λ in order to
find out the most appropriate network topology at state
xN , according to the improvement of the system’s perfor-
mance. In this way, the following two-layer control scheme
is proposed:

Let D ∈ N+ be a number of time samples. At each time
step k,

(1) If k is a multiple of D, all the agents broadcast
their state to calculate the network mode Λ that
minimizes (7). Otherwise, each agent sends his state
only to those agents that are connected to it.

(2) Each agent uses the state information received in
order to update its control action. Globally, this
implies that the linear controller uN = KΛxN is
applied.

This control scheme is proved to be stable in Maestre et al.
(2013). To be precise, this scheme works properly for small
or medium scale networks. The combinatorial explosion
problems make it inadequate for big scale networks.

2.3 Game Theoretical Perspective

In this subsection, we briefly introduce how game theoreti-
cal tools are used in Maestre et al. (2011, 2013) to find out
what links and agents are more important in the proposed
control scheme. In this context, it is possible to use the
pair (E , rv) to define a cooperative game with transferable
utility. Notice that the key to connect the fields of control
and cooperative game theory is to interpret (7) as the
characteristic function of a cooperative game in which the
set of edges E is the set of players.

Once that the game is built, it is possible to use a payoff
rule to find a vector that specifies the benefit or cost that
each player can reasonably expect from the game. Given
that the characteristic function is based on the cost-to-go
and the communication cost associated to each coalition
of links, a payoff rule will provide the corresponding cost
of each link. In general, useful links will be associated to
lower costs in the payoff rule. In this work, we will use the
Shapley value (Shapley, 1953), which assigns to the game
(E , rv) the vector φ(E , rv), which is defined ∀l ∈ E as

φl(E, rv
) =

∑
Λ⊆E,l/∈Λ

|Λ|!(|E| − |Λ| − 1)!

|E|!
[r

v
(Λ ∪ {l},xN )− rv(Λ,xN )],

(8)

that is, the marginal contribution of each link l is averaged
for all the possible permutations it can be part of.

Following the work of Xu et al. (2008), it is possible to
find a matricial expression for the Shapley value. Consider

a matrix M ∈ R|E|×2|E| , where the rows correspond to each
link l ∈ E and the columns to the different network modes
Λ ⊆ E , in the lexicographic order. Given a link-game
(E , rv), the Shapley value φ(E , rv) can be represented by
the Shapley standard matrix M as

φ(E , rv) =


φI
φII

...
φ|E|

 = M


rv(Λ0,xN )
rv(Λ1,xN )
rv(Λ2,xN )

...
rv(Λ2|E|−1,xN )

 = Mrv,

(9)
with each component of rv given by (7), and where each
element of M, denoted by mlΛ, is defined as

mlΛ =


(|Λ| − 1)!(|E| − |Λ|)!

|E|!
l ∈ Λ,

−
|Λ|!(|E| − |Λ| − 1)!

|E|!
l /∈ Λ.

(10)

Example 2. Consider for example any link-game with 4
links, as represented in Figure 1. The Shapley standard
matrix M can be easily obtained by using (10)

M4=

 −
1
4

1
4
− 1

12
− 1

12
− 1

12
1
12

1
12

1
12
− 1

12
− 1

12
− 1

12
1
12

1
12

1
12
− 1

4
1
4

− 1
4
− 1

12
1
4
− 1

12
− 1

12
1
12
− 1

12
− 1

12
1
12

1
12
− 1

12
1
12

1
12
− 1

4
1
12

1
4

− 1
4
− 1

12
− 1

12
1
4
− 1

12
− 1

12
1
12
− 1

12
1
12
− 1

12
1
12

1
12
− 1

4
1
12

1
12

1
4

− 1
4
− 1

12
− 1

12
− 1

12
1
4
− 1

12
− 1

12
1
12
− 1

12
1
12

1
12
− 1

4
1
12

1
12

1
12

1
4

.

Notice that by means of (7) and (10) it is possible to
rewrite the Shapley value of each link l ∈ E as

φl(E , rv) = c+
∑
Λ⊆E

mlΛ

[
xT
NPΛxN

]
. (11)

Note that an analysis by agents from the link-game can be
obtained through the position value (Borm et al., 1992),
which provides a payoff vector for the agents i ∈ N using
the Shapley value of each link l ∈ E , according to

πi(N ,v, E) =
1

2

∑
l∈Ei

φl(E , rv ), ∀i ∈ N , (12)

where Ei represents the subset of links connected to agent i.

3. CONTROLLER DESIGN PROCEDURE

In this section, we present a method to design all the
matrices for the control scheme using LMIs. We first
introduce very briefly the original design method used
in Maestre et al. (2011, 2013). Next, we develop new LMIs
that can be added in order to guarantee that the Shapley
value of the cooperative game satisfies certain conditions.
Finally, we describe an iterative procedure in order to
optimize the design method proposed.

3.1 Original Design Method

The problem of finding matrices KΛ and PΛ can be solved
using linear matrix inequalities. In particular, in Maestre
et al. (2013) it is shown that if the following conditions
hold for each topology, then KΛ and PΛ stabilize the
closed loop system, provide a bound on the cost-to-go and
satisfy the communication constraints

PΛ > 0,

PΛ − (AN + BNKΛ)
T
PΛ (AN + BNKΛ)−QN −K

T
ΛRNKΛ > 0,

(13a)
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i
Λ= j =⇒

{
K

ij
Λ = K

ji
Λ = 0,

P
ij
Λ = P

ji
Λ = 0.

(13b)

Note that the second inequality of (13a) does not verify
the affinity property that is a necessary condition to
consider the previous system as an LMI. Using the Schur
complement it is possible to rewrite (13) as the following
LMI 2

 WΛ WΛA
T
N + Y

T
ΛB

T
N WΛQ

1\2
N Y

T
ΛR

1\2
N

ANWΛ + BNYΛ WΛ 0 0

Q
1\2
N WΛ 0 I 0

R
1\2
N YΛ 0 0 I

 > 0,

(14a)

i
Λ= j =⇒

{
Y

ij
Λ = Y

ji
Λ = 0,

W
ij
Λ = W

ji
Λ = 0,

(14b)

where WΛ = P−1
Λ and YΛ = KΛP−1

Λ are the decision
variables.

Note that KΛ and PΛ can be rearranged as block diago-
nal matrices, which guarantees that (13b) and (14b) are
equivalent. See Maestre et al. (2013) for further details.

3.2 Constraints on the Shapley Value

The Shapley value of the link-game provides the cost of
each link when it joins arbitrarily to any coalition, i.e., this
value distributes the costs of the grand coalition among
the links that take part in the game. Hence, the higher
value a link has, the more costly for the system it is.
Keeping the Shapley value of certain links under/over
some specific limits will force the overall system to consider
them as more critical or unnecessary. To this end, different
types of Shapley value constraints and the obtention of the
corresponding LMI conditions, in order to integrate them
into the design algorithm, are presented below.

3.2.1 Absolute Shapley Value Constraints

We can force the Shapley value of a certain link l ∈ E to
keep under/over given constant thresholds Vl,Wl ∈ R, i.e.,

φl(E , rv) < Vl, (15)

φl(E , rv) >Wl. (16)

Using (11) we can rewrite (15) as∑
Λ⊆E

mlΛ

[
xT
NPΛxN

]
< Vl − c. (17)

Next, we reformulate (17) as
[
1 xT

N

]
Da

[
1

xN

]
> 0. Thus,

solving (15) is equivalent to finding a solution of

Da > 0, Da =

 Vl − c 0

0 −
∑
Λ⊆E

mlΛPΛ

 . (18)

By using constraint (16), and operating in the same way,
we obtain the following LMI condition

2 In the following, matrix I will denote the unit matrix of the
corresponding size.

Db > 0, Db =

 c−Wl 0

0
∑
Λ⊆E

mlΛPΛ

 . (19)

3.2.2 Relative Shapley Value Constraints

We can force the Shapley value of a certain link lp ∈ E to
be greater (lower) than the Shapley value of another link
lq ∈ E , i.e.,

φlp(E , rv) > φlq (E , rv), (20)

and by using (11), the above is equivalent to

Dc > 0, Dc =
∑
Λ⊆E

(
mlpΛ −mlqΛ

)
PΛ. (21)

Therefore, we have obtained different LMI conditions
depending on the Shapley value constraints considered.

Definition 2. We call Shapley condition set, denoted by
P, the set of different LMI conditions (18), (19) and (21),
corresponding with the Shapley value constraints that may
be imposed in a specific control problem.

3.3 Computation Procedure

The problem of the aforementioned Shapley LMI condi-
tions is that they do not depend on the same variables
as (14). In order to deal with this issue, we propose an
iterative optimization procedure that is similar to that of
DK-iteration (Skogestad and Postlethwaite, 2001), i.e., we
alternate the optimization with respect to KΛ and PΛ

(keeping the other fixed). To this end, we provide the
following theorem, that we will use in the design algorithm.

Theorem 1. Let Λ ⊆ E and OΛ ∈ RnxN×nxN be a network
mode and a positive definite constant matrix, respectively,

such that Oij
Λ = Oji

Λ = 0 when i
Λ= j holds. Let the

dynamics of the overall system be given by (2) and (4),
and the cost function by (3). If there exist a matrix
KΛ ∈ RnuN×nxN and a scalar ξΛ ∈ R+, such that the
following constraints are satisfied OΛ Q

1\2
N K

T
ΛR

1\2
N (AN + BNKΛ)

T

Q
1\2
N ξΛI 0 0

R
1\2
N KΛ 0 ξΛI 0

AN + BNKΛ 0 0 O
−1
Λ

 > 0, (22a)

i
Λ= j =⇒ K

ij
Λ = K

ji
Λ = 0, (22b)

then the matrices PΛ = ξΛOΛ and KΛ verify (5), all the
communication constraints imposed by the network mode
Λ and stabilize the whole system.

Theorem 1 can be proved using standard techniques based
on the application of Schur complement, as it is done
in Maestre et al. (2011, 2013).

Next, we introduce the optimization algorithm. The goal
of this procedure is to obtain the minimum bound on
the cost-to-go, i.e., to minimize PΛ, while satisfying the
Shapley constraints.
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Design Algorithm

Let l be the iteration index and r be a counter variable,
starting with l = 1 and r = 0, respectively

(1) In order to get an initial value of KΛ, PΛ, solve,
∀Λ ⊆ E

max
WΛ,YΛ

Tr(WΛ), (23)

subject to (14), from where we obtain the matrices

W
(r)
Λ and Y

(r)
Λ , and, consequently, K

(r)
Λ and P

(r)
Λ .

(2) Let K
(r+1)
Λ = K

(r)
Λ , and solve

min
PΛ

(∑
Λ

Tr(PΛ)

)
, (24)

subject to (13), ∀Λ ⊆ E , and the chosen set P.

Therefore, we obtain P
(r+1)
Λ .

(3) Let P
(r+2)
Λ = ξΛP

(r+1)
Λ , and solve

min
ξ,KΛ

(∑
Λ

ξΛ

)
, (25)

subject to (22), ∀Λ ⊆ E , and P. Hence, we get K
(r+2)
Λ .

(4) Make r = r + 2, l = l + 1 and go to step 2,
while l < lmax (with lmax the maximum number of
iterations) or until convergence has been attained.

The key of the algorithm proposed is to consider, al-
ternatively, constant solution of previous steps for KΛ

(step 2) and PΛ (step 3). Hence, it is possible to include
Shapley value constraints, and also to optimize the value
of the matrices that define the controller. These are the
main advantages of this procedure with respect to the one
proposed in Maestre et al. (2013).

Note that both (24) and (25) improve the sum of the traces
of the set PΛ. Given that this sum is lower bounded, it can
be deduced that the algorithm converges.

3.4 Suboptimality Index

In order to determine the impact of satisfying the addi-
tional Shapley constraints, we define the following index,
which will be calculated once KΛ and PΛ are obtained.

Definition 3. The suboptimality index of a set of matrices
PΛ,Λ ⊆ E is defined as

η = max
k

∣∣∣∣xT
NPΛxN

xT
NP∗ΛxN

∣∣∣∣ , (26)

where

P∗Λ = lim
n→∞

(
n∑

j=0

(AT
CL)

j [
QN + KT

ΛRNKΛ

]
Aj

CL

)
, (27)

is obtained by using (2) and (4),with ACL=AN+BNKΛ.

Notice that we take, each D time samples, the matrix PΛ

corresponding to the mode Λ that minimizes (7). Likewise,
the expression (27) can be considered the optimal value
for the corresponding PΛ. Furthermore, a value of η closer
to value 1 implies less degradation of the set of matrices
PΛ,Λ ⊆ E from the theoretical optimal value. As it will be
seen in the simulation section, the index η decreases with
the number of algorithm iterations applied.

4. SIMULATION RESULTS

In this section, we show an academic example with
four agents and four links, i.e., N = {1, 2, 3, 4}, E =
{I, II, III, IV }, corresponding to the configuration shown
in Figure 1b. The sixteen different network modes and
their respective components are specified in Table 1. In the
following, we denote as ΛC the network modes equivalent
to the grand coalition of agents N . The matrices that
define the subsystem dynamics are

A11 =

[
1 0.8

0 0.7

]
,A22 =

[
1 0.9

0 −2.5

]
,A33 =

[
1 −2

0 3

]
,A44 =

[
1 2.2

0 0.5

]
,

Bii =

[
0

1

]
, Aij =

[
0 0

0 0

]
,Bij =

[
0

0.15

]
, i 6= j,

(28)

where xi ∈ R2 and ui ∈ R are, respectively, the states and
the input of each subsystem i ∈ N . The cost-to-go Js of all
the subsystems is defined by matrices Q = I ∈ R8×8 and
R = I ∈ R4×4. We also suppose c = 0.5 and lmax = 15.

In order to demonstrate the design procedure, we will
impose the following Shapley condition set P to the overall
problem

φIII(E, rv) > 0, φII(E, rv) < 1. (29a)

φI(E, rv) > φIV (E, rv),
φII(E, rv) > φIV (E, rv),
φIII(E, rv) > φIV (E, rv),

(29b)

The design algorithm of Subsection 3.3 has been imple-
mented using Matlab R© LMI Control Toolbox (Gahinet
et al., 1995). In Figure 2a, it is possible to see the decrease
of η with the number of iterations l. Hence, the design
algorithm improves the control matrices, as expected. As
a result of the considered algorithm, the matrices KΛ ∈
R4×8 and PΛ ∈ R8×8, ∀Λ ⊆ E , can be obtained.

Once the design problem is solved, we can test the control
scheme proposed in Subsection 2.2 with D = 3. Let the
initial state

x1 =

[
5
2

]
,x2 =

[
0.5
1

]
,x3 =

[
−1
2

]
,x4 =

[
0
0

]
. (30)

Next, we present some simulations of the given controller.
In Figure 2b the cumulated cost of the proposed coali-
tional algorithm is compared with the cumulated costs of
considering full communication (centralized system) and
no communication (decentralized system). As expected,
the coalitional scheme outperforms the decentralized one,
and is not far away from the centralized controller during
the initial steps. Later, the communication cost makes the
coalitional scheme to be the most appropriate one. Figure 3
shows the input and state trajectories as a function of time.

Fig. 2. Suboptimality index evolution and cumulated cost
comparative study
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Fig. 3. Input and state trajectories

At this point we will analyze two scenarios resulting of
omitting (Figure 4a) and considering (Figure 4b) the
Shapley condition set (29). In the first scenario the initial
network mode ΛC evolves to an intermediate mode Λ2 =
{II} and then it reaches the decentralized mode Λ0. Notice
that the link IV is the most expensive one –the highest
value– in this initial case. In the second scenario, the initial
mode is Λ5 = {I, II} and the intermediate one is Λ9 =
{II, IV }. Hence, link III is deactivated, giving priority
to link II, according to (29a), and it holds an increase
in the use of link IV, now the cheapest one, according
to (29b). Therefore, the network mode evolves in line
with the required conditions on the Shapley value. Notice
that the steady state does not depend on the constraints
imposed, that is, the Shapley value tends to c = 0.5, as
expected according to (11), and the network mode tends
to the decentralized mode Λ0 in both scenarios.

Fig. 4. Shapley values and network modes

As it has been shown in this section, we can conclude
that the numerical results illustrate the feasibility of the
considered approach.

5. CONCLUSIONS

In this paper, we have enhanced the design method pro-
posed in Maestre et al. (2011, 2013) for a coalitional con-
trol scheme. In particular, we have focused on how to in-
clude constraints regarding the Shapley value at the design
phase. Moreover, these conditions allow the controller to
analyze if a certain coalitional control scheme verifies the
constraints. On top of that, we have proposed an iterative
design method in order to improve the perfomance of the

matrices that define the controller. Finally, the example
illustrates the feasibility of the proposed scheme.

Future work will include the development of a more dy-
namical approach for the cooperative games that results
from the application of this control architecture. In ad-
dition, the explicit inclusion of constraints for the agents
by using the position value will be considered. Likewise,
other solution concepts from game theory could be take
into account for the design procedure.
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