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Abstract

This paper presents a new approach to guaranteed state estimation for non-linear discrete-time systems with a bounded
description of noise and parameters. The sets of states that are consistent with the evolution of the system, the measured
outputs and bounded noise and parameters are represented by zonotopes. DC programming and intersection operations are
used to obtain a tight bound. An example is given to illustrate the proposed algorithm.

Key words: Nonlinear observers, Set-membership state estimation, DC programming.

1 Introduction

The purpose of this paper is to present a new state es-
timator for uncertain discrete time nonlinear dynamic
systems. The Kalman filter theory provides an estima-
tion of the state of a given process based on output mea-
surements. This estimation is optimal with respect to
the error variance. A different alternative is to consider
a norm-bounded uncertainty. This hypothesis is used by
the set-membership approach (Milanese, Norton, Piet-
Lahanier & Walter 1996, Garulli, Tesi & Vicino 1999,
Calafiore 2005) and it is adopted in this paper. This
strategy builds a compact set that bounds the states of
the system that are consistent with the measured output
and the norm-bounded uncertainty.

In the set-membership approach, several geometric fig-
ures have been used to bound the consistent state set.
The application of ellipsoidal sets to the state estima-
tion problem has been introduced in pioneering works
(Schweppe 1968) and by different authors. See, for ex-
ample, (Kurzhanski & Valyi 1996, Savkin & Petersen
1998, El Ghaoui & Calafiore 2001, Durieu, Walter &
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Polyak 2001).

The use of polyhedrons was proposed by (Kuntsevich
& Lychak 1985) to obtain an increased estimation ac-
curacy. In (Kieffer, Jaulin & Walter 2002), a guaran-
teed recursive nonlinear estimator based on an inter-
val branch and bound algorithm is given. To improve
the exponential complexity, consistency techniques are
considered in (Jaulin 2002). The complexity of these
representations grows considerably with the number of
observations and the order of the system. An alterna-
tive approach based on parallelotopes was presented in
(Chisci, Garulli & Zappa 1996, Chisci, Garulli, Vicino
& Zappa 1998), where minimum-volume bounding par-
allelotopes are used to estimate the state of a discrete-
linear dynamic system. Also, the state estimation prob-
lem for piecewise affine systems is addressed in (Raković
& Mayne 2004) using polyhedrons.

A zonotope is a linear transformation of a unitary box
(Montgomery 1989, Shephard 1974). They have been
used in (Puig, Cugueró & Quevedo 2001, Combastel
2003) to build a worst-case state estimator. In (Puig
et al. 2001) the measured output is used to estimate the
state by means of a gain K. In (Combastel 2003), a singu-
lar value decomposition is used to obtain the consistent
region of the state space. Interval arithmetic and zono-
topes are combined in (Alamo, Bravo & Camacho 2005)
to obtain a guaranteed nonlinear state estimator.
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In this paper, a new method for guaranteed state esti-
mation in the case of nonlinear discrete processes with
bounded uncertain parameters and noise is presented.
The goal is to apply a DC programming approach to
the state estimation problem. Zonotopes and DC pro-
gramming are used by the proposed method to obtain a
guaranteed bound of the uncertain trajectory of the non-
linear system each sample time. An example illustrates
that the proposed method improves the results obtained
in (Alamo et al. 2005).

A DC function f : IRn → IR is a function that can be
expressed as the difference of two convex functions, that
is, f(x) = g(x)-h(x) where g(x) and h(x) are convex func-
tions. The class of DC functions is close under a good
number of basic operations. For example, if f1(x) and
f2(x) are DC functions then f1(x)+f2(x), f1(x)−f2(x),
f1(x) · f2(x), max{f1(x), f2(x)} and min{f1(x), f2(x)}
are DC functions (Tuy 1995, Horst & Thoai 1999). It
is also worth remarking that any continuous piecewise
affine function is a DC function. DC programming prob-
lems are mathematical programming problems dealing
with functions that can be represented as a difference
of two convex functions. Several techniques have been
developed using DC programming to solve non convex
global optimization problems.

The paper is organized as follows: The problem formula-
tion and the general lines of the algorithm are presented
in section 2. In section 3, a brief introduction to DC pro-
gramming is given. New proposed methods to bound the
evolution of the uncertain system and the set of states
consistent with the measurements are presented in sec-
tion 4 and 5. The full version of the set-membership state
estimation algorithm appears in section 6. Finally, an
example is used to illustrate the new algorithm.

2 Problem formulation

In what follows, some preliminary notations are intro-
duced. An interval [a, b] is the set { x : a ≤ x ≤ b }.
The unitary interval is B = [−1, 1]. A box is an interval
vector. A unitary box in IRm, denoted as Bm, is a box
composed by m unitary intervals. The Minkowski sum
of two sets X and Y is defined by X ⊕ Y = { x + y :
x ∈ X, y ∈ Y }. Given a vector p ∈ IRn and a matrix
H ∈ IRn×m, the set:

p ⊕ HBm = { p + Hz : z ∈ Bm }

is called a zonotope of order m. Note that this is the
Minkowski sum of the segments defined by the columns
of matrix H. A parallelotope is a zonotope with n = m.
Given the parallelotope P = p⊕HBn, where H ∈ IRn×n

is invertible, P can be rewritten as P = {x : ||H−1x −
H−1p||∞ ≤ 1}.

Consider an uncertain nonlinear discrete-time system of
the form:

{

xk+1 = f(xk, wk)

yk = d(xk, vk)
(1)

where xk ∈ X ⊆ IRn with k ≥ 0 is the state of the
system and yk ∈ IRp is the measured output vector
at sample time k. The vector wk ∈ W ⊆ IRnw with
k ≥ 0 represents the time varying process parameters
and process perturbation vector and vk ∈ V ⊆ IRpv with
k ≥ 0 is the measurement noise vector. It is assumed
that the uncertainties and the initial state are bounded
by zonotopes: wk ∈ W = cw ⊕ MwBrw , vk ∈ V =
cv⊕MvB

rv and xo ∈ X0 = p0⊕H0B
r where cw ∈ IRnw ,

cv ∈ IRpv and p0 ∈ IRn.

It will be assumed that f(·) and d(·) are continuous func-
tions, and that each component of f(·) and d(·) have DC
representations, that is,

fi(x,w) = gi(x,w) − hi(x,w), i = 1, . . . , n

di(x,w) = ai(x,w) − bi(x,w), i = 1, . . . , p

where fi(·, ·), di(·, ·) represent the i − th component of
functions f(x,w) and d(x,w) respectively and where the
functions hi(x,w), gi(x,w), i = 1, ..., n and ai(x,w),
bi(x,w), i = 1, . . . , p are convex in (X,W ) and (X,V )
respectively. This is not a very restrictive assumption
because every continuous function can be approximated
by a difference of two convex functions (DC function)
(Horst & Thoai 1999) and every C2-function is a DC
function (Tuy 1995). In section 3 an example is given.

Given a continuous function φ(·) and a set X ⊂ IRn,
φ(X) denotes the set { φ(x) : x ∈ X }. With this
notation, the consistent state set and the exact uncertain
set are defined as follows:

Definition 1 (Consistent state set) Given system
(1) and a measured output yk, the consistent state set at
time k is defined as Xyk

= { x ∈ IRn : yk ∈ d(x, V ) }.

Definition 2 (Exact uncertain state set) Consider
a system given by equation (1). The exact uncertain state
set Xk is equal to the set of states that are consistent
with the measured outputs y1, y2, . . . , yk and the initial
state set X0:

Xk = f(Xk−1,W )
⋂

Xyk
, k ≥ 1

The exact computation of these sets is a difficult task.
In order to reduce the complexity of the computations,
these sets are bounded by means of conservative outer
bounds. Then, at sample time k, the objective is to find
an outer approximation of the corresponding exact un-
certain set Xk.
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This paper presents a new set-membership state estima-
tion algorithm for nonlinear systems. Suppose that an
outer bound of the exact uncertain state set is available
at time k−1 (this bound will be denoted as X̂k−1). Sup-
pose also that a measured output yk is obtained at sam-
ple time k. Under these assumptions, this is the general
outline of the algorithm:

Algorithm 1

Step 1: Use DC programming to bound the uncertain
trajectory of the non-linear system: X̄k ⊇ f(X̂k−1,W ).
Step 2: Compute an outer bound of the consistent
state set Xyk

. Denote it X̄yk
.

Step 3: Compute an outer bound of X̄k∩X̄yk
. Denote

it X̂k.

End of algorithm 1

The proposed algorithm is similar to the Kalman filter:
the first step can be considered as a prediction step while
the second and third steps constitute a correction step.
In the first step, zonotopes (Montgomery 1989, Shephard
1974) and DC programming are used to obtain an outer
bound of the evolution of the system. This outer bound
is improved using the information provided by the new
measurement and DC programming (second and third
steps). The full version of the algorithm is detailed in
section 6.

3 DC programming

This section presents essential results about DC pro-
gramming. These concepts are required to introduce the
proposed state estimation algorithm. References (Horst
& Thoai 1999, Tuy 1998) and (Tuy 1995) are excellent
surveys about DC programming.

Definition 3 Let S be a convex polytope (bounded poly-
hedral set) of IRn. A real-valued function f : S → IR
is called DC on S, if there exists two convex functions
g, h : S → IR such that f can be expressed in the form:
f(x) = g(x) − h(x).

It is known that the set of DC functions defined on a
compact convex set of IRn is dense in the set of continu-
ous functions of this set (Tuy 1995, Horst & Thoai 1999).
Therefore, every continuous function on a compact con-
vex set can be approximated by a DC function with any
desired precision. Moreover, given a C2-function, it is al-
ways possible to obtain a DC-representation. In effect,

suppose that f : S → IR satisfies ∂2

∂x2 f(x) > −2αI,

∀x ∈ S with α ≥ 0. Recall now that a C2-function is con-

vex in S if and only if ∂2

∂x2 f(x) ≥ 0, ∀x ∈ S. Bearing this
in mind, it is easy to see that f(x) = g(x) − h(x), with
g(x) = f(x)+αx>x and h(x) = αx>x constitutes a DC
representation of f(x). A systematic method to obtain

( by means of interval arithmetic ) an appropriate value
of α for a given C2-function can be found in (Adjiman
& Floudas 1996). The following example illustrates this
idea. Consider the function f(x) = x3 + x2 + 1 in the

domain x ∈ [−1, 1]. Since ∂2

∂x2 f(x) = 6x + 2, it results

that ∂2

∂x2 f(x) ≥ −4, ∀x ∈ [−1, 1]. Thus, f(x) + 2x2 sat-

isfies ∂2

∂x2 (f(x) + 2x2) ≥ 0 for all x ∈ [−1, 1]. Defining

g(x) = f(x) + 2x2 and h(x) = 2x2, the equivalent func-
tion f(x) = g(x) − h(x) is a DC function in x ∈ [−1, 1].

Definition 4 Programming problems dealing with DC
functions are called DC programming problems. A gen-
eral form of DC programming problem is given by:

min
x∈S

f(x)

where f(x) = g(x) − h(x) and g(x) and h(x) are convex
in S.

Note that it is not necessary to restrict S to the class
of polytopes. For a more general definition of DC Pro-
gramming see (Pinter 1996). The following definitions
are standard in the convex optimization literature. See
for example, (Rockafellar 1970, Boyd & Vandenberghe
2004).

Definition 5 The subdifferential of a convex function
g : S → IR at point x0 (also denominated the set of
subgradients of g at point x0) denoted ∂g(x0) is defined
by:

∂g(x0) = { uo ∈ IRn : g(x) ≥ g(x0)+u>
0 (x−x0), ∀x ∈ S }

If the function g is differentiable in S, the vector u0

can be computed by the gradient of the function: u0 =
∂
∂x

g(x0). This stems directly from the convexity of g.

Definition 6 Given a convex function g : S → IR and
a subgradient u0 of g at point x0 ∈ S, a linear minorant
of g is the linear function:

ḡ(x) = g(x0) + u>
0 (x − x0)

By definition, it is clear that g(x) ≥ ḡ(x), ∀x ∈ S. In
the same way, given the convex function h : S → IR,
h̄(x) denotes a linear minorant of h (obtained by means
of the concept of subgradient).

Denoting as vert(S) the set of vertices of S, and bearing
in mind that ḡ(x)−h(x) is a concave function and g(x)−
h̄(x) is a convex function, it is possible to obtain an
approximated solution of the DC programming problem
by:

min
x∈S

f(x) ≥ min
x∈vert(S)

ḡ(x) − h(x)

3



max
x∈S

f(x) ≤ max
x∈vert(S)

g(x) − h̄(x)

Therefore, in order to obtain lower and upper bounds for
a global solution, all the vertices of set S must be visited.

Using these ideas, DC programming can be used to
bound the range of a function. Next, a simple example
is provided. Consider the function f(x) = x2 − exp(x)
in the domain S = [0, 2]. Clearly, f(x) is a DC func-
tion (g(x) = x2 and h(x) = exp(x)). The exact range
of the function is f(S) = [4 − exp(2),−exp(0)] =
[−3.3891,−1]. The range obtained by interval arith-
metic (Moore 1966) is f([0, 2]) = [0, 2]2 − exp([0, 2]) =
[−7.3891, 3.0000]. Using x0 = 1 to obtain the linear
minorants of x2 and exp(x), the approximated range
obtained by DC programming is [−4.3891, 0]. The over-
estimation is considerably reduced. Therefore, the use
of DC programming potentially improves previous re-
sults based in interval arithmetics (Alamo et al. 2005).
The bounds obtained by DC functions are based on a
linear approximation of a convex function providing a
second order approximation (in a Taylor sense). That
is, the error diminishes quadratically with the distance
to the linearization point. We think that this property
assures a good trade off between overestimation and
computational cost.

4 Bounding the evolution of the system

This section presents a new method to bound the evolu-
tion of the nonlinear system (1). First, a linear approx-
imation of the functional form of the system is used to
obtain an approximation of the evolution of the system.
Next, the proposed method takes advantage of the DC
structure of system (1) to bound the error produced by
the linear approximation in a guaranteed way. Combin-
ing the linear approximation and the bounded error, an
outer bound of the evolution of the nonlinear system is
obtained.

Consider the function f(x,w) : IRn× IRnw → IRn, where
x ∈ X = p ⊕ HBm and w ∈ W = cw ⊕ MwBrw . As
commented before, it is assumed that each component
of f(x,w) is a DC function, that is fi(x,w) = gi(x,w)−
hi(x,w) with i = 1, ..., n. The functions gi(x,w) and
hi(x,w) are convex functions in (X,W ).

The objective of the method is to obtain an outer bound
of set f(X,W ). A linear function

fL(x,w) = f(p, cw) + Gx(x − p) + Gw(w − cw)

is used to approximate the original function f(x,w).
This function can be obtained by different ways, for
example, when f(x,w) is a differentiable function, ma-
trices Gx and Gw can be set equal to ∂

∂x
f(p, cw) and

Gw = ∂
∂w

f(p, cw) respectively. In the following subsec-

tion, function fL(x,w) and the error produced by the
linear approximation are stated in a precise way.

4.1 Bounding the error term

In this subsection, a guaranteed bound of the error in-
curred when approximating the nonlinear system by the
linearization fL(x,w) is provided. For this purpose, the
following definition is introduced.

Definition 7 The error set E is defined by:

E = { e ∈ IRn : e = f(x,w)−fL(x,w), x ∈ X, w ∈ W }

where

fL(x,w) = f(p, cw) + Gx(x − p) + Gw(w − cw).

In what follows, a way to compute an outer bound Ē
of the error set E is presented. This bound is obtained
using the DC programming concepts presented in sec-
tion 3. Firstly, it will be assumed that a parallelotope
P = t⊕QBn ⊂ IRn that bounds set X (X ⊆ P ) is avail-
able (this parallelotope can be obtained by means of the
result presented in appendix A). Under this assumption,
consider now the following affine functions in x and w:

ḡi(x,w) = gi(p, cw) + u>
gi

[

x − p

w − cw

]

, i = 1, . . . , n

h̄i(x,w) = hi(p, cw) + u>
hi

[

x − p

w − cw

]

, i = 1, . . . , n

where ugi
, uhi

are subgradients at (x,w) = (p, cw) of
gi(x,w) and hi(x,w) respectively. Due to the convexity
of gi(·, ·) and hi(·, ·) it results that ḡi(x,w) ≤ gi(x,w)
and h̄i(x,w) ≤ hi(x,w), ∀(x,w), i = 1, . . . , n. That is,
they are linear minorants.

Denote now with fL
i (x,w) the i-th component of

fL(x,w). With this notation:

fi(x,w) − fL
i (x,w) = gi(x,w) − hi(x,w) − fL

i (x,w)

≤ gi(x,w) − h̄i(x,w) − fL
i (x,w)

That is, gi(x,w)− h̄i(x,w)− fL
i (x,w) is a convex majo-

rant of fi(x,w)−fL
i (x,w). Denoting now as vert(P,W )

the set of vertices of (P,W ) it is concluded that:
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max
(x,w)∈(X,W )

fi(x,w) − fL
i (x,w) ≤

max
(x,w)∈(X,W )

gi(x,w) − h̄i(x,w) − fL
i (x,w) ≤

max
(x,w)∈(P,W )

gi(x,w) − h̄i(x,w) − fL
i (x,w) =

max
(x,w)∈vert(P,W )

gi(x,w) − h̄i(x,w) − fL
i (x,w)

Reasoning along the same lines, it can be affirmed that:

min
(x,w)∈(X,W )

fi(x,w) − fL
i (x,w) ≥

min
(x,w)∈vert(P,W )

ḡi(x,w) − hi(x,w) − fL
i (x,w)

What has preceded proves the following result:

Lemma 1 Suppose that the parallelotope P contains X
and define the parallelotope Ē as:

Ē = { x ∈ IRn : γ−

i ≤ xi ≤ γ+
i , i = 1, ..., n }

where:

γ+
i = max

(x,w)∈vert(P,W )
(gi(x,w) − h̄i(x,w) − fL

i (x,w))

γ−

i = min
(x,w)∈vert(P,W )

(ḡi(x,w) − hi(x,w) − fL
i (x,w))

then, the parallelotope Ē is an outer bound of the set E,
this is: E ⊆ Ē.

Remark 1 Note that, in order to compute the parallelo-
tope Ē, it is necessary, in principle, to visit the 2n+rw

vertices of (P,W ). Suppose that w enters in an addi-
tive way into the model of the system, that is, f(x,w) =

f̃(x) + Ew. In this case, making Gw equal to E it results
that fi(x,w) − fL

i (x,w) does not depend on w and only
2n vertices have to be considered. This is the complex-
ity order associated to bound the evolution of the uncer-
tain system. Note that this complexity is affordable for
low order systems and provides a good trade off between
computational complexity and accuracy.

4.2 Initial guaranteed bound of the evolution of the sys-
tem

Now, a theorem that provides a first operator to bound
the evolution of the system is given. This operator sup-
poses a known outer bound of the error set E (obtained
by means of lemma 1).

Theorem 1 Consider the zonotopes X = p⊕HBm and
W = cw ⊕ MwBrw . Suppose that the parallelotope Ē =
t̄ ⊕ Q̄Bn satisfies E ⊆ Ē. Obtain now the zonotope Z =
pz ⊕ HzB

m+rw+n where:

• pz = f(p, cw) + t̄
• Hz = [GxH GwMw Q̄]

then, under these definitions:

f(X,W ) ⊆ Z

Proof. By definition 7:

f(X,W ) ⊆ fL(X,W ) ⊕ E ⊆ fL(X,W ) ⊕ Ē =

f(p, cw) ⊕ GxHBm ⊕ GwMwBrw ⊕ Ē =

(f(p, cw) + t̄) ⊕ GxHBm ⊕ GwMwBrw ⊕ Q̄Bn =

pz ⊕ HzB
m+rw+n = Z

4.3 Improving the obtained bound

Before introducing the main result of this subsection,
the following definition is enunciated:

Definition 8 Given matrix E ∈ IRn×n and the DC
functions: fi(x,w) = gi(x,w) − hi(x,w), i = 1, . . . , n,
functions gE

i (x,w), hE
i (x,w), i = 1, . . . , n are defined as

follows:

gE
i (x,w) =

n
∑

j=1

g
j
i (x,w), hE

i (x,w) =
n

∑

j=1

h
j
i (x,w)

where

g
j
i (x,w) =

{

Ei,jgj(x,w) if Ei,j ≥ 0

−Ei,jhj(x,w) otherwise

h
j
i (x,w) =

{

Ei,jhj(x,w) if Ei,j ≥ 0

−Ei,jgj(x,w) otherwise

Lemma 2 If Ei denotes the i-th row of matrix E, then
Eif(x,w) = gE

i (x,w)−hE
i (x,w), i = 1, . . . , n. Moreover,

the functions gE
i (x,w) and hE

i (x,w) with i = 1, ..., n are
convex.

Proof: It is easy to see that g
j
i (x,w) − h

j
i (x,w) =

Ei,j(gj(x,w) − hj(x,w)) = Ei,jfj(x,w). Therefore,

Eif(x,w) =
n

∑

j=1

Ei,jfj(x,w) =
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n
∑

j=1

g
j
i (x,w) − h

j
i (x,w) = gE

i (x,w) − hE
i (x,w)

To finish the proof, note that by construction, g
j
i (x,w)

and h
j
i (x,w) are convex. Thus, gE

i (x,w) and hE
i (x,w)

are also convex.

Now, a second bounding operator to improve the results
obtained by the operator presented in theorem 1 is enun-
ciated. So, it is assumed that a zonotope Z such that
f(X,W ) ⊆ Z has been computed. This new theorem
uses the operator presented in appendix A to bound the
zonotope Z by a parallelotope P̂ .

Theorem 2 Suppose that f(X,W ) is included in the
zonotope: Z = pz ⊕ HzB

m+rw+n. Suppose also that the
parallelotope P̂ = { x : ‖Êx − q̂)‖∞ ≤ 1 } is an outer

approximation of Z (Z ⊆ P̂ ) and the parallelotope P
bounds the set X(X ⊆ P ). Under this assumption, ob-
tain:

ḡÊ
i (x,w) = gÊ

i (pz, cw) + û>
gi

[

x − pz

w − cw

]

, i = 1, . . . , n

h̄Ê
i (x,w) = hÊ

i (pz, cw) + û>
hi

[

x − pz

w − cw

]

, i = 1, . . . , n

where ûgi
, ûhi

are subgradients at (x,w) = (pz, cw) of

gÊ
i (x,w) and hÊ

i (x,w) respectively. Compute now:

γ+
i = max

x,w∈vert(P,W )
gÊ

i (x,w) − h̄Ê
i (x,w)

γ−

i = min
x,w∈vert(P,W )

ḡÊ
i (x,w) − hÊ

i (x,w)

where i = 1, . . . , n. Then

f(X,W ) ⊆ Z
⋂

P̃

where P̃ = { x : γ−

i ≤ Êx ≤ γ+
i , i = 1, . . . , n }.

Proof: If Êi is the i − th row of matrix Ê, then

Êif(x,w) = gÊ
i (x,w) − hÊ

i (x,w) where gÊ
i (x,w) and

hÊ
i (x,w) are convex functions by lemma 2. Bear-

ing in mind that ḡÊ
i (x,w) and h̄Ê

i (x,w) are lin-

ear minorants of gÊ
i (x,w) and hÊ

i (x,w) it is clear

that: γ−

i ≤ ḡÊ
i (x,w) − hÊ

i (x,w) ≤ Êif(x,w) ≤

gÊ
i (x,w) − h̄Ê

i (x,w) ≤ γ+
i ∀x,w ∈ X,W . Then it is

inferred that f(X,W ) ⊆ P̃ .

Remark 2 Note that the parallelotope P̃ obtained in the-
orem 2 can be used to improve the bound Z obtained by

theorem 1. Parallelotope P̃ is defined by the intersection
of n strips. The operation Z ∩ P̃ can be implemented by
the intersection of Z with n strips. A new efficient oper-
ator to bound the intersection of a zonotope and a strip
has been presented by the authors in (Bravo, Alamo &
Camacho 2006). Given a strip and a zonotope of order
r, the operator allows one to obtain a new zonotope, of
order r, containing the intersection. The cited intersec-
tion operator can be used in this paper to obtain bounds
of the intersection of a zonotope with a strip.

The next section boards the computation of a strip that
bounds the set of states that are consistent with a given
measurement.

5 Bound on the consistent state set

In this section, a bound of the consistent state set is
provided. Given a measure yk ∈ IRp, the consistent state
set was defined in section 2 as:

Xyk
= { x ∈ IRn : yk ∈ d(x, V ) }

where V = cv ⊕ MwBpv . Define now sets Xyk
(i), i =

1, ..., p as the region of the state space consistent with
the i − th component of output yk:

Xyk
(i) = { x ∈ IRn : yk(i) ∈ di(x, V ) }

where di(x, v) denotes the i− th component of d(x, v) ∈
IRp. With this definition it is clear that:

Xyk
⊆

p
⋂

i=1

Xyk
(i).

In the following it will be shown how to bound Xyk
(i) by

means of a strip in the state space. If xk belongs to the
zonotope X̄k then the i− th component of the measured
output yk can be used to obtain a sharper bound of the
state as xk ∈ X̄k ∩Xyk

(i). The following property shows
that it is possible to bound X̄k ∩Xyk

(i) by means of the
intersection of X̄k and a strip in the state space.

Property 1 Given the zonotope X̄k, the measured out-
put yk(i), and vector ci ∈ IRn, obtain a parallelotope P
such that X̄k ⊆ P , and the scalars si, σi ∈ IR such that:

si =
ρ+

i + ρ−i
2

σi = ρ+
i − si

ρ+
i = max

x,v∈vert(P,V )
c>i x − (āi(x, v) − bi(x, v))

ρ−i = min
x,v∈vert(P,V )

c>i x − (ai(x, v) − b̄i(x, v))

6



Then, defining the strip X̄yk
(i) = { x : |c>i x − yk(i) −

si| ≤ σi }, it results that:

X̄k

⋂

Xyk
(i) ⊆ X̄k

⋂

X̄yk
(i)

Note that the convex functions ai(x, v) and bi(x, v) with
i = 1, ..., p are the i − th components of a(x, v) and
b(x, v) and the functions āi(x, v) and b̄i(x, v) are their
linear minorants.

Proof: If x ∈ X̄k

⋂

Xyk
(i) then there exists v ∈ V such

that yk(i) = di(x, v). Multiplying the equality by -1 and
adding c>i x:

c>i x − yk(i) = c>i x − di(x, v) ⊆ [ρ−i , ρ+
i ] = [si − σi, si + σi]

Therefore, |c>i x − yk(i) − si| ≤ σi for every x ∈
X̄k

⋂

Xyk
(i).

Note that if di(·, ·) is differentiable, an appropriate choice
of ci is ci = ∂

∂x
di(pk, cv). If not, vector ci, along with a

constant τi could be obtained in such a way that c>i x+τi

constitutes an affine approximation of function di(·, ·) in
(P, V ).

In the next section, a detailed version of the new state
estimation algorithm is presented.

6 Guaranteed state estimation algorithm

Suppose that an outer bound of the exact uncertain state
set is available at time k−1 (this bound will be denoted

X̂k−1). Suppose also that a measured output yk is ob-
tained at sample time k. Under these assumptions the
following algorithm estimates an outer bound of the ex-
act uncertain state set.

Algorithm 2

Step 1: Using theorem 1, compute a zonotope X̄k such
that f(X̂k−1,W ) ⊆ X̄k

Step 2: Using theorem 2, obtain a parallelotope P̃

such that f(X̂k−1,W ) ⊆ P̃ .
Step 3: Using property 1, compute an outer bound of
the consistent state set Xyk

. Denote it as X̄yk
.

Step 4: Compute a zonotope X̂k ⊇ X̄k ∩ (P̃ ∩ X̄yk
)

(see remark 2).

End of algorithm 2

The algorithm starts (first and second steps) computing

the sets X̄k and P̃ . These sets are outer bounds of the
evolution of the system and they are computed using
DC programming. An outer bound of the set of states

that are consistent with the new measurement yk is ob-
tained in step three using DC programming. Finally, an
intersection operator of zonotope and strip (Bravo et al.

2006) is used in step four to obtain the outer bound X̂k.

7 Example

A non-linear estimation example is presented here.
Given the functions:

f1(x1, x2) = −0.7x2 + 0.1x2
2 + 0.1x1x2 + 0.1exp(x1)

f2(x1, x2) = x1 + x2 − 0.1x2
1 + 0.2x1x2

The system is described by the expression:

x1(k + 1) = f1(x1(k), x2(k)) + w1(k)

x2(k + 1) = f2(x1(k), x2(k)) + w2(k)

where |w1(k)| ≤ 0.1 and |w2(k)| ≤ 0.1. The measure-
ments are:

yk = x1(k) + x2(k) + v(k)

The error is bounded by |v(k)| ≤ 0.2, k ≥ 0. The initial
state belongs to the box 3IB2 where I is the identity ma-
trix. The signal to be estimated is zk = [1 0]xk. Know-
ing that for each n × n matrix Q, there exist two posi-
tive semidefinite n×n matrices A,B such that x>Qx =
x>Ax − x>Bx (Horst & Thoai 1999) and considering
that 0.1exp(x1) is a convex term, it is easy to obtain a
DC representation of the considered system.

Figure 1 presents with a solid line, the evolution of the
volume of the guaranteed bound of the state obtained
with the new proposed method. The dashed line shows
the volume obtained with the method presented in
(Alamo et al. 2005). In this case, interval arithmetic is
used to bound the evolution of the systems. The new
proposed method improves the estimations obtained
with the results of (Alamo et al. 2005). Figure 2 com-
pares the obtained bounds on x1 with the one corre-
sponding to the exact uncertain state sets. Note that
the exact uncertain state sets are obtained from the min
and max values resulting from the uncertain evolution
of a sufficiently dense cloud of points. Figure 3 shows a
succession of sets X̄k and how the proposed algorithm
reduces their volumes by intersection, obtaining sets
X̂k. Figure 4 shows a succession of sets X̂k obtained by
the proposed algorithm.

8 Conclusions

A new approach to guaranteed state estimation for non-
linear discrete-time systems with a bounded description

7
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Fig. 1. Evolution of the volume of the guaranteed bound of
the state.
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Fig. 2. Solid lines represent the guaranteed bounds of the
state x1 obtained by the presented algorithm. Dotted lines
represent the bounds of x1 obtained from the exact uncertain
sets

of noise and parameters has been proposed. The algo-
rithm bounds the set of all the states that are consis-
tent with the measured output and the given noise and
parameters. The evolution of the system is captured
by zonotopes and DC programming is used to compute
these zonotopes. The obtained measurements are used
to intersect the computed zonotopes with strips of con-
sistent states. Finally, an example has been provided to
clarify the algorithm.
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Fig. 3. Dotted lines show the sets X̄1, X̄2 and X̄3. Solid

lines represent the sets X̂0, X̂1, X̂2 and X̂3. Dark clouds of
points show the exact uncertain sets X0,X1,X2 and X3. Sets
f(X0, W ), f(X1, W ) and f(X2, W ) are displayed as a light
grey clouds of points.
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Fig. 4. Solid lines represent the sets X̂0, X̂1, ..., X̂15. Clouds
of points show the exact uncertain sets X0,X1, ...,X15. Thin
arrows represent the actual evolution of the system.

A Bounding a zonotope with a parallelotope

Lemma 3 Consider the zonotope Z = p ⊕ MBm with
M ∈ IRn×m, where n ≤ m and rank (M) = n. Consider
also the singular value decomposition M = UΣV >, where
Σ = diag {σ1, σ2, . . . , σn}. Denote now D the diago-
nal matrix with components Dii = ||σiVi||1, i = 1, ..., n,
where Vi is the i − th column of matrix V . Under these
assumptions it results that Z ⊆ P = p ⊕ UDBn.

Proof.

MBm = UΣV >Bm

= U
[

σ1V1 σ2V2 . . . σnVn

]>

Bm ⊆ UDBn

8



Note that the last inclusion relies on the fact that
σiV

>
i Bm ⊆ ‖σiVi‖1B

1 = DiiB
1, where ‖ · ‖1 denotes

the vectorial norm equal to the sum of the absolute
values of the components of a given vector.

As it will be justified in what follows, the assumption
n ≤ m and rank (M) = n is not restrictive. Consider

the zonotope Z̃(ε) = p⊕
[

M εI
]

Bm+n = p⊕M̃Bm+n.

It is clear that Z = Z̃(0) and Z ⊆ Z̃(ε), ∀ε. More-

over, M̃ satisfies the assumptions of the lemma for ev-
ery ε 6= 0. Therefore, using lemma 3, it is possible to
obtain for a given ε 6= 0 a parallelotope P̃ (ε) such that

Z ⊆ Z̃(ε) ⊆ P̃ (ε). Choosing ε such that it is different
from zero but arbitrarily small, an appropriate paral-
lelotope that bounds Z can be obtained.

References

Adjiman, C. & Floudas, C. (1996), ‘Rigorous convex
underestimators for general twice-diferentiable problems’, J.
Global Optimization 9, 23–40.

Alamo, T., Bravo, J. & Camacho, E. (2005), ‘Guaranteed state
estimation by zonotopes’, Automatica 41(6), 1035–1043.

Boyd, S. & Vandenberghe, L. (2004), Convex Optimization,
Cambridge University Press.

Bravo, J., Alamo, T. & Camacho, E. (2006), ‘Bounded error
identification of systems with time-varying parameters’,
IEEE Transactions on Automatic Control 51(7), 1144–1150.

Calafiore, G. (2005), ‘Reliable localization using set-valued
nonlinear filters’, IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans 35(2), 189–197.

Chisci, L., Garulli, A., Vicino, A. & Zappa, G. (1998),
‘Block recursive parallelotopic bounding in set membership
identification’, Automatica 34, 15–22.

Chisci, L., Garulli, A. & Zappa, G. (1996), ‘Recursive state
bounding by parallelotopes’, Automatica 32, 1049–1056.

Combastel, C. (2003), A state bounding observer based on
zonotopes, in ‘Proceedings of European Control Conference’,
Cambridge, UK.

Durieu, C., Walter, E. & Polyak, B. (2001), ‘Multi-input multi-
output ellipsoidal state bounding’, Journal of optimization
theory and applications 111(2), 273–303.

El Ghaoui & Calafiore, G. (2001), ‘Robust filtering for discrete-
time system with bounded noise and parametric uncertainty’,
IEEE Transactions on Automatic Control 46(7), 1084–1089.

Garulli, A., Tesi, A. & Vicino, A. (1999), Robustness
in Identification and Control, Springer Verlag, Berlin
Heidelberg, Germany.

Horst, R. & Thoai, N. (1999), ‘Dc programming: Overview’,
Journal of Optimization Theory and Applications 103(1), 1–
43.

Jaulin, L. (2002), ‘Nonlinear bounded-error state estimation of
continuous-time system’, Automatica 36(7), 1079–1082.

Kieffer, M., Jaulin, L. & Walter, E. (2002), ‘Guaranteed
recursive nonlinear state estimation using interval analysis’,
International journal of adaptative control and signal
processing 16, 193–218.

Kuntsevich, V. & Lychak, M. (1985), Synthesis of Optimal
and Adaptative Control Systems: The Game Approach [in
Russian], Naukova Dumka, Kiev.

Kurzhanski, A. & Valyi, I. (1996), Ellipsoidal Calculus for
Estimation and Control, Birkhäuser, Boston, Massachusetts.
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