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Abstract: Min-max model predictive controllers (MMMPC) have been proposed for the
control of linear plants subject to bounded uncertainties. The implementation of MMMPC
suffers a large computational burden due to the numerical optimization problem that has to
be solved at every sampling time. This fact severely limits the range of processes in which
this control is suitable. Here an implementation scheme based on hinging hyperplanes is
presented. Experimental results obtained when applying the controller to a heat exchanger
are given.
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1. INTRODUCTION

Mathematical models, especially control models which
have to be kept simple, can only describe the dynamics
of a process in an approximate way. There are dif-
ferent approaches for modelling uncertainties mainly
depending on the type of technique used for designing
the controllers. The approach considered here is that
of global uncertainties. In this, uncertainties are con-
sidered to affect the 1-step ahead prediction equation,
i.e. the uncertainties affect the prediction capability of
the model. The global uncertainties approach can be
found in (Camacho and Bordons, 1999).

Min-Max control techniques have a great computa-
tional burden in common which limits the range of
processes to which they can be applied to those with
slow dynamics. Few applications of Min-Max MPC
can be found in the literature even for slow dynam-
ics (Kim and Kwon, 1998; Camacho and Berenguel,
1997). The application of Min-Max MPC to plants
with fast dynamics cannot be based on numerical
methods. In (Ramírez et al., 2001) a neural network
based implementation is shown. Neural networks have
proven themselves to be good for nonlinear function

approximation, but there is always an approximation
error. Furthermore patterns from a large region of the
process output space have to be computed. A better
solution is the use of explicit forms of the control law.
An explicit form for the Min-Max MPC with an ∞-
norm based cost function can be found using multi-
parametric programming as shown in (Bemporad et
al., 2001). However, there are no techniques available
to solve multiparametric min-max problems when the
cost function is a quadratic criterion.

In (Ramírez and Camacho, 2001) it is shown that Min-
Max MPC results in a piecewise linear control law
when additive uncertainties are taken into account and
a quadratic cost function is used. Thus, an approxima-
tion made with hyperplanes would be a better option
than the neural network approach. Such approxima-
tion could be made practically error free. Hinging
Hyperplanes (Breiman, 1993) is a nonlinear function
approximation technique that uses hinge functions,
i.e. hyperplanes joined together. With this technique,
piecewise linear functions can be described using a
basis function expansion.

This paper presents a way to implement Min-Max
MPC with additive uncertainties and quadratic cost
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function for linear plants using closed formulae of the
control law. These formulae are obtained using the
hinging hyperplanes technique over a set of patterns
computed by solving the min-max problem numeri-
cally.

Another difficulty arises when the plant has a large
dead time. In this case, the effect of past values of
the control signal have to be taken into account in
the min-max optimization. This paper shows how to
overcome this problem without loosing the robustness
properties of Min-Max MPC and with only a gain of
conservativeness in the control law.

The paper is organized as follows: section 2 presents
the basic Min-Max MPC with bounded global uncer-
tainties algorithm. Section 3 is devoted to the Min-
Max MPC with bounded global uncertainties algo-
rithm for plants with long delays. The hinging hyper-
planes technique for nonlinear function approxima-
tion is reviewed in section 4. Finally, section 5 shows
the application of the MMMPC to a heat exchanger
and section 6 presents the conclusions.

2. MIN-MAX MPC WITH BOUNDED GLOBAL
UNCERTAINTIES

The objective of MPC control is to compute the fu-
ture control sequence u

�
t ��� u � t � 1 ����������� u � t � N � 1 �

in such a way that the optimal j-step ahead predictions
y
�
t � j � t � are driven close to the set point sequence

w
�
t ��� w �

t � 1 ���������	� w �
t � N � 1 � for the prediction hori-

zon. The way in which the system will approach the
desired trajectories will be indicated by a function J
which depends on present and future control signals
and uncertainties.

When bounded uncertainties are explicitly considered,
it would seem that a more robust control is obtained if
the controller tries to minimize the objective function
for the worst situation. That is, by solving the follow-
ing min-max problem:

minmax
θ 
 Θ

J
�
θ � u � (1)

where θ represents the sequence of future uncertain-
ties. The min-max problem (1) can be rewritten as:

minmax
θ 
 Θ

J
�
θ � u ��� minJ  � u �

with:

J  � u ��� max
θ 
 Θ

J
�
θ � u �

being Θ ����� θ � ℜN2 � θ � θ � θ � . The function to
be minimized, J  � u � , is the maximum of the objec-
tive function J

�
θ � u � which measures how closely the

process output follows the reference trajectories. The
form of J

�
θ � u � is a quadratic criterion:

J
�
θ � u ���

N2

∑
j � N1

�
yk � j � k � wk � j � 2 � λ

Nu

∑
j � 1

�
∆uk � j � 1 � 2

where: ∆ � 1 � z � 1,N1 and N2 define the beginning
and end of the cost horizon, Nu is the control horizon
and yk � j � k is the worst-case prediction output.

When a global uncertainties approach is used, the way
to model the uncertainties is to assume that all mod-
elling errors are globalized in a vector of parameters,
in such a way that the plant can be described by the
following family of models:

ŷ
�
t � 1 ��� f̂

�
y
�
t ����������� y � t � nna ��� u

�
t �����������

u
�
t � nnb

����� θ
�
t �

In (Camacho and Bordons, 1999) it is shown that
global uncertainties can be related to other types of
uncertainties.

In this work the prediction model used is a CARIMA
model with integrated uncertainties:

∆A
�
z � 1 � y � t ��� z � dB

�
z � 1 � ∆u

�
t � 1 ��� θ

�
t �

with θ
�
t ��� Θ.

3. WORST CASE PREDICTION OF DELAYED
OUTPUT MIN-MAX MPC

When the prediction model has a dead time d, the start
of the prediction horizon should be set to N1 � d � 1,
so if d is large, then long prediction horizons should
be used. Also, past values of the control signal have
to be taken into account in the optimization and later
used as input arguments for the approximation of the
control law. On the other hand, predicted outputs up
to d do not depend on the values of the decision
variables. The computational burden and the number
of input arguments in the approximation would be
greatly reduced if an estimation of the process output
after the dead time were computed. Then, the min-max
problem can be solved taking into account only the
possible uncertainty extreme realizations for yk � N1

to
yk � N2

. However, the estimation of the process output
up to the dead time should include some form of
uncertainty. Thus, bounds of the uncertainty in the
estimation of yk � d have to be computed; they can
then be used as an additional source of uncertainty to
predict the future process outputs from yk � N1

to yk � N2
.

This strategy applied for a first order CARIMA predic-
tion model can be formulated as the following steps:

 First, compute the bounds for y
�
k � d � and y

�
k �

d � 1 � :

θ !k � d � 1 � max
θ

�
yk � d � 1 � ŷk � d � 1 �

θ !k � d � 1 � min
θ

�
yk � d � 1 � ŷk � d � 1 �



θ !k � d � max
θ

�
yk � d � ŷk � d �

θ !k � d � min
θ

�
yk � d � ŷk � d �

where ŷk � d � 1 y ŷk � d are nominal values for
yk � d � 1 and yk � d . Second, obtain the control law solving the min-
max problem for the nominal plant without dead
time using the following function:

f
�
yk � d � yk � d � 1 ��� min

∆u
max

θ �k � d � θ J
�
∆u � θ !k � d � θ �

taking into account the uncertainties in the plant
output for y

�
k � d � and y

�
k � d � 1 � , which have

to be reflected in the future output predictions.
Thus, the future output predicted will be:

yk � d � 1 � �
1 � a � � yk � d � θ !k � d � � a

�
yk � d � 1

� θ !k � d � 1 ��� θk � d � 1

yk � d � 2 � �
1 � a � yk � d � 1 � a

�
yk � d � θ !k � d �

� θk � d � 2

�����
It can be seen that the prediction model is an affine
function of θ !k � d � 1 � θ !k � d as well as of θ . This im-
plies that the maximum of J for θ !k � d � 1 � θ !k � d will
be reached on one of the vertexes of the hypercube
� θ !k � d � 1 � θ !k � d � .
This strategy is more conservative than a traditional
Min-Max MPC in the sense that only the maximum
and minimum values for y

�
k � d � and y

�
k � d � 1 �

are considered as starting points for the min-max
optimization. To reduce this excess of conservatism
only the vertexes � θ !k � d � 1 � θ !k � d � and � θ !k � d � 1 � θ !k � d �
are considered in the optimization, with the assump-
tion that the other two vertexes � θ !k � d � 1 � θ !k � d � and

� θ !k � d � 1 � θ !k � d � describe very unrealistic situations.
The total of vertexes to be considered for the max part
of the problem will be 2N2 � d � 1, instead of the 2N2 of
the original formulation.

On the other hand, it can easily be seen that the
bounds values � θ !k � d � 1 � θ !k � d � and � θ !k � d � 1 � θ !k � d �
are independent of the values of � yk � 1 � yk � and they
are also independent of past and future control actions.
These considerations imply that the bounds for y

�
k �

d � and y
�
k � d � 1 � have only to be computed once.

Figure 1 illustrates the behaviour of a Min-Max MPC
controller using this strategy compared to a traditional
Min-Max MPC controller and a conventional MPC
controller, using the same values for control and pre-
diction horizons and control effort weighting. For the
Min-Max MPC controllers the bounds for the uncer-
tainty were θ � Θ � � 0 � 5 and θ � Θ � 0 � 5. This
faster response compared to the traditional Min-Max
MPC is due to the greater conservatism of considering
only the maximum and minimum values of yk � d � 1 and
yk � d .
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Fig. 1. Output of a MPC, Min-Max MPC and Min-
Max MPC modified controllers applied to the
plant yk � 1 � 0 � 9048yk � 0 � 0128uk � 6.

4. HINGING HYPERPLANES

The nonlinear function approximation technique named
hinging hyperplanes was introduced by (Breiman,
1993). It can be described as a basis function expan-
sion:

f
�
x � �

K

∑
i � 1

hi

�
ϕi � x �

where hi are called the hinge functions. A hinge
function consists of two hyperplanes joined together.
These two hyperplanes are given by:

h � � ϕ � x h � � ϕ � x

where x � �
1 � x1 ��������� xm � . The hyperplanes are joined

at
�
ϕ � � ϕ � � x � 0. The hinge is defined by ϕ � � ϕ �

or its multiples. The hinge function is given by:

h � max
�
h � � h � � or h � min

�
h � � h � �

The correct form is that which gives a smaller approx-
imation error when the parameters, ϕ � and ϕ � , are
estimated.

In the hinging hyperplanes approach there are two
key elements: the hinge finding algorithm (HFA) and
the hinging hyperplanes algorithm (HH). In (Breiman,
1993) and (Pucar and Sjöberg, 1996) different types
of algorithms are presented. In this work, the original
algorithms presented in (Breiman, 1993) are used. In
the following, short descriptions of these algorithms
are given.

4.1 Hinge finding algorithm

The initial data are N regression pairs � yi � xi � . The
algorithm takes the following steps:

(1) Choose an initial partition of � yi � xi � into two sets
named S � and S � with approximately half the
data of � yi � xi � in each set.



(2) Compute ϕ � as the parameter vector of the hy-
perplane with the best fit in the least squares
sense. Also, compute ϕ � from S � in the same
way.

(3) Update S � and S � according to S � � � xi : ϕxi �
0 � and S � � � xi : ϕxi � 0 � .

(4) Repeat from step 2, until the convergence crite-
rion is satisfied. In this work the decrease of the
squared sum of errors is used.

In (Pucar and Sjöberg, 1996) it is reported that this
algorithm shows convergence problems, but conver-
gence is guaranteed if the function to be approximated
is a hinge function. Although the function to be ap-
proximated here is not a hinge function (but a piece-
wise linear function), this algorithm has been applied
with success.

4.2 The hinging hyperplanes algorithm

More than one hinge is usually necessary to approx-
imate a function. The HH algorithm allows as many
hinges to be used as necessary to approximate a func-
tion. Here, the refitting method (Breiman, 1993) is
used:

(1) For K � 1, find h1

�
x � with the HFA.

(2) For K � 1:
(a) Run the HFA over the residuals f

�
x � �

∑K � 1
k � 1 hk

�
x � to find hK

�
x � . Add hK

�
x � to the

set of computed hinges.
(b) Refit all the computed hinges according to

the following scheme: refit h1

�
x � using f

�
x � � ∑K

k � 2 hk

�
x � refit h2

�
x � using f

�
x � �

∑K
k � 1 � k �� 2 hk

�
x � for j � K refit h j

�
x � using f

�
x � �

∑K
k � 1 � k �� j hk

�
x �

(c) Repeat from step (b), until the convergence
criterion is satisfied. In this case until f

�
x � �

∑K
k � 1 hk

�
x � ceases to significantly decrease.

5. APPLICATION TO A HEAT EXCHANGER

The controller presented in section 2 and 3 has been
applied to a heat exchanger which in turn is part of a
pilot plant. A diagram of the pilot plant which shows
its main elements as well as the localization of the
various instruments is given in Figure 2.

The main elements are:
 Feed circuit. The plant has two input pipes, a

cold water one (whose temperature is regulated
by a cooling plant) and a hot water one (at
about 70 oC) with nominal flow and pressure
conditions of 10 l/min and 2 bars for the cold
water and 5 l/min and 1 bar for the hot. The
temperatures and the flows of the inputs are
measured by thermocouples and orifice plates

V
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FT1 TT1

FT2 TT2

LT1
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TT5
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TT3

waterHot

waterCold

Heat exchanger

Tank

Heater

Waste

Pump

TT4

Fig. 2. Diagram of the Pilot Plant

respectively, with controlled pneumatic valves
for regulating the input flows. Tank. This has a height of 1 m and an interior
diameter of 20 cm, it is thermically insulated,
and with an approximate volume of 31 l. It can
work pressurized (up to a limit of 4 bars) or at
atmospheric pressure, depending on the position
of the vent valve. In its interior there is a 15
kW electric resistor for heating, also an overflow
pipe, an output pipe and another one for recircu-
lating the water through the exchanger. Recirculation circuit. The hot water in the tank
can be cooled by entering cold water through the
cooling circuit. This circuit is composed of a cen-
trifugal pump that circulates the hot water from
the bottom of the tank through a tube bundle heat
exchanger returning at a lower temperature at its
top.

The plant control elements are connected to a PMC10
unit operated under the ORSI CUBE control software.
The PMC10 architecture allows control algorithms
programmed in a PC using CUBE’s ITER II language
to be implemented. However, the execution time is
restricted to 100 milliseconds and taking into account
the fact that PMC10 CPU is an old Intel 8086 it
is clear that the min-max problem cannot be solved
numerically in the PMC10. Therefore it is a suitable
scenario for the hinging hyperplane implementation
described in this paper.

A first order lineal model for the transfer function
from V8 to T T 4 has been obtained by step re-
sponse. The initial conditions were V8 � 50% � TT4 �
31 � 73 � C, TT 5 controlled with a PID around 50 � C,
constant tank level of 76 � 8% and the set point for the
cooling plant to get T T2 around 23 � 3 � C. A step in
the aperture of valve V8 from 50% to 70% yields the
following model:

G
�
s � � 0 � 135

6s � 1
e � 6s (2)

A CARIMA model is obtained by sampling model (2)
with a sampling time of 1 second (thus, d � 6) and



the controller parameters have been chosen to be Nu �
3 � N1 � 7 � N2 � Nθ � 12 � λ � 3 � 0 � θ � 0 � 2 � θ � � 0 � 2.

The experiments carried out use set point values of
32oC, 35oC and 37oC. For each value a controller is
computed using the algorithms of section 4. Three
training sets are generated, each set having 500 pat-
terns obtained from a temperature range of set point �
0 � 5oC . Each pattern represent the first control move
(i.e. ∆uk) of the optimal sequence of future control
moves for a given process state. The HH algorithm
is applied to each set until the squared sum of errors
ceases to have any significant decrease. In each sets
two hinges lead to a squared sum of errors of less than
10 � 4. Such a small amount of error means that only
three hyperplanes exist in this region of the process
state space, each one for a different type of solution to
the min-max problem (Ramírez and Camacho, 2001).
Theoretically the error should be zero, but the numer-
ical method used in the MATLAB function fmincon
sometimes fails to find the solution accurately. Each
controller has the following hinging hyperplanes de-
scription:

∆uk � f
�
y � � h1

�
ϕ1 � y ��� h2

�
ϕ2 � y �

� min � y
��

4 � 6716
� 5 � 5061
5 � 3652

��
� y

��
274 � 9840
15 � 3927
� 23 � 9867

��
�

� max � y
�� � 271 � 5947
� 15 � 0956
23 � 5778

��
� y

�� � 0 � 9158
5 � 8031
� 5 � 7738

��
�

∆uk � f
�
y � � h1

�
ϕ1 � y ��� h2

�
ϕ2 � y �

� min � y
��

14 � 0144
� 4 � 5948
4 � 1988

��
� y

��
309 � 6598
16 � 3106
� 25 � 1589

��
�

� max � y
�� � 305 � 9432
� 16 � 0135
24 � 7503

��
� y

�� � 9 � 9174
4 � 8917
� 4 � 6074

��
�

∆uk � f
�
y � � h1

�
ϕ1 � y ��� h2

�
ϕ2 � y �

� min � y
��

294 � 2144
14 � 6098
� 22 � 5621

��
� y

�� � 18 � 1357
� 6 � 3451
6 � 8398

��
�

� max � y
�� � 290 � 2772
� 14 � 3128
22 � 1536

��
� y

��
22 � 4706
6 � 6421
� 7 � 2488

��
�

Each expression was tested with a test set of 100
patterns obtained from a temperature range of 29oC to
41oC and the squared sum of errors was again less than
10 � 4 in each set. This illustrates that, as expected, the
hinging hyperplane descriptions obtained are closed
formulae of the control law and not an approximation.

The resulting controller was applied to the heat ex-
changer and some of the experimental results are de-
picted in figures 3 and 4.

Figure 3 shows a set point tracking experiment. It
is noteworthy that the set point is much higher than
the operating point considered for modelling the heat
exchanger dynamics. The noisy output is due to the
variations in the tank temperature (TT5) which is regu-
lated by a local PI. The first set point change raises the
V8 aperture which in turn lowers the tank temperature.
This causes the V8 to be opened even more because
a greater flow through the heat exchanger is required
to reach the set point. As TT5 returns to its nominal
value, V8 closes to keep the output near the set point.

Disturbance rejection is illustrated in figure 4. In this
case the manual valve of cold water was closed for 12
and 11 seconds, causing the temperature to greatly de-
viate from the set point. The controller reacts by clos-
ing the recirculation valve V8 to lower the temperature
by having less hot water to be cooled. Re-opening
the valve is another disturbance and the controller has
to open the V8 valve again to bring the temperature
TT4 to the desired value. Moreover, before the second
disturbance a change in the set point of TT5 is brought
about, forcing it to reach a much higher value than
that existing when the model was identified. This is
a slow variation of plant dynamics. The controller is
able to keep the output close to the set point as soon as
the tank temperature reaches the new operating point.
Meanwhile, a small offset is observed as is expected,
because the uncertainty grows like a ramp and the
integrated uncertainties MMMPC are formulated to
reject step disturbances. Finally, it is noteworthy that
the disturbance rejection is similar to the first time that
the cold water valve was closed, even when the plant
dynamics have changed from the nominal values

6. CONCLUSIONS

A Min-Max MPC controller has been proposed and
applied to a pilot plant. Problems related to pro-
cess delay have been tackled and discussed taking
into account real time implementation requirements.
The implementation has been brought to practice by
means of closed formulae obtained using the hinging
hyperplanes algorithm. Further investigations will be
needed to include constraints in the control strategy.
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