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REVIEW ARTICLE

Acute fatty liver of pregnancy: an update on mechanisms

Sathish Kumar Natarajan PhD, Kavitha R Thangaraj MSc, Ashish Goel MD, C E Eapen MD DM,

K A Balasubramanian PhD and Anup Ramachandran PhD

The Wellcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College, Ida Scudder Road,

Vellore 632004, India

Summary: Acute fatty liver of pregnancy (AFLP), characterized by hepatic microvesicular steatosis, is a sudden catastrophic illness

occurring almost exclusively in the third trimester of pregnancy. Defective fatty acid oxidation in the fetus has been shown to be

associated with this disease. Since the placenta has the same genetic makeup as the fetus and as AFLP patients generally recover

following delivery, we hypothesized that the placenta might be involved in pathogenesis of this disease. In an animal model of hepatic

microvesicular steatosis (using sodium valproate), we found that microvesicular steatosis results in mitochondrial structural

alterations and oxidative stress in subcellular organelles of the liver. In placentas from patients with AFLP, we observed placental

mitochondrial dysfunction and oxidative stress in subcellular organelles. In addition, defective placental fatty acid oxidation results in

accumulation of toxic mediators such as arachidonic acid. Escape of these mediators into the maternal circulation might affect the

maternal liver resulting in microvesicular steatosis.

Keywords: complications, hepatology, maternal–fetal medicine, maternal mortality, metabolism

INTRODUCTION

Five of the unique pregnancy-associated liver diseases are pre-
eclampsia with hepatic impairment, haemolysis, elevated liver
enzymes and low platelets (HELLP) syndrome, hyperemesis
gravidarum, intrahepatic cholestasis of pregnancy and acute
fatty liver of pregnancy (AFLP). AFLP is a sudden catastrophic
illness which carries significant perinatal and maternal mor-
tality with microvesicular fatty infiltration of hepatocytes
causing acute liver failure with coagulopathy and encephalopa-
thy. This requires early diagnosis and intervention to prevent
maternal and fetal death.

Management of AFLP patients, their diagnosis, epidemiol-
ogy, pathophysiology, clinical features and its implications
have been extensively reviewed before.1 The present review
highlights the mechanisms of placental damage – mitochon-
drial dysfunction, oxidative stress in subcellular organelles
and accumulation of toxic mediators due to defective placental
fatty acid oxidation (FAO) – leading to maternal liver injury in
AFLP.

CLUES TO THE MECHANISM OF AFLP
FROM THE CLINICAL PRESENTATION

AFLP occurs in the third trimester of pregnancy

It has been well documented that AFLP occurs almost
exclusively in the third trimester of pregnancy.1 – 3 In the

latter stages of pregnancy, the primary source of energy for
the mother shifts to fats, while glucose is the primary energy
substrate for the fetus.4 – 6 If the mother had an inherited
defect in fat metabolism, this defect would be expected to
become clinically manifest in late pregnancy, when the
maternal dependence on fats as the primary source of
energy is at its peak. This is further reflected in the liver
biopsy in AFLP patients, which is characterized by diffuse/
peri-venular microvesicular steatosis, an uncommon histologi-
cal finding.

Uncommonly, AFLP can present after delivery or marked
deterioration of a mother with AFLP can occur after delivery.
We speculate that the energy-depleted individual (harbouring
a FAO defect which affects mitochondrial functioning leading
to decreased ATP production) can be ‘compensated’ clinically.
The added stress/energy requirement of undergoing labour
(especially vaginal delivery) will aggravate this energy
deficiency and the mother can ‘decompensate’, leading to
worsening liver dysfunction and AFLP manifesting after
delivery. In addition, although AFLP occurs mostly in primi-
parous women, it can also occur after several non-affected
pregnancies. AFLP occurs more often in those pregnancies
in which the fetus has a homozygous/compound heterozy-
gous FAO mutation. Though all mothers of infants with
FAO defects are obligate carriers of the FAO defect, it is not
known why only 16% of these pregnancies develop
complex maternal liver diseases of pregnancy.7 Another
illness, e.g. an infection, fasting or even emotional stress can
trigger metabolic decompensation in a genetically predisposed
individual.8,9
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Association of fetal FAO defects and AFLP

It has been shown that uncommonly, AFLP can recur in sub-
sequent pregnancies.2,10 In one report, both infants born in
subsequent pregnancies to a woman developed a rapidly pro-
gressive illness characterized by widespread fatty infiltration
of several vital organs leading to death at six months of age,
suggesting a disorder of FAO.2 These observations led to
studies looking for inherited defects of FAO in the fetus,
when the mother developed AFLP.

FAO disorders are a category of inborn errors of
metabolism that are inherited in an autosomal recessive
pattern. Several studies have reported that defects in mitochon-
drial b-oxidation, especially involving long chain hydroxyacyl
CoA dehydrogenase (LCHAD), in the fetus are associated
with AFLP,2,11 and it was recently reported that 79% of preg-
nant mothers with LCHAD/mitochondrial trifunctional
protein (MTP) deficient fetuses develop AFLP.3

Screening infants of pregnancies complicated by liver
disease for FAO disorders has been suggested.12 However,
it is now recognized that AFLP can occur without a mutation
in genes that encode LCHAD or MTP,7,13 and a few cases of
maternal liver complications similar to AFLP have also
been reported to be associated with fetal deficiency of
carnitine palmitoyl transferase I (CPT1) or short or medium
chain acyl-CoA dehydrogenase.1,7 This suggests that the
metabolic basis of AFLP is more heterogeneous than
previously believed.

Complicating the issue further is the fact that an overlap
exists between the various maternal liver diseases in the
context of fetal FAO disorders, and studies examining fetal
FAO defects and maternal liver disease typically include a
variety of conditions such as AFLP, the HELLP syndrome
and preeclamspsia evolving into HELLP syndrome. Though
recent studies of the incidence of AFLP have used clinical cri-
teria to diagnose AFLP (and in some recent studies these
have been referred to as ‘Swansea criteria’ following the publi-
cation of a paper from Wales that described criteria commonly
seen in women with AFLP8,14), there are scarce data comparing
the clinical diagnostic criteria with liver biopsy findings in
maternal liver diseases. Clinical criteria (e.g. Swansea criteria)
for diagnosing AFLP as a predictor of hepatic microvesicular
steatosis had 100% negative predictive value, though specificity
was low at 57% when liver biopsy was also used.
Hence, though the Swansea criteria are a good bedside screen-
ing tool for AFLP, significant overlap in diagnostic criteria is
reported for these three maternal liver diseases.15 Studies
into the association of fetal FAO defects with maternal liver dis-
eases characterized on liver biopsy are needed to better under-
stand the association of different maternal liver diseases and
fetal FAO.

AFLP dramatically improves after delivery of the
baby

The maternal illness improves rapidly after delivery. Three
patients who fulfilled Swansea criteria for AFLP underwent
liver biopsy at two, five and eight days after delivery; none
had hepatic microvesicular steatosis and the biopsies showed
hepatocanalicular cholestasis (consistent with resolving phase
of AFLP) in two patients and congestion and centrizonal necro-
sis in one patient.15

This recovery of AFLP patients from liver dysfunction
immediately following delivery suggests a causative role for
the placenta, which is expelled during delivery.

PLACENTAL FATTY ACID TRANSPORT
AND OXIDATION

The placenta is an essential organ for the maintenance of preg-
nancy and development of fetus and it has direct access to the
maternal blood for nutrients.5 The placenta keeps the maternal
and fetal blood supplies separate while allowing nutrient access
to the fetus.

During pregnancy, it is estimated that the mother deposits
approximately 3500 g of fat, which is the same weight of an
average new born baby.5 Maternal body fat increases linearly
until around 30 weeks of gestation and slightly decreases
after the 30th week with exponential increases in fetal fat accre-
tion.5 AFLP occurs predominantly in the third trimester of ges-
tation. The decrease in the mother’s fat stores is due to
increased lipolysis and fatty acid (FA) transfer from the
mother to the fetus through the placenta. This might possibly
trigger increased lipid metabolism and mitochondrial FAO in
the placenta as well as in the fetus.3,5 FA uptake and efflux
from placental syncytiotrophoblasts and the microvillous mem-
brane are carried out by a number of membrane associated FA
transport proteins (FATPs). Placental plasma membrane FA
-binding protein and FATP 4 are mainly involved in the
uptake of long chain FA such as docosahexanoic acid and
other FA binding proteins like FABP 1, 3, 4, 5 and 7 have also
been detected in the placental syncytiotrophoblast.16 Two of
the most important long chain polyunsaturated FAs such as
arachidonic acid (AA) and docosahexanoic acid are markedly
increased in the fetal circulation as well as fetal tissues such
as brain due to their need for its development.5

Activation and acylation of FAs for b-oxidation occurs in the
outer mitochondrial membrane by acyl CoA synthase and car-
nitine acyl transferase I to form acyl-carnitines. Carnitine acyl
transferase II then transfers acyl-carnitine into the mitochondria
through the mitochondrial inner membrane (Figure 1). Classical
b-oxidation involves a four-step pathway, including dehydro-
genation, hydration, dehydrogenation and thiolytic cleavage
(Figure 1), the initial steps of which are catalysed by the MTP.
The first dehydrogenation step is catalysed by acyl-CoA dehy-
drogenase activity of the enzyme, with formation of a double
bond in the FA to form trans-Enoyl CoA. Next, the enoyl
CoA hydratase activity hydrates the molecule to form beta
hydroxyacyl CoA. This is then oxidized to beta ketoacyl CoA
by the beta hydroxyacyl CoA dehydrogenase activity. The
final step is catalysed by the ketothiolase activity, which gener-
ates an acetyl CoA molecule and an acyl CoA molecule which is
two carbons shorter. The MTP has 4a and 4b subunits,1 with
the a-subunit having the long chain 3-enoyl CoA hydratase
activity at its amino terminal and the LCHAD activity at the
carboxy terminal domain. The b-subunit contains the long-
chain 2-ketoacyl-CoA thiolase enzyme activity.1 The a and
b-subunits of the MTP are encoded by the HADHA and
HADHB genes, both of which are localized on chromosome
2p23.1

Human placental tissue and its chorionic villus contain all
eight FA oxidation enzyme activities. The activity of CPT II
and very LCHAD are remarkably higher in placenta and chor-
ionic villus compared with the human liver.17 The other six
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enzyme activities are two- to four-fold less compared with
human liver FAO enzymes levels. It has also been well documen-
ted that all these FA oxidation enzymes are active in the placenta
during the second and third trimester.17 The FAO pathway in
placenta occurs even in the presence of glucose as an energy
source suggesting a metabolic shift from glucose to FA.6 In
addition to the decrease in FAO enzymes in the placenta, it has
been reported that liver mitochondrial b-oxidation is also
reduced from about 25% to 50% in pregnant mice.18 The reason
for this decrease in FAO in late gestation might be a consequence
of female sex hormones.18,19 It is thus possible that in disorders
such as AFLP, the increased maternal lipolysis and defective
FAO in the placenta in the third trimester of pregnancy leads to
accumulation of toxic metabolites, which escape into maternal
circulation and result in maternal liver damage.

PLACENTAL MITOCHONDRIAL
DYSFUNCTION IN AFLP

The placenta is essential for fetal development and utilizes
FAs as a significant metabolic fuel especially in the third trim-
ester. FAO may involve alpha, beta and omega-oxidation.
Children with LCHAD deficiency have been shown to have
mitochondrial swelling, increased number and irregular mito-
chondrial cristae in the skeletal muscle.20 Data from our labora-
tory have demonstrated ultrastructural and functional changes
in liver mitochondria in an animal model of microvesicular
steatosis.21 We have also demonstrated placental mitochondrial

dysfunction in patients with AFLP, accompanied by oxidative
stress in the organelles.22 It has been well demonstrated that
3-hydroxy-palmitoyl-CoA is an inhibitor of mitochondrial oxi-
dative phosphorylation in both the placenta and the maternal
liver.23 Inhibition of oxidative phosphorylation could result in
the generation of reactive oxygen species, which would
further amplify damage to the placenta and its subcellular orga-
nelles. We have also reported increased levels of long chain FAs
such as palmitic, arachidonic, oleic and myristic acid in the pla-
centa of AFLP patients.22

This increase in long chain FA is suggestive of their defective
oxidation and similarly increased levels of these FAs have been
reported from LCHAD-deficient children.3,24 Our data from
patients with AFLP also showed an increase in circulating oxi-
dative and nitrosative stress markers along with decreased anti-
oxidants such as retinol and tocopherol (vitamin E),22

suggesting that oxidative/nitrosative stress may also play a
role in liver damage during AFLP. There was a similar increase
in oxidative stress parameters both in placental subcellular
organelles and in maternal serum. Increased levels of AA and
palmitic acid were observed both in placenta as well as in
maternal serum of AFLP patients.

HEPATIC MICROVESICULAR STEATOSIS
AND OXIDATIVE STRESS

Hepatic microvesicular steatosis is the pathological hallmark of
AFLP. Microvesicular steatosis occurs as a result of impaired
mitochondrial b-oxidation which leads to accumulation of
FAs in the form of triglycerides and formation of small lipid
droplets in the cytosol of hepatocytes.21 In the event of compro-
mised mitochondrial function, oxidation of FAs is channelled to
peroxisomal b oxidation, which, unlike mitochondrial FAO,
generates hydrogen peroxide.21 In addition, omega oxidation
of FAs in microsomes forms long chain dicarboxylic acids,
which are also a substrate for peroxisomal fatty acyl CoA
oxidase.25 The dicarboxylic acids formed can result in increased
production of hydrogen peroxide,21 which can undergo the
Fenton’s reaction in the presence of heavy metals to form
highly reactive hydroxyl radicals and result in oxidative tissue
damage. This seems to be occurring in the placenta from
AFLP patients and in an animal model of hepatic microvesicu-
lar steatosis where oxidative stress was evident in peroxisomes
and microsomes.21,22 We have shown that valproate-induced
microvesicular steatosis in rats results in oxidative stress as evi-
denced by increased lipid and protein oxidation parameters in
the liver subcellular organelles. The lipid composition of subcel-
lular organelles was also changed, with an altered cholesterol:
phospholipid ratio. The reason for the increased oxidative
stress in microvesicular steatosis is due to the generation of hydro-
gen peroxide and decreased peroxisomal catalase activity.21

Another reason for the oxidative stress could be the fact that
the presence of oxidizable fat in the liver either in acute or in
chronic hepatic steatosis can trigger extensive lipid peroxidation.
This has been proven in drug-induced steatosis produced by
various agents such as valproate, ethanol, tetracycline, amiodar-
one or pirprofen.26 In addition, we and others have shown that
increased lipid oxidation can result in generation of malonalde-
hyde, conjugated diene and 4-hydroxynonenal, all of which can
trigger hepatic steatosis.21,26

The hepatotoxic agent valproic acid can inhibit mitochondrial
b-oxidation and produce microvesicular steatosis, which

Figure 1 Classical b-oxidation pathway in the mitochondria. Fatty
acids (FAs) are activated to form fatty acyl CoA by the acyl CoA
synthatase present in the outer mitochondrial membrane. To
import FA into mitochondrial matrix, fatty acyl carnitine is formed
by carnitine acyl transferase I and the carnitine translocase
helps in transporting it into the mitochondrial matrix. Carnitine
acyl transferase II converts fatty acyl carnitine back to fatty acyl
CoA. b-Oxidation starts with the action of acyl-CoA dehydrogen-
ase activity. The mitochondrial trifunctional protein, which con-
sists of enoly CoA hydratase, hydroxyl acyl CoA dehydrogenase
and thiolase activities leads to the formation of an acyl CoA mol-
ecule with two carbons less and acetyl CoA as products
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mimics maternal liver damage during AFLP.21 Homozygous
knockout mice for the MTP which catalyses oxidation of long
chain FA develop hepatic steatosis and suffer neonatal
death.27 Mice heterozygous for MTP have a high fasting
blood insulin and alanine amino transferase levels along with
increased fat stain score and steato-necrosis.27 These results
suggest that mothers heterozygous for MTP might themselves
activate hepatic steatosis during pregnancy. This condition is
likely to be exacerbated by the generation of toxic metabolites
from the placenta in the presence of a fetus homozygous for
MTP deficiency in AFLP. From our laboratory, we have
shown that a valproate-induced animal model of hepatic micro-
vesicular steatosis develops liver mitochondrial dysfunction
due to defective FAO. Increased FAs in the liver can be chan-
nelled to peroxisomes and microsomes for oxidation, resulting
in the production of hydrogen peroxide that can lead to oxi-
dative stress. In contrast to mitochondria, peroxisomal
b-oxidation is not coupled with oxidative phosphorylation
systems. Pretreatment with clofibrate (activator of peroxisome
proliferators activated receptor-a) to rats prior to valproate
administration offers partial reversal of changes occurring in
the subcellular organelles, possibly by increasing microsomal
and peroxisomal oxidation of FAs which decreases the fatty
infiltration in the liver.21

IMPACT OF DEFECTIVE PLACENTAL FAO
IN AFLP

The placenta consumes a large amount of oxygen and produces
ATP for various metabolic process.23 The placenta is also an
important source of free radicals, with lipid and protein oxi-
dation along with decreased antioxidant enzyme function

being reported in the placenta of preeclamptic patients.
Mitochondrial dysfunction of placentas from preeclamptic
patients and its contribution to oxidative stress has been
reported.28 Rakheja et al.24 suggested that in a pregnant
mother heterozygous for a defect in FAO with a homozygous
fetus, toxic FAO intermediates such as long chain hydroxyacyl
metabolites could potentially accumulate. Since the placenta
has the same genetic make-up as the fetus, these toxic inter-
mediates can increase lipid peroxidation and decrease antioxi-
dants in the placenta of AFLP patients. In addition, placental
macrophages (Hofbauer cells) represent 40% of the placental
cell population, and are located close to trophoblasts and fetal
capillaries where they can also contribute to free radical gener-
ation.16 However, until now, no study has addressed the signifi-
cance of these cells in AFLP.

The cytotoxic FAO intermediates are known to inhibit mito-
chondrial enzymes, including those that catalyse b-oxidation
and uncouple oxidative phosphorylation, impairing ATP pro-
duction leading to damage to mitochondria such as mitochon-
drial swelling.29 Elevated levels of metabolites of long chain
FAs such as 3-hydroxyacyl carnitines, 3-hydroxyacyl CoAs
and 3-hydroxydicarboxylic acids and concomitant decrease in
blood carnitines in serum and urine in LCHAD-deficient
patients have also been reported.30 Recently, Eskelin et al.3

reported an increase in long chain 3-hydroxyacyl carnitine mol-
ecules of C16 and C18:1 FA intermediates in the mother at the
31st gestational week compared with the 25th week of gestation.

It is now well known that since the placenta has the same
genetic makeup as the fetus, it can accumulate toxic metabolites
and their escape into maternal circulation can lead to maternal
liver complications.22,24 It has also been suggested that the toxic
metabolites can activate the cytokine system and result in multi-
organ failure.23 Our results support the above hypothesis and

Figure 2 Role of placental mitochondrial dysfunction and oxidative stress in the
maternal liver injury. Defective fatty acid oxidation in the placenta results in accumu-
lation of fatty acid (FA) in the placenta. Increased FA is directed to peroxisomal
v-oxidation resulting increased free radicals production. Release of free radicals, FA
and its metabolites into circulation might damage maternal liver leading to microvesi-
cular steatosis
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we have shown placental mitochondrial damage and increased
long chain FAs in the plasma of AFLP patients. Our in vitro
experiments also showed that increased levels of FAs such as
AA (similar to AA levels seen in serum of AFLP patients) can
initiate mitochondrial dysfunction, oxidative stress as well as
increase the accumulation of fatty droplets in the hepatocyte
in culture.22 Studies of FAO mutations and metabolic changes
in maternal serum and placenta in women who develop
AFLP are needed to understand the situation better in
humans in vivo.

In conclusion, in AFLP, defective placental FAO results in
accumulation of toxic mediators such as AA and their escape
into maternal circulation. In addition, placental mitochondrial
dysfunction results in the generation of reactive oxygen and
nitrogen species as well as peroxisomal hydrogen peroxide.
Escape of free radicals and toxic intermediates of defective
FAO into the maternal circulation might result in maternal
liver damage seen during AFLP (Figure 2).
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