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Model-based target recognition using laser radar
imagery

Robert V. Li
University of Nebraska
Department of Electrical Engineering
Lincoln, Nebraska 68588

1 Introduction
Autonomous detection, classification, and location of ob-
jects or targets from the sensed image are some of the goals
of computer vision 2 Co2 laser imaging sensors
have been explored as useful tools for reaching these goals,
because they offer a unique 3-D target sensing capability.3'4
Our efforts are focused on extracting meaningful features
from the laser radar images and performing a classification
study using expert system concepts.

For this research, the multisensor imagery was obtained
from a multimodal CO2 laser radar that has the following
data types: relative range, Doppler, IR, visual, carrier in-
tensity, and vibration.5 Of these data, Doppler data provide
very reliable detection discrimnants for mobile targets in a
battlefield environment. For Doppler imagery, the ground
plane is usually recorded as zero velocity . An important
application of Doppler data is the detection of moving targets
that are largely obscured by foliage or clutter. On the other
hand, relative range data are measured by impressing a
sinusoidal pattern of amplitude on the transmitted beam and
by detecting the phase of the pattern in the received radia-
tion. Range data are capable of reconstructing the 3-D ge-
ometry of the scene viewed from the sensor.69 In a real-
time operation, use of fast and reliable algorithms to extract
these geometric features is important. The Hough transform,
used extensively here, is a technique that offers speed and
accuracy for extracting 3-D planar features. The next step
is to use the structure of an expert system for classifying
the object. An expert system is essentially a hypothesis
management system integrating these features into a deci-
sion process. By using this system, the hypotheses about
the nature of the target are tested and the evidence analyzed
to support or discredit those hypotheses. The dataset used
in this study was relatively small, but adequate in demon-
strating the concepts of model-based target recognition as
envisioned here. The overall purpose was to study the meth-
odology of building a model-based target recognition system
and to develop the tools needed for building such a system.
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Abstract. Autonomous target recognition can be assisted by using CO2
laser radar data. Of these data, range data provide 3-D geometric infor-
mation and Doppler data detect boundaries of moving targets. A powerful
3-D feature extraction algorithm based on the Hough transform is used
to obtain the orientations and dimensions of the target. This information
is then utilized by an inference procedure that recognizes targets based
on the available evidence from the sensory data. The experimental results
using actual laser radar imagery are successful and the procedure can
be used for the future development of a model-based expert system for
target recognition.

Subject terms: target recognition; range image; Hough transform; expert system.
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The approach used in this study is summarized in the
following three major sections: (1) data preprocessing: use
of Doppler imagery to convert relative range images into
absolute range images and to generate XYZ maps by taking
the motion effect into account, (2) geometric feature ex-
traction: segmentation of major vertical and horizontal sur-
faces by computing displacements among adjacent pixels
and extraction of surface orientations and dimensions using
the Hough transform, and (3) expert system approach: An
inference procedure was built so that the hypothesis of the
model can be evaluated based on the evidence supplied by
the extracted features. A LISP program was written to im-
plement the procedure. These three tasks will be described
in more detail in the following sections.

2 Data Preprocessing
2.1 Absolute Range Conversion
The laser image dataset includes relative range images with
15-rn range ambiguity. Because most targets of interest are
smaller than 15 rn, the relative range data cover most targets
in one ambiguity level. However, because of low oblique
angles , theground plane around the target is usually covered
by three to four ambiguity levels. To concentrate the analysis
on the target, our first step is to segment a section of the
relative range image around the target as well as the cor-
responding part of the Doppler image. Then, we convert
this subimage from relative range to absolute range by re-
moving the ambiguity levels.

Removal of the ambiguity levels of the relative range
images is a tricky problem. The difficulty has to do with
the target obstructing the ground behind it. We begin the
conversion by first median-filtering the range and the Dop-
pier data to remove noise using a 3 x 3 window around each
pixel. For cases where the window contains range data from
two different ambiguity levels, 256 is added to the low
values before sorting the nine intensity values in the win-
dow. After the median-filtering, the relative range values
are examined by column from the bottom of the image to
the top. The crossing of ambiguity levels is detected by
noting large differences between two adjacent pixels. The
range value of each pixel is then adjusted accordingly. Be-
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Fig. 2 Tank scene, clockwise from left bottom: original relative range
image, median-filtered relative range image, converted absolute range
image, and median-filtered Doppler image.

causea target obstructs the ground behind it, this conversion
from relative range to absolute range often results in am-
biguity errors in the image columns above the target. This
is corrected by first using the Doppler image as a mask to
determine the boundary between the target and the erroneous
pixels in a given column. Then in a left to right search, the
columns that are in error are detected and corrected using
the leftmost pixel of the search as a reference value. The
concepts of the steps mentioned above are illustrated in
Fig. 1.

Figure 2 shows a tank in a relative range image, the
filtered relative range image, the filtered Doppler mask, and
the converted absolute range image . Comparison of the orig-
ma! range image and the median-filtered range image shows
that the salt-and-pepper noise no longer exists. The con-
verted absolute range image shows that the range values
change gradually and smoothly from pixel to pixel, and the
range ambiguity is removed. The use of the Doppler channel
is very effective and unique for doing the range conversion.
Many current sensors do not produce ambiguous range im-
ages, but sometimes the need for processing ambiguous
images still exists.

2.2 XYZ Map Generation

The range data should be converted to a sensor-based Carte-
sian coordinate system (x,y,z) using the known sensor gim-

Fig. 3 Conversion from R to (X,Y,Z); outside gimbal is azimuth.

bal angles. The coordinate transformation can be described
by the following equations:

downtrack, x=R cost cosO

crosstrack, y=R cos sinO (1)

vertical, z =R sins

where is the depression angle and 0 is the azimuth angle.
Figure 3 shows the geometry for the above coordinate

transformation. The distance and depression angle from the
sensor to the center of the image frame and that of the major
target are available from the file's header information. The
angular resolution is also available and is usually either 0.29
or 0. 19 mrad. They are used in the calculation of the xyz
values.

The CO2 laser radar scans vertically bottom to top with
the first scan on the left and the last scan on the right at
10,000 pixels per second. For the 256 x 256 images, each
frame takes about 6.5 s to record. When targets are moving,
the range measurement of the target is either elongated or
shortened due to the time gap between recordings of dif-
ferent points on the same target. For example, a target
moving at 5 mph moves 2.2 m in 1 s and can cause con-
siderable range discrepancy. For most cases, the Doppler
data showed that the target was moving at a very slow
velocity. However, for some other cases, the target's ye-
locity was at 5 mph or more. We decided to include a
correction routine for the downtrack direction because ye-
locity in that direction can be calculated from the Doppler
data. The Doppler data are quantized in 0.09752 mIs per
level. The correction assumes that the target is moving at
a constant velocity based on the Doppler value ofeach pixel.
The time gap z.t between a pixel and the reference point is
calculated by dividing the number ofpixels scanned between
the two points by 10,000 pixels/s. The adjustment in down-
track direction is computed as

i.x=V54t=0.09752(D—l20)L.t , (2)

where D is the Doppler value at the scan point, and the
reference Doppler value for a motionless pixel is equal to
120. We adjust every pixel on the moving target by 41x.
See Fig. 4 for an illustration of motion correction on down-
track distance using the Doppler index.
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Fig. I Removing ambiguity error when converting a relative range
image to an absolute range image in a bottom to top approach by
column.
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,t (time elapsed) = (# of pixels from ref. point) X (6.51256/256)
Vx X At = 0.09752 m/s x (Ds -120) x At

Fig. 4 Motion correction on downtrack distance using Doppler index.
Every pixel on the moving target is adjusted.

Fig. 5 Perspective view of a tank scene.

depression angle and each column is at a constant azimuth
angle. The convolution operation is as follows:

[ 1 1 ii
SLP= 0 0 0 (Z value) . (3)

[—1 —1 —1]

If the convolution is applied to row n, the difference in Z
value between row n + 1 (a smaller depression angle) and
row n — 1 (a larger depression angle) will be positive for
any rising slope. The SLP value is normalized over distance
and multiplied by a scaling factor. The result of this con-
volution at each pixel is then compared to a set of threshold
values to isolate horizontal surfaces and vertical surfaces.

The second operation classifies the resulting vertical sur-
faces as left- or right-facing surfaces. The operation uses
another 3 x 3 convolution mask that is applied to the X
component (downtrack) of all of the vertical pixels derived
from the first operation. The second convolution mask is
given by

[i 0 —11
F = 1 0 — 1 (X value) . (4)

Li 0 —iJ

The results of applying this mask at column n of the image
will be positive for a left-facing surface since the downtrack
value at column n — 1 (to the left of n) is larger than the
downtrack values at column n + i that is to the right of
column II. Similarly, the results for right-facing surfaces
will be negative. For surfaces that are perpendicular to the
sensor's line of sight, F will be close to zero. Using this
information, the left- and right-facing vertical pixels can be
distinguished.

3.2 Three-Dimensional Hough Transform

In terms of extracting information from 3-D surfaces, many
approaches based on the techniques of differential geometry
exist. However, these approaches have mainly been used
on synthetic or short-range laboratory imagery. They will
not work well for data with even a small amount of noise.
For long-range data, such as the data used here, the Hough
transform can be used to extract geometric information from
potential targets. The Hough transform is usuallj used for
curve or line detection in a 2-D intensity 1 Because

each pixel is individually transformed, the Hough technique
is relatively unaffected by gaps and noise in the curve. The
idea can be extended to 3-D data to detect and measure
planar 1213

Ordinarily a plane is described by the following equation:

Ax+By+Cz=1 . (5)

However, we want to relate coefficients A, B, and C to the
pan angle (0), tilt angle (s), and normal distance (D). As
a result, a plane in the 3-D space can be described by the
following equation:

cost cosOx + cost sin0y + sinz =D , (6)

where 0, , and D are pan angle, tilt angle, and normal
distance, respectively.

The xyz values generated in this step are subsequently
used for surface extraction and Hough transformation cal-
culations. They are stored in an ASCII file for later use. To
see that the xyz values are basically correct, we plotted the
perspective view of a target using the xyz values with MAT-
LAB (a matrix-based mathematics software). Figure 5 shows
the plot of an M-60 tank with its pixels extracted using a
Doppler mask. Although some noise still exists, note that
the lower section, made up of the hull and the tracks, is
box-like. The upper section shows the existence of a turret
with part of the gun barrel in front.

3 Geometric Feature Extraction

3.1 Surface Extraction
Two very useful preprocessing operations were used in sur-
face extraction. The first tests for vertical displacement be-
tween two adjacent downrange pixels in order to separate
vertical pixels from horizontal pixels . The second separates
these candidate vertical pixels into left- and right-facing
vertical pixels.

The vertical test applies a 3 X 3 convolution mask to the
Z components of all the pixels in the image. The pixels are
treated as a spatial array in which each row is at a constant

324 / OPTICAL ENGINEERING / February 1992 / Vol. 31 No. 2



MODEL-BASED TARGET RECOGNITION

To detect a plane, we check for any peak in the accu-
mulator of these three parameters (O,,D). When 0, , and
D extend over a large range, the calculation can be very
time-consuming. However, since most surfaces are either
vertical or horizontal, the Hough transform for 3-D space
can be simplified. Because the tilt angle of a vertical surface
is zero, the equation reduces to

cosOx+sinOy=D . (7)

For horizontal surfaces, because the tilt angle is 90 deg, the
equation reduces to

z=D . (8)

These simplifications reduce calculation time greatly, yet
still produce reasonably good results.

Our first goal is applying the Hough transform to the
data is to estimate target orientation by detecting a domi-
nating vertical surface in the target. This is done by locating
the peak in the (O,D) accumulators using the xy values of
each pixel. We initially included all the pixels of the image
in calculating votes for each accumulator. Two target types,
the M-60 tank and the fuel truck, were used. Because neither
the M-60 tank nor the fuel truck consisted of large vertical
flat surfaces, we obtained poor results. We then tried to use
only the target pixels extracted with the Doppler mask. Still,
no clear peak was found to give us the correct target on-
entation. We then reasoned that most vehicles had either a
flat top or a large deck and the portion below that flat
horizontal surface was more box-like. Therefore, vertical
pixels below the major flat surface are more suitable for the
calculation of target orientation. Using this approach, cor-
rect orientation angles were obtained for most targets under
consideration.

3.3 Feature Extraction

After target orientation is determined, we can calculate geo-
metric features such as height, width, and length of the
target and the percentage of pixels above the target deck.
These features are used as the inputs to a model-based in-
ference net. These dimensions were computed by counting
the valid intervals within the Hough space along the proper
orientation. The specific steps involved in estimating the
orientation and the dimensions of a target are summarized
below

1 . With the Doppler data as a mask, segment the target's
major horizontal surface using the Hough transform.

2. Using only vertical pixels below the major horizontal
surface and only angles from —90 to 90 deg in the
Hough space, find the target orientation.

3. With the angles fixed, find the target dimensions by
counting valid intervals of the normal distance along
these angles.

4. Calculate "percentage of pixels" above and below
the major horizontal surface (the deck in the case of
the tank).

To find the feature of percentage of pixels, we first use
the Doppler channel to segment the target from the back-
ground. Then we look for a major horizontal surface by
using the Hough transform. Using the major horizontal sur-

Fig. 7 Hough transform results shown here by layers of different
intensities representing pixels in different accumulators. Clockwise
from left bottom: original range image, horizontal intervals, left-facing
vertical intervals, and right-facing vertical intervals.

face as a reference, one can easily count the number of
pixels above the surface as a percentage of the total number
of pixels within the target. As long as the Doppler data are
available, there should be no difficulty in obtaining the
percentage of pixels. If the Doppler data are not available,
obtaining a clean segmentation of the target from the ground
by some other means is necessary.

To measure dimensions, we use the Hough transform to
count distance intervals in the horizontal direction, left-
facing vertical direction, and right-facing vertical direction.
Figure 6 shows a Hough-space histogram indicating the valid
interval for the width measurement of a tank. By truncating
both ends of the curve, we obtain an approximation of the
dimension. Figure 7 shows the projected Hough space of
an M-60 tank being intensity-sliced in the horizontal direc-
tion, the right-facing vertical direction, and the left-facing
vertical direction. The left-facing intervals are at a 60 deg
norm, and the right-facing intervals are at a —30 deg norm,
and each interval is 1 m wide. The multiple layers displayed
by different intensities assigned to the intervals show how
the pixels are allocated in the Hough accumulators. For
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Target pixel distribution in Hough space
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Fig. 6 Measuring dimensions by estimating valid intervals of a Hough
space. The measurement here is for the width of a tank.



Table 1 Extracted target features.

Target Type tank1 tank tank tank truck2 truck
Analysis Result

Angle, deg3 60 10 10 -70 20 -70
Distance. meter 314 307 880 300 300 371
Width, meter 4.0 5.0 3.75 3.5 3.75 3.0
Length,. meter 6.5 5.25 5.0 6.0 12.0 12.0
Height, meter 3.0 3.5 3.5 3.0 3.25 3.25
% pixel above deck 29.8 46.1 30.5 33.3 6.4 3.8
Total no. of 1940 1365 466 1255 1551 1448
arget pixels

Note: 1. M-60 tank is 3.6 meter wide, 6.9 meter long and 3.2 meter high
2. Fuel truck is 2.46 meter wide, 12 meter long and 2.64 meter high
3. Perpendicular angle to the dominating vertical surface extracted by the

Bough transform

Fig. 8 Projection of six different targets to the horizontal plane. The
four to the left are tanks, and the two to the right are fuel trucks.

illustrative purposes , 1 -rn-wide intervals were used in the
figure to limit the number of layers displayed. In calculating
actual target dimensions, 0.25-rn intervals are used.

As a summary, Table 1 lists the results of computing
target orientation and dimensions for six different targets
involving four tanks and two fuel trucks. Figure 8 shows
the top-down views of these targets in a two-dimensional
xy plane. The Hough transform results appear quite consis-
tent with the angular orientations of these top-down views.
Those measurements on height, length, width, and the per-
centage of pixels above the deck are used as evidential inputs
to the expert system that is described next. Note that esti-
mated measurements do not agree exactly with the true
specifications. This is due to the approximation method
mentioned above as well as the noise inherent in the range
data.

4 Expert System Approach
Our image analysis of the range data produces certain de-
scriptions of the target, such as the target dimensions and
the percentage of pixels above the deck. These descriptions
are then processed by a model-based inference procedure
in the context of an expert system. Figure 9 shows such an
inference net for the hypothesis that ''the target is a tank."
The recognition model is essentially a rule-based decision
network. Given certain assumptions, a priori probabilities,
and conditional probabilities, the a posteriori probability is
then computed for each node based on Bayes's rule outlined
below

P(H/E)=P(E/H) * P(H)/P(E) , (9)

where
P(H) = a priori probability that hypothesis H is
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Fig. 9 Inference net for identifying a tank.

P(E) = a priori probability of the evidence
P(E/H) = conditional probability that if hypothesis H

is true then evidence E exists
P(H/E) = a posteriori probability that H is true in

light of evidence E.

Using Fig. 9 as an example, H2 is the hypothesis that the
target's overall dimensions are correct, and E2 is the evi-
dence that the target's length is correct. If we estimate that
the frequency of obtaining the correct overall dimension is
three out of 10 in a given scenario, then P(H2) =0.3. Nor-
mally, P(E2/H2) is 1 . If P(E2) is available, then the a
posteriori probability P(H2/E2) can be computed by using
Bayes's rule. In the model-building process, the a priori
probabilities associated with each node must be first known
or estimated. Then LS and LN, where LS equals measure
of support for the hypothesis if E is present and LN equals
measure of discredit for the hypothesis if E is missing, are
calculated for each node. Essentially, LS —P(H/E) and
W=P(—H/----E), where --H means that H is not true.

New information is added to the certainty factors of the
evidence nodes and P(E) is adjusted using the following
equations:

P'(E)=P(E)+[1—P(E)}CF/5, CF>0

=P(E)+P(E)CF/5, CF0
These changes in p(E2) yield new values for p(H2), which
are calculated by using Bayes's rule and the values of LS
and LN. In this example, H2 is the hypothesis that ' 'all three
measured dimensions are correct for the target.' 'These prob-
abilities are propagated up the inference network using an
AND relationship such that the new probability of F!2 is
determined by the minimum value obtained from the three-
dimensional measurements. This probability propagation is
performed throughout the entire system. Finally, the prob-
ability at the root is calculated, and a CF value is generated

LI

(10)

true
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for the hypothesis H1 . The approach taken here is very
similar to the hypothesis testing procedures developed in
the PROSPECTOR expert system. 14

The inference procedure is implemented in LISP running
on an IBM AT compatible PC. The model has been extended
to accommodate multiple hypotheses. For instance, after
installing several top-level hypotheses , the program can es-
timate the probabilities of each hypothesis and choose the
one most likely to be true. We tested the program with our
image analysis results in Table 1 using a battlefield scenario
in which equal numbers of tanks, APCs, 2½-ton trucks,
and fuel trucks exist. Their dimensions are available from
the Jane's report. The results showed that all tanks except
one were identified as tanks and both fuel trucks were iden-
tified as fuel trucks. In all the cases, both the length and
the percentage of pixels were the major features that sep-
arated the vehicle types.

5 Summary
The purpose of this paper is to describe the procedures of
utilizing laser radar imagery to classify target vehicles. For
range data analysis , our approach to preprocessing and fea-
ture extraction is straightforward and effective. Doppler im-
agery is very useful because of its capability of extracting
the silhouette from the target. The geometric information
obtained by the 3-D Hough transform is essential to the
successful operation of a model-based recognition proce-
dure. Our experimental results showed that by using ap-
propriate range and Doppler measurements, a model-based
expert system can perform the functions of recognizing po-
tential targets in a 3-D environment.

For future research, the usefulness of infrared and visible
data should be explored. Range data alone produce good
detection results for most scenarios, but the passive data
can provide additional features that will help reject decoys
and natural objects with dimensions similar to those of the
targets.15'16 A synergistic approach involving both active
and passive data should increase the accuracy of a recog-
nition system.
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