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Feasibility analysis of phase transition
signals based on e-bike rider behavior

Sheng Dong1, Jibiao Zhou1, Li Zhao2, Keshuang Tang3 and Renfa Yang1

Abstract
This article evaluates the feasibility of two scenarios of phase transition signals, that is, the flashing green together with
red–yellow light and the green countdown together with red countdown, at signalized intersections in terms of e-bike
rider behavior. An evaluation framework is first proposed. During the phase transition, the stop-go and start-up beha-
vioral parameters are collected at four intersections in Shanghai, China. Sensitivity analysis is then performed to identify
the most significant factors that influence the occurrence of traffic conflicts during the phase transition. Based on the
above analysis results, case studies were finally done to look into safety performance of the two scenarios of phase tran-
sition signals, indicated by the distributions of post encroachment time at the conflict point and the occurring probability
of extremely small post encroachment times. Research result shows the transition signal combination of green count-
down + red countdown tends to cause traffic accidents more easily and thus less safe compared to the transition signal
combination of flashing green + red-yellow. Unlike the conventional method generally based on the deterministic traffic
flow theory, the proposed methodology has a wide application. With the aid of it, traffic engineers are capable of design-
ing transition signals in a more scientific manner.
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Introduction

Electric bicycle, or electrically assisted bicycle (i.e.
e-bike), is a type of green transport which wins its
popularity with advantages such as high velocity and
easy operation. The number of e-bikes in China has
been increasing at an over 30% compound rate each
year, while the number has exceeded a 100million
worldwide. Extensive use of e-bikes results in traffic
chaos and safety problems at intersections. Statistic
from Traffic Police Department of China shows that
more than a half of the traffic accidents at intersections
are related to e-bikes, and approximately 90% of these
accidental e-bikes are involved in the phase transition
from green to red. However, despite its higher accident
rate in phase transition period, more attention has been
given to red light and green light phases in traffic man-
agement, especially for electric e-bikes.

Phase transition refers to the time period between
green phase and red phase, which serves as the transfer
of right-of-way. It generally includes two forms: (1) yel-
low light, green countdown (GC), flashing green (FG),
and so forth at the end of green phase and (2) red
countdown (RC), red–yellow (RY) light, and so forth
at the end of red phase. In Shanghai, the most com-
monly used forms are GC + RC and FG + RY.
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Green-to-red phase transition warns e-bike riders of
the upcoming red light so as to avoid red light viola-
tions. Red-to-green phase transition indicates the riders
of the upcoming green light with the purpose of reduc-
ing start-up delay. Thus, a rationally designed phase
transition shall effectively improve safety and efficiency
of the intersection. In reality, however, the feasibility of
phase transition is still controversial due largely to the
lack of standard guidance and scientific evaluation
method in China.

This article studies on the feasibility of phase transi-
tions based on comprehensive data of e-bike rider beha-
viors. Stop-go behavior model and start-up behavior
model are developed to evaluate two scenarios of tran-
sition phase, that is, GC + RC and FG + RY. The
purpose of these models is to improve the riding safety
and efficiency at the same time. The study also provides
theoretical and practical references to the design of sig-
nalized intersections.

Literature review

A great deal of study efforts have been made to
improve the safety of the bicyclists at the mixed signa-
lized intersections in the last decades. These studies can
be mainly categorized into two fields, which are the
characteristics of rider behaviors and the influence of
the transition phase.

The characteristics of rider’s behaviors have been
intensively studied with respect to the critical para-
meters. Bicycle’s start-up response time was investi-
gated based on field data by Wang and Wei1 and Dong
et al.2 It was found that bicyclist’s start-up response
time is much smaller than that of motorist’s start-up
response time, particularly if a red-and-yellow signal is
applied. Taylor3 and Whitt and Wilson4 discussed the
theoretical limits of bicycle’s braking deceleration rates,
taking weather and safety constraints into consider-
ation. A few other studies have attempted to explore
the impacts of the bicycle rider’s characteristics, such as
gender and age, on the behavior choices.5,6

On the other side, plenty of studies dealt with motor-
ist’s behavior during transition signals. Knoflacher7 com-
pared deceleration rate with accident rates at
intersections with FG transition phase. The study found
that higher deceleration rate leads to higher probability
of rear-end collisions. After observing driver behaviors
during the FG, H Köll et al.8 concluded that the FG
transition phase can reduce dilemma zone while at the
same time the rear-end accidents are increased. A com-
parative study between FG and the simultaneous display
of green light and flashing yellow was done by Mahalel
and Zaidel9 through simulation. The results showed that
the latter one reduces red light violations. Tang and
Nakamura10 developed a cumulative logit model to

predict driver’s stop-line crossing time. They further eval-
uated the impacts of the group-based signal control strat-
egy on driver behavior during the transition phase.11

In addition, our research team has been focusing on
bicycle rider’s behaviors and transition phase. We
began with the comparative study of e-bike rider’s
behaviors, in terms of the red light violation and start-
up delay, during the green-to-red transition and the
red-to-green transition. The results indicated that
the GC shows larger potential hazard compared with
the FG.2 Our second study focused on comparative
analysis of e-bike decision zones, which showed that
the GC increased the complexity of decision-making,
thus induced more wrong decisions.12 We also studied
the estimated time to the stop-line at the decision point,
which is finalized as the dominant independent factor
to stop-go decision of the e-bike riders.13

In summary, previous research concentrated mainly
on the effect of green-to-red transition or red-to-green
transition separately. So far, there is no research that
combined the influences of both. This, plus the consis-
tency of our research, motivates the topic of feasibility
study on phase transition signals of GC + RC and
FG + RY from the perspective of e-bike rider beha-
vior in the article.

Evaluation framework

The methodology of this study is summarized as a flow
chart in Figure 1, including several main steps as
follows.

First, collect and preliminarily process data. Conflict
data are extracted from two crossed parties during
phase transition: one is the last vehicle in the former
phase and the other is the first released vehicle in the
next phase. The key parameters of the former party
include vehicle’s approach speed, clearance speed, accel-
eration and deceleration rates, distance to stop-line
when the phase starts to change, time point when vehi-
cle passed the stop-line, and so on, while the latter party
features mainly on start-up time, acceleration in start-
up process, and so on.

Second, analyze the data listed above and develop a
stop-go behavior model for the last vehicle in the for-
mer phase and a start-up behavior model for the first
released vehicle in next phase. Third, establish a simu-
lation model based on distributions of the parameters
as well as the two driving behavior models (i.e. stop-go
model and start-up model). The post encroachment
time (PET) is selected as a comprehensive index to vali-
date the simulation model. Then the sensitivity of the
simulation model is analyzed. The multiple regression
model is used to identify the significantly contributory
variables to PET and their contributory degree.10,13,14

Finally, by setting the threshold of critical PET as 2 s10
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to the PET distribution curve, the feasibility of the two
combined phase transition GC + RC and FG + RY
is evaluated by Monte Carlo simulation (MCS) at
selected intersections.

Data collection and reduction

Conflicts’ types

The conflicts can be classified into two types, as shown
in Figure 2: one is the clearing through e-bikes and the
opposing entering left-turn vehicles (see Figure 2(a))
and the other is the clearing left-turn vehicles and the
entering through e-bikes which often starts up before
onset of green light (see Figure 2(b)).

Site description

The feasibility study of transition phase requires accu-
rate individual driving behavior data which is obtained
by field survey. Thus, four intersections in Shanghai
have been chosen as these sites applied either
GC + RC or FG + RY transition phase.12 Major
characteristics of these four intersections are summar-
ized in Table 1.

Data collection and reduction

Field survey was conducted during off-peak hours from
12:00 to 16:00 on a normal weekday and under good
weather condition. Two high-resolution cameras were
used: one camera was placed on building at a height of
20m, approximately 60m upstream of the intersection
and facing toward the approach lanes. The purpose of
this camera is mainly to obtain trajectories of e-bikes
and motorized vehicles of the entire stop-go process as
they approach the intersection. The other camera was
positioned at the roadside of the approach lane, aiming
to record the trajectories of e-bikes and motorized

Figure 1. Evaluation framework.

Figure 2. Traffic conflicts between e-bikes and vehicles at intersections: (a) traffic conflict between through clearing e-bikes and
left-turn entering vehicles and (b) traffic conflicts between left-turn clearing vehicles and through entering e-bikes.
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vehicles within the intersection. The signal timing and
phase transition will be collected at the same time.

An image-processing software was utilized to extract
trajectory data of e-bikes and motorized vehicles. By
the input of the raw discrete trajectory, the software
can automatically reconstruct a complete vehicle/e-bike
trajectory with high accuracy. The image-processing
software also reported PET data, which is calculated
by the time difference between two conflicted parties at
the conflict point (where the two trajectories crossed).
Detailed video shooting and processing can be found in
the authors’ previous work.13 After synchronizing the
trajectories of vehicles and e-bikes with the signal tim-
ing and phase transition, 315 valid vehicle and e-bike
events for green-to-red phase transition scenario and
400 for red-to-green phase transition scenario were
finalized for model specification.

Model development

Statistical analysis of rider behavior

In order to evaluate the feasibility of phase transition,
statistical analyses were conducted for key characteristic

parameters involved in e-bikes and vehicles, which
includes approach speed, estimated time to the stop-line,
speed at the decision point and distance to stop-line in
clearing behaviors, and acceleration rate and reaction
time in start-up behaviors. Typical statistics, including
mean value, standard deviation, distribution, and confi-
dence level, were calculated for such characteristic para-
meters and are summarized in Table 2. Note that the
time passing the stop-line at the onset of yellow is 0, and
start-up time at the onset of green is 0.

Stop-go behavior models

To further explore the impacts of FG and GC, binary
logistic regression models were developed to interpret
the stop-go decision behavior of riders at the onset of
yellow light. Previous study indicates that riders tend
to make comprehensive judgment before they decide to
stop or go according to their approaching speed V and
the distance to the stop-line D.13

The stop probability of a rider at the decision point
is calculated using a logistic regression function given in
equation (1). The estimated model coefficients are high-
lighted in Table 3

Table 1. Characteristics of the observed intersections.

Wuning Rd. and
Daduhe Rd.
(Westbound)

Guoding Rd. and
Huangxing Rd.
(Eastbound)

Dalian Rd. and
Siping Rd.
(Westbound)

Guoding Rd. and
Siping Rd.
(Eastbound)

Traffic volume (veh/h) 1380 1917 1607 1830
Speed limit (km/h) 50 50 50 50
Width (m) 40 45 45 43
Cycle length (s) 220 161 178 145
Number of phases 3 4 4 4
Green time (s) 53 40 38 50
Yellow time (s) 3 3 3 3
All-red time (s) 1 1 1 1
Transition signals FG + RY FG + RY GC + RC GC + RC

FG: flashing green; RY: red–yellow; GC: green countdown; RC: red countdown.

Table 2. Key behavioral parameters of e-bike riders under two scenarios.

Variables Symbol Distribution Scenario 1 (FG + RY) Scenario 2 (GC + RC)

Mean Std.
dev.

99% CI Mean Std.
dev.

99% CI

Stop-go Approach speed (km/h) V# Normal 23.43 6.62 11.2, 39.5 20.15 4.60 8.8, 35.9
Time passing the stop-line (s) Tc Normal 1.42 1.64 22.3, 4.3 0.46 1.98 22.8, 4.0
Speed at the decision
point (km/h)

V Normal 22.50 6.72 9.6, 45.9 19.08 5.44 8.0, 35.9

Distance to stop-line (m) D Normal 19.82 10.13 1.1, 50.0 18.54 7.72 5.2, 41.3
Start-up Acceleration rate (m/s2) a Normal 0.53 0.23 0.2, 1.1 0.50 0.21 0.3, 1.1

Reaction time at the
onset of green (s)

t# Normal 20.63 1.56 22.8, 2.5 23.34 2.82 28.8, 1.1

FG: flashing green; RY: red–yellow; GC: green countdown; RC: red countdown; CI: confidence interval.
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Pstop =
1

1+ e�a�b1V�b2D
ð1Þ

where Pstop is the stopping probability; a is the constant;
bi is the estimated coefficient for variable, i is 1 or 2; V is
the speed at the decision point (m/s); and D is the dis-
tance between the decision point and stop-line (m).

It can be found that both V and D have significant
impacts on the stopping probability of riders. Also,
riders are more sensitive to approach speed V as com-
pared with distance D.

TTS is potential time, that is, the time to stop- line,
if the driver continues with unchanged speed from the
first possible decision point. Figure 3 displays the rela-
tionships between the stopping probability and TTS for
FG and GC. It shows that the stop probability for GC

is greater than that of FG under the same TTS value
when TTS is less than 11 s.

Start-up behavior models

A temporal–spatial model (i.e. start-up trajectories
around the onset of green light) was employed to
explain the relationship between driving distance and
start-up time. Trajectories data were standardized to
eliminate disparities in start-up time among different
start-up types. Besides, the final point of a start-up
curve was identified as the time passing the intersec-
tion, which accounts for the influences of traffic flows
at the exit lanes. E-bike start-up trajectories at the
onset of green light are presented in Figure 4.

Table 3. Stopping probability models in terms of decision-making time.

Model Variables Coef.(B) Std. err. Wales Sig. Exp(B)

Model 1
(decision-making for FG)

V 20.214 0.062 11.791 0.001 0.807
D 0.168 0.032 27.108 0.000 1.183
Const. 20.367 1.078 0.116 0.734 0.693

22log = 64.473, Cox and Snell R2 = 0.496, Nagelkerke R2 = 0.708, hit ratio = 89.5%, sample size = 153
Model 2
(decision-making for GC)

V 20.115 0.030 14.262 0.000 0.892
D 0.053 0.013 15.687 0.000 1.055
Const. 0.496 0.529 0.879 0.348 1.642

22log = 216.220, Cox and Snell R2 = 0.121, Nagelkerke R2 = 0.165, hit ratio = 69.1%, sample size = 162

FG: flashing green; GC: green countdown.

Coef.(B) is coefficient; Exp(B) is odds ratio.

Figure 3. Stopping probability as a function of TTS for FG and GC.

Dong et al. 5



Trajectories in the temporal–spatial model start from
the moment when e-bikes start-up and end when they
exit the intersection. The x-coordinate represents the
time in the process of start-up, while the y-coordinate
represents the distance to stop-line accordingly. The
relationships between the dependent variable (y-axis)
and the independent variable (x-axis) are expressed in
equations (2) and (3) for RY phase transition scenario
and in equations (4) and (5) for RC phase transition
scenario, respectively. These equations show that the

start-up process could generally be divided into two
parts: the process of initial acceleration and the state of
smooth ride.

Start-up model for RY

y= 0:315x2 + 1:4674x+ 1:8649

(� 5\x\3) R2 = 0:9998
ð2Þ

y= 4:1635x� 4:1546 (3\x\12) R2 = 0:9996 ð3Þ

Figure 4. Observed and estimated start-up trajectories of e-bikes: (a) start-up trajectories for RY and (b) start-up trajectories for RC.

6 Advances in Mechanical Engineering



Start-up model for RC

y= 0:315x2 + 1:4674x+ 1:8649

(� 6\x\0) R2 = 0:9998
ð4Þ

y= 5:1444x+ 17:758 (0\x\12) R2 = 0:9997 ð5Þ

Sensitivity analysis

Model validation based on MCS

MCS technique is adopted in this study to perform sen-
sitivity analysis. MCS method is a class of computa-
tional algorithms that rely on repeated random
sampling to compute results. It is applicable when an
exact result with a deterministic algorithm is infeasible
or impossible.13 Recently, MCS has been widely used
in the field of traffic engineering.14–17 The conduct of
feasibility analysis for phase transition could not
merely rely on field data not only because of their high
cost in data acquisition (in the respect of manpower
and material resources) but also due to their lack of
objectivity and portability for feasibility evaluation in
the presence of small probability events such as serious
conflicts. In summary, the sensitivity analysis follows
the following four steps:

Step 1: the major characteristic parameters, includ-
ing approach speed, stop-line crossing time, accel-
eration rate, and reaction time at the onset of green
light. The distributions of the inputs and successive

model to perform the MCS are provided in the pre-
vious section of this article.
Step 2: validation of MCS. Obtain the calculated
occurrence rate of critical PET\ 2 with 5000-time
repeated runs, compare the calculated rate and the
observed rate to verify the validity of MCS, and
finally complete model validation by adjusting criti-
cal parameters.
Step 3: conduct sensitivity analysis based on the fre-
quency distribution of PET and a multiple regression
model. Determine key sensitive parameters to PET
and obtain percentage contribution of PET.
Step 4: calculate the frequency of clearance failure.
In this step, N (PET\ 2) represents the counts of
serious conflict between vehicles and e-bikes. After a
5000-time runs, the probability of critical PET equals
to N (PET\ 2) divided by 5000. Use MCS to obtain
the PET in terms of conflict traffic flows.

As shown in Figure 5, the distribution curve of simu-
lation data agrees well with that of the observation
data, indicating an effective performance of the simula-
tion model.

Sensitivity analysis of input variables

Rider behavior of the last clearing vehicle during green-
to-red phase transition (characterized by stop-line
crossing time, approach speed, and distance to the
stop-line) and the first entering vehicle during red-to-
green phase transition (characterized by reaction time

Figure 5. Frequency histograms and cumulative probabilities of measured and observed PETs.
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at the onset of green and acceleration rate) are associ-
ated with the PET.

One objective of sensitivity analysis for PET is to
identify the sensitive variables. A multiple regression
model was applied for the sensitivity analysis of PET.
The regression model is given in equation (6) and the
estimated model coefficients are presented in Table 4

PET = � 2:329a+ 0:991t � 0:994Tc

� 0:056V 9+ 0:001D+ 8:768
ð6Þ

where a is the acceleration rate (s), t is the reaction time
at the onset of green (s), Tc is the time passing the stop-
line (s), V# is the approach speed (km/s), and D is the
distance to stop-line at decision point (m).

It shows that V#, Tc, a, and t are statistically signifi-
cant factors that influence the occurrence probability of
risky behavior at the confidence level of 99%. Among
which V#, Tc, and a have negative relationships with the
PET, while t is positively related to it. This indicates
that the conflicts are highly relevant to e-bike riders’
start-up time and behavior disparities, apart from rider
stop-go behavior in the end of green light phase.

The other objective of sensitivity analysis for PET is
to find out which parameters have the greatest impact
on the dependent variable, the degree of PET. The ana-
lytic hierarchy process was then adopted to achieve this
objective, as shown in the result in Figure 6.

Figure 6 presents the percentage contribution of the
four major inputs, which are consistent with the regres-
sion coefficients shown in Table 3. It was found that Tc

is the highest contributory factor, 84.8%, followed by a,
10.4%, t, 3.6%, and V# contributes the least, 1.2%. The
high percentage contributions of Tc and a indicate that
motorized vehicle and e-bike conflicts not only relate to
phase transition but also to vehicles’ driving behaviors,
which conforms with the reality in most cases.

Feasibility analysis

Based on MCS constructed by the selected parameters
and models, we can obtain PET of conflict traffic flows.
Figure 7 shows PET percentage and PET cumulative

percentage curve of all observed conflicts. Table 5
shows statistical characteristics of PET and probability
of critical PET for GC + RC and FG + RY,
respectively.

Figure 7 shows very similar distributions of PET for
the two FG + RY and GC + RC scenarios. The per-
centage of PET arises first (tops at the 5–6 s interval)
and then decreases, indicating that there is not essen-
tially difference of riders’ stop-go decision-making
mechanism at the approach between FG + RY and
GC + RC. Specifically, PET occurrence percentage of
GC + RC is significantly larger than that of
FG + RY when PET\ 3 s and PET. 7 s, while it is
the opposite when PET lies within 4–7 s, suggesting a
higher dispersion of PET for GC + RC. The reason
behind could be that countdown signals provide to
riders with earlier notice of signal switching, which
might cause more uncertainty in the riders’ stop-go
decision-making process for the GC phase transition
scenario and cause larger deviation among start-up
behaviors for the RC phase transition scenario (where
aggressive riders tend to start-up before phase turns to
green while conservative riders would prefer to wait till
phase changes).

PET value should be selected to conduct further fea-
sibility study for the two combined phase transition
scenarios. If the conflicting vehicles are regarded as

Table 4. Estimated coefficients and parameters of the regression model for PET.

Variables Coefficients Std. dev. t Sig. Correlation
coefficient

Constant 8.768 0.304 28.814 0.000 –
V# 20.056 0.013 24.271 0.000 20.027
D 0.001 0.000 1.833 0.067 0.013
Tc 20.994 0.002 2504.531 0.000 20.937
t 0.991 0.019 53.215 0.000 0.069
a 22.329 0.014 2172.099 0.000 20.305

Figure 6. Percentage contributions of input variables to PET.
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independent individuals, approach speed and accelera-
tion rate would be constant before they reach the con-
flicting point. Based on this assumption, serious
conflicts caused by clearance failure or vehicle’s early
arrival could be defined by setting a threshold of PET.
By this way, the probability of a serious conflict can be
estimated by calculating the occurrence rate of critical
PET values. Previous studies15 recommend a threshold
value of PET at 2.0 s in determining whether a motor-
ized vehicle and e-bike conflict is serious or not. In
addition, the critical PET values account for 4.2% for
GC + RC scenario and 1.1% for FG + RY scenario,
which indicates the latter is safer than the former
regarding potential serious conflicts.

Conclusion

Some main conclusions are drawn based on comparison
analysis of the two different phase transition scenarios:

1. Compared to FG + RY, GC + RC has a
higher probability of traffic accidents, which
denotes a less safe scenario. Countdown signal
should be used with caution from the perspec-
tive of protecting the more vulnerable e-bike
riders.

2. Contributory factors such as approach speed,
time point when vehicle passed the stop-line,
acceleration rate, and reaction time at the onset
of green play important roles in the vehicle and
e-bike conflict. Therefore, in addition to traffic
facility improvements, traffic management such
as limiting the approaching speed is an efficient
way to improve the safety of the mixed traffic
intersections.

3. The proposed methodology in this study is easy
to apply to mixed traffic intersections. This
makes the analysis of phase transition possible
for different traffic conditions and geometric
conditions.

As the feasibility evaluation of this article is based
on the study of microscopic driving behavior character-
istics, future study might improve the work by obtain-
ing a larger sample with more diversified vehicle

Figure 7. Comparisons on distributions of PET for FG + RY and GC + RC.

Table 5. Comparisons on statistical characteristics and
probability of critical PET.

Scenario FG + RY GC + RC

Distribution Normal Normal
15th PET (s) 2.52 2.35
85th PET (s) 7.20 7.08
Min. (s) 1.29 0.70
Max. (s) 9.95 10.00
Std. dev. (s) 1.81 2.27
K-S 1.53 2.54
95% Wald CI (s) 2.30, 8.88 1.67, 9.67
PCF (PET\2 s) 1.10% 4.40%

FG: flashing green; RY: red–yellow; GC: green countdown; RC: red

countdown; PET: post encroachment time; CI: confidence interval; K-S:

Kolmogorov-Smirnov Test.

Dong et al. 9



characteristics and expect to realize simulation of
decision-making process.
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