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Abstract. In vitro embryo production has evolved rapidly in the horse over the past decade, but blastocyst rates from
vitrified equine oocytes remain quite poor and further research is needed to warrant application. Oocyte vitrification is

affected by several technical and biological factors. In the horse, short exposure of immature oocytes to the combination of
permeating and non-permeating cryoprotective agents has been associated with the best results so far. High cooling and
warming rates are also crucial and can be obtained by using minimal volumes and open cryodevices. Vitrification of

in vivo-matured oocytes has yielded better results, but is less practical. The presence of the corona radiata seems to partially
protect those factors that are necessary for the construction of the normal spindle and for chromosome alignment, but
multiple layers of cumulus cells may impair permeation of cryoprotective agents. In addition to the spindle, the oolemma

and mitochondria are also particularly sensitive to vitrification damage, which should be minimised in future vitrification
procedures. This review presents promising protocols and novel strategies in equine oocyte vitrification, with a focus on
blastocyst development and foal production as most reliable outcome parameters.
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Introduction

Cryopreservation enables the preservation of living cells and

tissues for an extended period of time by applying very low
subzero temperatures (less than �1308C) that stop cell metab-
olism (Mazur 1984; Pegg 2007). Significant progress in cryo-

preservation strategies has had an important effect in many
fields, with possibly the most significant effect on reproductive
medicine (Mandawala et al. 2016). The first report of oocyte
cryopreservation dates back to 1958 (Sherman and Lin 1958),

but this was only at �108C for periods up to 3.5 h, and it took
until the first decade of this century for efficient protocols to be
developed and this was predominantly driven by research in

bovine, human and murine oocytes (Saragusty and Arav 2011;
Vajta 2013). Now, mature-stage oocyte cryopreservation is
offered as a routine technique in human fertility centres,

resulting in equal rates of clinical pregnancy and implantation
compared with those obtained using fresh oocytes (Rienzi et al.
2010; Parmegiani et al. 2011). In domestic animals, live births

have been obtained after oocyte cryopreservation in the mouse
(Parkening et al. 1976), rabbit (Al-Hasani et al. 1989), cow

(Fuku et al. 1992), horse (Maclellan et al. 2002; Ortiz-Escribano
et al. 2017), pig (Somfai et al. 2014) and cat (Pope et al. 2012).
In contrast with the situation in humans, the clinical efficiency in

animal species is not satisfactory (Ducheyne et al. 2019; Mogas
2019). Oocyte cryopreservation is only of practical use in a
particular animal species if the associated assisted reproductive
technologies (i.e. IVM, IVF, in vitro culture and embryo

transfer) have been optimised to support it.
In the horse, in vitro embryo production (IVEP) has become a

commercial reality in the past decade and equine reproduction

centres now increasingly offer ovumpick-up (OPU) followed by
intracytoplasmic sperm injection (ICSI) to overcome fertility
problems in mares and stallions, to increase the offspring of a

single frozen sperm straw and to plan and increase the propaga-
tion of valuable female genetics (Claes et al. 2016;Maserati and
Mutto 2016;Morris 2018). An important complement to clinical
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ICSI would be the ability to cryopreserve oocytes, which would
improve overall flexibility. Oocyte cryopreservation enables:

(1) decisions regarding the fertilising stallion for ICSI to be
postponed; (2) oocytes to be salvaged from recently deceased
animals in places where IVEP is not available; (3) oocytes to be

collected and stored outside the reproductive season; and
(4) good-quality germ lines of young mares to be preserved
before they are enrolled in competition, because old mares

generally have a lower number of follicles that can be punctured
by OPU, which affects the chances of an embryo after IVEP
(Cuervo-Arango et al. 2019). Moreover, horse oocyte banks
would allow worldwide spread of valuable female genetics for

commercial purposes or for breeding programs of endangered
equid breeds and species (Smits et al. 2012).Mostwild equids are
currently endangered or threatened with extinction (Adams et al.

2009). In addition, the number of horse breeds has been shrinking
due to increasingmechanisation (Bodó andAlderson 2005; Smits
et al. 2012) and, at the other end of the spectrum, some remaining

non-endangered horse breeds consist of a highly inbred popula-
tion with a high burden of hereditary diseases due to intensive
selection (Ducro et al. 2015; Leegwater et al. 2016). Cryopre-
served oocytes could be included in a genome resource bank and

could be used later to increase the gene pool in horse breed
populations with a narrow genetic base, save endangered species
from extinction and potentially re-establish extinct species.

Finally, storage of oocytes fromabattoir-derived ovaries could
provide continuous availability ofmaterial for future research and
cloning purposes for countries where oocyte availability is

limited (Hinrichs 2018).Cloning is used commercially to increase
or restore the reproductive capacity of animalswith a high genetic
value, but nuclear transfer efficiency remains low and the proce-

dure consumes many oocytes (Olivera et al. 2016; Gambini and
Maserati 2017). Specialised laboratories could potentially use
cryobanked equine oocytes as a source for oocyte-consuming
cloning procedures. The production of blastocysts and the birth of

healthy clones from cryopreserved oocytes in mouse (Sung et al.
2010; Hirata et al. 2011), cattle (Hou et al. 2005; Park et al. 2015)
and sheep (Moawad et al. 2011) support this assumption, but no

reports on cloned equine embryos using cryopreserved oocytes
have been published so far. A summary of potential applications
is outlined in Fig. 1.

Up to now, the efficiency of equine oocyte cryopreservation
has been limited and only a few foals have been born resulting
frommature or immature oocytes cryopreserved by vitrification
(Maclellan et al. 2002; Ortiz-Escribano et al. 2017). Further

research is needed to allow clinical application. This review
discusses the techniques used to cryopreserve equine oocytes
and the outcomes of different attempts over 25 years of research.

Different strategies to increase efficiency rates aiming at tech-
nical or biological factors in the horse and promising strategies
used in other species are assessed. The final part of the review

focuses on the application potential and future perspectives of
equine oocyte cryopreservation.

The (equine) oocyte and vitrification: a better match

Two cryopreservation techniques have primarily been used for
the preservation of biological samples: slow freezing and

vitrification. In slow freezing, a relatively low concentration of
cryoprotective agents (CPAs; 5–10%) is used and extracellular

ice formation is initiated, or at least allowed to happen. Extra-
cellular freezing initiates an efflux of water from the cells,
which, if cooling is adequately slow, can be sufficient to prevent

damaging intracellular ice formation. In vitrification, high
CPA levels (30–40%) combined with a high cooling rate
(e.g. 70 0008C min�1; Paredes and Mazur 2013) are used to

prevent intra- and extracellular ice formation altogether.
Although initial successes in oocyte cryopreservation were

obtained by ‘slow-freezing’ methods, notably in mice and
human, research on vitrification has accelerated in recent years

and vitrification has now gained a foothold. Results achieved
with the vitrification of oocytes of different species are generally
better compared with slow freezing (Edgar and Gook 2012;

Rienzi et al. 2017). Here, we focus only on oocyte vitrification
because, in the horse, so far only vitrified oocytes have been
shown to support embryo development (Table 1).

Vitrification means that a liquid is transformed to an amor-
phous (i.e. not crystalline) glass-like solid state. In aqueous
systems, this means that a solid state is reached without intra- or
extracellular ice formation. Stable vitrification of aqueous

solutions can be achieved by lowering the water ‘concentration’
(officially the chemical potential of water), which can be done
by increasing the concentration of solutes to very high levels. At

certain very high CPA concentrations, there is no thermody-
namic tendency for ice formation until glass transition tempera-
ture is reached (stable vitrification), and therefore there is no

need for rapid cooling or warming. At low cooling rates and
atmospheric pressure, the required solute concentration may be
as high as 80%w/w (Fahy et al. 1987; Chen et al. 2000). In order

to achieve such solute concentration, the ‘classical’ membrane
permeating CPAs, such as glycerol, ethylene glycol, propylene
glycol and dimethyl sulfoxide (DMSO), complemented by non-
permeating solutes, such as sugars, often referred to as non-

permeating CPAs, are often used. However, at these very high
concentrations, CPAs, or the very lowwater concentration itself,
are often toxic for cells. At lower solute concentrations, ice

formation can occur, but can be ‘outrun’ at very high cooling
rates because glass transition may be reached before ice nucle-
ation or significant growth of ice primordia have occurred

(metastable vitrification). Vitrified oocytes can then be stored
at �1968C in liquid nitrogen, a temperature so low that transla-
tional motion of molecules has completely ceased (Fig. 2). A
major advantage of vitrification is the low risk of intracellular

ice formation. Other advantages are the speed of the whole
process compared with slow freezing and the fact that there is no
need for expensive equipment.

In the horse, it seems that oocytes can tolerate the CPA
concentrations used in current protocols (30–40%) for only a
short period of time (Ortiz-Escribano et al. 2017; Canesin et al.

2018). Although some recent protocols for equine oocytes
reported similar maturation and cleavage rates for fresh and
vitrified oocytes (Canesin et al. 2017; Ortiz-Escribano et al.

2017), blastocyst rates were always severely affected after oocyte
vitrification (Table 1).OnlyMaclellan et al. (2010) have obtained
high blastocyst (40%) and pregnancy (66%) rates after vitrifica-
tion of in vivo-matured oocytes. However, using in vivo-matured

454 Reproduction, Fertility and Development T. De Coster et al.



OPU sessions every 14 days Slaughterhouse or deceased mare

Superovulation associated
problems

Monitoring and
hormonal treatment

Wild equid oocyte
Domestic equid oocyte

Increased cooling velocity

Increased warming velocity

Mature oocyte Cloned embryo

In vivo-like culture

Warming

Flexible genetic improvement Increased genetic pool Increased number animals

Domestic non-
endangered equids

Endangered wild and
domestic equids

Culture and transfer
non-equine species

In situ Ex situ

Culture facility
required

In vivo-like culture

Culture

Transfer

ICSI
Transfer

SCNT
∗∗∗

A
pp

lic
at

io
n

G
en

om
e 

re
so

ur
ce

 b
an

ki
ng

C
ol

le
ct

io
n

∗∗
∗

Fig. 1. Equine oocyte cryopreservation framed within equine in vitro production. Mature and immature oocytes can be collected from

ovaries of living or deceased mares. Because superovulation is problematic in the horse, only one or two mature oocytes can be collected

from the ovaries of live mares by ovum pick-up (OPU), whereas 10–20 immature oocytes can be collected and this does not require

hormone treatment and monitoring of the mare. Mature oocytes can be stored directly (black dashed arrow; in vivo matured), whereas

immature oocytes can be stored directly (red dotted arrow) or after in vitro culture (blue dash-dotted arrow; IVM). Oocytes stored in the

genome resource bank can be transported and warmed at a convenient time and place, after which they are fertilised by intracytoplasmic

sperm injection (ICSI) and further processed as in the normal in vitro embryo production (IVEP) protocol. Resulting blastocysts are

transferred to a recipient mare or can be stored again for later transfer. In addition, vitrified mature slaughterhouse, OPU and ICSI leftover

oocytes could serve as a source for the process of somatic cell nuclear transfer (SCNT), allowing horse cloning. The use of cryopreserved

oocytes would allow a more flexible genetic improvement of sport horses and non-endangered domestic breeds and increase the gene pool

in all equid families with a narrow genetic basis, such as endangered equid species and breeds. ***There are no reports of cloned animals

resulting from equine vitrified oocytes or of the cryopreservation of embryos produced from a vitrified oocyte.Warning signs ( ) indicate

non-optimal aspects of the process. Optimisation of one or more of these aspects may increase vitrification efficiency.
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equine oocytes has practical limitations, such as the requirements
for constant monitoring of follicle growth, hormone treatment in

the live mare and fixed timing of ICSI. Moreover, there is no
reliable, commercially available route to ovarian superstimulation
in the mare (Roser and Meyers-Brown 2012). Therefore, equine
oocytes are generally recovered by transvaginal aspiration of the

immature follicles, which is more efficient for IVEP in the horse
(Jacobson et al. 2010; Hinrichs 2018). Recovery of immature
oocytes requires subsequent IVM before or after oocyte vitrifica-

tion but, in this case, embryo development and foaling rates
are variable and low (0–15% and 20% respectively; Table 1).
The current efficiency of equine immature oocyte vitrification

precludes clinical application (Hinrichs 2018).

Strategies to improve oocyte vitrification

Successful outcome of oocyte vitrification is affected by several
technical and biological factors, which are shown in Fig. 3 and

discussed in the following paragraphs.

Technical aspects

CPAs: for better or worse

Membrane-permeating CPAs reduce osmotic damage dur-

ing vitrification. As explained above, very high solute con-
centrations can prevent the formation of ice when an aqueous
solution is cooled. This is due, in large part, to the fact that the

presence of solutes lowers the freezing point. By increasing the
solute concentration to very high levels, the freezing point can
be lowered to the glass transition temperature, which makes

vitrification possible. Membrane-permeating CPAs are a spe-
cial case because they can penetrate the cells, which reduces
the strong osmotic shrinking of cells and prevents extremely
high intracellular electrolyte (salt) concentrations that would

occur if only membrane non-permeating solutes were used.
In equine oocyte vitrification, glycerol, propylene glycol,

ethylene glycol, formamide and DMSO have been used
as permeating CPAs, alone or in combination with each other

and/or non-permeating CPAs, macromolecules or synthetic
polymers (Table 1).

The damage caused by the specific permeating CPAs varies
depending on their permeability and chemical and physico-

chemical properties, as well as on the maturation stage of the
oocyte and the temperature at which they are introduced. The
permeability of the CPA is important for the osmotic response of

the oocyte, which can have implications for potential osmotic
damage. In general, high permeability and low intrinsic toxicity
are desired. In human mature oocytes, ethylene glycol has

approximately half the permeability of propylene glycol and
DMSO, but is preferred due to its low toxicity (Best 2015). In the
horse, ethylene glycol was mostly used in combination with non-

permeatingCPAs topreserve equine oocytes. However, itwas not
until combinations of ethylene glycol–DMSO–sucrose (Canesin
et al. 2017; Ortiz-Escribano et al. 2017) and propylene glycol–
ethylene glycol–trehalose (Canesin et al. 2017, 2018) were used

that blastocyst development was obtained from vitrified equine
oocytes (Table 1). This could be due to the fact that a combination
of two permeating CPAs can decrease specific CPA toxicity

because of the lower concentrations of each CPA used (Vajta and
Kuwayama 2006). Only one study directly compared protocols
using different CPAs and found the protocol using ethylene

glycol–propylene glycol–trehalose to be the most effective,
although toxicity was still present (Canesin et al. 2017).

The use of extracellular non-permeating CPAs, including
sugars (sucrose, trehalose), macromolecules (Ficoll, bovine

serum albumin) and synthetic (co)polymers like synthetic ice
blockers (polyvinylpyrrolidone, polyvinyl alcohol, SuperCool
X-1000 (21st Century Medicine)), may decrease the necessary

concentration of toxic permeating CPAs and reduce osmotic
damage during warming. Moreover, non-permeating CPAs
increase the viscosity of the extracellular solution (Kasai

Equilibration solution

Step 1 Step 2 Step 3 Step 4 Step 5

Shrinking

H2O movements P-CPA movements

Swelling to (approx.)
original volume

Shrinking again Loading in minimal
volume

Fast cooling
(70 000°C min–1)
glass formation

Volume restoration

NP-CPA NP-CPA

Vitrification solution Loading onto cryodevice Plunging into LN2 Warming solution

NP-CPA

Fig. 2. Schematic representation of the different steps of oocyte vitrification and the associated changes the oocytes must endure.

Oocytes shrink and swell as they partially or completely equilibrate with cryoprotective agents (CPAs) in the ‘equilibration solution’

(Step 1). Oocytes are then briefly held in ‘vitrification solution’ (Step 2), with very high concentrations of CPAs. The high CPA

concentration combined with high rates of cooling (Step 4) and warming (Step 5) can prevent extracellular ice crystallisation. Such

high rates can be reachedwhen using Cryodevices (Step 3) with aminimal volume (,1 mL). LN2, liquid nitrogen; P-CPA, permeating

CPA; NP-CPA, non-permeating CPAs. Figure created using BioRender (biorender.com, accessed 9 October 2019).
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1997; Orief et al. 2005), which may affect the ice nucleation
behaviour of the solution and thereby increasing the chances of
vitrification at a reduced permeating CPA concentration. In

equine, sucrose is most commonly used as a non-permeating
CPA (Table 1). Similar pronuclear formation was found for
horse oocytes vitrified in a DMSO–ethylene glycol medium
containing sucrose or trehalose after 24 h of IVM (Maclellan

et al. 2001). However, the highest vitrification efficiency
for immature horse oocytes was reached when a vitrification
medium containing trehalose was used (42% maturation

(10/24), 80% cleavage (8/10) and 10% blastocysts (1/10)),
whereas no blastocysts were obtained from sucrose-containing
media (Canesin et al. 2017). In humans and mice, oocyte

vitrification in trehalose-containing medium is also associated
with higher blastocyst rates than vitrification with sucrose
(Coello et al. 2016), but the difference is not always statistically

significant (Zhang et al. 2017; Lestari et al. 2018), probably due
to variations in the protocols used.

Injection of sugars into the oocyte can avoid osmotic stress
associated with the use of non-permeating CPAs (Woelders

et al. 2018). Moreover, the assumed stabilising effect of sugars

onmembrane stability (Crowe et al. 1992)would then also apply
to the intracellular membrane surfaces, including these of
organelles. In fact, this is a strategy copied from nature, where

metabolically produced extra- and intracellular sugars allow a
broad variety of organisms to cope with below-zero tempera-
tures (Crowe et al. 1992). Sugars appear to have a low intrinsic
toxicity and can increase the glass transition temperature.

Therefore, several routes of intracellular administration in
oocytes have been tried (Eroglu et al. 2003; Rao et al. 2015).
Microinjection seems the most efficient technique to bring

sugars into the oocyte and reduces the amount of permeating
CPA needed while improving cryosurvival and embryo devel-
opment in mice and humans (Eroglu et al. 2002, 2003, 2009). In

fact, in murine mature oocytes this approach resulted in equal
blastocyst rates after vitrification–warming compared with
blastocyst rates obtained with fresh oocytes, and resulted in

healthy offspring after embryo transfer into recipients (Eroglu
et al. 2009). Such a strategy has not been evaluated in horse
oocytes, but may reduce or even avoid CPA toxicity. Similarly,
synthetic ice blockers are copied from naturally occurring

glycoproteins or proteins and are believed to mitigate

Technical variables

Type of CPA

Permeating Non-permeating

Macromolecules (Ficoll, BSA, FBS)
Ethylene glycol
Dimethyl sulfoxide
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Different toxicity and penetration capacity

Balance CPA, exposure time and cooling rate

High cooling rate
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First polar
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Mature

Oolemma

Zona pellucida
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Fig. 3. Technical and biological variables in oocyte vitrification. Technical variables include the characteristics of cryoprotective agents

(CPAs), the balance between CPA concentration and exposure time (affecting both cryoprotection and CPA toxicity) and high cooling rate

(enabling a lower CPA concentration). The lower left panel shows howmedium viscosity and sample volume can affect the chance of successful

vitrification. Biological variables include the characteristics of the oocyte at differentmeiotic stages and the presence of cumulus cells ((a) absent

in denuded oocytes, (b) few in corona-radiata oocytes and (c) many in comlete cumulus-oocyte complexes), which may protect the oocyte from

toxic CPA effects but may also hamper CPA penetration. Figure created using BioRender (biorender.com, accessed 9 October 2019).
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heterogeneous nucleation by recognition of ice nucleators or
perhaps ice itself (Wowk et al. 2000). Their use resulted in

improved survival rates in vitrified murine embryos (Fahy et al.
2004; Badrzadeh et al. 2010) and survival and cleavage rates in
porcine oocytes (Macedo et al. 2006; Santos et al. 2017). In

equine oocytes, the addition of synthetic ice blockers in the
vitrification media has also been tried, such as Supercool
X-1000, a copolymer of polyvinyl alcohol, which improved

maturation rates of vitrified–warmed oocytes (Curcio et al.

2014b). However, embryo development and intrinsic toxicity
has not yet been assessed (de Leon et al. 2012; Curcio et al.

2014a, 2014b).

The removal of CPAs after warming is a critical step because
the highest osmotic damage may occur during this phase (Wang
et al. 2011). If the oocytes in vitrification medium are suddenly

washed in physiological saline, water enters the cell more
rapidly than an intracellular CPA can leave it, which may
increase cell volume to a critical level at which the cell may

burst (Oda et al. 1992). Therefore, to minimise this risk, in
general stepwise warming in solutions of decreasing osmolality
is performed to remove CPAs. However, a recent study on
equine oocyte vitrification found that a single-step warming in

base medium without added sugar was as effective as a protocol
that included warming the oocytes in base medium with 0.4M
trehalose, followed by stepwise lowering of the trehalose

concentration (Canesin et al. 2018). The single-step method
may improve oocyte recovery and simplify practical aspects of
the vitrification process (Canesin et al. 2018).

Another important variable is the exposure time to CPAs in
vitrification solutions, which will further determine the delicate
balance between cryoprotection and CPA toxicity. Vitrification

protocols for embryos and oocytes usually make use of a two-
step increase in CPA concentrations (e.g. see Rall and Fahy
1985). In the first step, the cells or tissue are incubated for a
relatively long time (10–15min) in the ‘equilibration solution’,

which has approximately half the CPA concentration deemed
necessary for vitrification to allow equilibration regarding intra-
and extracellular CPA concentrations and osmotic conditions.

This means that cells shrink due to (rapid) water efflux, but then
slowly regain their original volume as CPAs more slowly enter
the cells. After the equilibration step, cells or tissues are then

placed in the vitrification solution, which has the full strength
needed for vitrification. The cells rapidly lose water but are then
directly plunged into liquid nitrogen, not allowing them to
regain their original volume. More recent successful applica-

tions of such two-step protocols include mature human oocytes
(Kuwayama et al. 2005). However, for horse oocytes, despite
good maturation rates (Rosati et al. 2012; de Leon et al. 2012)

and some blastocyst development from equine vitrified oocytes,
the relatively long exposure to CPAs was associated with CPA
toxicity, affecting subsequent embryo development (Canesin

et al. 2017). Tharasanit et al. (2006a, 2006b) tried vitrification
of equine oocytes after only 30 s exposure to the equilibration
solution followed by 25 s in the vitrification solution. Exposure

to CPAs alone resulted in little damage, but only one of 257
sperm-injected immature and mature vitrified oocytes resulted
in a blastocyst (Tharasanit et al. 2006b). Perhaps this could have
been caused by vitrification in open pulled straws (OPS), which

results in relatively lower cooling and warming rates (Li et al.
2012). Regardless, later studies showed that shorter CPA expo-

sure times can actually yield better results. For example, Ortiz-
Escribano et al. (2017) obtained blastocyst development and
were the first to report the birth of a healthy foal after IVM and

ICSI of equine oocytes vitrified in the immature stage, followed
by embryo culture and transfer of blastocysts into a recipient
mare. In addition, Canesin et al. (2018) reported that a shorter

total exposure time (105 s) was beneficial for blastocyst devel-
opment, although it did not prevent CPA toxicity. Although the
short exposure is not sufficient for equilibration in the equili-
bration solution (i.e. it results in only partial intracellular loading

of CPAs), simulations on the basis of a mathematical model of
oocyte membrane transport showed that the entry of CPAs into
the oocyte is still significant and, due to the very rapid efflux of

water, the intracellular osmolality reached becomes equal to that
of the extracellular vitrification solution within a few seconds,
making conditions sufficient for vitrification (Woelders et al.

2018). However, the rate of CPA influx may still be a factor of
importance, because superior results regarding the vitrification
of equine immature oocytes were seen after partial removal of
the cumulus cells, leaving only corona radiata-surrounded

oocytes, which may have reduced resistance for the entry of
CPAs into the oocytes (Ortiz-Escribano et al. 2017). More
research on exposure times to CPA, CPA concentrations and

possible CPA combinations is needed in equine, becausemost of
the research has been extrapolated from other species in which
oocytes have a different membrane permeability and cytoplasm

composition. Further improvement of the vitrification of equine
oocytes may be obtained by increasing the cooling and warming
rates in order to allow the use of lower CPA concentrations.

Speed of vitrification and warming

Fast cooling and warming rates are crucial for the process of
vitrification because they enable vitrification at lower total
solute (CPA) concentrations. As explained above, metastable

vitrification can be obtained at lower CPA concentrations by
using very high cooling rates to reach glass transition before ice
nucleation can occur. In addition, at high cooling rates, chilling

injury (hypothermia-induced cellular changes) may be outrun
due to a fast passage through the critical temperature zone
(Martino et al. 1996; Orief et al. 2005). The use of very high

warming rates (Mazur 1984) is also crucial in preventing the
growth of intracellular ice primordia and the formation of
damaging intracellular ice during warming. Indeed, a series of

studies by the group of the late Peter Mazur showed that high
warming rates are very important in the vitrification of mouse
oocytes and embryos, in fact more important than rapid cooling
(Mazur and Paredes 2016). Whether this translates to oocytes of

other species, including horses, is not clear, but it should be kept
in mind during the process (Gallardo et al. 2016).

The speed of cooling and warming depends on the volume

and surface area of the sample and the heat transfer to or from the
cooling or warming system (Orief et al. 2005). Although initial
vitrification of equine oocytes was done using conventional

straws (i.e. 200mL phosphate-buffered saline (PBS) with
,45 mL vitrification solution; Hochi et al. 1996), a great many
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minimum-volume cryodevices (from 1.5 to,0.1mL) have since
been developed in order to achieve rapid cooling rates of, for

example, 70 0008C min�1 (Li et al. 2012; Paredes and Mazur
2013), which improved the vitrification of bovine and porcine
oocytes compared with protocols using larger-volume devices

(Liu et al. 2008;Morató et al. 2008). Increased cooling rates also
coincided with improved development of vitrified equine
oocytes (Table 1).

Cryodevices include open (Cryoloop, open pulled straw,
Cryotop, solid surface vitrification, stainless steel mesh) and
closed (Rapid I (Vitrolife), VitriSafe (Cryo Bio System)) sys-
tems. Open devices theoretically allow faster cooling and

warming rates, resulting from both lower specimen volume
and direct contact between specimen and liquid nitrogen, better
preserving the oocyte ultrastructure (Bonetti et al. 2011). In

human medicine, direct comparison between open and closed
devices did not result in different development and pregnancy
rates (Cai et al. 2018). A direct comparison between the two

systems for equine oocytes is missing, but embryo development
has only been evaluated with open devices (Table 1). Although
some open devices, like the stainless steel mesh, additionally
allow for simultaneous vitrification of a large number of oocytes

(Canesin et al. 2018), closed systems may have the ability to
protect the oocytes against contamination and transmission of
pathogens in the liquid nitrogen (Bielanski and Vajta 2009;

Criado et al. 2011; Vajta et al. 2015). Nonetheless, some open
devices can be sealed after being plunged into liquid nitrogen,
which prevents possible exchange of pathogens between sam-

ples (e.g. Cryolock (Biotech Inc.)). Although export of equine
semen and embryos has been regulated for venereal and verti-
cally transmitted diseases, there is not enough information

available to estimate the possible risk for disease transmission
after vitrification of equine oocytes.

Increasing the cooling rate even more is possible by using
‘slush’ nitrogen, liquid helium or solid surface vitrification

(Orief et al. 2005). These techniques improve the heat transfer
by reducing the insulating sheath of nitrogen gas around the
oocyte (Leidenfrost effect), although this effect may be very

small in minimum volume cryodevices. An additional factor is
the lower temperature of ‘slush’ nitrogen, which is nitrogen at
the melting (�2108C) instead of boiling (�1968C) point. Simi-

larly, the use of liquid helium (�2698C) would increase the rate
of heat transfer. All three techniques have been used success-
fully with oocytes from other species (Cha et al. 2011; Yu et al.
2016; Guo et al. 2017) and may be promising for horse oocytes.

Only one study on equine oocytes reports vitrification using
solid surface vitrification (de Leon et al. 2012), a technique
characterised by direct contact of the droplets containing the

oocytes with the precooled carrier surface. In that study, no
difference was found in maturation rate and membrane integrity
compared with oocytes vitrified in OPS (de Leon et al. 2012),

but blastocyst development was not assessed.

Biological aspects

Maturation stage

Oocytes can be cryopreserved in the immature or mature
stage. Mature oocytes are in the middle of the second meiotic

division, the MII stage, characterised by the presence of chro-
mosomes organised by the spindle apparatus. The latter is

sensitive to several types of cryodamage, which may lead to
several chromosome and DNA abnormalities in cryopreserved
oocytes and can cause subsequent developmental arrest (Sterzik

et al. 1992; Ishida et al. 1997; Berthelot-Ricou et al. 2011).
In contrast, in immature oocytes, microtubules are not

organised in the MII spindle. Therefore, in principle, the

cryopreservation of immature germinal vesicle stage oocytes
bypasses the risk of chromosome aberrations because, at this
stage, the chromatin is decondensed and protected by a nuclear
envelope (Hinrichs et al. 2005). As such, the immature stagewas

believed to be more suitable for cryopreservation because the
chance of chromosomal aberrations would be smaller
(Brambillasca et al. 2013). Immature bovine oocytes were also

found to have a somewhat lower permeability for water and
someCPAs (DMSO and ethylene glycol) compared withmature
oocytes, suggesting that different procedures for loading and the

removal of CPAs may be required for different oocyte develop-
mental stages (Agca et al. 1998, 2000).

Generally, better results are obtained following the vitrifica-
tion of mature than immature oocytes. In human, oocyte

cryopreservation is generally performed at the in vivo mature
stage after hormone stimulation.When hormone treatment is not
desirable, IVM oocytes can be vitrified, although implantation

and pregnancy rates are lower (Chian and Cao 2014). So far, the
vitrification of human immature oocytes has resulted in only one
live birth and few pregnancies (Tucker et al. 1998; Wu et al.

2001; Kan et al. 2004). Bovine oocytes are mostly cryopre-
served at the mature stage (Mogas 2019), although calves have
also been born after the vitrification of immature oocytes (Zhou

et al. 2010). In porcine, immature oocytes seem to be more
sensitive to cooling than IVM oocytes (Rojas et al. 2004),
although vitrified–warmed immature oocytes could also reach
the blastocyst stage (Gupta et al. 2007).

In the horse, the ideal meiotic stage for cryopreservation
remains poorly studied, but most research has been done in
immature oocytes. This is because the vitrification of immature

oocytes allows amore flexible application as the neighbourhood
of culture facilities to in vitromature oocytes is not required and
a higher number of oocytes can be preserved (Hinrichs 2018).

Only two studies have compared vitrification of immature and
IVM horse oocytes, demonstrating better spindle quality and
chromosome configuration in oocytes after IVM when compact
cumulus–oocyte complexes were vitrified at the immature than

mature stage (Tharasanit et al. 2006a, 2006b). However, cumu-
lus morphology seems to affect these results because no differ-
ences were perceived between vitrified mature and immature

oocytes when cumulus cells were expanded at recovery time.
The only blastocyst reported resulted from vitrification of an
immature oocyte with compact cumulus cells (Tharasanit et al.

2006b).
Cryopreservation of in vivo-matured equine oocytes has

never been compared directly with IVM or immature oocytes

but, as mentioned before, the highest efficiency (number of
blastocysts or pregnancies over the initial number of vitrified
oocytes) has been obtained when equine oocytes were vitrified
after in vivo maturation (Maclellan et al. 2002, 2010). Hence,
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optimisation of in vivo-like maturation and culture systems
during IVEP could be a key factor to improving outcomes

starting from both fresh and vitrified oocytes. These in vivo-like
optimisations can include the supplementation of signalling or
supporting molecules present in vivo in the genital tract (e.g.

extracellular vesicles) or three-dimensional follicle or oviduct
culture systems (da Silveira et al. 2012, 2017; Ferraz et al. 2018).
However, in addition to the maturation conditions, the origin of

the oocyte needs to be taken into account. In vivo-maturedoocytes
collected from preovulatory follicles represent a rather uniform
population with high developmental potential. Immature oocytes
can originate from juvenile, growing or atretic follicles, implying

a more variable and generally lower developmental competence
(Hinrichs 2010; Torner and Alm 2018).

Presence of the cumulus layer

The role of cumulus cells during the cryopreservation of
oocytes seems to be species specific and dependent on the
maturation stage (Fujihira et al. 2005; reviewed in Ortiz-

Escribano 2017). Cumulus cells communicate with the oocyte
through transzonal projections, which pass through the zona
pellucida and connect to the oolemma by gap junctions. During

in vitro culture, the presence of cumulus cells is crucial for the
acquisition of meiotic competence (Tanghe et al. 2003). In
equine studies it was found that although vitrification causes

damage to the outer layers of the cumulus, it does not affect
communication through gap junctions or the ability of the
oocyte to mature (Tharasanit et al. 2009). In fact, multiple
layers of cumulus cells are believed to protect the oocyte

chromosomes against cryodamage in both mature and immature
oocytes, which was strengthened by the observation that
denuded oocytes had reduced spindle quality after vitrification

(Tharasanit et al. 2006a, 2009). Conversely, excessive layers of
cumulus cells negatively affect vitrification outcome, because
the survival of vitrified IVM bovine oocytes surrounded by

multiple layers of cumulus cells was significantly lower than
that of vitrified denuded mature oocytes (Ortiz-Escribano et al.
2016). Similarly, equine immature oocytes surrounded by

multiple layers of cumulus cells had poorer IVM rates after
vitrification than oocytes surrounded only by corona radiata
cells. Furthermore, vitrified immature corona radiata oocytes
resulted in a blastocyst rate of 7% (5/72 injected oocytes) and

the birth of a foal (Ortiz-Escribano et al. 2017). Therefore,
partial denudation of immature oocytes, leaving only corona
radiata cells, seems to be a key point in immature equine oocyte

vitrification. The presence of several layers of cumulus cells
may impair exchange of water and CPAs, leading to a lower
intracellular concentration of CPA and, as such, reduced protec-

tion against cryodamage. Moreover, a reduction in the cumulus
layers and the number of oocytes loaded on the cryodevice also
reduces the sample volume, and thus increases the cooling and
warming rates (Ortiz-Escribano et al. 2017).

Oolemma, zona pellucida, cytoplasm and organelles

Membranes containing lipid bilayers, like the oolemma and
mitochondria, are especially sensitive to cryopreservation. An
ultrastructural evaluation in vitrified–warmed oocytes revealed

no changes in the zona pellucida (Hochi et al. 1996). However,
the oolemma and mitochondria are affected, similar to that of

other species. This is why the integrity of themembrane is one of
the principal survival criteria. Lipid bilayers may suffer from
cold shock and chilling injury, from CPA toxicity and/or

dehydration associated with high CPA concentrations, or other
hazardous conditions found during vitrification–warming.
Membrane damage may include an altered configuration of

membrane lipids and proteins, and reduced metabolic function
and membrane permeability (Best 2015). In the mitochondria,
composed of mitochondrial matrix enclosed by an inner
and outer membrane, swelling and reduced matrix density

have been observed in equine oocytes after vitrification
(Hochi et al. 1996; Curcio et al. 2014a).Mitochondrial damage
alters the synthesis of ATP, which is essential for maturation

and embryo development; ATP contributes to microtubule
assembly and disassembly, and is critical to meiotic spindle
formation, sperm aster formation and syngamy (Eichenlaub-

Ritter et al. 2004). Moreover, damage to the mitochondria
and vitrification itself may promote the formation of reactive
oxygen species, which, in turn, initiate damage to lipids,
proteins, enzymes and nucleic acid structures due to lipid

peroxidase and apoptosis. The susceptibility of the equine
oocyte to cryopreservation-induced damage is thought be
related to the large amount of lipids present in the membranes

and cytoplasm of equine oocytes, which may increase oxida-
tive damage or lower membrane permeability, especially after
lipid phase transition (Hochi et al. 1996; Ambruosi et al. 2009).

Culturing the oocytes in media that minimise the production of
lipids and the addition of several antioxidants in culture and
vitrification media yielded promising results in other species

and may improve equine oocyte vitrification (Abe et al. 2002;
Gupta et al. 2007; Chankitisakul et al. 2013; Yashiro et al.

2015).
Vitrification may also affect communication mechanisms

with the extracellular environment through gap junctions and
hemichannels. In the oolemma, communication between the
oocyte and the cumulus cells, crucial to the maturation of

vitrified immature oocytes, can take place through the gap
junctions. Adversely, these gap junctions may induce the so-
called ‘bystander death effect’ by allowing cell death messen-

gers to pass from apoptotic cumulus cells into the oocyte
(Decrock et al. 2009). Although early reports suggested that
gap junctions are affected during equine oocyte cryopreserva-
tion (Hochi et al. 1994, 1996), Tharasanit et al. (2009) did not

find structural or functional differences between the gap junc-
tions of vitrified and fresh oocytes. The specific induction of
bystander cell death messengers from cumulus cells to the

oocyte by vitrification, as well as the effect of vitrification on
the hemichannels, has not been assessed yet in the horse. In
addition to constituting gap junctions, hemichannels exist as

free hemichannels in the oolemma of the oocyte (Sáez et al.

2003). These are typically closed but, when opened under stress
conditions, they could allow entry or escape of essential ions and

damaging molecules, which may threaten the normal physiol-
ogy and vitality of the oocyte. Blocking vitrification-induced
opening of hemichannels was promising in feline and bovine
oocytes (Snoeck et al. 2018; Szymańska et al. 2018).
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It is clear that the functionality of the oocyte is threatened by

several types of damage to the oolemma, its gap junctions and

hemichannels and to critical organelles, although it is not clear

how strong these separate effects may be. Apart from damage

that can be visualised microscopically, the competence of the

oocytes to sustain embryo development after ICSI and to yield

healthy blastocysts is determined by several cytoplasmic fac-

tors. Most likely the functionality of several organelles or cell

cytoplasmic factors involved in maturation and further develop-

ment may be affected by vitrification. Strengthened by the

observation that after warming many presumed mature oocytes

seem not able to develop further, it has been suggested that

cytoplasmic maturation, including accumulation of mRNA,

proteins, substrates and nutrients, is negatively affected by

vitrification (Tharasanit et al. 2006b).

Spindle, cytoskeleton, chromosomal integrity and
epigenetic alteration

The most extensively studied structures in equine oocytes
after cryopreservation are probably the actin cytoskeleton

and meiotic spindle (Tharasanit et al. 2006a, 2006b, 2009;
Ducheyne et al. 2019), which have been characterised by the
disruption of the subcortical actin network, depolymerisation of

microtubules, a reduced length and volume of the spindle and an
increased metaphase plate thickness. Such changes may impair
correct chromosome alignment and cause cytokinesis failure,

leading to chromosomal aberrations and subsequent develop-
mental failure. In theory, freezing at the immature stage should
be less damaging to the as yet unformed spindle, but changes

have been reported in both mature and immature equine oocytes
(Tharasanit et al. 2006a, 2006b, 2009; Ortiz-Escribano et al.
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aberration
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Fig. 4. Schematic representation of some alterations observed in oocytes after vitrification–warming. (a) Disruption of the actin network,

depolymerisation of microtubules and altered length and volume of the spindle, impairing correct chromosome alignment, have been

described in vitrified–warmed mature oocytes and in immature equine oocytes that were matured in vitro after warming (Tharasanit et al.

2006a, 2006b, 2009; Ducheyne et al. 2019). (b) Open hemichannels (which are normally closed) have been found in bovine and feline

oocytes after vitrification, possibly causing a release of essential ions and allowing the entry of damaging molecules (Snoeck et al. 2018;

Szymańska et al. 2018). (c) Fractures and less conspicuous disruption of lipid bilayermembranes affecting the developmental capacity of the

oocyte, (d) swelling and changes in the shape and density of organelles such as mitochondria, Golgi apparatus and smooth endoplasmic

reticulum and (e) lipid droplets and extruded cortical granules (in vitrified matured oocytes) with debris in the perivitelline space have often

been noticed (Hochi et al. 1994, 1996; Curcio et al. 2014a). Figure created using BioRender (biorender.com, accessed 15 June 2019).
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2017; Ducheyne et al. 2019). Although repolarisation of the
spindle is seen after warming in some human oocytes vitrified at

the mature stage (Minasi et al. 2012), a similar effect does not
seem to occur in vitrified equine oocytes (Tharasanit et al.
2006a). However, spindle disassembly and potential repolarisa-

tion may also depend on the temperature at which the vitrifica-
tion process occurs, because processing below a physiological
temperature causes rapid spindle disassembly, without a chance

of repolarisation (Larman et al. 2007). Therefore, spindle
damage is an important negative predictor when novel strategies
are tested. Molecules directly targeting the spindle can be added
to the culture and vitrification orwarmingmedia. Those ‘spindle

stabilisers’, like cytochalasin B, paclitaxel and docetaxel, were
previously used in immature and mature oocytes from different
species to preserve the integrity of the spindle, but have not been

tested yet in horses. A schematic representation of changes and
damaging processes found in oocytes after vitrification and
warming is shown in Fig. 4.

Recent studies on bovine andmouse oocytes have focused on
unravelling the effect of vitrification on epigenetics and gene
expression (Yan et al. 2014; Chen et al. 2016). It is clear that
the more handling procedures to which germplasm is subjected,

the more chances there are that an epigenetic effect or changes
in gene expression levels will occur. Moreover, there is an
increased incidence of epigenetic alterations when artificial

reproductive technologies are used involving human oocytes
(Vermeiden andBernardus 2013; Lazaraviciute et al. 2014), and
a link between artificial reproductive technologies and epige-

netic disorders in cattle has been suspected (Urrego et al. 2014).
Epigenetics and gene expression studies on horse oocytes could
provide clues about which developmental pathways are altered

in vitrified equine oocytes and which genes may serve as
potential markers for oocyte damage. Although transcriptomic
and (epi)genetic alterations have the potential to impair long-
term health, no associations with increased adverse obstetric and

perinatal risks, altered embryonic metabolome or congenital
anomalies or aneuploidies were found for vitrified human
oocytes (Levi Setti et al. 2013; Cobo et al. 2014).

Conclusion

The vitrification of equine immature oocytes would improve
the flexibility of horse assisted reproductive techniques and
open the door towards the conservation and worldwide distri-
bution of valuable female genetics. Equine oocyte vitrification

has resulted in embryo development and live foals, but low
clinical efficiency urges more research on this topic. This
research should be focused on optimising technical aspects of

vitrification, as well as on limiting damage to the oocyte, where
the spindle, oolemma and mitochondria seem especially vul-
nerable. In addition, chromosomal instability may be the cause

of the current low results. At present, mostly immature oocytes
are used for vitrification, but it may be interesting to focus on
IVM oocytes, matured under in vivo-like conditions, because

in vivo-matured oocytes have yielded the best results so far.
Blastocyst development and foaling rate are the best outcome
parameters to estimate the true value of optimised vitrification
procedures.
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