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Summary: Scanned historical topographic maps contain valuable geographical information.
Often, these maps are the only reliable source of data for a given period. Many scientific insti-
tutions have large collections of digitized historical maps, typically only annotated with a title
(general location), a date, and a small description. This allows researchers to search for maps
of some locations, but it gives almost no information about what is depicted on the map itself.
To extract useful information from these maps, they still need to be analyzed manually, which
can be very tedious. Current commercial and open-source text recognition tools underperform
when applied to maps, especially on densely annotated regions. They require additional pro-
cessing to provide accurate results. Therefore, this work presents an automatic map processing
approach focusing mainly on detecting the mentioned toponyms and georeferencing the map.
Commercial and open-source tools were used as building blocks, to provide scalability and
accessibility. As lower-quality scans generally decrease the performance of text recognition
tools, the impact of both the scan and compression quality was studied. Moreover, because
most maps were too large to effectively process as a whole with state-of-the-art commercial
recognition tools, a tiling approach was used. The tile size affects recognition performance,
therefore a study was conducted to determine the optimal parameters.

First, the map boundaries were detected with computer vision techniques. Afterward, the co-
ordinates surrounding the map were extracted using a commercial OCR system. After project-
ing the coordinates to the WGS84 coordinate system, the maps were georeferenced. Next, the
map was split into overlapping tiles, and text recognition was performed. A small region of in-
terest was determined for each detected text label, based on its relative position. This region
limited the potential toponym matches given by publicly available gazetteers. Multiple gazet-
teers were combined to find additional candidates for each text label. Optimal toponym
matches were selected with string similarity metrics. Furthermore, the relative positions of the
detected text and the actual locations of the matched toponyms were used to filter out addi-
tional false positives. Finally, the approach was validated on a selection of 1:25000 topograph-
ic maps of Belgium from 1975-1992. By automatically georeferencing the map and recogniz-
ing the mentioned place names, the content and location of each map can now be queried.

Introduction
As more and more historical data is being digitized, the need for automated processing techniques
grows across all fields of research. Having an easily-accessible, machine-readable data collection al-
lows researchers to query and analyze this collection much more efficiently. It provides a window
into the past and opens new research opportunities. Manually annotating vast amounts of digitized
data is a very tedious and time-consuming process. Many institutions have a (large) collection of dig-
itized historical maps, which are often only annotated with a title, general location, a date, and a small
description. This allows researchers to search for maps of some locations, but it gives little to no in-
formation on what is depicted on the map itself. To extract useful information from these maps, they
still need to be analyzed manually. By automatically processing and extracting the place names and
georeferencing the map, the content can be queried as well. The extracted place names can be used to
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situate the map more accurately and improve query results. Map processing techniques aim to extract
the text labels and geographic features from a raster map, to enable subsequent manipulations in a
geographic information system (GIS) (Chiang et al. 2014). These techniques make the map more ac-
cessible and allow for a large-scale analysis of entire collections.

In this work, we propose an automated map processing approach, capable of extracting place names
and georeferencing topographic maps. The goal is to apply the methods described in this work on At-
las®, the online digitized cartographic library of Ghent University. Currently, the maps are annotated
with their name, type, country, and scale, but no information is given on what is depicted on each
map. We apply and validate our approach on a selection of topographic maps from Belgium. This
work uses open-source and commercial text recognition tools and gazetteers as building blocks, mak-
ing the approach more scalable and accessible. Furthermore, a study is made on the impact of the
compression quality of the maps and the tile size used to analyze these maps.

Text recognition on maps is not a trivial task as it comes with additional challenges. Text labels are
mostly black and aligned horizontally, but they can appear in multiple colors, orientations, sizes, and
fonts (Deseilligny et al. 1995). In historical maps, the text labels are often handwritten, making them
sometimes hard to transcribe, even for a human. A non-uniform background and the overlap of other
map features with the text labels further reduces recognition accuracy. This is especially true for
topographic maps, which contain a multitude of geographical features (roads, contour lines, water-
ways, vegetation, etc.) and text labels (place names, elevation data, street names, etc.) (Pezeshk and
Tutwiler 2011). An example of the variety in text labels is given in Figure 1. Topographic maps are
designed to give a ‘good’, general view of the landscape using multiple colors, symbols, and text la-
bels (Kent 2008). These maps are relatively easy to read and interpret for most people but are much
harder to process automatically. Gazetteers can be used to match recognized text with real-world
place names, improving the annotation quality. When the map is georeferenced, a region of interest
can be specified based on the relative text location, to limit the potential candidates to that region.
The recognized text is then matched with a toponym candidate by using string similarity metrics.
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Figure 1: Example of some text labels from one of the topographlc maps. These text labels can come in different colors, orienta-

tions, and sizes, complicating automated processing techniques.
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Quality Analysis

This section details a small study on the impact of the scan and compression quality on the text
recognition results. The section starts with a description of the used dataset. Afterward, it details the
used approach for the quality analysis study and the chapter ends with a discussion about the results.

Dataset

The dataset consists of a collection of 1:25000 topographic maps of Belgium from 1975-1992 (series
M834, second edition) (De Maeyer et al. 2004). Because these maps are from the same series, their
uniformity improves this automated process, but most of the proposed techniques can be applied to
other maps as well. The toponyms present on the map were manually labeled with the corresponding
transcription and a non-rotated bounding box. Each scanned map contains a legend, which details the
used abbreviations, symbols, coordinates, and much more. The map itself is surrounded by a black
rectangle, on which coordinate information is given. Three of the maps were labeled in order to vali-
date the developed approach. Each map took around 2-4 hours to label. One of the topographic maps
from the dataset is shown in Figure 2, it details the region Gent-Melle.
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Figure 2: The topographic map for the region of Gent-Melle.
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Preprocessing and Georeferencing

To perform the quality analysis, the map itself still needs to be extracted from the original scan. Be-
cause the maps are from a uniform series, the position of the map stays constant for each scan. How-
ever, the scans are not aligned perfectly, therefore the location of the map does vary slightly with
each image. By detecting the black rectangle surrounding the map with morphological operations
(Weeks 1996), we were able to consistently extract the map and its surrounding coordinates.

First, the map was converted to grayscale, binarized with a threshold of 127, and inverted. Afterward,
a vertical and a horizontal structuring element (kernel) were defined. Both were 100 pixels long and 1
pixel wide. Next, for each structuring element, an erosion was performed followed by a dilation oper-
ation (Weeks 1996). The two masked images were then merged with a bitwise OR operation. Because
the lines were not perfectly horizontal or vertical, this resulted in multiple line segments per scan.
These segments were then filtered; the longest and broadest one was taken. Finally, the segments
were extended until their ends formed a rectangle. This resulted in the location of the surrounding
black rectangle. If some of the maps were heavily rotated during the scanning process, a line detec-
tion method should be used instead to detect the bounding rectangle.

Inside the rectangle, there was still some blank space, where the coordinate information and neighbor-
ing cities are denoted. To detect the effective bounding box of the map, crops were extracted from all
four sides of the rectangle. Each side was split into multiple tiles because they were too large to pro-
cess effectively. Each tile was analyzed with a commercial text detection system (Azure Read API),
from which the locations of the coordinates were extracted. Finally, the locations of the surrounding
coordinates were used to define the map location. Figure 3 demonstrates the output of the text detec-
tion system. The numbers at the edges of the map note the x and y location in the Belgian Lambert72
projection (Donnay and Lambot 2012).
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Figure 3: Result of performing text detection on the upper-left tile of the map coordinates. The upper coordinates (83, 84, and 85)
represent the horizontal coordinates in the Belgian Lambert72 projection.

Both the horizontal and vertical Lambert72 coordinates surrounding the map were used to georefer-
ence the map. Because the text recognition is not perfect and there exists some inaccuracy in the loca-
tion of each coordinate (the center of each coordinate text box is not the same as the location of its
mark), a simple averaging method was made to reduce the error. The pixel and coordinate distance
between all the succeeding coordinates were taken and averaged, to find a conversion factor between
the pixel distance and the corresponding coordinate distance. With the determined conversion factor,
each pixel's corresponding coordinate location can be found. Of course, the georeferencing will not
be perfectly accurate, as that is near-impossible to accomplish without human intervention from a
scanned map.
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Compression and Tiling Parameters

Now that the location of the actual map is extracted, a study on the compression and tiling parameters
can be performed. Four different quality settings were tested for each map: original (png, 350 DPI),
half resolution (png, bicubic interpolation) and jpeg compression with and without compression of
each tile to jpeg (denoted as jpeg_jpeg). The original and half resolution maps were converted into
the lossless png format from the original tif format scans and a quality setting of 95 was used for all
the jpeg compressions. The lossless png compression is often recommended for OCR, especially on
segmented text images, to not introduce additional noise.

As stated before, the maps are too large to process as a whole with any commercial text detection sys-
tem, therefore a tiling approach was used. By varying the size of each tile, a trade-off is made be-
tween cost and quality. Smaller tile sizes will generally be more accurate, whilst increasing the total
amount of tiles to be processed by the system. Halving the tile size effectively multiplies the number
of tiles by four. The following square tile sizes were considered in our study: 1000, 1500, 2000, and
2500 pixels. Tiles smaller than 1000x1000 pixels were not considered, as this size already resulted in
more than 50 tiles for each map. To not introduce additional compression errors, each tile was saved
in the lossless png format (except for jpeg_jpeg). To limit edge errors, the tiles did not overlap, and
text labels at the edges of the tiles (distance of 20 pixels or less) were ignored.

Each map was also processed with a state-of-the-art, open-source text recognition system, for each of
the compression and tiling settings. The model from Liu et al. (2018) was used, which has an open-
source Tensorflow implementation and a pretrained model available on Github®. The model performs
text detection & recognition and outputs text-oriented bounding boxes.

The Character Error Rate (CER) is defined by the Levenshtein distance (edit distance) between the
predicted text and its corresponding label, divided by the length of the label (Bluche 2015). It is one
of the most common and important metrics to determine the performance of an OCR system. To de-
termine which label corresponds with each predicted text box, the intersection over union (loU)
(Everingham et al. 2015) was used. The loU gives a general indication of how well the position of the
predicted text matches the position of the text label. Labels that did not have a corresponding predic-
tion were ignored when calculating the average CER. When two or more predictions intersect the
same label, the prediction with the lowest CER was taken. Tables 1 and 2 show the results of this
study using the commercial and open-source recognition systems, respectively. The topographic maps
contain a lot of small text denoting height contours or kilometer milestones, which were often not de-
tected correctly. The results indicated in the tables below with an asterisk (*) exclude these small text
labels, leaving only toponyms and abbreviations which indicate local features (e.g. chapel, station,
water tower, etc.). The three maps contain a total of 2968 text labels, of which 1818 denote a topo-
nym or abbreviation.
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Tile Size  Compression IOU CER Found (%) I0U* CER* Found (%)*
Original 0.598 0.301 54.8 0.627 0.227 78.4
1000 jpeg 0.599 0.293 54.2 0.629 0.221 7.7
jpeg_jpeg 0.6 0.294 54.4 0.63 0.217 77.8
Half resolution 0.587 0.239 41.7 0.604 0.198 63.7

Original 0.58 0.267 49.4 0.605 0.217 72.4

1500 _ jpeg 0.578 0.275 49.9 0.601 0.223 73.2
jpeg_jpeg 058 0.271 49.6 0.605 0.215 72.8

Half resolution 0.595 0.216 23.2 0.6 0.201 36.7

Original 0.58 0.264 44 0.598 0.217 66.2

2000 _ jpeg 0.582 0.259 43.7 0.601 0.212 65.6
jpeg_jpeg 0.582 0.27 44 0.599 0.212 65.8

Half resolution 0.58 0.247 15.6 0.593 0.209 23.7

Original 0.594 0.239 32.8 0.609 0.204 49.8

2500 jpeg 0.595 0.242 334 0.608 0.21 51.1
jpeg_jpeg 0.595 0.241 33.2 0.608 0.209 50.7

Half resolution 0.577 0.218 5.1 0.58 0.216 8

Table 1: Performance of the commercial text recognition system (Azure Read API) with varying compression and tile sizes. Re-
sults indicated with an asterisk (*) excluded text labels denoting height contours or kilometer milestones.

Tile Size  Compression IOU CER Found (%) I0OU* CER* Found (%)*

Original 0.516 0.351 52.9 0.518 0.3 77.4
1000 jpeg 0.519 0.347 53.8 0.522 0.294 78.8
jpeg_jpeg 0.523 0.346 53.8 0.524 0.292 79.2
Half resolution 0.55 0.395 21.3 0.551 0.363 33.6

png 0.521 0.347 54.8 0.523 0.298 79
1500 jpeg 0.526 0.347 55.3 0.528 0.291 79.4
jpeg_jpeg 0.527 0.343 55.6 0.529 0.286 80.1

Half resolution 0.551 0.397 22.9 0.551 0.366 36
Original 0.521 0.354 54.5 0.524 0.295 78.1
2000 jpeg 0.525 0.348 55.9 0.528 0.286 79.4
jpeg_jpeg 0.526 0.343 56.3 0.53 0.284 79.9

Half resolution 0.548 0.384 23.8 0.55 0.347 37
Original 0.523 0.347 55.4 0.526 0.294 78.7

2500 jpeg 0.528 0.337 55.8 0.531 0.286 80
jpeg_jpeg 0.53 0.336 56 0.533 0.284 80.3

Half resolution 0.557 0.404 21.8 0.559 0.365 34

Table 2: Performance of the open-source text recognition system with varying compression and tile sizes. Results indicated with
an asterisk (*) excluded text labels denoting height contours or kilometer milestones.
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From these results, we can conclude that for both the open-source and commercial system, there is no
significant difference in performance when using jpeg compression for the map and/or tiles. There-
fore, it is advised to use jpeg compression when analyzing a large dataset, to significantly reduce
storage space (average compression ratio of 4.4:1). It is also clear that the lower resolution scans un-
derperform dramatically, which was expected, as most OCR systems recommend a minimum scan
resolution of 300 DPI. The CER might be lower, but the amount of found toponyms is usually halved.
If we were to include the undetected words in the calculation of the CER (each would have a CER of
1), the error rate would dramatically increase. For both systems, the performance increases when
leaving out the small text labels denoting the height contours and kilometer milestones. This was ex-
pected, as these text labels are very easy to miss, even when manually annotating the maps. The loU
remains relatively constant across all tile sizes.

Increasing the tile size for the commercial system leads to a lower number of detected toponyms but
decreases the transcription error rate slightly. Perhaps only the most clearly visible toponyms are rec-
ognized correctly. For the open-source system, the CER also decreases slightly, but the number of
found text labels stays relatively constant. Moving forward, the open-source system is used with a tile
size of 2500 pixels. The larger tile sizes give a marginally better performance and introduce fewer
errors on the tile edges, as there are fewer tiles that will need to be merged.

Merging adjacent tiles

When processing the topographic maps in tiles, several toponyms will be split on the edges of each
tile. To solve this problem, an overlap region of 500 pixels is considered in each 2500x2500 tile. Be-
cause the maps are processed from left-to-right, top-to-bottom, the overlap is taken at the right side
and bottom side of each tile. Recognized text which starts inside this overlap region is ignored and
should be detected in one of the next tiles. Text which started before the overlap region but ends in it
will need to be merged with the detection result of the next tile. If the next tile contains similar text
(partial string similarity) and intersects the other label, the longest of the two detected strings is taken,
the other is discarded. If the suffix of the first string exactly corresponds with the affix of the second,
they were instead merged on their longest common substring (e.g. “Sint-Pie” and ““ikt-Pieter” will be
merged to “Sint-Pieter”). After merging, the results were saved for further processing.

Toponym matching

After detecting and merging the text labels of each map, the detected text on each map can now be
queried. Because of the relatively high recognition error rate, there will be a lot of false positives and
the query results will generally be of low quality, as similar text might be recognized on multiple
maps at different locations. To remove many of these irrelevant detections, the text labels were first
preprocessed. Short, non-text labels were filtered out. All the labels were put in lowercase and sym-
bols (excluding spaces) were removed from the strings. Next, if a text label contained an abbrevia-
tion, it was replaced with its full form. This is necessary to find a correct match with certain places of
interest. To further improve the query results on each map, they can be adjusted to only return text
labels that can be linked with their corresponding toponym and whose relative position on a georefer-
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enced map corresponds with the actual location of the toponym. These linked toponyms have the ad-
ditional benefit that they can be queried in multiple languages, as most gazetteers provide multilin-
gual support. Three different gazetteers were used to determine the correct matches for each text la-
bel, namely Geonames, Google Maps, and TomTom. All three have a public API and allow for lim-
ited free usage. The gazetteers were queried with a fuzzy search, allowing for approximate and partial
string matches. Moreover, a rectangular region of interest was specified, limiting the results to that
area. For each text label, this region of interest was calculated based on its relative position on the
map and the already determined georeferencing parameters. The square bounding box of a circular
region with a radius of 2km was chosen, with its center taken at the center of the text bounding box.

To limit the number of gazetteer requests, they were queried sequentially. When the first one did not
return a good match, the second one was tried, and so forth. A match was classified to be good when
the partial string similarity score (0O - 1) between the query and the results was higher than a certain
threshold (0.75). If there were multiple good matches, the one with the highest score was taken. In the
case of a tie, the shortest toponym match is taken, as it is usually the better match. When the similari-
ty score falls below this threshold but was still relatively high (0.6 - 0.75), the results were classified
as possible matches. Increasing these thresholds will reduce the false positive rate but will decrease
the number of results. An additional filter based on the relative string lengths was made to limit incor-
rect results as shorter query strings would sometimes return very long possible matches.

A large portion of the toponyms on the maps consist of multiple words. These words are often recog-
nized as separate words and therefore do not find a correct match. To solve this, we checked for each
detected text label without a correct match for other nearby unmatched text to the right and bottom
side, as this is the usual reading direction for topographic maps. If nearby text was found, both of the
strings were joined and a new query was made with the gazetteers. In most cases, no correct match
was found, mainly due to errors in the text recognition and unrelated nearby words. To limit the num-
ber of gazetteer requests, we only tried combinations of two words. There are multiple toponyms on
the map that contain 3 or more words, which were therefore not correctly linked. Often multiple pos-
sible logical arrangements exist between the words, increasing the number of requests exponentially.
These complex situations are difficult to solve without a brute-force method. Figure 4 shows an ex-
ample of such a complex situation. Words (or pairs of them) that have found a potential match are
marked in green, words without a match are marked in red. Here, the words in blue (“Oude Leieput™)
should be merged, and “Hbg Karper” should be merged, the others are merged correctly. If the text
color can be accurately determined, such false positives can possibly be filtered out. The fact that
some of the correct toponym matches and their arrangements are not found in publicly available gaz-
etteers, makes this process even more challenging.
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Figure 4: Complex arrangement of toponyms. Words (or pairs of them) that have found a potential match are marked in green,

words without a match are marked in red. Here, the words in blue should be merged (“Oude Leieput”), and “Hbg Karper” should
be merged, the others are merged correctly.

Finally, duplicate matches of toponyms are resolved. When two or more detected text labels match
with the same toponym, the least likely match should be removed. If the difference in string similarity
between each label and the toponym is large, the most similar one is taken. If the difference is small,
the text label whose relative position on the map corresponds the best to the actual position of the
toponym is taken as the correct match. On average, 26% of the detected text labels (excluding irrele-
vant detections) found a good or a possible toponym match.

Conclusion

By automatically recognizing the surrounding map coordinates, we were able to georeference the ana-
lyzed topographic maps. The results of the quality analysis study show that the difference in text
recognition performance for jpeg and png compressed maps and their extracted tiles is insignificant.
A lower resolution of the maps does negatively affect the character error rate and the number of de-
tected text labels. When using a commercial text recognition system (Azure Read API), a larger tile
size resulted in the detection of far fewer text labels, with a similar error rate. We suspect this is due
to some assumptions made about the possible text size, given the image dimensions. When using the
open-source text detection system, a larger tile size was found to be marginally better, while also re-
ducing the total number of tiles and merge conflicts. At the smaller tile sizes, the commercial API
outperforms the pretrained open-source model. Still, both models vastly underperformed when com-
pared to other text detection domains, where error rates of less than 10% are commonly achieved.
This highlights the need for more robust text recognition models, which can handle the complex
background of topographic maps or additional preprocessing to extract the text from the background.

To improve the quality of the extracted text labels, gazetteers were used to match them with topo-
nyms in the local area. Due to the complexity of these topographic maps and the relatively high char-
acter error rate, many detected text labels could not be automatically matched to a toponym. A lot of
mentioned text labels do not even have a corresponding toponym in any of the used gazetteers, which
makes it impossible to find a correct match. When analyzing older historic maps, or maps of very re-
mote regions, we suspect that this will pose an even bigger issue. Nevertheless, by georeferencing,
text recognition and toponym matching, the mentioned place names and location of the map are
found. This enables the contents of the map to be queried in much greater detail.

(9]



In future work, we aim to perform a deeper quality analysis to determine if higher scan resolutions
will result in a lower recognition error rate. Performing transfer learning on the used text recognition
model on a large dataset of annotated maps might also drastically improve its performance. The link-
ing and merging of related words and toponyms can still be improved by incorporating text features
(colors, font, relative location, etc.) and by improving the quality of the used gazetteers. The biggest
problem is most likely the fuzzy search capabilities, which often do not return the correct toponym if
the first letters are wrongly recognized (e.g. “ent” does not return “Gent”). Manually comparing de-
tected text against a database of toponyms might therefore give better results.
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