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Abbreviations 

ABC ATP-binding cassette 
ADME Absorption, distribution, metabolism and excretion 
ATP Adenosine triphosphate 
BCRP 
BW 

Breast cancer resistance protein 
Body weight 

CYP Cytochrome P450 
ENT Equilibrative nucleoside transporter 
EPHX Epoxide hydrolase 
GFR Glomerular filtration rate 
GST Glutathione S-transferase 
GW Gestational weeks 
HNFs Hepatocyte nuclear factors 
KW Kidney weight 
LDF Laser doppler flowmetry 
MATE Multidrug and toxin extrusion 
MDR 
MRI 

Multidrug resistance protein 
Magnetic resonance imaging 

MRP Multidrug resistance-associated proteins 
NATS N-Acetyltransferase 
NPT Sodium-phosphate co-transporters 
OAT Organic anion transporters 
OATP Organic-anion-transporting polypeptide 
OCT Organic cation transporters 
PAH Para-amino hippurate 
PAPS 3’-phospoadenosine-5’-phosphosulfate 
PD Pharmacodynamics 
Pept Peptide transporter 
Pgp P-glycoprotein 
PK Pharmacokinetics 
PND Postnatal day 
PNW Postnatal week 
PXR Pregnane X receptor 
RBF Renal blood flow 
RPF Renal plasma flow 
RNA Ribonucleic acid 
SCP sulphachlorpyridazine 
SLC Solute carrier 
SULT 
TmPAH 

Sulfotransferase 
Maximum tubular secretory capacity of PAH 

mRNA Messenger RNA 
UDPGA Uridine 5’-diphosphate glucuronic acid 
UGT Uridine 5'-diphospho-glucuronosyltransferase 
URAT Urate transporter 

  

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on February 29, 2020 as DOI: 10.1124/dmd.119.089755

 at A
SPE

T
 Journals on A

pril 1, 2020
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD # 89755 
 

4 
 

Abstract 

The kidneys play an important role in many processes, including urine formation, water 

conservation, acid-base equilibrium, and elimination of waste. The anatomical and functional 

development of the kidney has different maturation time points in humans versus animals, 

with critical differences between species in maturation before and after birth. Absorption, 

distribution, metabolism and excretion (ADME) of drugs vary depending on age and 

maturation, which will lead to differences in toxicity and efficacy. When neonate/juvenile 

laboratory animal studies are designed, a thorough knowledge of the differences in kidney 

development between newborns/children and laboratory animals is essential. The human and 

laboratory animal data must be combined to obtain a more complete picture of the 

development in the kidneys around the neonatal period and the complexity of ADME in 

newborns and children. This review examines the ontogeny and cross-species differences in 

ADME processes in the developing kidney in preterm and term laboratory animals and 

children. It provides an overview of insights into ADME functionality in the kidney by 

identifying what is currently known and which gaps still exist. Important renal function 

properties such as glomerular filtration rate, renal blood flow and ability to concentrate are 

generally well known, detailed knowledge about transporter and metabolism maturation is 

growing, but is still lacking. Preclinical data in those properties is limited to rodents and 

generally covers only the expression levels of transporter or enzyme-encoding genes. More 

knowledge on a functional level is needed to predict the kinetics and toxicity in 

neonate/juvenile toxicity and efficacy studies. 

 

Significance statement: This review provides insight in cross-species developmental 

differences of ADME properties in the kidney, which should be considered in 

neonate/juvenile study interpretation, hypotheses generation and experimental design.   
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1. Introduction 

The kidneys play a pivotal role in a number of processes, i.e. 1) urine formation; 2) conservation 

of water, cations, anions, glucose, amino acids; and 3) elimination of endogenous and 

exogenous waste compounds (Gans and Mercer, 1984). These various functions are dependent 

on the specialized subcellular structural and functional properties of renal tubule epithelium, 

including their various transporters, metabolic activity, and membrane integrity. Therefore, the 

development and maturation of these processes in pediatric patients or in animals can have a 

profound effect on the disposition and fate of administered drug therapies that depend on the 

kidney for filtration, uptake, secretion and/or metabolism. 

The anatomic and functional development of the kidney has different maturation time points in 

men compared with laboratory animals. In addition to the knowledge of kidney development in 

humans, several reviews have been published on the comparative ontogeny of the developing 

kidney in different laboratory animals, which describe critical species differences in renal 

development and functional maturation before and after birth (Owen and Heywood, 1986; Witte 

et al., 1986; Zoetis and Hurtt, 2003; Solhaug et al., 2004; McMahon, 2016; Frazier, 2017).  

Factors in the neonatal kidney that influence absorption, distribution, metabolism and excretion 

(ADME) properties of drugs include renal blood flow (RBF), glomerular filtration rate (GFR), 

and the tubular mass and lack of tubule maturity with its impact on tubular secretion and 

absorption, maintenance of acid-base equilibrium and urine concentrating mechanisms. These 

functions are all reduced in the juvenile animal (Seely, 2017). In addition, the ontogeny of 

metabolizing enzymes, transporters and transcription factors in the kidney all play a major 

role. Better understanding of these factors is needed to improve prediction of the ADME 

characteristics of drugs and chemicals administered to neonates. There are numerous examples 

of drugs which behave quite differently in adults and neonates that can be explained by the lack 
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of maturation of various transporters or metabolic enzymes such as propofol, pazopanib or 

dabrafenib, among many others (Groseclose et al., 2015; Frazier, 2017; Michelet et al., 2018; 

Frazier et al., 2019). 

The aim of the current review is to provide an overview of the ontogeny and cross-species 

differences of pathways involved in ADME in the developing kidney in preterm and term 

neonatal animals and children. This review is part of a multi-sector collaborative research effort 

coordinated by the Health and Environmental Sciences Institute to increase the knowledge base 

in the nonclinical space to better inform clinical treatment decisions made for the pediatric 

population (De Schaepdrijver et al., 2019; Hausner et al., 2019; Neal-Kluever et al., 2019). The 

ontogeny and cross-species differences of ADME-related processes in the liver and other organs 

will be covered by other reviews. These manuscripts will provide a comprehensive overview of 

available data and insights on ADME functionality present in the maturing organs, to 

toxicologists, modelers and clinicians, by identifying what is currently known and which gaps 

still exist.  

Laughon et al. (2014) stated that “Children are therapeutic orphans”. Currently, pediatric 

therapeutic guidelines are supported by a limited number of trials performed in pediatric 

populations, in combination with extrapolation from adult trials or case reports. The statement 

is also supported by the daily experience of clinicians, whereby a lack of “pediatric-adapted” 

drug information frequently requires off-label prescription of drugs, potentially leading to 

adverse events and dosage errors (Laughon et al., 2014; Skinner, 2014; Cuzzolin and Agostino, 

2016). Over the last 10 to 20 years, an upsurge in pediatric drug research has been noted, partly 

based on legislative initiatives, leading to more pediatric labeling of drugs. Unfortunately, even 

with the increased regulatory efforts, today still >50% of the drugs used in the pediatric 

population and even >75% of the drugs used in the critically ill and neonates are unlicensed or 
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prescribed off-label (Cuzzolin and Agostino, 2016). Most common drug classes are 

antiinfectives, respiratory drugs, antianemics, cardiovascular, central nervous system drugs and 

gastrointestinals (Cuzzolin and Agostino, 2016). Therefore, an improvement of current 

pediatric drug research conduct is required in order to attain information on age-appropriate 

dosage schemes, potential toxicity and adverse events. Extensive studies in the pediatric 

population are ethically not possible, whereby alternative approaches such as juvenile animal 

models and modeling and simulation tools emerge. The development and selection of 

appropriate juvenile animal models is key to build translatable models and to predict the effect 

on neonates and children, based on juvenile animal in vivo data. To be able to perform this 

selection, a thorough cross-species knowledge of the morphological and functional 

development of all organs involved in pharmacokinetics (PK), pharmacodynamics (PD) and 

toxicity is needed. 

To assess and incorporate the vast amount of disparate data across species on this topic, a 

thorough literature search was performed in PubMed/Medline, Web of Science and EMBASE 

databases using a comprehensive list of keywords related to maturation of the kidney and the 

role of the kidney in the ADME processes. Additionally, previously published search strategies 

on kidney transporter ontogeny (Brouwer et al., 2015) were repeated and modified to include 

additional transporters, enzymes and species. The literature search was limited to peer-reviewed 

English language articles. The review was centered around humans and the most predominant 

used toxicology laboratory animal species, namely rat, mouse, dog, pig and monkey. All species 

were assessed for each parameter. When information is not listed for a particular parameter it 

indicates that no supporting data was found in our search. No additional animal or clinical 

experiments were performed for the construction of this review paper. 

Anatomical development 
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Nephrogenesis 

In 2017, a comparison of nephrogenesis by species was presented in detail by Frazier (2017), 

and included review of earlier authors (Owen and Heywood, 1986; Witte et al., 1986; Zoetis 

and Hurtt, 2003; Solhaug et al., 2004; Cappon and Hurtt, 2010; McMahon, 2016). An overview 

of renal development and the nephrogenesis of the different species can be found in Table 1. 

The three main phases of in utero renal development include pronephros, mesonephros and 

metanephros, with the latter forming the functioning kidney in vertebrates (Seely, 2017). 

Kidney formation involves a well-regulated balance between proliferation, differentiation, 

apoptosis and morphogenesis (Frazier, 2017). Nephrogenesis, which involves the final phases 

of kidney development and tubule differentiation, occurs in very different contexts between 

species (McMahon, 2016). In humans, morphologic renal development occurs exclusively in 

utero, with nephrogenesis and organogenesis occurring from gestational week (GW) 6 to 36. 

After GW 36, nephrogenesis is complete and each kidney has a full complement of nephrons 

(Solhaug et al., 2004). While nephrogenesis begins in the fetus and is completed in humans 

before birth, it continues postnatally in the rat and is not completed until postnatal day (PND) 

11-15 (Zoetis and Hurtt, 2003). In mice, most nephrons are fully formed by the end of gestation 

based on histomorphology (Zoetis and Hurtt, 2003; Frazier, 2017). In contrast, evidence in mice 

indicating labeled progenitor cells do not disappear until a few days after birth suggests 

nephrogenesis is not complete in mice until PND 2-4 (Short et al., 2014; McMahon, 2016). 

Further, evidence from embryonic gene expression indicates that branching of the tips of renal 

tubules does not cease until PND 2 in mice (Short et al., 2014). In contrast, nephrogenesis is 

completed by GW 24 in most nonhuman primates (Frazier, 2017). Nephrogenesis in the dog 

and the pig proceeds approximately up to postnatal week (PNW) 2 and 3, respectively (Friis, 

1980; Kleinman, 1982; Zoetis and Hurtt, 2003; Gasthuys et al., 2016). 
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Postnatal maturation and growth of nephron segments encompassing tubule elongation 

continues throughout the first year in human infants and lasts up to 5 months postnatally in 

nonhuman primates. Tubule differentiation occurs up to PND 21 in rats, but is completed 

around the time of birth in mice (McMahon, 2016; Frazier, 2017). Tubule elongation in rodents 

slows considerably after PND 28. In dogs, the volume of nephron segments continues to grow 

from PNW 2 (when nephrogenesis ceases) to approximately PNW 28, enlarging by as much as 

300% (Eisenbrandt and Phemister, 1979).  

Vasculogenesis 

In concert with nephrogenesis, human vasculogenesis is completed by GW 34-36. Vascular 

maturation in the kidney of nonhuman primates is also completed by birth. In dogs it is not 

completed until PNW 6. In rats, renal vasculogenesis is active as late as PND 12 and is not 

completed until PND 17 to 19, while in mice it is complete by PND 7 (Frazier, 2017).  

Kidney size 

The neonatal kidney in all species is smaller than the adult kidney and will increase in mass 

during the juvenile and pediatric growth period specific for that species (Frazier, 2017). It 

should be noted that the number of glomeruli is constant in an individual between the end of 

nephrogenesis and maturity, with the increase in renal volume attributable to an increase in 

tubular mass (Frazier, 2017). The lower tubular mass in juvenile kidneys results in diminished 

capacity for water and solute reabsorption and an increased risk of dehydration in neonates as 

compared with adults (Frazier, 2017).  

In mice, the glomerular size relative to total kidney weight (KW) is smaller than in other 

species, including rat. Glomerular size tends to increase with age and can vary among strains 

of rodents (Frazier et al., 2012). Takasu et al. (2015) evaluated the kidney size of 
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microminipigs (Fuji Micra Inc) (4-7 months of age) and beagle dogs (10 months of age). The 

kidney size (in cm³) was comparable between the dogs and the 7-month-old pigs (right kidney: 

[27.9-34.9]; left kidney: [28.0-41.1]), when both species were approximately the same size. The 

kidney size of a Hanford miniature swine (BW: 25 kg) is 11 × 6 × 3 cm (KW: 120 g), which 

resembles the kidney of a 70 kg human (Swindle and Brown, 2016). 

Functional development 

Renal clearance encompasses three main processes: 1) glomerular filtration, 2) tubular secretion 

and 3) active/passive tubular reabsorption. Functional maturation is closely related to the 

morphogenesis of the kidney. In all species, functional development lags behind anatomic 

maturation (Seely, 2017). During gestation, the homeostasis is mainly preserved by the 

placenta, whereas the contribution of the kidney starts to emerge in the third trimester 

(Chevalier and Norwood, 2011). Functional maturity is dependent on many factors. Renal blood 

flow, GFR, tubular secretion and absorption, maintenance of acid-base equilibrium and urine 

concentrating mechanisms are all limited in the juvenile animal. The reduced tubular mass and 

lack of tubule maturity in neonatal or juvenile kidneys are responsible for a reduced capacity to 

maintain kidney homeostasis. Full maturation differs per species and ranges from 

approximately 1 month in rodents to up to 2 years in humans. 

Renal blood flow 

Renal blood flow progressively increases during gestation and achieves full-term levels by GW 

32-35 in humans. The values at term are less than those observed in adults even when corrected 

for BW, KW, or body surface area. For the human kidney, the transition at birth is marked by 

striking physiologic functional changes that facilitate not only the immediate demands for 

adaptation to extra-uterine life but also the progressive maturation to adult renal function. The 

most striking postnatal transition occurs in an increase in RBF together with a marked change 
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in glomerular filtration pressure, resulting in a rise in GFR. In contrast, urinary sodium output 

drops so that sodium and thereby water, may be retained, which is needed for new tissue 

formation in this period of rapid somatic growth.  

Renal blood flow and flow velocity have been determined in children and adolescents (range 1-

16 years) by duplex doppler and was shown to be 4.1 (standard deviation 1.2) ml/min/g KW, 

independent of age (Grunert et al., 1990). Another study in healthy neonates resulted in an RBF 

of 21 ml/min/kg BW (Visser et al., 1992). More values have been reported for the effective 

renal plasma flow (RPF) at different developmental stages being 20 ml/min/1.73 m2 in the 

premature infant, 45 ml/min/1.73 m2 by GW 35, 83 ml/min/1.73 m2 in term infants, 300 

ml/min/1.73 m2 by toddler age, up to a rate of 650 ml/min/1.73 m2 by 2 years of age (Jose et 

al., 1994).  

In rats multiple protocols have been used over the years to measure RBF or RPF. Classically, 

methods started out to be indirect calculations via para-aminohippurate (PAH) clearance and 

evolved using surgical models with flow probes, transducers or microspheres. More recently, 

magnetic resonance imaging (MRI) techniques and awake-instrumented models have been 

developed. Most research has focused on a time period where RBF was already considered at 

its maximum capacity (>PND 20). Horster and Lewy (1970) showed that from PND 1-3 RPF 

decreased from 0.017 to 0.013 ml/min/g KW by PAH clearance. At PND 24-28 RBF (as 

measured by radiolabeled microspheres) showed a flow of approximately 4.5 ml/min for an 

average KW of 0.52-0.55 g (Chevalier and Thornhill, 1995). In adult rats, wider ranges have 

been reported. Cortical RBF has been evaluated by arterial spin labeling MRI and showed 

ranges between 1.2 and 4.2 ml/min/g KW (Liu et al., 2012; Zimmer et al., 2013; Tan et al., 

2015; Romero et al., 2018). This method showed good correlations with PAH clearance in 

humans (Ritt et al., 2010). Additionally, it has been pointed out by other researchers that the 
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microsphere method might lead to an overestimation of RBF (Prinzen and Bassingthwaighte, 

2000). In 3- to 4-month-old Wistar rats, flow-probe instrumented conscious rats showed RBF 

rates ranging from 4.4 to 5.5 ml/min (Flemming et al., 2001). Even though a rough range of 

RBF in adult rats has been established, data for the first 3 PNW in rats are still lacking.  

Just as in rats, different protocols have been used over the years to measure the RBF in mice. 

Adult male C57BL/6 mice have a PAH clearance of 6.3 ml/min/g BW (Cervenka et al., 1999). 

In another study PAH clearance in 14-month-old 129SV-C57BL/6 mice resulted in a mean RBF 

of 4.7 ml/min/g (Cullen-McEwen et al., 2003). A surgical approach with flowmeters resulted 

in an RBF of 0.59 ml/min in 10- to 14-week-old C57BL/6J mice (Mergia et al., 2018). Adult 

New Zealand inbred mice showed a baseline RBF of 0.83 ml/min in freely moving conscious 

instrumented mice (Iliescu et al., 2008). There is variation in RBF results between different 

methods in adult mice. Data on the first weeks after birth are sparse, but Barnett et al. (2017) 

showed a rapid increase in renal perfusion from PND 0 [70 laser doppler flowmetry (LDF) 

arbitrary units] to PND 3 (180 LDF arbitrary units) and PND 7 (280 LDF arbitrary units) in 

CD-1 mice.  

More neonatal data are available for the dog. Renal perfusion flow was calculated in mongrel 

puppies from inulin clearance by Fick’s law and ranged from 0.7 ml/min/g KW on PND 1 to 

1.8 ml/min/g KW at 1 month of age, compared with the adult reference of 2.7 ml/min/g KW 

(Kleinman and Lubbe, 1972). Another study was performed measuring RBF by xenon washout 

and krypton audiography in mongrel dogs aged 18 h to 70 days by Aschinberg et al. (1975). 

They showed an increase in RBF from 0.39 ml/min/g KW in week 1 to 2.1 ml/min/g KW in 

week 6, which is in the same order of magnitude (Aschinberg et al., 1975). Noteworthy detail 

here was that the increase in RBF appeared rather linear between week 1 and week 6. Another 

study in newborn mongrel dogs, but with a microsphere model, showed a RBF of 0.43 ml/min/g 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on February 29, 2020 as DOI: 10.1124/dmd.119.089755

 at A
SPE

T
 Journals on A

pril 1, 2020
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD # 89755 
 

13 
 

KW for newborns, 2.1 ml/min/g KW for 6-week old dogs and 3.8 ml/min/g KW for adults 

(Olbing et al., 1973). These estimates were further confirmed by flow transducer experiments 

in 14- to 25-day-old mongrel puppies (RBF of 1.6 ml/min/g KW) and in adult dogs (RBF 3.7 

ml/min/g KW) (Baer and Navar, 1973; Jose et al., 1975). Again, more recently, RBF 

measurements can be performed in conscious flow-probe instrumented dogs and flow rates of 

214-310 ml/min were registered in foxhounds weighing 23-35 kg by Just et al. (1998). 

In pigs experiments have been performed in 10- to 12-week-old animals both via microsphere 

and arterial spin labeling methodologies. Microsphere and arterial spin labeling MRI results 

were 3.7 ml/min/g KW and 2.0-2.1 ml/min/g KW, respectively (Artz et al., 2011). Additionally, 

microsphere experiments in piglets aged 6 h to 45 days showed mean RBF increased from 43 

ml/min/m2 body surface area to 760 ml/min/m2 (Gruskin et al., 1970). This large increase is 

mainly driven by the normalization to body surface area and the rapid growth rate of pigs.  

For cynomolgus monkeys RBF is at the maximum level at birth (Frazier, 2017). In rhesus 

monkeys between 3 and 5 days of age, RBF values of 2.5 ml/min/g KW were determined by 

microsphere methodology (Moore et al., 1974). Another study in infantile rhesus monkeys 

showed an RBF of 3.5 ml/min/g KW (Behrman and Lees, 1971). However adult rhesus 

monkeys showed higher normalized RBF values being 7.0-9.8 ml/min/g KW indicating that 

there may be differences in RBF maturation between species (Sivarajan et al., 1976). 

Glomerular filtration rate 

The GFR is widely used as a quantitative marker to assess renal clearance. In humans, GFR 

remains relatively low during gestation, increases quickly in the first weeks of life, after which 

it increases steadily and reaches adult levels at 1 to 2 years of age (Zoetis and Hurtt, 2003). 

During gestation, the increase in GFR is primarily attributed to nephrogenesis, which leads to 

an upsurge in new glomeruli. After birth, the rise in GFR is attributed to an increase in RBF, a 
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higher capillary pressure, a drop in renal vascular resistance and a rise in cardiac output 

(Gruskin et al., 1970). In clinical practice, GFR is most often estimated (eGFR) in humans, 

rather than measured precisely, using the Cockcroft-Gault equation, Chronic Kidney Disease 

Epidemiology Collaboration equation, the Modification of Diet in Renal Disease (MDRD) 

equation, the Schwartz equation (in children), or other formulas. Actual measured values for 

GFR and reference ranges can be problematic to compare across species. In humans, GFR is 

normalized to a body surface area of 1.73 m2 (once an average adult body surface area [body 

weight (BW): 70 kg)] and normal values represent approximately 20 ml/min/1.73 m2 at birth, 

which increases to around 50 ml/min/1.73 m2 by PNW 2 (Gomez et al., 1999; Vieux et al., 

2010; Baum, 2016). Measured or estimated values of 100–120 ml/min/1.73 m2 occur by 2 years 

of age and remain relatively constant into adulthood. Normalizing for BW results in a GFR of 

approximately 0.8 ml/min/kg shortly after birth (Wilkins, 1992), which increases to maximum 

values of approximately 3.2 ml/min/kg around the age of 2-3 years (Hayton, 2000). With 

increasing age, the GFR decreases to approximately 2.0 ml/min/kg in adults (Hayton, 2000). 

In dogs, reference ranges have not been definitively agreed upon and variation in results have 

been reported in surveys of the GFR literature (Moe and Heiene, 1995). The primary reason 

why a reference range for GFR has not been produced is most likely due to variations in strains 

or protocols (i.e. markers used, assays for measurement of serum or urine marker concentration, 

urine or blood sampling times and PK models used for GFR calculation), as well as other factors 

such as circadian variation, hydration status, dietary protein and the use of sedation during 

measurement (Von Hendy-Willson and Pressler, 2011). Generally agreed upon values for 

normal GFR in the adult dog using several methods are approximately 3.7-4.3 ml/min/kg (Finco 

et al., 1993; Watson et al., 2002; Von Hendy-Willson and Pressler, 2011). At PND1, puppies 

have only approximately one-fourth of this value at just under 1 ml/min/kg (Kleinman, 1982).  
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The variety of substrates and methods for determining the experimental value of GFR in 

laboratory rats have resulted in huge variances in published values and the way in which they 

are expressed can also confuse readers. Using iothalamate and I-hippuran, values of 

approximately 1.0 ml/min/100 g of BW were noted (de Vries et al., 1997). Using inulin 

clearance to assess GFR in experiments over 50 years ago, adult values were listed as 1.2 

ml/min/g of KW (van Liew et al., 1967). In neonatal Sprague Dawley rats values of 0.044 

ml/min/g KW at PND 3 were noted that increased to 0.3 ml/min/g KW by PND 18 (Horster and 

Lewy, 1970; Horster, 1977). In a study using female Han Wistar rats, values for GFR were 

similar and reported as 1.2 ml/min/g KW for adult rats and only slightly lower at PND 28. These 

data indicate that GFR matures around PNW 4 in rats even though maximum values and 

complete maturation are not completed until PND 42 (Guron, 2005; Frazier, 2017). In recent 

years, a variety of new imaging modalities that can measure GFR transdermally or via MRI in 

animals has become available. A typical GFR value obtained using these methods is 2.4 ml/min 

in adult rats weighing approximately 229 g (Yu et al., 2007).  

The small size of mice and their sensitivity to blood loss pose a challenge to clearance studies, 

which normally require sequential assessment of plasma concentrations of inulin and/or other 

substrates. In some studies, GFR has been assessed by using radioisotope-labeled inulin and in 

others by chromotropic detection (Field et al., 1991). The measured values for GFR for adult 

mice differ by strain with lower values reported for C57BL mice. GFR averages 237 and 140 

µl/min in adult male and female C57BL/6J mice, respectively, using bicompartmental analysis 

of inulin clearance. Other strains have reported GFR values between 0.8 and 1.4 ml/min/g BW 

(Qi et al., 2004; Qi and Breyer, 2009). Similar values of 240 µL/min were obtained using high 

throughput imaging techniques in CD-1 mice (Rieg, 2013). Using separate methodology, 

normal adult values of 1.0 ml/min/g BW have also been published (Field et al., 1991). Due to 

logistical problems in obtaining values in neonatal mice, standard ranges are not available for 
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mice younger than two weeks. 

For minipigs, values for GFR are very hard to compare based on age because of the marked 

increase in BW over time. Glomerular filtration rate values of 44-58 ml/min have been noted 

in minipigs at PNW 4, which corresponds to approximately 4.5 to 5 ml/min/kg. By PNW 15, 

GFR has increased to 101-116 ml/min but as they have now grown significantly the GFR value 

is down to 3-4 ml/min/kg which is roughly similar to the dog on a BW basis (Ransley et al., 

1987). For conventional pigs (Belgian landrace × large white), the GFR indexed to body 

surface area increased in GFR from 46.6 to 100.9 ml/min/m2 from 8 days to 7 weeks of age 

(Gasthuys et al., 2017). Kaskel and Kleinman (1976) and Friis (1979) also measured the GFR 

in growing conventional piglets indexed to KW and BW. The maturation of the GFR in those 

studies was similar to the trends observed by Gasthuys et al. (2017). 

In healthy adult cynomolgus macaque monkeys, the GFR was found to be 3.1 ml/min/kg by 

two separate methods by one group (Iwama et al., 2014) and 2.5-2.8 ml/min/kg by another 

group using yet another method (Zhang et al., 2017). Similar values between 2.8 and 4 

ml/min/kg have been noted in adult rhesus macaques (Rabito et al., 2010), but precise values 

for GFR in monkeys in the first week after birth are not available. 

Tubular secretion 

The renal tubules transfer substances, including drugs, to the urinary filtrate via tubular 

secretion. The level of maturation in the fetal and the juvenile kidney should be considered in 

drug administration because the drug excretion profile may undergo developmental changes. In 

general, the secretory capacity will increase as the kidney develops. Tubular secretory capacity 

can be measured via any one of a number of standard analytes but is difficult to assess 

prenatally. More practical physiologic assays in the postnatal period involve measuring 
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excreted electrolytes directly in urine such as sodium or chloride to compare trends over time, 

but these analytes may only reflect concentrating ability rather than true excretion capacity as 

electrolytes are also filtered. It is known that the fetal renin-angiotensin system is active in utero 

and maintains the fetal renal excretion of sodium and water into the amniotic cavity, aiding the 

maternal system and ensuring an adequate volume of amniotic fluid for normal growth and 

development (Lumbers, 1995). In rodents and other animals, fractional excretion rate of solutes 

and water changes as a function of age and the urinary Na+/K+ concentration ratio often drops 

significantly at the time of birth. Secretory capacity can be measured directly by analyzing 

compounds in urine, which are not filtered or absorbed. It must be stressed that each specific 

transporter will mature at its own pace and lifecycle and thus a particular maximum secretory 

capacity or excretion rate will vary with the transporter a compound is associated with. In 

practice, excretion rates can be measured for compounds that are both filtered and secreted such 

as creatinine or PAH. Since PAH is efficiently transported by the organic anion transporter 1 

(OAT1) in humans and animals, PAH can be used to measure the effective RPF and the 

maximum tubular secretory capacity (TmPAH) (i.e. the difference between the total rate of 

excretion and quantity filtered by the glomeruli), which for PAH is primarily attributable to 

OAT1 activity (Momper and Nigam, 2018). Upregulation of OAT1 and OAT3 in the proximal 

tubules during the postnatal period is a critical factor in tubular secretory capacity in both 

humans and rodents (Momper and Nigam, 2018). More details on transporters can be found in 

the transporter section of the manuscript. 

Values for maturation of excretion have been established for some species. Acquisition of 

filtration and secretion do not occur simultaneously. During the first months of life, the 

maximum tubular secretory capacity for organic anions is lower than GFR when compared to 

adults and there is significant intersubject variability.  
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Human tubular secretory capacity in the kidney reaches maximum capacity at PNW 30 but is 

lowest in the first month of infancy (West et al., 1948). At PND 1–30 in humans, the TmPAH 

was shown to be only approximately 26% of the average during 1 year to 12 years of age (Rubin 

et al., 1949). In rodents, secretory capacity appears to increase from birth to PND 28 as overall 

kidney function matures (Frazier, 2017). It should be stressed that tubular secretory capacity is 

not necessarily equivalent to GFR as the rate of maturation in these processes is not identical 

within or among species. 

Friis (1983) assessed the maturation of the active tubular secretion in conventional pigs by 

using PAH. Adult levels were reached at PNW 8 (PND 0-3: 0.8 ml/min/g KW and PNW 8: 1.9 

ml/min/g KW). The TmPAH rose a fourfold from PND 0-3 to PNW 8. 

Concentrating capacity 

The concentrating capacity of the kidney depends on the medullary depth of a specific species. 

Greater depths of medulla results in the kidney to concentrate urine to a greater osmolality 

(Gans and Mercer, 1984). The relative medullary thickness for various species is: human: 3, 

pig: 1.6, dog: 4.3, rat: 5.8 (Schmidt-Nielsen and O'Dell, 1961). Maturation of the concentrating 

capacity is shown in Table 2. 

Other functions 

In humans, fetal urine formation starts during the first trimester of pregnancy (GW 10 to 11) 

(Abramovich, 1968). The hourly fetal urine production rate, estimated by regression analysis 

of bladder volumes, increases steadily during gestation (GW 20: 5 ml/h to GW 40: 51 ml/h), 

whereas the bladder storage interval remains unchanged (7-43 min) (Fagerquist, 2012). The 

increase in hourly fetal urine production rate is attributed to nephrogenesis and dynamic 

changes in RBF, GFR, tubular function and hormonal regulation (Chevalier and Norwood, 
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2011).  

Pharmacokinetic characteristics 

Renal transporter maturation 

The elucidation of transporter activity in various species and especially humans, has become 

increasingly important in predicting drug-drug interactions and for understanding the 

mechanism of some renal toxicities (Ennulat et al., 2018). However, to date, developmental 

data on transporters in pediatric patients and transporter ontogeny in general remains a 

significant gap in our understanding (Brouwer et al., 2015; Momper and Nigam, 2018).  

Most renal transporters are localized to the proximal tubules (Frazier and Seely, 2018). In 2015, 

a comprehensive review of transporter maturation in humans has been compiled by Brouwer 

et al. (2015). We extended this review and the results are listed in Table 3a with localization 

shown in Figure 1. In general, data are limited about transporter ontogeny in human and non-

rodent kidneys because most kidney transporter characterization has been performed in rodents. 

However a recent publication of Cheung et al. provides new insights on transporter maturation 

in humans using a more quantitative and novel technological approach with liquid 

chromatography-mass spectrometry (Cheung et al., 2019). There are several important 

differences in species between renal transporter expression, as well as in the timing of functional 

maturation of transport capacity (Sweeney et al., 2011). Transporter expression can be affected 

by both age and gender. In general, kidney transporters are largely immature at birth in humans 

and laboratory animals (Buist et al., 2002; Sweeney et al., 2011).  

Among various transporters, the ATP-binding cassette (ABC) and solute carrier (SLC) families 

are responsible for the transport of most of the drugs handled by the kidney. Among the apical 

membrane (efflux) transporters of the proximal tubule, P-glycoprotein (Pgp), also termed 
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multidrug resistance protein 1 (MDR1), is one of the most important for drug interactions. P-

glycoprotein has been localized in human fetal kidneys by GW 5.5 using 

immunohistochemistry (Konieczna et al., 2011). Significant expression of Pgp has been 

demonstrated in humans at GW 11 in renal tubules and is present afterwards throughout 

gestation, increasing after birth to peak levels as an adult (van Kalken et al., 1992; Miki et al., 

2005; Brouwer et al., 2015; Cheung et al., 2019). Protein abundance of Pgp is, however, already 

at adult level during childhood (Cheung et al., 2019). Low levels of Pgp expression has been 

noted in fetal rat kidneys, increasing at gestation and up through the early development period 

to weaning with maximum levels achieved between PND 11 and 26 (de Zwart et al., 2008; 

Sweeney et al., 2011; Xu et al., 2017). Peak Pgp expression in mice kidney has been noted at 

PND 20/21, but decreases sharply in males at PND 45 (Pinto et al., 2005; Cui et al., 2009).  

Organic anion transporters are members of the SLC family and are involved in the movement 

of drugs, metabolites and toxins across the basolateral and apical membranes of the renal 

tubules, contributing to the secretion of a number of therapeutic agents and endogenous 

substrates (Burckhardt and Burckhardt, 2003). In rats and mice, renal OAT expression is low 

during gestation, but increases substantially during the postnatal period (Buist et al., 2002; Buist 

and Klaassen, 2004). The expression of OAT1 and OAT3 (which are critical carriers on the 

basolateral border), is significant enough for detection by approximately day 16-17 of gestation 

in rodents but rises considerably between birth and PNW 3 to reach adult levels by PNW 4 

(Sweeney et al., 2011). The formation of new nephrons and extensive growth of established 

nephrons may contribute to the high upregulation levels of transporters in the postnatal kidney 

in some species. Protein levels of both transporters at PNW 3 largely resemble those of adults 

in both mice and rats (Nakajima et al., 2000; Hwang et al., 2010). However, using PAH 

secretion as a surrogate for OAT1 functional maturity, PAH clearance failed to reach maximal 

levels in rat until 8-10 weeks of age, suggesting either that OAT transporters are not fully mature 
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at PND 21-28, or other renal factors may be confounding the data (Sweeney et al., 2011). The 

latter finding illustrates that expression at the ribonucleic acid (RNA) level does not necessarily 

equate with functional capacity, which makes interpretation of the scarce data even more 

challenging.  

Many SLC carriers are present in early renal development, including Multidrug and toxin 

extrusion 1 (MATE) 1, Organic cation transporters 1 (OCT), OCT2, OCTn1, OCTn2, Urate 

transporter 1 (URAT) and Peptide transporter 2 (Pept). These transporters show similar 

expression patterns at least at the transcriptional level in rodents (Pavlova et al., 2000; Sweet 

et al., 2006). Organic cation transporters 1, OCT2, OCTn1 and OCTn2 messenger RNA 

(mRNA) expression in mice have been shown to approach adult levels by PNW 3 and 

although some of this family show gender differences in adult expression, the differences are 

not evident until about PND 30 (Alnouti et al., 2006). Multidrug and toxin extrusion 1 is an 

efflux cation transporter on the apical membrane. At PND 2, MATE1 expression in mice was 

only 12–14% compared to PND 45 when it reached adult levels and only 50% at PND 15. In 

rats, OCT2, OATP-4C1 and MATE1 expression levels were found to be low in fetal kidneys, 

increased gradually following birth and increased markedly on weaning, continuing to rise 

until adulthood. Although for OCT2 female expression does not increase after PNW3. 

Organic cation transporter 3 mRNA expression levels were low in fetal and newborn kidneys, 

but peaked at PND 35-40 in both sexes (Slitt et al., 2002; Xu et al., 2017). In humans, 

postnatal OAT1-mediated renal secretion is low in neonates and young infants relative to 

older children and adults (Momper and Nigam, 2018; Cheung et al., 2019). Organic anion 

transporter 3 expression is lowest in neonates and reaches adult levels before 2 years of age, 

but protein expression only reaches adult levels in adolescence (Cheung et al., 2019). Urate 

transporter 1mRNA expression is highest at the infant and child stage, however protein levels 

are more or less stable from childhood onwards (Cheung et al., 2019). Multidrug and toxin 
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extrusion 1 shows similar expression and protein abundance from neonates up to adults 

(Cheung et al., 2019). Organic anion-transporting polypeptide B and OATP‐D are both 

expressed in the human fetal kidney, but comparative expression has not yet been evaluated 

systematically throughout development (Brouwer et al., 2015).  

Multidrug resistance-associated proteins (MRP) are a member of the ABC superfamily and 

include adenosine triphosphate-dependent efflux transporters which transport a wide variety of 

anionic and cationic compounds across membranes in the kidney and other tissues. Of the eight 

mice MRPs, six MRPs (MRP1-6) are significantly expressed in the kidney. The renal ontogeny 

of the MRP-carriers can be divided into three expression patterns in mice: 1) MRP1 expression 

remains relatively constant from birth to adulthood; 2) MRP2, 3 and 4 are expressed below 

adult levels at birth and increase during the first few weeks of age; and 3) highest expression of 

MRP5 is seen at birth and expression decreases during the first few weeks of life (Maher et al., 

2005). Multidrug resistance-associated proteins do not exhibit mature expression levels until 1 

month of age or later (Maher et al., 2005, 2006a). In a publication by Konieczna et al. (2011), 

immunohistochemistry of human fetal kidneys demonstrated MRP1 as early as GW 5.5 which 

increased during gestation. Expression of MRP 2 and 4 is similar between newborns and adults 

(Cheung et al., 2019). Unfortunately, there are no MRP mRNA expression data to support these 

results in human fetuses. Multidrug resistance-associated proteins 3 and 4 are expressed at much 

higher levels in adult female than male kidneys and are under hormonal influence in mice, rats 

and humans (Chen and Klaassen, 2004; Maher et al., 2006a). 

Breast cancer resistance protein (BCRP) has been shown by immunohistochemistry at multiple 

stages in the human fetus within renal proximal tubules on their apical border (Konieczna et 

al., 2011). Breast cancer resistance protein expression level is high in newborns and reduces 

with age, reaching adult levels before 2 years of age. Protein abundance is similar between 
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newborns and adults (Cheung et al., 2019). In mice, BCRP expression is increased after 

gestation and increases until maturity (de Zwart et al., 2008; Sweeney et al., 2011).  

There are several other transporters of note in the kidney, such as the sodium-phosphate co-

transporters (NPT1, NPT2a, NPT2b and NPT2c) and the nucleoside transporters (equilibrative 

nucleoside transporter, ENT1, ENT2 and ENT3), but ontological data in any species for these 

groups are rather limited. Except for ENT2, all are minimally expressed in mouse kidneys until 

PND 15 and then increase until maturity (Cheng and Klaassen, 2009). ENT2 is highly expressed 

in mice during gestation and decreases from birth until PND 15 where it is maintained until 

adulthood (Cheng and Klaassen, 2009). 

It should be noted that there are important mechanisms of regulation of transporters including 

the hepatocyte nuclear factors (HNFs) and the pregnane X receptor (PXR) during renal 

development. Hepatocyte nuclear factors 1a and 4a regulate the expression of many or most 

(21/32 tested in one study) proximal tubule transporters in ontogeny during intrauterine and 

later development (Maher et al., 2006b; Martovetsky et al., 2013). While PXR regulatory factor 

has a larger role in the maturation of enzymes related to metabolism, PXR also regulates some 

transporter genes during kidney development (Tolson and Wang, 2010).  

Maturation of passive tubular reabsorption was assessed in conventional pigs by Friis (1983) 

using sulphachlorpyridazine (SCP). Although excretion of SCP comprises both secretion as 

well as reabsorption, an age-dependent increase in SCP/GFR clearance ratio was observed, 

implicating a relative decrease in reabsorption with age. 

Metabolic enzyme maturation 

Overall there is very little information on the ontogeny of metabolism in the kidney. Although 

ontogeny data in the liver has improved over the last decade after earlier gap analysis (de Wildt 
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et al., 1999; Alcorn and McNamara, 2002), data on maturation in the kidney are still lacking. 

Data from liver studies demonstrated that levels of Uridine 5'-diphospho-

glucuronosyltransferases (UGTs) are generally lower in neonates, but maturation depends on 

the isoform and possibly also on the tissue examined (Ekstrom et al., 2013). Unfortunately, 

most studies failed to include both fetal and adult kidney tissues in their experiments. 

Interpretation of results from human studies is difficult. Although studies have been performed 

with known substrates for specific metabolism pathways, it is not possible to discern liver from 

kidney related effects as there is a large overlap between enzymes in both tissues. Moreover, 

due to the many different techniques used, a comparison between studies is not always easy to 

make. The kidney plays a less prominent role in drug metabolism for most drugs compared with 

the liver, whereby only a small portion of the known metabolizing families are present.  

CYP p450 family (table 3b) 

In human kidney there is evidence for the expression of various cytochrome P450 (CYP) 

enzymes, such as CYP2B6, CYP3A5 and the CYP4 family, while presence of CYP2C8, 

CYP2C9 and CYP3A4 is considered equivocal (Knights et al., 2013). While some of these 

enzymes are also present in animals, it may be one of the other isoforms that has a similar 

function. A thorough overview of CYP isoforms between species was published by Martignoni 

et al. (2006). 

The CYP2B6 enzyme is known for the metabolism of a wide range of drug classes including 

chemotherapeutics, anti-inflammatories, anti-retrovirals, anesthetics and benzodiazepines 

(Wang and Tompkins, 2008). Additionally, it metabolizes several insecticides and herbicides 

(Hodgson and Rose, 2007). Data on ontogeny and maturation in the kidney is however lacking 

in most species. Sparse data in mice showed CYP2B9 protein concentrations to be present 

between PNW 3 and 10. Between PNW 10 and 10 months of age the concentrations declined 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on February 29, 2020 as DOI: 10.1124/dmd.119.089755

 at A
SPE

T
 Journals on A

pril 1, 2020
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD # 89755 
 

25 
 

in females, but not in males using a proteomics approach (Hersman and Bumpus, 2014). In pigs 

CYP2B22 activity was present from birth and increased from PND10-15, where it remains 

stable into adulthood (Aleksa et al., 2004). 

The CYP3A4/5 enzyme is known to metabolize a wide range of drugs including calcium 

channel blockers, HIV protease inhibitors, statins and benzodiazepines. The CYP3A4/5 

enzymes are slightly higher expressed in the cortex compared with the medulla (Schuetz et al., 

1992) and are detected in the human fetal kidney at GW 28 and onwards (Aleksa et al., 2005; 

Miki et al., 2005). With respect to the ontogeny and maturation of this enzyme in the kidney 

not much is known in humans and other species. The CYP3A4 enzyme was shown to slowly 

increase in expression with age in pigs (Aleksa et al., 2004). In mice protein concentrations of 

the predominant isoform CYP3A11 was undetected in kidney at PNW 3-4, 9-10 and 9-10 

months of age. The CYP3A25 enzyme showed low levels at PNW 9-10 and 9-10 months of age 

in females. It was undetected in males (Hersman and Bumpus, 2014). 

Several members of the CYP4 family have been identified in the kidney, including CYP4A11, 

CYP4F2, CYP4F8, CYP4F11 and CYP4F12. These enzymes are known to metabolize 

arachidonic-, docosahexaenoic and eicosapentenoic acids, but are not directly related to a drug 

class. Data on the ontogeny/maturation of the renal CYP4 family is lacking in most species, 

including humans. The CYP4F4 enzyme expression was analyzed in rats and showed a peak 

at 2 weeks of age (Kwekel et al., 2013). The CYP4F4 enzyme levels doubled at PNW 8, but 

thereafter declined sharply by PNW 12 and PNW 16. The CYP4F5 enzyme expression also 

decreased by 50% at PNW 12-18 when compared with the PNW 4 expression. The CYP4F6 

enzyme levels, in contrast, increased by 40% at PNW 8 and 4-fold by PNW 12. However, at 18 

PNW CYP4F6 levels were reduced to their 4-week levels (Kalsotra et al., 2005). In mice high 

protein concentrations of CYP4A12 were noted in both sexes at PNW 3-4 and 9-10. At 9-10 
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months concentrations were significantly decreased in females only (Hersman and Bumpus, 

2014). 

The CYP2C8 enzyme is known to metabolize the following substrates: amodiaquine, 

chloroquine, paclitaxel, repaglinide and rosiglitazone. In humans this gene is expressed in the 

first trimester and more predominant in the proximal tubule compared with the distal tubules 

(Cizkova et al., 2014; Johansson et al., 2014). Expression is rather stable between 5 and 20 

weeks of intra uterine development. In adults, expression of this gene is slightly higher in both 

proximal as well as distal tubules.  

The CYP2C9 known substrates are losartan, NSAIDs, oral hypoglycemics and S-warfarin. In 

humans the CYP2C9 gene is expressed in the first trimester (GW 5-12) (Johansson et al., 2014). 

Moreover, Cizkova et al. (2014) showed expression in both proximal and distal tubules between 

GW 5 and GW 20. Expression was slightly less in the proximal tubule of adults compared with 

in utero development, in distal tubules expression was more-or-less similar (Cizkova et al., 

2014). Limited data was available on the ontogeny of CYP2C8 and CYP2C9 isoforms in rodent 

species. The CYP2C23 enzyme expression was noted to increase progressively from birth until 

declining at PNW3 in the rat (Marie et al., 1993). In mice data was available on CYP2C29 and 

CYP2C37. The CYP2C29 protein concentrations were very low in males at PNW3-4, 9-10 and 

9-10 months of age. In females, protein concentrations could only be detected at PNW 9-10. 

The CYP2C37 enzyme showed moderate protein concentrations from PNW 3-4 up till 

adulthood, with a peak in females at PNW 9-10 (Hersman and Bumpus, 2014). 

Just as there is co-regulation for transporters, the function of enzymes is also dependent on other 

factors. In the case of the CYP p450 systems, CYP p450 oxidoreductase is required for function. 

The importance of this enzyme is apparent due to observed embryonic lethality in knockout 

mice around day 8-9 (Shen et al., 2002; Henderson et al., 2003). Postnatal deletion is however 
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viable and demonstrated in a conditional knockout model (Wu et al., 2003). Although this 

model has been extensively used to study effects on CYP p450 reactions, ontogeny of this 

enzyme in the kidney has not been studied. 

Other metabolism families (table 3c) 

The major other route of metabolism in adults involves the UGT catalyzed conjugation 

reactions. Many of them are present in human, but few have been described regarding ontogeny 

or maturation in the kidney. Exceptions are UGT1A1, which was detected in both the 

mesonephros and metanephros stages (Hume et al., 1995) and UGT2B7, which was more 

abundant in the fetal kidney compared with the liver (Ekstrom et al., 2013). In other species no 

fetal-adult relations have been described. Recently, pharmacokinetic modelers hypothesised 

that the rate limiting step in human neonatal liver metabolism may not be the UGT enzymes 

themselves, but the availability of uridine 5’-diphosphate glucuronic acid (UDPGA) (Liu et al., 

2019). Human fetal kidney concentrations (GW 17-25) of UDPGA are approximately 1.5 times 

lower compared with adult kidney concentrations and 5- and 25-fold lower compared with, 

respective fetal and adult liver concentrations (Cappiello et al., 2000).  

Sulfotransferases (SULT) are present and active in the kidneys, but ontogeny or maturation data 

is only available for a limited number of enzymes. The SULT1A1 enzymes, one of the more 

prominent members of the family, was detected at PNW 15  and remained unchanged in the 

first 1.5 postnatal years in humans (Gilissen et al., 1994). Another member of the same family, 

SULT1A3, shows to be more active during the intrauterine development phase. Levels of this 

enzyme are higher in human fetal (GW 18-25) kidneys compared with adult kidneys (Cappiello 

et al., 1991; Pacifici et al., 1993). Other described sulfotransferases were SULT1C2, which was 

shown to be present in human fetal kidney (Her et al., 1997) and SULT2A1, which was detected 

in human kidneys from the second half of gestation onwards and reached adult levels in the 
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neonate (Barker et al., 1994). Sulfotransferases have also been studied in rodent species. In rats, 

SULT1C1 and SULT1C2 expression has been studied and shown to be very little or highly 

expressed in the fetal kidney, respectively (Nagata et al., 1993; Dunn and Klaassen, 1998; 

Xiangrong et al., 2000). The SULT1C2 enzyme could also be confirmed on the protein level 

(Xiangrong et al., 2000). In mice, the SULT family has been studied in the C57BL/6 strain. At 

an age of PNW 8, very low or absent expression of SULT1B1, SULT1E1, SULT2A1/2, 

SULT2B1, SULT3A1 and SULT4A1 was noted. The SULT1C1 and SULT1D1 enzymes, 

however, increased over time from 2 days before birth to PND 45. The SULT1C2 enzyme 

increased in expression from 2 days before birth up till birth and remained stable expression up 

to PND 10. Thereafter, SULT1C2 expression further increased. Interestingly, expression levels 

started to decline in males, but not in females, at PND 22 (Alnouti and Klaassen, 2006). 

Sulfotransferases can only function in there is enough 3'-Phosphoadenosine-5'-phosphosulfate 

(PAPS) available to donate the sulfonate group. 3'-Phosphoadenosine-5'-phosphosulfate is 

formed from dietary inorganic phosphate and adenosine triphosphate in a cascade of reactions 

catalyzed by the protein PAPSs. The isozyme PAPSs1 is stably expressed in kidneys of mice 

from birth till PND 15 after which it somewhat decreases (Alnouti and Klaassen, 2006). In adult 

rat, mouse and dog PAPS concentration in the kidney is rather similar and approximately 3-4 

times higher compared with humans (Brzeznicka et al., 1987; Cappiello et al., 1989; Klaassen 

and Boles, 1997). Fetal kidney concentrations of PAPS in common laboratory species have not 

been reported. 

The glutathione S-transferase (GST) family consist of nine subclasses, whereby the alpha, the 

mu and the pi classes have been mostly described in the kidney. Human data showed GSTα 

protein to be detectable in kidneys from GW 8 onwards with increasing function in the first 2 

life years (Hiley et al., 1989; Beckett et al., 1990; Raijmakers et al., 2001). The GSTµ enzyme 
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was also detectable on a protein level from GW 8 and slightly increased in GW 13. The protein 

levels remain fairly constant postnatally up to adulthood (Beckett et al., 1990; Raijmakers et 

al., 2001). The most prominent GST in the prenatal stages was GSTπ, which was detected at 

the protein level from GW 8 and was pronouncedly increased in GW 13 (Raijmakers et al., 

2001). After birth levels declined and remained lower during adulthood (Beckett et al., 1990; 

Raijmakers et al., 2001). All three GST family members were also confirmed to show enzyme 

activity from GW 8, indicating these are all fully functional during the prenatal stages. In other 

species only limited data on GST ontogeny are available. In rat, GSTα was noted to increase 

between PNW 1 and PNW 4 and GSTπ showed a relatively stable signal between PNW 1-4 

(Oberley et al., 1995).  

Other minor metabolism pathways, such as epoxide hydrolases, N-acetyltransferases, 

methyltransferases and amino acid conjugates have been very poorly described in the kidney. 

Human data showed epoxide hydrolases to be present and increasing in the kidney from 7.5 to 

25 GW (Pacifici et al., 1983; Omiecinski et al., 1994) and N-acetyltransferases were shown to 

be present in the kidney at a level somewhat comparable with adult kidney tissue (Pacifici et 

al., 1986). Data on expression in the kidney of other species is currently lacking.  

Renal excretion maturation 

Renal excretion of drugs is the net result of three main processes: 1) GFR, 2) tubular secretion 

and 3) tubular reabsorption. Maturation of the kidney function has an impact on the renal 

excretion of drugs on the one hand, but might also affect absorption, distribution, metabolism 

and nonrenal clearance of drugs on the other hand. Especially during the first 2 years of life, 

changes in kidney function can alter drug exposure and drug response, potentially leading to a 

shift in efficacy/safety balance (Rodieux et al., 2015). Immaturity of the kidney function results 

in alteration of plasma clearance and prolongation of elimination half-life of renally cleared 
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drugs, necessitating adaptations of the dose and/or the dosing interval (Kearns et al., 2003). 

During the human neonatal period, renal excretion of drugs is decreased due to immature GFR 

and tubular secretion, whereas similar or even greater excretion was observed for many drugs 

during late infancy and/or childhood. The latter necessitates higher doses on a per-kilogram 

basis in infants and in children to reach sufficient plasma concentration levels (i.e. dose per-

kilogram of digoxin is much higher in infants than in adults) (Fernandez et al., 2011).  

Renal drug excretion represents unbound (= “free”) drugs that will be filtered across the 

glomerular membrane into the renal tubules. Alterations in plasma/tissue protein binding will 

be reflected in lower or higher concentrations of unbound drugs. An increase in unbound drug 

concentration will lead to an increase in renal clearance, as there is more available for 

glomerular filtration and/or tubular secretion. Even though plasma/tissue protein binding is a 

major determinant of drug disposition, the clinical implication of altered plasma/tissue protein 

binding is rather limited, but can sometimes require dosage adaptations (Grandison and 

Boudinot, 2000).  

Knowledge of which renal drug transporters (i.e. OCT and OATP) are involved in renal drug 

clearance and their impact on renal excretion in the pediatric population needs to be taken into 

account when considering whether pediatric-adapted dosing regimens are required (‘t Jong, 

2014). Moreover, as suggested by Rodieux et al. (2015), it is important to map the 

polymorphisms of genes encoding for drug-metabolizing enzymes, drug transporters and drug 

targets (pharmacogenomics), since it might influence drug disposition and thereby alter the 

efficacy/safety balance. As stated above, detailed knowledge on transporter- and metabolism 

maturation is still lacking, urging the need for additional research.  

Over the years, allometric scaling equations have been used to predict the size-related changes 

in clearance between species on the one hand and within species (i.e. in humans: adults to 
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children) on the other hand. In neonates and infants, simple allometric methods based on body 

size alone do not suffice, since body size is not representative for overall organ function 

throughout the pediatric population (Mahmood, 2014). Therefore, incorporation of the role of 

maturation and growth of i.e. the kidney in allometric models should be applied. The latter is 

confirmed by Peeters et al. (2010), who used allometric models developed in rats, children 

and adults to predict the propofol clearance in children. The authors concluded that these 

models, based on bodyweight, could be used to predict the propofol clearance in children 

older than 2 years, but additional maturational functions should be incorporated in order to be 

able to correctly predict the clearance in younger children. Mahmood and Tegenge (2019) 

compared the predictive capacity of physiologically based PK modeling and allometric 

scaling (age-dependent exponent model) for 73 drugs to predict drug clearance in the pediatric 

population (neonates to adolescents). The predictive power to predict drug clearance was 

equal for both methods. The simplicity of allometric scaling in comparison to PBPK modeling 

favors allometry to estimate pediatric drug clearance and consequently to perform first-in-

pediatric dose estimations. 

Conclusion 

The paradigm that children should not be regarded as small adults in terms of drug handling, 

nor should neonates be regarded as small children, is now generally accepted. Unfortunately, 

our knowledge of kidney ADME ontogeny is still sparse in some areas. The major kidney 

function characteristics such as GFR, RBF and concentrating ability are generally well 

understood, however detailed knowledge on transporter- and metabolism maturation is still 

lacking. Preclinical data in those areas is mostly restricted to rat and mouse only and generally 

only covers the expression levels of transporter or enzyme-encoding genes. Such expression 

levels do not necessarily need to correspond with actual protein abundance and function as we 
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learned from human data. It is the interaction between all these characteristics that is 

responsible for the majority of pronounced differences in toxicity of pharmaceutical agents 

noted between neonates and older children and between pediatric and adult patients. Of 

additional note, the developing kidney is prenatally as well as postnatally sensitive/vulnerable 

to morphological and functional disturbances during its different phases of growth and 

differentiation. Drug administration can result in both morphological and functional renal 

changes, depending on the timing, level and duration of the exposure. Primarily more 

knowledge on a functional level is needed to predict the kinetics and toxicity in 

neonate/juvenile toxicity or efficacy studies and improve the risk assessment to the human 

population. Nevertheless, there are a wide variety of species that can be used in preclinical 

embryofetal and juvenile toxicity studies focusing on renal development that can be 

extrapolated to human kidney development. 
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Footnotes: not applicable 

Legends for figures: 

Figure 1: Overview of transporters in the human kidney discussed in this review 
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Tables: 

Table 1. Completion of nephrogenesis and vasculogenesis of different species. 

Species Nephrogenesis Vasculogenesis 
Human* GW 36  GW 34-36  
Rat PND 11-15  PND 17-19 
Mice PND 2-4  PND 7  
Dog PNW 2  PNW 6 
Nonhuman primates* GW 24  By birth 
Pig PNW 3  PNW 8-12  
GW: gestational weeks, PNW: postnatal weeks, PND: postnatal days 
*: Average gestational period is 40 weeks in human and 23-34 weeks in nonhuman 
primates (depending on specific species) 

 

  

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on February 29, 2020 as DOI: 10.1124/dmd.119.089755

 at A
SPE

T
 Journals on A

pril 1, 2020
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


   
 

55 
 

Table 2. Age at which full maturation of some physiological functions of the kidney is attained. 

 GFR RBF Concentrating 
capacity 

Human PNW 52-104 GW 32-35 PNW 52 
Rat PND 42 PND 16-24 PND 11 
Mice PND 28-32 PND 16-22 PND 21 
Dog PNW 8-10 PND 12 <PND 1 
Nonhuman primate PNW 26 <PND 1 PNW 20 
Pigs PNW 8*1 unknown unknown 
GFR: glomerular filtration rate; RBF: renal blood flow; PNW: postnatal week; PND: postnatal day, GW: gestational 
week 
*1 conventional pig 

 

  

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on February 29, 2020 as DOI: 10.1124/dmd.119.089755

 at A
SPE

T
 Journals on A

pril 1, 2020
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


   
 

56 
 

Table 3a. Cross-species overview of renal drug transporters. 

Transporter Human Mice Rat  Reference(s) 
MDR1a/b 
(Pgp) 

Expression of Pgp was noted from GW 
5.5. Significant expression by GW 11 
with increasing expression after birth 
and in adults. Protein abundance is 
lowest in newborns (PND 0-28)/infants 
(1-24 months) and reached adult (>16y) 
levels during the child stage (2-12y)  

MDR1a/b was marginally expressed in newborns 
and was increased in the postnatal period, with a 
maximum expression on PND 21. At day 45 there 
was a decline in males, but not females. 

Expression was marginal at birth and increased during 
postnatal stage with highest levels between PND 11-26.  

van Kalken et al., 1992; Miki et 
al., 2005; Pinto et al., 2005; de 
Zwart et al., 2008; Cui et al., 
2009; Konieczna et al., 2011; 
Sweeney et al., 2011; Xu et al., 
2017; Cheung et al., 2019 

BCRP Significant expression was noted at GW 
5.5 and 28. BCRP is upregulated in the 
term newborn and mostly reached adult 
levels before 2 years of age. Protein 
abundance is however similar between 
newborns and adults. 

No fetal-adult relation described. Expression was increased during postnatal stage compared 
with prenatal stage. During the postnatal stage expression 
was remained stable and highest expression was present in 
the adult stage.  

de Zwart et al., 2008; Konieczna 
et al., 2011; Sweeney et al., 2011; 
Xu et al., 2017; Cheung et al., 
2019 
 
 
 
 
 
 

MRP1 Significant expression was noted at GW 
5.5 and 28. 

MRP1 was expressed at adult levels at birth. 
Female expression was predominant. 

MRP1 was most highly expressed at birth.  Maher et al., 2005; de Zwart et 
al., 2008; Konieczna et al., 2011 

MRP2 MRP2 shows similar gene expression 
levels from prematures (PND 0-28, 
GW<37) up till adult stages. 

MRP2 levels was increased over time to reach adult 
levels during the first weeks of life. 

Expression was increased in the postnatal stage compared 
with prenatal stage. During the postnatal stage expression 
was remained stable, but protein was increased and 
highest expression was presented in the mature stage. 

Maher et al., 2005; de Zwart et 
al., 2008; Sweeney et al., 2011; 
Nomura et al., 2012; Cheung et 
al., 2019 

MRP3 No fetal-adult relation described. MRP3 levels were generally increased over time to 
reach adult levels. Female expression was 
predominant.  

MRP3 was most highly expressed at birth.  Maher et al., 2005; de Zwart et 
al., 2008 

MRP4 MRP4 shows similar gene expression 
levels from prematures up till adult 
stages. 

MRP4 levels were generally increased over time to 
reach adult levels. Female expression was 
predominant.  

Stable expression during fetal and early postnatal 
development. Higher expression in adult state.  

Maher et al., 2005; Sweeney et 
al., 2011; Nomura et al., 2012; Xu 
et al., 2017; Cheung et al., 2019 

OATP1A2 
(rodent 
analogues 
OATP1,3-6) 

No fetal-adult relation described. OATP1A1 was hardly present at birth and showed 
high expression on PND 45 in males, but not 
females. OATP1A4 showed stable expression from 
PND -2 to 45. OATP1A6 expression started to 
increase 2 weeks after birth.  

OATP1A4 peak levels were reached in the first week of 
birth and were then slowly decreased towards adult levels. 

Cheng et al., 2005; de Zwart et 
al., 2008 
 

OCT1 No fetal-adult relation described. OCT1 expression was low before birth and was 
gradually increased in the first 2 PNW and peaked 
at PND 22, where after it remained rather stable.  

OCT1 expression was increased from late prenatal 
development up till adult stage. Overall expression was 
only limited at birth.  

Slitt et al., 2002; Alnouti et al., 
2006; de Zwart et al., 2008; 
Sweeney et al., 2011; 
Ahmadimoghaddam et al., 2013; 
Xu et al., 2017 

OCT2 Gene expression is lowest in the 
preterm newborn and reaches adult 
levels before 2 years of age. Protein 
abundance start to reach adult levels in 
the child stage. 

OCT2 was undetected before birth, had a stable 
expression after birth and was increased somewhat 
at PND 22. From PND 30 onwards expression 
increased sharply in males, but remained 
unchanged in females. 

OCT2 was slightly increased from the prenatal phase on 
but showed significantly increased expression at maturity. 

Slitt et al., 2002; Alnouti et al., 
2006; Sweeney et al., 2011; Xu et 
al., 2017; Cheung et al., 2019 
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OAT1 OAT1 expression is lowest in preterm 
newborns and reaches adult levels at 
term birth or in infants. Protein 
abundance is lowest in term newborns 
and infants, levels in children and 
adolescents (12-16y) were approaching 
adult levels.  

Expression was noted on day 15 of gestation and 
was increased progressively towards adulthood  
Organ culture showed positive transport activity.  

OAT1 expression was increased during prenatal 
development, remained stable at postnatal development 
and was increased again at the mature age.  

Lopez-Nieto et al., 1997; 
Nakajima et al., 2000; Pavlova et 
al., 2000; de Zwart et al., 2008; 
Truong et al., 2008; Hwang et al., 
2010; Nagle et al., 2011; Sweeney 
et al., 2011; Nomura et al., 2012; 
Xu et al., 2017; Cheung et al., 
2019 

OAT3 OAT3 expression is lowest in the 
preterm newborn and reaches adult 
levels at the before 2 years of age. 
Protein abundance were lowest in term 
and newborn infants and rose to adult 
levels in the adolescent stage. 

OAT3 was detected on day 14 of gestation and 
expression was gradually increased up to 
adulthood. 

OAT3 expression was increased during the late prenatal 
development and kept increasing up till a mature age.  

Pavlova et al., 2000; Buist and 
Klaassen, 2004; Hwang et al., 
2010; Sweeney et al., 2011; 
Nomura et al., 2012; Xu et al., 
2017 

OCTn1 No fetal-adult relation described. Expression was almost absent on PND -2, was 
gradually increased PNW 1 and doubles at PNW 2. 
From PNW 3 it increases again reaching maximum 
values around PND 40 

OCTn1 showed 100-fold lower expression compared with 
adult levels at gestational day 13 and levels were started to 
increase at gestational day 18. 
Most pronounced upregulation was present in PNW 1 and 
PNW 4.  

Slitt et al., 2002; Alnouti et al., 
2006; Sweet et al., 2006; 
Sweeney et al., 2011 

OCTn2 No fetal-adult relation described. Very low expression at PND -2, which was 
increased pronouncedly at PNW 2. and reaches 
maximum expression around PND 35. 

OCTn2 showed 10-fold lower expression compared with 
adult levels at gestational day 13 to 18.  
Most pronounced upregulation present in PNW 1; which 
was somewhat increased at PNW 4.  

Slitt et al., 2002; Alnouti et al., 
2006; Sweet et al., 2006; 
Sweeney et al., 2011 

URAT1 URAT1 expression in infants and 
children is higher than in term 
newborns, adolescents and adults. 
URAT1 protein abundance was lower 
in term newborn and infants and 
reached adult levels at child stage. 

URAT1 showed low expression at PND -2, which 
was greatly increased from PNW 2 onwards. 

URAT1 main increase in expression was at PNW 1 and 4. Cheng and Klaassen, 2009; 
Sweeney et al., 2011 
 

PEPT2 No fetal-adult relation described. Pept2 was expressed at PND -2 and was greatly 
increased at PNW 2. 

Pept2 was increased at gestational day 18 and at PNW 4. Sweeney et al., 2011 
 

MATE1 MATE1 shows similar expression and 
protein abundance from premature up to 
adults. 

MATE1 was present during PND -2 but was 
greatly increased from birth up to PNW 4.  

MATE1 was increase steadily throughout gestational day 
17 to 22 and increased more at PNW 4 MATE1 was even 
increased more at a later age of 6 months. 

Lickteig et al., 2008; Sweeney et 
al., 2011; Xu et al., 2017; Cheung 
et al., 2019 

NPT No fetal-adult relation described. NPT1, 2a and 2c were expressed at PND -2. 
Upregulation of the mRNA appears to start at 
postnatal PNW 2.  

No fetal-adult relation described. Cheng and Klaassen, 2009 

ENT No fetal-adult relation described. ENT2 was expressed in a low amount at PND -2 
and was decreased slightly in the first 2 PNW and 
is further reduced at PNW 7. 

No fetal-adult relation described. Cheng and Klaassen, 2009 

     
Fetal-adult relations have not been described in nonhuman primates, dogs and pigs. 
Abbreviations: MDR: multidrug resistance protein; Pgp: P-glycoprotein; BCRP: breast cancer resistance protein; MRP: multidrug resistance-associated proteins; OATP: organic anion transporter polypeptide; OCT 
organic cation transporter; OAT: organic anion transporter; OCTN organic cation novel transporter; URAT: urate transporter; PEPT: peptide transporter; MATE: multidrug and toxin extrusion; NPT: sodium-phosphate 
co-transporter; ENT: equilibrative nucleoside transporter; GW: gestational week; PND: postnatal day; PNW: postnatal week 
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Table 3b. Cross-species overview of CYP p450 enzyme family. 
Enzyme 1) Human Pig Mice Rat  Reference 
CYP3A4/CYP3A5 CYP3A4 was present in fetal kidney at GW 8. 

Levels were also present at pediatric age. 
Low levels were present in fetal and adult kidneys.  
CYP3A5 was present in fetal kidney at GW 28. 
CYP3A5 present in the pediatric population. 

CYP3A4 expression was slowly 
increased from newborn to adult.  
 

CYP3A11 protein was not 
detected at PNW 3-4, 9-10 and 9-
10 months 

CYP3A25 protein showed low 
levels at PNW 9-10 and 9-10 
months of age in females. It was 
undetected in males.  

No fetal-adult relation 
described. 
No fetal-adult relation 
described. 

Aleksa et al., 2004, 
2005; Miki et al., 
2005; Hersman and 
Bumpus, 2014 

CYP2B6 
 

No fetal-adult relation described. CYP2b22 activity was present from 
birth and slightly lower on PND 1-10. 
Compared with PND 15-adulthood   

CYP2b9 protein was stable 
between PNW 3-10 and decreased 
between PNW 10 and 10 months 
of age in females, but not in 
males. 

No fetal-adult relation 
described. 

Aleksa et al., 2004; 
Hersman and 
Bumpus, 2014 

CYP2C8/CYP2C9 CYP2C8 was expressed in the first trimester (5-12 
GW). CYP2C8 was expressed in all tubules from 
GW 5-20. Stronger expression was observed in 
adults. 

CYP2C9 incidental expression was observed in 
the first trimester (5-12 GW). CYP2C9 was 
expressed in all tubules from GW 5-20. Adult 
expression was slightly less in the proximal 
tubules.  

No fetal-adult relation described. CYP2C29 protein concentrations 
were very low in males at PNW 3-
4, 9-10 and 8-10 months. In 
females presence was only noted 
at PNW 9-10. 

CYP2C37 showed moderate 
protein concentrations from PNW 
3-4 till adulthood. With a peak in 
females at PNW 9-10. 

 
No fetal data available 

CYP2c23 expression increased 
progressively from birth until 
declining at PNW 3. 

Marie et al., 1993; 
Cizkova et al., 2014; 
Hersman and 
Bumpus, 2014; 
Johansson et al., 
2014 

CYP3A2 No fetal-adult relation described. No fetal-adult relation described. No fetal-adult relation described. CYP3A2 young age (PNW 2) 
expression peak was observed. 

Kwekel et al., 2013 

CYP4A/F family No fetal-adult relation described. No fetal-adult relation described. High protein concentration of 
CYP4A12 was noted in both sexes 
at PNW 3-4 and PNW 9-10. At 9-
10 months concentrations were 
significantly decreased in females 
only. 
 

CYP4F4 young age (PNW 2) 
expression peak was observed.  
CYP4F1 expression was stable 
between 4 and 18 PNW. 
CYP4F4 levels doubled at 8 
PNW but thereafter declined 
sharply by 12 and 16 PNW. 
CYP4F5 expression also 
decreased by 50% at 12–18 
PNW when compared with 4 
PNW expression. CYP4F6 

Kalsotra et al., 2005; 
Kwekel et al., 2013; 
Hersman and 
Bumpus, 2014 
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levels, in contrast, increased by 
40% at 8 PNW and 4-fold by 12 
PNW. However, at 18 PNW, 
4F6 levels were reduced back to 
their 4 PNW levels. 

1) Human Isoforms are listed for easy reference. Known animal isoforms were included in the evaluation. 
Abbreviations: CYP: cytochrome-P450; GW: gestational week; PND: postnatal day; PNW: postnatal week 
Fetal-adult relationships have not been described for dogs and nonhuman primates. 
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Table 3c. Cross-species overview of other metabolizing enzyme families. 

Enzyme Human Mice Rat  Reference 
UGT family UGT1A1 was detected in 

mesonephros/metanephros stage.  
UGT2B7 was more abundant in fetal kidney 
than liver.  

No fetal-adult relation described. No fetal-adult relation described. Lucier et al., 1977; Hume et 
al., 1995; Ekstrom et al., 
2013 

SULT family SULT1A3 levels were higher in fetal (18-25 
GW) kidneys than in adults.  
SULT1A1 was detected at 15 PNW and 
remained unchanged in the first 1.5 postnatal 
years.  
SULT2A1 was low to nondetectable before 
25 GW but was then increased substantially 
during the latter half of gestation to approach 
adult levels during neonate.  
SULT1C2 was detected in fetal kidneys. 

SULT 1b1, SULT1e1, SULT2a1/2, 
SULT2b1, SULT3A1, SULT4a1 levels 
were very low or absent (8 PNW). 
SULT1C1 and SULT1D1 increased 
over time from PND -2 to PND 45. 
PAPSs1 remained equal over this time 
period. 
Renal SULT1C2 mRNA was expressed 
at high levels in fetuses 2 days before 
birth and remained constant after birth 
until 10 PND, when mRNA levels began 
to increase. However, 22 PND, mRNA 
levels began to decline in male kidneys, 
whereas female levels remained 
constant. 

SULT1C1 mRNA expression was mainly in liver, with very low or 
no expression in kidney, spleen, lung, colon, intestine, or brain.  
SULT1C2 mRNA and protein are highly expressed in kidney, 
followed by stomach and liver. 

Cappiello et al., 1991; 
Nagata et al., 1993; Pacifici 
et al., 1993; Barker et al., 
1994; Gilissen et al., 1994; 
Her et al., 1997; Dunn and 
Klaassen, 1998; Xiangrong et 
al., 2000; Alnouti and 
Klaassen, 2006 
 

GSTA1/A2 GSTA1/A2 protein were detected and active 
in the kidney from 8 GW and increased in 
function in the first 2 life years  
  

No fetal-adult relation described. GSTA1 was increased from PNW 1 to 4. GSTA2 was only detected 
from PNW k3-4  
No fetal data available. 

Hiley et al., 1989; Beckett et 
al., 1990; Oberley et al., 
1995; Raijmakers et al., 2001 

GSTm GSTm levels were constant pre- and 
postnatal.  
GSTm protein was detectable at GW 8 and 
slightly increased at GW 13. Concentration 
was on average similar in adult life. 

No fetal-adult relation described. No fetal-adult relation described. Beckett et al., 1990; 
Raijmakers et al., 2001 
 

GSTP1 GSTP1 activity was decreased from pre- to 
postnatal age. GSTP1 protein was detectable 
at GW 8 of and rapidly increased at GW 13. 
Concentration was lower in adult life. 

No fetal-adult relation described. GSTP showed a relatively stable signal at PNW 1 to 4  
No fetal data available. 

Beckett et al., 1990; Oberley 
et al., 1995; Raijmakers et 
al., 2001 

EPHX EPHX1 was present and increased from 7.5 
to and 25 GW. 

No fetal-adult relation described. No fetal-adult relation described. Pacifici et al., 1983; 
Omiecinski et al., 1994 

NATS NATS was present in fetuses and activity 
was somewhat comparable between fetal and 
adult tissue.  

No fetal-adult relation described. No fetal-adult relation described. Pacifici et al., 1986 

Fetal-adult relationships have not been described for nonhuman primates, dogs and pigs. 
Abbreviations: UGT: Uridine 5'-diphospho-glucuronosyltransferase; SULT: sulfotransferase; GST: glutathione-s-transferase; EPHX: epoxide hydrolase; NATS: N-acetyltransferase; GW: gestational week; PND: 
postnatal day; PNW: postnatal week. 
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