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1 | INTRODUCTION

Osteogenesis imperfecta (Ol) is a heritable connective tissue disorder
that is mainly characterized by bone fragility with multiple fractures
and variable short stature. Extraskeletal manifestations include blue
sclerae, dentinogenesis imperfecta, hearing impairment, easy bruising,
and joint hypermobility. The phenotypic spectrum of Ol ranges from
mild forms with only few fractures, to severe and even perinatal lethal
forms (Forlino & Marini, 2016; Kang, Aryal, & Marini, 2017; Marini
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Osteogenesis imperfecta (Ol) is a heritable connective tissue disorder, mainly characterized by
bone fragility and low bone mass. Defects in the type | procollagen-encoding genes account for
the majority of Ol, but increasingly more rare autosomal recessive (AR) forms are being identi-
fied, which are caused by defects in genes involved in collagen metabolism, bone mineralization,
or osteoblast differentiation. Bi-allelic mutations in WNT1 have been associated with a rare form
of AR Ol, characterized by severe osteoporosis, vertebral compression, scoliosis, fractures, short
stature, and variable neurological problems. Heterozygous WNT1 mutations have been linked to
autosomal dominant early-onset osteoporosis. In this study, we describe the clinical and molecu-
lar findings in 10 new patients with AR WNT1-related Ol. Thorough revision of the clinical symp-
toms of these 10 novel patients and previously published AR WNT1 Ol cases highlight ptosis as
a unique hallmark in the diagnosis of this Ol subtype.

collagen, osteogenesis imperfecta, ptosis, WNT1

et al., 2017). The majority of Ol cases are inherited in an autosomal
dominant (AD) manner and are caused by heterozygous mutations in
either COL1A1 or COL1A2, the genes encoding the major fibrillar type
| (pro)collagen (Kang et al, 2017). With the exception of IFITM5
(AD inheritance, function in bone mineralization), mutations in non-
collagen genes are associated with autosomal recessive (AR) forms of
Ol, which are nowadays categorized based on the cellular pathways in
which their molecular functions are executed: involvement in bone
mineralization (SERPINF1), collagen modification (CRTAP, P3H1, and
PPIB), collagen processing and cross-linking (SERPINH1, FKBP10,
PLOD2, and BMP1), and osteoblast differentiation and function (SP7,
TMEM38B, WNT1, CREB3L1, and SPARC; Forlino & Marini, 2016; Kang
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et al.,, 2017; Marini et al., 2017). Recently, this last class was further
expanded with a report of an X-linked form of Ol caused by mutations
in MBTPS2 (Lindert et al., 2016; Marini et al., 2017).

The WNT1 gene (Wingless-type MMTV integration site family,
member 1) encodes the secreted signaling protein WNT1, which
belongs to the family of proteins that regulate many aspects of cell
growth, differentiation, function, and death. One of the pathways acti-
vated by Whnts is signaling through the canonical Wnt/g-catenin path-
way, which results in an increased bone mass through a number of
mechanisms, including stimulation of preosteoblast replication, induc-
tion of osteoblastogenesis, and inhibition of osteoblast and osteocyte
apoptosis (Aken et al., 2016; Joeng et al., 2017; Krishnan, Bryant, &
MacDougald, 2006).

Homozygous and compound heterozygous mutations in WNT1
have been identified in a series of patients displaying moderate to
severe AR forms of Ol (compatible with Ol type Ill or IV according to
the Sillence classification; Aldinger et al., 2016; Fahiminiya et al,,
2013; Fageih, Shaheen, & Alkuraya, 2013; Keupp et al, 2013;
Kuptanon et al., 2018; Laine et al., 2013; Lu et al., 2018; Pyott et al.,
2013; Umair et al., 2017; Won et al., 2017). This type of Ol is cur-
rently classified as Ol type XV (Forlino & Marini, 2016; Kang et al.,
2017; Marini et al.,, 2017; Sillence, Senn, & Danks, 1979). In addition,
heterozygous WNT1-mutations have been shown to result in non-
syndromic AD early-onset osteoporosis (Laine et al., 2013).

In the present study, we report 10 patients from 8 families in
whom we identified homozygous WNT1 mutations and provide a
comprehensive overview of all AR WNT1 Ol cases that have been
reported until now. The patients presented in this study have moder-
ate to severe Ol, with the unique and striking clinical observation that

they all have uni or bilateral ptosis.

2 | MATERIALS AND METHODS

2.1 | Family ascertainment

For eight families, 10 patients (all children) were available. Eight
patients originated from six Indian families (hereupon referred to as
PI-1, PI-2, PI-3, PII, PIll, PIV, PV, and PVI), two patients originated
from two Turkish families (hereupon referred to as PVII and PVIII).
Written and signed informed consent was obtained from the parents
of the patients. Genomic DNA (gDNA) from patients, (healthy) sib-
lings, or parents was isolated from blood according to the standard
procedures (QlAamp DNA Blood Mini Kit, Qiagen).

2.2 | Molecular analyses

Prior to sequencing, gDNA for PI-1, PI-2, PI-3, PII, Plll, PIV, PV, PVI,
and PVII was PCR amplified for all known Ol genes, encompassing the
coding and flanking 5 and 3’ untranslated regions. Subsequent
sequencing was performed using next generation sequencing (MiSeq
platform—Illumina). For PVIIl, whole exome sequencing (HiSeq
platform—Illumina) was applied after excluding the presence of a
(likely) pathogenic variant in COL1A1 and COL1A2. Confirmational

Sanger sequencing was performed for all 10 patients, siblings and

parents (when available; ABI 3730XL DNA Analyzer, Life Technolo-
gies Foster City, CA, USA).

Nucleotide numbering of variants reflects cONA numbering, with
+1 corresponding to the A of the ATG translation initiation codon in
the WNT1 reference sequence (NM_005430.3). Amino acid residues
are numbered from the first methionine residue of the protein refer-
ence sequence (NP_005421.1). Variant nomenclature follows the
HGVS guidelines (http://www.hgvs.org/mutnomen), and variant clas-
sification was done using the Alamut Visual software and according to
the ACMG standards and guidelines (Richards et al., 2015). All variants
were checked and submitted to the Ol Variant Database (http://

www.le.ac.uk/ge/collagen/).

3 | RESULTS

3.1 | Clinical phenotype

This study includes eight patients (five females and three males) from
six Indian families, and two male patients from two Turkish families.
PI-1 and PI-2 are siblings and PI-3 is remotely related to PI-1 and PI-2
(Pedigree, Supporting Information Figure S1). Parental consanguinity
was reported for six patients (6/10, 60%). Clinical details of affected
individuals are summarized in Table 1. All Indian families were from
the same region from south India. Ages at diagnosis ranged from
11 months to 11 years. The skeletal presentation of all subjects was
(very) severe and similar to Ol type Ill. The age at which the first frac-
ture occurred ranged from in utero to 6 months. The most common
skeletal features included severe osteopenia (10/10, present in 100%
of the patients), thin cortices of long bones (10/10, 100%), wavy long
bones (9/10, 90%), (severe) bowing of upper (8/10, 80%) and lower
(8/9, 88.9%) extremities (to the extent that height measurement was
not possible in the majority of them), and nonunion of fractures (5/10,
50%). Vertebral compression was common (3/7, 42.9%), with “cod-
fish” thoracic and lumbar vertebrae. Four subjects developed severe
scoliosis (4/8, 50%). All patients had gross delay in motor develop-
ment due to frequent fractures and severe deformities.

Radiological examination revealed popcorn appearance of the
epiphyses of long bones in three older subjects (PI-1, PI-2, and PIV;
3/8, 37.5%). Response to bisphosphonates, which was administered
to all patients, was minimal, with some reduction in the frequency of
fractures, but none achieved independent walking.

None of our patients had blue sclerae and two patients presented
with hearing impairment (2/9, 22.2%) or dentinogenesis imperfecta
(2/10, 20%), respectively. A unique and striking facial feature was the
presence of congenital ptosis in all 10 patients (10/10, 100%; bilateral
in eight subjects and unilateral in two subject), which is accompanied
by high arched eyebrows (highlighted in Figure 1).

Delayed cognitive development was observed in four subjects
(4/10, 40%), speech delay was significant in two subjects. Behavioral
abnormalities, including the use of abusive language, were reported
for PI-2 and PIV. Brain images were available for only one patient

PVIII, who showed severe brain anomalies at age 1.5 years (Figure 1v).
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FIGURE 1 Clinical spectrum of autosomal recessive WNT1-associated osteogenesis imperfecta. Clinical pictures of all patients [PI-1 (a), PI-2 (b),
PI-3 (c), Pl (d), Plll (e), PIV (f), PV (g), PVI (h), PVII (i), and PVIII (j)] highlight ptosis—accompanied by high arched eyebrows—and some patients [PIII
(e) and PIV (f)] present with hypotonia of the facial muscles. Radiographs of PI-1 at age 8 years (k: extreme deformity and popcorn appearance of
the epiphyses of the lower femur and upper tibia), PI-2 at age 9 years (I: severe scoliosis, vertebral compression, and “codfish” appearance of
thoracic and lumbar vertebrae; m: wavy long bones of lower limbs with thin cortices, nonunion of both femora with pseudo joint formation on the
right femur, bilateral popcorn appearance of distal femoral epiphyses; n: severely deformed osteoporotic long bones of left upper limb which
present with retarded bone age, a wavy thin cortex and nonunion of the humerus with pseudo joint formation), PI-3 at age 11 months (o:
wedging of the spine at T5-T7), Pll at age 16 months (p: long bones of lower limbs showing osteoporosis, curvature, and callus formation of the
right femur and impact of bisphosphonate therapy; g: early stage wavy fibulae and callus formation of the right upper femur following a fracture
in utero), Plll at age 3 years (r: severe thinning of the calvarium and presence of Wormian bones of the skull), PVII at age 5 years (s: curved long
bones of the left femur, tibia, and fibula), and PVIII at age 1.5 years (t and u: osteoporotic bones of the right lower limb and fracture healing of the
left humerus, respectively; v: MRl image of the brain showing ventriculomegaly, cortical atrophy, and an increased subarachnoid space and sulcus
depth, respectively) [Color figure can be viewed at wileyonlinelibrary.com]

3.2 | Molecular results

Five different homozygous disease-causing WNT1 variants were
detected (Table 1 and Figure 2). Sequencing of parental DNA con-
firmed the bi-allelic inheritance, and molecular screening of (healthy)
siblings revealed that they are heterozygous carriers of the familial

mutation (data not shown). We identified the earlier reported

homozygous duplications ¢.506dupG (p.(Cys170Leufs*)) in patients
PI-1, PI-2, PI-3, PIl, and PIlll, and ¢.859dupC (p.(His287Profs*)) in
patients PVII and PVIII (Keupp et al., 2013; Pyott et al., 2013). In three
other patients (PIV, PV, and PVI), molecular analysis revealed novel
homozygous deletions ¢.255delG (p.(Leu86Cysfs*)), c.685_689del (p.
(Val229Hisfs*)), and ¢.859delC (p.(His287Thrfs*)), respectively. None
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FIGURE 2 Schematic overview of all AR WNT1 (likely) pathogenic variants. (Likely) pathogenic variants linked to ptosis are highlighted in bold,
nucleotide numbers on top correspond to the start and end sites of each exon, respectively

of these deletions were previously reported and were absent from

population databases.

4 | DISCUSSION

We present 10 patients from eight independent families, with a
severe form of Ol in whom homozygous WNT1 mutations were iden-
tified. The skeletal phenotype in our patient cohort is highly similar to
the phenotype of previously reported patients with bi-allelic WNT1
mutations (43 patients from 29 independent families—see Supporting
Information Table S1). Clinical hallmarks include short stature and
severe osteoporosis with fractures starting in infancy. Few patients,
including PIl in the current study, presented with fractures in utero,
but most patients developed fractures within the first weeks or
months of life. Early-onset involvement of the spine, with severe ver-
tebral compression fractures and sometimes scoliosis is another con-
sistent feature. Bluish sclerae were not observed in our patient
cohort, but have been noted in a few patients with bi-allelic-WNT1
mutations (9/34, 26.5%; Supporting Information Table S1). Hearing
and tooth development are usually not impaired (Aldinger et al., 2016;
Fahiminiya et al., 2013; Fageih et al., 2013; Keupp et al., 2013;
Kuptanon et al., 2018; Laine et al., 2013; Lu et al., 2018; Pyott et al.,
2013; Umair et al., 2017; Won et al., 2017).

A striking and unique clinical observation in our patient cohort is
the presence of congenital ptosis, as illustrated in Figure 1. All patients
presented here had either unilateral (2/10) or bilateral (8/10) ptosis,
and review of the literature revealed that 12 patients were noted to
have ptosis (eight unilateral, two bilateral; 12/18, 66.7%), 6 presented
without ptosis and for 25 patients ptosis was not described
(Supporting Information Table S1). The cause of ptosis is currently
unknown. It has been noted that some patients with bi-allelic WNT1
mutations have neurological/brain abnormalities (6/11, 54.5%),
including abnormalities of the midbrain and/or cerebellum, and/or
severe developmental/intellectual delay (11/28, 39.3%; Aldinger et al.,
2016; Fahiminiya et al., 2013; Faqeih et al., 2013; Keupp et al., 2013;

Kuptanon et al., 2018; Laine et al., 2013; Lu et al., 2018; Pyott et al.,
2013; Umair et al., 2017; Won et al., 2017). Brain images for our
cohort were available for only one patient (PVIII, presenting with
severe brain anomalies, Figure 1v) and four patients had a significant
delay in cognitive development (4/10, 40%). In addition to this, a com-
bined literature search for all the unreported (our cohort, n = 10) and
earlier reported AR WNT1 patients (n = 43; Table 1 and Supporting
Information Table S1) shows that ptosis is present in all patients suf-
fering from developmental or intellectual delay and/or neuro-
logical/brain abnormalities, and that ptosis has never been described
to be present in patients where those features were absent. As such,
it is possible that the ptosis observed in this patient cohort is due to
abnormal brain and/or nerve development, leading to dysfunction of
the muscles that elevate the eyelid, however, further studies are
needed to evaluate this hypothesis. Earlier studies in mice revealed
Wnt1 as a key molecule in the development of specific regions of the
central nervous system (McMahon & Bradley, 1990). McMahon and
Bradley (1990) reported severe abnormalities of the midbrain and the
cerebellum in late-gestational homozygous Wnt1 null mice, and
demise of the newborn pups within the first 24 hr of life. At the time,
no skeletal abnormalities were reported in these mice. After the iden-
tification of homozygous and heterozygous WNT1 mutations in
humans with severe Ol and early-onset osteoporosis respectively,

studies in the nonlethal swaying mouse (Wnt1s"/s¥

mice, carrying a
spontaneous single nucleotide deletion in the Wnt1 gene) revealed
major features of Ol. These features include severe bone fragility,
fractures, reduced bone strength, and altered levels of mineral and
collagen in the bone matrix (Joeng et al., 2014). To further investigate
the role of WNT1 in bone formation, late-osteoblast-specific and
osteocyte-specific WNT1 loss- and gain-of-function mouse models
were generated (Joeng et al., 2017), which emphasized the regulatory
role of WNT1 in osteoblast functioning.

In summary, the present study of 10 novel patients with WNT1-
associated AR Ol brings the total number of patients with Ol type XV
to 53, and further extends both the phenotypic and genotypic spec-

trum of this condition. Besides the clinical hallmarks of early onset
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fracture risk, early involvement of the spine and neurological/brain
abnormalities, our observations highlight that uni or bilateral ptosis
(22/28, 78.6%) is a unique characteristic of this condition, which can
serve as a clinical clue to the underlying molecular diagnosis.
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