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Abstract

In these lecture notes we give a technical overview of tangent-space methods for matrix product
states in the thermodynamic limit. We introduce the manifold of uniform matrix product
states, show how to compute different types of observables, and discuss the concept of a tangent
space. We explain how to variationally optimize ground-state approximations, implement
real-time evolution and describe elementary excitations for a given model Hamiltonian. Also,
we explain how matrix product states approximate fixed points of one-dimensional transfer
matrices. We show how all these methods can be translated to the language of continuous
matrix product states for one-dimensional field theories. We conclude with some extensions of
the tangent-space formalism and with an outlook to new applications.
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1 Introduction

The quantum many-body problem is of central importance in diverse fields of physics such as
quantum chemistry, condensed-matter physics and quantum field theory. This is the reason that
for the last 90 years most of research in theoretical quantum physics has focused on this problem.
In the last decade, the field of quantum information has opened a new viewpoint into this problem
by rephrasing it in terms of entanglement theory. It has become clear that equilibrium states of
strongly-correlated quantum systems are very special, in the sense that they exhibit area laws for
the entanglement entropy. This has led to the introduction of tensor-network states, which can
be understood as the most general variational wavefunctions exhibiting such area laws.1

The essential property which makes tensor networks appealing is that they allow for an
exponential compression of the many-body wavefunction by modeling the entanglement degrees of
freedom in the system, rather than the correlation functions as is done in traditional many-body
theory. This makes them interesting both from the conceptual and the computational point of
view. First, it has allowed to identify the corner of Hilbert space parameterizing ground states of
gapped local Hamiltonians, and this has led to the classification of topological phases of matter
for interacting many-body systems. Second, the exponential compression allows to view tensor
networks as variational ansätze for which expectation values can be calculated efficiently, and
makes them well suited for ground-state calculations of strongly-interacting systems such as the
Hubbard model. The ubiquitous density matrix renormalization group (DMRG) is the prime
example of this computational approach, and has been used extensively for modeling recent
experiments in condensed-matter and atomic physics. DMRG however represents just one aspect
of tensor networks. First of all, the matrix product states (MPS) used in that approach can readily
be generalized to other geometries and continuum quantum field theories. Second, post-MPS
and tensor network methods can be formulated to access spectral and dynamical information
about the systems of interest. The natural way of describing those novel tensor network methods
is through the low-dimensional manifold that those states span in the full Hilbert space. This
manifold picture provides a unifying framework by which both DMRG and time-dependent and
spectral MPS methods can be understood.

The main objective of these lecture notes is to highlight the novel aspects of quantum tensor
networks that are made apparent by looking at them through the lens of this manifold picture
and, more specifically, by studying the tangent spaces of this manifold. Those tangent spaces
play a central role as they parameterize the directions in Hilbert space which are accessible
from within the manifold. It will be shown that the time-dependent variational principle, a
unifying way of looking at both stationary and time-dependent methods for dealing with tensor
networks, amounts to projecting the full Hamiltonian on this tangent space. It turns out that the
elementary excitations or quasiparticles in the full many-body system can also be understood by
such a projection, and even topological nontrivial excitations such as spinons and anyons can be
understood within this framework.

The structure of the lecture notes is as follows. In Sec.2 we introduce uniform matrix product
states (MPS) in the thermodynamic limit, compute expectation values and derive canonical forms.
In Sec. 3 we discuss the notion of a tangent space on the MPS manifold, and derive efficient
parametrizations and associated expressions for the tangent-space projectors. In Sec. 4 these
notions are used to develop variational ground-state optimization algorithms, and the vumps
algorithm is explained in detail. In Sec. 5 the time-dependent variational principle is derived,
and we discuss how the flow equations are integrated. In Sec. 6 we introduce the quasiparticle
excitation ansatz, and show how to compute elementary excitation spectra of generic spin chains.
Finally, we extend all the previous notions to the case of one-dimensional transfer matrices in

1For a more general introduction to tensor networks, we refer the reader to Refs. [1–5].
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Sec. 7, and we look at the continuous version of MPS for one-dimensional field theories in Sec. 8.
We close these lecture notes with an outlook to further applications and extensions in Sec. 9.

2 Matrix product states in the thermodynamic limit

In this first section, we will introduce the class of translation-invariant MPS in the thermodynamic
limit [6, 7]. As we will see, these uniform matrix product states have some useful properties that
enable us to work with them in a computationally efficient way. In the next sections, we will show
that, although most state-of-the-art MPS-based methods rather work on finite systems, working
directly in the thermodynamic limit has a number of conceptual and numerical advantages.

2.1 Uniform matrix product states, gauge transformations and canonical
forms

A uniform MPS in the thermodynamic limit is introduced as

|Ψ(A)〉 =
∑
{s}

v†L

∏
m∈Z

Asm

vR |{s}〉 , (1)

where As is a D ×D matrix for every entry of the index s. Alternatively we can interpret the
object A as a three-index tensor of dimensions D × d × D, where d is the dimension of the
physical Hilbert space at every site in the chain and D is the so-called bond dimension. The latter
determines the amount of correlations in the MPS and can be tuned in numerical simulations
– it is expected that MPS results for gapped systems are exact in the limit D → ∞, and the
complexity of all MPS algorithms scales as O(D3).

In these lecture notes, we will make use of the diagrammatic language of tensor networks. In
this language we represent tensors by geometrical shapes where the indices are indicated by lines
sticking out; whenever two indices of two different tensors are contracted (i.e., summed over),
the corresponding legs are connected in the diagram. Using this language, we can represent a
uniform MPS as

|Ψ(A)〉 = . . . A A A A A . . . . (2)

In this representation, the right-hand side is a big tensor, written as a contraction of a number
of smaller tensors, describing the coefficient for a given configuration of spins that appears in
the superposition in Eq. (1). In the following, we will just use the notation that the right-hand
side is the state itself. In this diagrammatic representation, the definition of a uniform MPS is
obvious: we just repeat the same tensor A on every site in the lattice, giving rise to a state that
is translation invariant by construction.2

In Eq. (1) we have also introduced two boundary vectors v†L and vR, but, as we work
on an infinite system, the boundary conditions will never have any physical meaning. Indeed,
translation-invariant MPS for which the boundary conditions do matter are called non-injective,
and correspond to macroscopic superpositions (cat states), where the specific superposition is
encoded in the boundary vectors. Non-injective MPS tensors appear with measure zero in the
space of all possible MPS tensors and are not considered throughout these notes3. For injective
MPS (the generic case), we will show that the physical properties (expectation values) of the

2We could introduce states that are translation invariant over multiple sites by working with a repeated unit
cell of different matrices A1, A2, . . . , and all methods that we will discuss can be extended to the case of larger unit
cells (see Sec. 9).

3We refer the reader to Ref. [8] for additional details.
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state |Ψ(A)〉 only depend on the tensor A, and therefore the MPS tensor truly describes the bulk
properties of the state.

The central object in all our calculations is the transfer operator or transfer matrix, defined as

E =
d∑
s=1

As ⊗ Ās =

A

Ā

, (3)

which is an operator acting on the space of D ×D matrices. From its definition it follows that
the transfer matrix is a completely positive map [9], where the MPS matrices As play the role of
Kraus operators. The transfer matrix has the property that the leading eigenvalue is a positive
number η, which should be scaled to one by rescaling the MPS tensor as A→ A/

√
η for a proper

normalization of the state in the thermodynamic limit. In the generic (i.e. injective) case, this
leading eigenvalue is non-degenerate4 and the corresponding left and right fixed points l and r,
i.e. the leading eigenvectors of the eigenvalue equation

l

A

Ā

= l and

A

Ā

r = r , (4)

are positive matrices. They can be normalized such that Tr(lr) = 1, or, diagrammatically,

l r = 1. (5)

With these properties in place, the norm of an MPS can be computed as

〈Ψ(Ā)|Ψ(A)〉 = . . .

A

Ā

A

Ā

A

Ā

A

Ā

A

Ā

. . .

=
(
vLv

†
L

)∏
m∈Z

E

(vRv†R

)
. (6)

The infinite product reduces to a projector on the fixed points,

lim
N→∞

EN = r l (7)

so that the norm reduces to the overlap between the boundary vectors and the fixed points. We
will now choose the boundary vectors such that these overlaps equal unity – there is no effect of
the boundary vectors on the bulk properties of the MPS anyway – so that the MPS is properly
normalized as 〈Ψ(Ā)|Ψ(A)〉 = 1.

4In the non-injective case, there would be additional eigenvalues of magnitude η, which can have a commensurate
phase exp(ik2π/N) for some integer N .
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Although the state is uniquely defined by the tensor A, the converse is not true, as different
tensors can give rise to the same physical state. This can be easily seen by noting that the gauge
transform

A → X−1 A X (8)

leaves the state in Eq. (1) invariant. In fact, it can be shown [8, 10] that this is the only freedom
in the parametrization5, and it can be fixed (partially) by imposing canonical forms on the MPS
tensor A.

As is well known from DMRG and other MPS algorithms on finite chains, the use of canonical
forms helps to ensure the numerical stability of the resulting algorithms, and this extends to
algorithms for infinite systems discussed below. First, we can always find a representation of
|Ψ(A)〉 in terms of a new MPS tensor AL

AL → L A L−1 . (9)

such that the MPS tensor obeys the following condition

AL

ĀL

= . (10)

The matrix L is found by decomposing the fixed point l of A as l = L†L, because with that choice
we indeed find

AL

ĀL

=

L

L̄

A

Ā

L−1

L̄−1

=

L

L̄

L−1

L̄−1

= . (11)

The representation of an MPS in terms of a tensor AL is called the left-orthonormal form. This
gauge condition still leaves room for unitary gauge transformations,

AL → U AL U † , (12)

which can be used to bring the right fixed point r in diagonal form. Similarly, a right-orthonormal
form AR can be found such that

AR

ĀR

= , (13)

and where the left fixed point l is diagonal.
These left- and right-orthonormal forms now allow us to define a mixed gauge for the uniform

MPS. The idea is that we choose one site, the ‘center site’, bring all tensors to the left in the

5As before, again by restricting to the set of injective MPS. The mapping from parameter space to physical
space as such acquires the structure of a principal fibre bundle [11].
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left-orthonormal form, all the tensors to the right in the right-orthonormal form, and define a
new tensor AC on the center site. Diagrammatically, we obtain the following form

|Ψ(A)〉 = . . . AL AL L A R AR AR . . .

= . . . AL AL AC AR AR . . . . (14)

This mixed gauge form has an intuitive interpretation. First of all, we introduce a new tensor
C = LR which implements the gauge transform that maps the left-orthonormal tensor into the
right-orthonromal one, and which defines the center-site tensor AC :

AL C = C AR = AC . (15)

This allows us to rewrite the MPS with only the C tensor on a virtual leg, linking the left- and
right orthonormal tensors,

|Ψ(A)〉 = . . . AL AL C AR AR . . . . (16)

In a next step, the tensor C is brought into diagonal form by performing a singular-value
decomposition C = USV †, and taking up U and V † in a new definition of AL and AR – remember
that we still had the freedom of unitary gauge transformations on the left- and right-canonical
form:

AL → U † AL U and AR → V † AR V . (17)

The above form of the MPS, with a diagonal C, now allows to straightforwardly write down a
Schmidt decomposition of the state6 across an arbitrary bond in the chain:

|Ψ(A)〉 =

D∑
i=1

Ci |Ψi
L(AL)〉 ⊗ |Ψi

R(AR)〉 , (18)

where the states

|Ψi
L(AL)〉 = . . . AL AL i , |Ψi

R(AR)〉 = i AR AR . . . . (19)

are orthonormal states on half of the lattice,

〈Ψi
L(ĀL)|Ψj

L(AL)〉 = δij , 〈Ψi
R(ĀR)|Ψj

R(AR)〉 = δij , (20)

This implies that the diagonal elements Ci in this (diagonal) mixed canonical form are exactly the
Schmidt numbers of any bipartition of the MPS. The bipartite entanglement entropy is given by

S = −
∑
i

C2
i log

(
C2
i

)
. (21)

Next we discuss how to characterize the overlap or fidelity between two uniform MPS. Given
two properly normalized MPS |Ψ(A1)〉 and |Ψ(A2)〉, the overlap is given by

〈Ψ(Ā2)|Ψ(A1)〉 = . . .

A1

Ā2

A1

Ā2

A1

Ā2

A1

Ā2

A1

Ā2

· · · = lim
N→∞


A1

Ā2


N

. (22)

6This representation corresponds to λ = C and Γs = C−1AsL = AsRC
−1 in the notation of Ref. [6].
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This expression is either one (up to a phase factor) or zero, depending on whether λmax(E1
2), the

largest eigenvalue (in magnitude) of this mixed transfer matrix E1
2 , is on the unit circle or not.

Supposing that we have fixed the relative phase between the two tensors A1 and A2 such that
λmax(E1

2) is positive, the overlap is given by

〈Ψ(Ā2)|Ψ(A1)〉 =

{
0 if λ(E1

2) < 1
1 if λ(E1

2) = 1
. (23)

This result is known as the orthogonality catastrophe, according to which states in the thermody-
namic limit are either equal or orthogonal. The condition λmax(E1

2) = 1 is indeed sufficient to
conclude that there exists a gauge transformation between A1 and A2. A more physical quantity
to express whether two MPS in the thermodynamic limit are ‘close’, is the fidelity per site, which
exactly corresponds to

f (A1, A2) =
∣∣∣λ(E1

2)
∣∣∣ . (24)

2.2 Truncating a uniform MPS

The mixed canonical form enables us to truncate an MPS efficiently [12], which is one of the
primitive tasks in any MPS toolbox. Such a problem typically occurs when one is multiplying
a MPS with a matrix product operator (see Sec. 7), for which one is interested in reducing the
bond dimension again.

The sum in the above Schmidt decomposition can be truncated, giving rise to a new MPS
that has a reduced bond dimension for that bond. This truncation is optimal in the sense that
the norm between the original and the truncated MPS is maximized, but the resulting MPS is
no longer translation invariant – it has a lower bond dimension on one leg. We can, however,
introduce a translation invariant MPS with a lower bond dimension by transforming every tensor
AL or AR as in Eq. 17, but where we have truncated the number of columns in U and V , giving
rise to the isometries Ũ and Ṽ . The truncated MPS in the mixed gauge is then given by

|Ψ(A)〉trunc = . . . Ũ † AL Ũ S̃ Ṽ † AR Ṽ . . .

= . . . ÃL ÃL S̃ ÃR ÃR . . . (25)

with S̃ the truncated singular values of C, and

AL → Ũ † AL Ũ and AR → Ṽ † AR Ṽ . (26)

This procedure is not guaranteed to find the MPS with a lower bond dimension that is globally
optimal, in the sense that it minimizes the error on the global (thermodynamic limit) state. A
variational optimization of the cost function∥∥∥|Ψ(A)〉 − |Ψ(Ã)〉

∥∥∥2
(27)

would find the optimal truncated MPS tensor A, but the above approximate algorithm has, of
course, the advantage of being numerically efficient. In Sec. 3 we will discuss a variational method
for optimizing this cost function.
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2.3 Algorithm for finding canonical forms

Above we have seen that the set of uniform MPS can be parametrized in two different ways:

(i) the uniform gauge, where we have one tensor A that is repeated on every site in the chain
as in Eq. (1), and

(ii) the mixed gauge, where we have a set of three matrices {AL, AR, C} obeying the relation
(15), specifying the MPS as in Eq. (14).

In the algorithms in these notes we will often need to switch between these two gauges, so that a
reliable algorithm is needed for extracting a set {AL, AR, C} from a given uniform MPS tensor
A. In principle the above relation (9) yields an algorithm for finding a left-orthonormal tensor
AL, and a similar relation yields AR and C. In practice, however, this algorithm is suboptimal
in terms of numerical accuracy. While l and r are theoretically known to be positive hermitian
matrices (up to a phase), at least one of them will nevertheless have small eigenvalues, say of
order η, if the MPS is supposed to provide a good approximation to an actual state. In practice,
l and r are determined using an iterative eigensolver (Arnoldi method) and will only be accurate
up to a specified tolerance ε, so that hermiticity and positivity of the smallest eigenvalues might
be violated and need to be ‘fixed’. Upon taking the ‘square roots’ L and R, the numerical
precision will go down to min(

√
ε, ε/
√
η). Indeed, computing L and R from l and r is analoguous

to computing the singular values of a matrix M from the eigenvalues of M †M . Furthermore,
gauge transforming A with L or R requires the potentially ill-conditioned inversion of L and
R, and will typically yield AL and AR which violate the orthonormalization condition in the
same order ε/

√
η. Both problems are resolved by taking recourse to single-layer algorithms, i.e.

algorithms that only work on the level of the MPS tensors in the ket layer, and never consider
operations for which contractions with the bra layer are needed.

Suppose we are given an MPS tensor A, and we want to find the left-orthonormal tensor
AL and the matrix L, such that AL = L−1AL.7 The idea is to solve the equation LAL = AL
iteratively, where in every iteration (i) we start from a matrix Li, (ii) we construct the tensor
LiA, (iii) we take a QR decomposition to obtain Ai+1

L Li+1 = LiA, and (iv) we take Li+1 to the
next iteration. The QR decomposition is represented diagrammatically as

Li A
QR−−→ Ai+1

L Li+1 . (28)

Because the QR decomposition is unique – in fact, it is made unique by the additional condition
that the diagonal elements of the triangular matrix be positive – this iterative procedure is
bound to converge to a fixed point for which L(i+1) = L(i) = L and AL is left orthonormal by
construction:

L A
QR−−→ AL L . (29)

The convergence rate of this approach is the same as that of a power method for finding the left
fixed point l = L†L of A, which is typically insufficient if the transfer matrix has a small gap. We
can however speed up this QR algorithm by, after having found an updated guess Ai+1

L according
to Eq. (28), further improving the guess Li+1 by replacing it with the fixed point L̃i+1 of the map

X → X

A

Āi+1
L

, (30)

7We apply a slight abuse of notation here: The expressions AX and XA, with A an MPS tensor and X a matrix
are meant as AsX, ∀s.
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Algorithm 1 Gauge transform a uniform MPS A into left-orthonormal form

1: procedure LeftOrthonormalize(A,L0, η) . Initial guess L0 and a tolerance η
2: L← L/‖L‖ . Normalize L
3: Lold ← L
4: (AL, L)← QRPos(LA) . QR decomposition according to Eq. (28)
5: λ← ‖L‖, L← λ−1L . Normalize new L and save norm change
6: δ ← ‖L− Lold‖ . Compute measure of convergence
7: while δ > η do . Repeat until converged to specified tolerance
8: (∼, L)←Arnoldi(X → E(X), L, δ/10) . Compute fixed point of transfer map in

Eq. (30) using initial guess L, up to a tolerance depending on δ
9: (∼, L)← QRPos(L)

10: L← L/‖L‖
11: Lold ← L
12: (AL, L)← QRPos(LA) . QR decomposition according to Eq. (28)
13: λ← ‖L‖, L← λ−1L
14: δ ← ‖L− Lold‖
15: end while
16: return AL, L, λ
17: end procedure

Algorithm 2 Find mixed gauge {AL, AR, C} from a uniform MPS tensor A

1: procedure MixedCanonical(A, η) . Initial guesses L0 and C0 and a tolerance η
2: (AL,∼, λ)← LeftOrthonormalize(A,L0, η) . Algorithm 1
3: (AR, C,∼)← RightOrthonormalize(AL, C0, η) . Analoguous to Algorithm 1
4: (U,C, V )← Svd(C) . Diagonalize C matrix
5: AL ← U †ALU . Transform AL according to Eq. (17)
6: AR ← V †ARV . Transform AR according to Eq. (17)
7: return AL, AR, C, λ
8: end procedure

which can be found by an Arnoldi eigensolver. Note that we don’t need to solve this eigenvalue
problem for L̃i+1 to high precision early in the algorithm. In particular, we don’t want to restart
the eigensolver (and thus only build the Krylov subspace once), as the outer iteration i of the
algorithm acts as the restart loop. The resulting algorithm for left orthonormalization is presented
in Algorithm 1 and a similar algorithm for right orthonormalization follows readily. Algorithm 2
combines both to impose the mixed gauge with diagonal C.

2.4 Computing expectation values

Suppose we want to compute the expectation value of an extensive operator

O =
1

|Z|
∑
n∈Z

On, (31)
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where the extra factor |Z|−1 represents the number of sites, and is introduced to obtain a finite
value in the thermodynamic limit – in fact, we are evaluating the density corresponding to
operator O. Because of translation invariance, we only have to evaluate one term where O acts
on an arbitrary site. The expectation value is then – assuming the MPS is already properly
normalized

〈Ψ(Ā)|O |Ψ(A)〉 = . . .

A

Ā

A

Ā

A

Ā

O

A

Ā

A

Ā

. . . . (32)

We can now use the left and right fixed points of the transfer matrix to contract everything to
the left and to the right of the operator, to arrive at the contraction

l O

A

Ā

r . (33)

An even easier contraction is obtained by going to the mixed gauge, and locating the center site
where the operator is acting. Indeed, then everything to the left and right is contracted to the
identity and we obtain

O

AC

ĀC

. (34)

A two-site operator such as a hamiltonian term h is evaluated as

〈Ψ(Ā)|h |Ψ(A)〉 = l h

A

Ā

A

Ā

r = h

AL

ĀL

AC

ĀC

= h

AC

ĀC

AR

ĀR

. (35)

Correlation functions are computed similarly. Let us look at

cαβ(m,n) = 〈Ψ(Ā)| (Oβm)†Oαn |Ψ(A)〉 , (36)

where m and n are abritrary locations in the chain, and, because of translation invariance, the
correlation function only depends on the difference m− n. Again, we contract everything to the
left and right of the operators by inserting the fixed points l and r, so that

cαβ(m,n) = l Oα

A

Ā

A

Ā

. . .

A

Ā

A

Ā

Oβ r . (37)

From this expression, we learn that it is the transfer matrix that determines the correlations in
the ground state. Indeed, if we apply the eigendecomposition, A

Ā


n

= r l +
∑
i

λni λi λi , (38)
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we can see that the correlation function reduces to

cαβ(m,n) = l Oα

A

Ā

r × l Oβ

A

Ā

r +
∑
i

(λi)
m−n−1

l Oα

A

Ā

λi × λi Oβ

A

Ā

r . (39)

The first part is just the product of the expectation values of Oα and Oβ , called the disconnected
part of the correlation function, and the rest is an exponentially decaying part. This expression
implies that connected correlation functions of an MPS always decay exponentially, which is one
of the reasons why MPS are not well suited for capturing critical states. The largest λ, i.e. the
second largest eigenvalue of the transfer matrix, determines the correlation length ξ and the pitch
vector of the correlations Q as8

ξ = − 1

log |λmax|
and Q = arg(λmax). (40)

2.5 The static structure factor

In experimental set-ups, one typically has access to the Fourier transform of the correlation
function, called the (static) structure factor. Since we are working in the thermodynamic limit,
we can easily compute this quantity with a perfect resolution in the momentum range [0, 2π).

The structure factor corresponding to two operators Oα and Oβ is defined as

sαβ(q) =
1

|Z|
∑
m,n∈Z

eiq(m−n) 〈Ψ(Ā)| (Oβn)†Oαm |Ψ(A)〉c , (41)

where 〈. . .〉c denotes that we only take the connected part of the correlation function. This can
be implemented by redefining the operators such that their expectation value is zero,

Oα,βn → Oα,βn − 〈Ψ(Ā)|Oα,βn |Ψ(A)〉 . (42)

This quantity can be computed directly in momentum space by a number of steps. First, due to
translation invariance, every term in Eq. (41) only depends on the difference (m− n), so that we
can eliminate one of the two sums,

sαβ(q) =
∑
n∈Z

e−iqn 〈Ψ(Ā)| (Oβn)†Oα0 |Ψ(A)〉c . (43)

Every term in the sum has the form of a connected correlation function of the form

l Oα

A

Ā

A

Ā

A

Ā

A

Ā

Oβ r , (44)

8The ξi and Qi corresponding to the subleading eigenvalues typically have a physical meaning as well, because
they point to subleading correlations in the system. Especially in the case where incommensurate correlations
are formed, it is instructive to inspect the full spectrum of the transfer matrix [13]. The correlation length is a
particularly hard quantity to converge in MPS simulations, but efficient extrapolations have been devised that
work directly in the thermodynamic limit [14].
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but we can resum all these diagrams in an efficient way. Indeed, all terms where the operator Oβ

is to the right of Oα can be rewritten as

e−iq l Oα

A

Ā

A

Ā

Oβ r + e−i2q l Oα

A

Ā

A

Ā

A

Ā

Oβ r + . . .

= e−iq l Oα

A

Ā

∑
n e−iqnEn

A

Ā

Oβ r . (45)

The geometric series are worked out as

e−iq
∞∑
n=0

e−iqnEn = e−iq
∞∑
n=0

e−iqnẼn + e−iq
∞∑
n=0

e−iqnPn (46)

= e−iq
(

1− e−iqẼ
)−1

+ P
∞∑
n=1

e−iqn,

where we have defined a regularized transfer matrix Ẽ as

A

Ā

= Ẽ + r l . (47)

and P is the projector on the fixed points. Since the spectral radius of Ẽ is strictly smaller
than one, the geometric series converges and we can replace it with the inverse (1− e−iqẼ)−1.
The second term above containing the projector P could lead to a divergent part, but does not
contribute because we have

l Oα

A

Ā

r × l Oβ

A

Ā

r = 〈Ψ(Ā)|Oα |Ψ(A)〉 〈Ψ(Ā)|Oβ |Ψ(A)〉 , (48)

which we have set to zero in the definition of the operators Oα and Oβ . We define a ‘pseudo-inverse’
of an operator as (

1− e−iqẼ
)−1

=
(

1− e−iqE
)P

, (49)

implying that we project out the fixed point of E, and take the inverse of the operator on the
complement.

The part where Oβ is to the left of Oα is treated similarly, and we also have the term where

13



both are acting on the same site; we obtain the following final expression:

s(q) = l

A

Oα

Ā

Oβ

r + e−iq l Oα

A

Ā

(
1− e−iqE

)P
A

Ā

Oβ r

+ eiq l Oβ

A

Ā

(
1− eiqE

)P
A

Ā

Oα r . (50)

Note that we don’t have to compute the pseudo-inverse (1− e−iqE)P explicitly – that would
entail a computational complexity of O(D6). Instead, we will compute e.g. the partial contraction

Lα = l Oα

A

Ā

(
1− e−iqE

)P , (51)

i.e. the action of the pseudo-inverse (1− e−iqE)P on a given left-hand side, as the solution of a
linear problem of the form (1− e−iqẼ)× x = y. This linear equation can then again be solved
using Krylov-based interative methods (generalized minimal residual or biconjugate gradient
methods), where only the action of (1− e−iqẼ) on a given vector needs to implemented. This
reduces the computational complexity to only O(D3).

We can compute the right-side partial contraction in the same way,

Rα =
(
1− eiqE

)P
A

Ā

Oα r , (52)

so that we can compute the structure factor as a simple contraction

s(q) = l

A

Oα

Ā

Oβ

r + e−iq Lα

A

Ā

Oβ r + eiq l

A

Ā

Oβ Rα . (53)
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In the mixed canonical form, this expression reduces to

s(q) =

Ac

Oα

Āc

Oβ

+ e−iq Oα

AC

ĀL

(
1− e−iqERL

)P
AR

ĀC

Oβ

+ eiq Oβ

AL

ĀC

(
1− eiqELR

)P
AC

ĀR

Oα , (54)

where we have introduced the notations for the transfer matrices

ELL =

AL

ĀL

, ERL =

AR

ĀL

, ELR =

AL

ĀR

, ERR =

AR

ĀR

. (55)

Here, we have chosen to associate the location of the center site in ket (bra) with the position
where Oα (Oβ) acts, as this will generalize when discussing quasiparticle excitations in Sec.6.

3 The tangent space and tangent vectors

Let us now introduce the unifying concept of these lecture notes: the MPS tangent space. First,
we interpret the set of uniform MPS with a given bond dimension as a manifold [11] within
the full Hilbert space of the system we are investigating. The manifold is defined by the map
between the set of D×d×D tensors A and physical states in Hilbert space |Ψ(A)〉. The resulting
manifold is not a linear subspace as any sum of two MPS with a given bond dimension D clearly
does not remain within the manifold. Therefore, it makes sense to associate a tangent space [15]
to every point |Ψ(A)〉. By differentiating with respect to the parameters in A, an (overcomplete)
basis for this tangent space is obtained. The MPS manifold, with a tangent space associated to
every point, is represented graphically in Fig. 1.

A tangent vector is defined as

|Φ(B;A)〉 = Bi ∂

∂Ai
|Ψ(A)〉 = Bi |∂iΨ(A)〉 , (56)

where i is a collective index (combined physical and virtual indices) for all entries of the tensor
A and is summed over as in the summation convention. The new tensor B describes a general
linear combination of the partial derivatives and parametrizes the full tangent space; obviously,
the tangent space is a linear subspace of the Hilbert space. The overlap between two tangent
vectors can be written as

〈Φ(B̄′; Ā)|Φ(B;A)〉 = B̄i′Gij(Ā, A)Bj , (57)

where Gij(Ā, A) = 〈∂iΨ(Ā)|∂jΨ(A)〉 is the Gram matrix or the metric on the tangent space as
parametrized by the tensor B. As we will see later on, this Gram matrix is singular because of
the over-completeness of the basis of partial derivatives, which can be traced back to the gauge
redundancy in the MPS description.
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Figure 1: The tangent space on the MPS manifold.

In the following sections, we often need an expression for the projector that implements
an orthogonal projection of a given vector |χ〉 in Hilbert space onto the tangent space. This
expression is found by realizing that, due to the Euclidean inner product in Hilbert space, we are
in fact looking for the tangent vector |Φ(B,A)〉 which maximizes the overlap with the vector |χ〉,
or

min
B

∥∥|χ〉 − |Φ(B;A)〉
∥∥2
. (58)

In the following we will see that this condition implies that the tangent-space projector formally
looks like

PA ∼ |∂iΨ(A)〉 (G−1)ij 〈∂jΨ(Ā)| . (59)

As the Gram matrix is singular in general, this expression is not well-defined, and we first have
to find a good parametrization of the tangent space that eliminates all singular parts. In the
following two subsections we work out two different parametrizations, describe the properties and
derive the expressions for the corresponding tangent-space projectors.

3.1 Tangent vectors in the uniform gauge

If we work in the uniform gauge, the MPS is parametrized by a single tensor A, and a general
tangent vector has the form

|Φ(B;A)〉 = Bi ∂

∂Ai
|Ψ(A)〉 =

∑
n

. . . A A B A A

. . . sn−1 sn sn+1 . . .

. . . . (60)

The over-completeness in the parametrization of tangent vectors follows from studying the
infinitesimal gauge transform G = eεX of |Ψ(A)〉. To first order, we obtain

As → e−εXAseεX = As + ε (AsX −XAs) +O(ε2), (61)

which can be brought to the level of states,

|Ψ(A)〉 → |Ψ(A)〉+ ε |Φ(B;A)〉+O(ε2), (62)

with Bs = AsX −XAs. But, since this is a gauge transform in the MPS manifold, the tangent
vector |Φ(B;A)〉 should be zero. This implies that every transformation on B of the form

B → B + X A − A X , (63)
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with X an arbitrary D ×D matrix, leaves the tangent vector |Φ(B;A)〉 invariant. This gauge
freedom can be easily checked by substituting this form in the state (60), and observing that all
terms cancel, leaving the state invariant.

The gauge degrees of freedom can be eliminated by imposing a gauge-fixing condition, which
can again be chosen so as to be useful from an algorithm perspective. The easiest choice is the
so-called left gauge-fixing condition (there is of course a right one, too), given by

l

B

Ā

= l

A

B̄

= 0. (64)

Note that this corresponds to D2 scalar complex-valued equations, whereas we have D2 complex
parameters in the gauge transform X in Eq. (63). However, the component X ∼ 1 does not
actually modify B and should therefore not be counted. If we try to explicitly transform a given
B according to Eq. (63) so that it satisfies the left gauge-fixing condition [Eq. 64], this amounts
to the equation

l

B

Ā

+ l

X A

Ā

− l

A

Ā

X

= 0, (65)

or

l

X

(1− E) = l

B

Ā

. (66)

As the left hand side of this equation is annihilated when contracting with r, it can only have a
solution for X if also the right hand side satisfies

l

B

Ā

r = 0. (67)

This is, however, a natural condition, because this is precisely saying that the tangent vector is
orthogonal to the original MPS. Indeed, one can easily see that the overlap between an MPS and
a tangent vector is given by

〈Ψ(Ā)|Φ(B;A)〉 = 2πδ(0) l

B

Ā

r . (68)

The factor corresponds to the system size, which diverges in the thermodynamic limit. We will
denote this diverging factor as 2πδ(0), inspired by the representation of the δ function as∑

n∈Z
eipn = 2πδ(p). (69)
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For a tangent vector |Φ(B,A)〉 that is orthogonal to |Ψ(A)〉, we can then always find a parametriza-
tion in terms of a tensor B satisfying Eq. (63) by solving the linear system for the gauge transorm
X using (1− Ẽ)−1 = (1− E)P as regularized inverse, exactly as we have seen in Sec. 2.5.

The restriction to tangent vectors that are orthogonal to the original MPS is crucial in several
of the algorithms that follow. In fact, we can implement the left gauge-fixing condition [Eq. (64)]
explicitly by constructing an effective parametrization for the B tensor that automatically fixes
all gauge degrees of freedom, and which has some nice advantages for all later calculations. First,
we construct the tensor VL such that

l1/2

VL

Ā

= 0, (70)

where the right index of VL has dimension D(d − 1). Put differently, VL corresponds to the
D(d− 1)-dimensional null space of the matrix

l1/2

Ā

. (71)

We orthonormalize VL as
VL

V̄L

= . (72)

Next, the B tensor is expressed in terms of a new matrix X as

B = l−
1
2 VL X r−

1
2 , (73)

where X is a (D(d− 1)×D)-dimensional tensor. This parametrization of the B tensor constitutes
an effective parametrization for the tangent space that automically enforces the left-gauge fixing
condition and eliminates all degrees of freedom.

Yet, the great advantage of this particular choice of effective parametrization concerns the
overlap between two tangent vectors. The overlap between |Φ(B;A)〉 and |Φ(B′;A)〉 is computed
similarly to the structure factor in Sec. 2.5: we have two infinite terms, but we can eliminate
one sum because of the translation invariance of the MPS; this sum will again result in a factor
2πδ(0). There still remains a sum over all relative positions between B and B′. Now the power
of the left gauge fixing condition is revealed: all terms vanish, except the term where B and B′

are on the same site. Indeed, all terms of the form

l

B

Ā

A

Ā

A

Ā

A

B̄

r , (74)
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are automatically zero because of Eq. 64. Consequently, the norm reduces to

〈Φ(B̄′; Ā)|Φ(B;A)〉 = 2πδ(0) l r

B

B̄′

, (75)

or in terms of the effective parameters in X and X ′,

〈Φ(B̄(X ′); Ā)|Φ(B(X);A)〉 = 2πδ(0)

VL

V̄L

X

X̄ ′

= 2πδ(0)

X

X̄ ′

= 2πδ(0)Tr
(

(X ′)†X
)
. (76)

The fact that the overlap of tangent vectors reduces to the Euclidean inner product on the effective
parameters X and X ′ will prove to be a very useful property in all tangent-space algorithms. More
formally, this implies that the Gram matrix (see Eq. (57)) for the tangent space as parametrized
by the matrix X reduces to the unit matrix.

With this effective parametrization of the tangent space in place, we can now derive the
tangent-space projector PA, i.e. the operator that orthogonally projects any state |χ〉 onto the
tangent space associated to a given MPS |Ψ(A)〉. The orthogonal projection on a linear subspace
of Hilbert space is equivalent to minimizing

min
X

∥∥|χ〉 − |Φ(B(X);A)〉
∥∥2

= min
X

(
〈Φ(B̄(X); Ā)|Φ(B(X);A)〉

− 〈χ|Φ(B(X);A)〉 − 〈Φ(B̄(X); Ā)|χ〉
)
. (77)

As this minimization problem is quadratic in X and X̄ with a quadratic term Tr(X†X), the
solution is given by X = ∂X̄(. . . ). Since the overlap between two tangent vectors is given by
Eq. (76), the solution of the minimization problem is found as

2πδ(0)X =
∂

∂X̄
〈Φ(B̄(X); Ā)|χ〉 , (78)

or, if |χ〉 is translation invariant we can cancel the 2πδ(0) factors,

X = . . .

χ

Ā l−
1
2 V̄L r−

1
2 Ā . . . . (79)

The vector that results from the tangent-space projector should again be of the form of Eq. 60,
so we transform the above X tensor back into the form of a B tensor according Eq. 73, such that
we have

|Φ(B(X);A〉 =
∑
n

. . .

χ

Ā l−
1
2 V̄L r−

1
2 Ā

A l−
1
2 VL r−

1
2 A

sn−1 sn sn+1

. . . , (80)
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yielding the final form of the tangent space projector as

PA =
∑
n

. . .

Ā Ā l−
1
2 V̄L r−

1
2 Ā Ā

A A l−
1
2 VL r−

1
2 A A

. . . sn−1 sn sn+1 . . .

. . . . (81)

3.2 Tangent vectors in the mixed gauge

The above tangent-space projector contains inverses of l and r, which are potentially ill-conditioned.
Therefore, we also derive the expression for the projector in the mixed gauge. We first write down
a tangent vector in the mixed gauge:

|Φ(B;AL, AR)〉 =
∑
n

. . . AL AL B AR AR

. . . sn−1 sn sn+1 . . .

. (82)

The crucial difference with the standard form of the tangent vector is that the elements of B
are now not directly related to derivatives with respect to the parameters in the MPS tensors
AL and AR, and that we need to derive the projector onto the tangent space in a slightly more
involved way.

As we still have the gauge freedom B → B +ALX −XAR, we again start by imposing the
left-gauge fixing condition, which now has the simpler form

B

ĀL

=

AL

B̄

= 0. (83)

We define the effective parametrization of the tangent vector in terms of the matrix X as

B = VL X , (84)

where the tensor VL obeys the usual conditions

VL

ĀL

= 0 and

VL

V̄L

= . (85)

Interpreting AL as the first D columns of a (Dd)× (Dd) unitary matrix, VL corresponds to the
remaining D(d−1) columns thereof. This effective parametrization has the same useful properties
as before, but now does not require taking any inverses of l or r.

Suppose now again we have an abritrary state |χ〉, which we want to project on a given
tangent vector |Φ(B;AL, AR)〉. This is equivalent to minimizing

min
X

∥∥|χ〉 − |Φ(B(X);AL, AR)〉
∥∥2

= min
X

(
〈Φ(B̄(X); ĀL, ĀR)|Φ(B(X);AL, AR)〉

− 〈χ|Φ(B(X);AL, AR)〉 − 〈Φ(B̄(X); ĀL, ĀR)|χ〉
)
. (86)
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We have a quadratic minimization problem as before and, since the Gram matrix with respect
to the effective tangent-space parametrization X is again the unit matrix, the solution of the
minimization problem is found as

2πδ(0)X =
∂

∂X̄
〈Φ(B̄(X); ĀL, ĀR)|Ψ〉 , (87)

which yields

X = . . .

χ

ĀL ĀL V̄L ĀR ĀR . . . . (88)

The corresponding tangent vector is

|Φ(B;AL, AR)〉 =
∑
n

. . .

χ

ĀL ĀL V̄L ĀR ĀR

AL AL VL AR AR

. . . sn−1 sn sn+1 . . .

. . . . (89)

This form of the projector can be cast into an even more useful form for the tangent-space
algorithms below, by rewriting the projector on VL as

V̄L

VL

= −
ĀL

AL

, (90)

so that the final form of the tangent space projector is given by

P{AL,AR} =
∑
n

. . .

ĀL ĀL ĀR ĀR

AL AL AR AR

. . . sn−1 sn sn+1 . . .

. . .

−
∑
n

. . .

ĀL ĀL ĀL ĀR ĀR

AL AL AL AR AR

. . . sn−1 sn sn+1 . . .

. . . . (91)

In contrast to the simpler form of the previous section, in the mixed canonical representation the
tangent-space projector has two different terms, but, precisely because we work with a mixed
canonical form, the projector does not require the inversion of potentially ill-conditioned matrices
l−1/2 and r−1/2.
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3.3 Variational optimization of the overlap

The concept of a tangent space and its associated projector now allow us to formulate variational
MPS methods that implement energy optimization for ground-state approximations, real-time
evolution within the MPS manifold, or low-energy excitations on top of an MPS ground state.
In the following sections we will develop these algorithms in full detail, but here we can already
explain a simple variational algorithm for maximizing the overlap of an MPS |Ψ(A)〉 with a
given reference MPS |Ψ(Ã)〉. Typically, the latter has a larger bond dimension and the following
algorithm is a variational method for truncating an MPS, which is one of the primitive tasks
in any MPS toolbox (remember Sec. 2.2 for a non-variational method for truncating a uniform
MPS).

The optimization algorithm can be written down as

max
A

|〈Ψ(Ā)|Ψ(Ã)〉|2

〈Ψ(Ā)|Ψ(A)〉
. (92)

Because of the orthogonality catastrophe, this objective function might seem ill-defined in the
thermodynamic limit, as it evaluates to either zero or one. Nevertheless, the resulting extremal
condition (where |Ψ(A)〉 is assumed to be normalized)

〈∂iΨ(Ā)|
(

1− |Ψ(Ā)〉 〈Ψ(A)|)
)
|Ψ(Ã)〉 = 0 (93)

is valid and meaningful in the thermodynamic limit, and states that |Ψ(Ã)〉, after subtracting the
contribution parallel to |Ψ(A)〉, should be orthogonal to the tangent space of the MPS manifold
at the point |Ψ(A)〉. This condition serves as a variational optimality condition, in the sense
that there are no infinitesimal directions on the manifold that improve the overlap in first order.
Geometrically, we can write this condition as PA |Ψ(Ã)〉 = 0, with PA the projector onto the
tangent space (or at least that part of tangent space which is itself orthogonal to |Ψ(A)〉).

Using the above derivation of the tangent-space projector, we can work out this expression as

|Φ(G;AL, AR)〉 = P{AL,AR} |Ψ(Ã)〉 (94)

with G = A′C −ALC ′,

A′C = . . .

ÃL ÃL ÃC ÃR ÃR

ĀL ĀL ĀR ĀR

. . . (95)

and

C ′ = . . .

ÃL ÃL C̃ ÃR ÃR

ĀL ĀL ĀR ĀR

. . . . (96)

Together with the consistency equations for the mixed gauge, an optimal MPS is therefore
characterized by the equations

ALC = CAR = AC , (97)

A′C = ALC
′. (98)
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It is clear that these equations are satisfied if an MPS is found in the mixed gauge {AL, AR, C,AC}
such that A′C = AC and C ′ = C. A straightforward algorithm for finding this fixed-point solution
is a simple power method: start from a random MPS {A0

L, A
0
R, C

0, A0
C}, in every iteration (i)

compute a new A′C and C ′ from the above equations, (ii) distract a new AiL and AiR, and repeat
until convergence. Each iteration requires that we can represent the infinite strips in Eqs. (95)
and (96) or that we find the fixed points of the maps

X → X

ÃL

ĀL

(99)

and

X →

ÃR

ĀR

X . (100)

Indeed, this allows us to rewrite the above equations for A′C and C ′ as

A′C = L

ÃC

R (101)

and

C ′ = L

C̃

R . (102)

A more involved step requires us to extract a new AiL and AiR from a A′C and C ′. In Sec. 4.4 we
show how to efficiently do this. These steps are summarized in Algorithm 3.

4 Finding ground states

Now that we have introduced the manifold of matrix product states and the concept of the
tangent space, we should explain how to find the point in the manifold that provides the best
approximation for the ground state of a given hamiltonian H. In these notes, we only consider
nearest-neighbour interactions so that the hamiltonian is of the form

H =
∑
n

hn,n+1, (103)

where hn,n+1 is a hermitian operator acting non-trivially on the sites n and n+ 1. We refer the
reader to Ref. [16] for the generalization to arbitrary long-range hamiltonians.
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Algorithm 3 Variational algorithm for maximizing overlap with MPS |Ψ(Ã)〉

1: procedure MaximizeOverlap({Ã, η) . tolerance η
2: {ÃL, ÃR, C̃, ÃC} ← MixedCanonical(Ã,η) . Algorithm 2
3: repeat
4: (λ, L)← Arnoldi(X → map(X, ÃL, ĀL),L0,δ/10) . map in Eq. (99)
5: (∼, R)← Arnoldi(X → map(X, ÃR, ĀR),R0,δ/10) . map in Eq. (100)
6: AC ← ComputeAc(L,R,ÃC) . Eq. (101)
7: C ← ComputeC(L,R,C̃) . Eq. (102)
8: (AL, AR)← MinAcC(AC , C) . see Algorithm 5
9: δ ← ‖ALC −AC/λ‖ . error function

10: until δ < η
11: return AL, AR, C, λ
12: end procedure

As in any variational approach, the variational principle serves as a guide for finding ground-
state approximations, viz. we want to minimize the expectation value of the energy,

min
A

〈Ψ(Ā)|H |Ψ(A)〉
〈Ψ(Ā)|Ψ(A)〉

. (104)

In the thermodynamic limit the energy diverges with system size, but, since we are working with
translation-invariant states only, we should rather minimize the energy density. Also, we will
restrict to properly normalized states. Diagrammatically, the minimization problem is recast as

min
A

l h

A A

Ā Ā

r . (105)

Traditionally, this minimization problem is not treated directly, but recourse is taken to
imaginary-time evolution using the time-evolving block decimation algorithm [6, 17], or to infinite
DMRG methods [18]. In this section, we will rather treat this problem in a more straightforward
way, in the sense that we will use numerical optimization strategies for minimizing the energy
density directly. This approach has the advantage that it is, by construction, optimal in a global
way, because we never take recourse to local updates of the tensors – we always use routines that
are optimal for the MPS wavefunction directly in the thermodynamic limit. As a result, we have
a convergence criterion on the energy density for the infinite system.

4.1 The gradient

Any optimization problem relies on an efficient evaluation of the gradient, so let us first compute
this quantity. The objective function f that we want to minimize is a real function of the
complex-valued A, or, equivalently, the independent variables A and Ā. The gradient g is then
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obtained by differentiating f(Ā, A) with respect to Ā,9

g = 2× ∂f(Ā, A)

∂Ā
(106)

= 2× ∂Ā 〈Ψ(Ā)|h |Ψ(A)〉
〈Ψ(Ā)|Ψ(A)〉

− 2× 〈Ψ(Ā)|h |Ψ(A)〉
〈Ψ(Ā)|Ψ(A)〉2

∂Ā 〈Ψ(Ā)|Ψ(A)〉 , (107)

= 2× ∂Ā 〈Ψ(Ā)|h |Ψ(A)〉 − e∂Ā 〈Ψ(Ā)|Ψ(A)〉
〈Ψ(Ā)|Ψ(A)〉

, (108)

(109)

where we have clearly indicated A and Ā as independent variables and e is the current energy
density given by

e =
〈Ψ(Ā)|h |Ψ(A)〉
〈Ψ(Ā)|Ψ(A)〉

. (110)

In the implementation we will always make sure the MPS is properly normalized, such that the
numerators drop out. Furthermore, we subtract from every term in the hamiltonian its current
expectation value

h→ h− 〈Ψ(Ā)|h |Ψ(A)〉 , (111)

so that the gradient takes on the simple form

g = 2× ∂Ā 〈Ψ(Ā)|h |Ψ(A)〉 . (112)

The gradient is obtained by differentating the expression

. . .

A A A A A A

Ā Ā Ā Ā Ā Ā

h . . . (113)

with respect to Ā. It is given by a sum over all sites, where in every term we differentiate with
one tensor Ā in the bra layer. Differentiating with respect to one Ā tensor amounts to leaving
out that tensor, and interpreting the open legs as outgoing ones, i.e. each term looks like

. . .

A A A A A A

Ā Ā Ā Ā Ā

h . . . . (114)

For summing the infinite number of terms, we will use the same techniques as we did for evaluating
the structure factor [Sec. 2.5]. Instead of varying the open spot in the diagram, we will vary the
location of the hamiltonian operator h. Then, we first treat all terms where h is either completely
to the left or to the right of the open spot, by defining the partial contractions

Lh = l h

A A

Ā Ā

(1− E)P , Rh = (1− E)P

A A

Ā Ā

h r . (115)

9Numerical optimization schemes are typically developed for functions over real parameters. In order to translate
these algorithms to complex parameters, we take x = xr + ixi, and take the gradient g = gr + igi with gr = ∂xrf
and gi = ∂xif , which is equal to g = 2∂x̄f(x, x̄).
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As we have seen, taking these pseudo-inverses is equivalent to summing the infinite number of
terms. Note that, because the expectation value of h is by definition subtracted in the gradient
of the normalized energy expectation value, we indeed only need to take the connected part into
account and no diverging δ-contribution is present. The partial contractions above are combined
with the two contributions where h acts on the open spot, so that we have the final expression
for the gradient

g = l r

A A

Ā

h + l r

A A

Ā

h + l

A

Rh + Lh

A

r . (116)

As such, the gradient is an object that lives in the space of MPS tensors. However, we can
further exploit the manifold structure of MPS by interpreting the gradient as a tangent vector
– the gradient is, indeed, supposed to indicate a direction on the manifold along which we can
lower the energy. In order to consistently interpret the gradient as a tangent vector, we need
some additional steps. First, let us note the meaning of the gradient as defined above in terms of
the first-order approximation of a change in the tensor A+ εB

〈Ψ(Ā)|h |Ψ(A)〉 → 〈Ψ(Ā)|h |Ψ(A)〉+ εg†B +O(ε2), (117)

where vectorized versions of tensors are denoted in bold.
Now we realize that g is a vector in the space of tensors, not a state in the full Hilbert space.

So how do we lift the notion of the gradient to the level of a state? Note that an infinitesimal
change in the tensor A+ εB corresponds to a tangent vector

|Ψ(A+ εB)〉 → |Ψ(A)〉+ ε |Φ(B;A)〉+O(ε2), (118)

so that we would like to write the first-order change in the energy through an overlap between
this tangent vector and a ‘gradient vector’ |Φ(G;A)〉

〈Ψ(Ā)|h |Ψ(A)〉 → 〈Ψ(Ā)|h |Ψ(A)〉+ ε 〈Φ(Ḡ; Ā)|Φ(B;A)〉+O(ε2). (119)

We know, however, that building |Φ(G;A)〉 using the tensor g is not correct, because the overlap
〈Φ(G;A)|Φ(B;A)〉 6= G†B. Instead, we will have to determine the tangent-space gradient by its
reduced parametrization, where, as usual

XG = l−
1
2

g

V̄L

r−
1
2

, (120)

so that the tangent-space gradient is given by the usual expression for a tangent vector,

|Φ(G;A)〉 =
∑
n

. . . A A G A A

. . . sn−1 sn sn+1 . . .

. . . , (121)

with the tensor G given by

G = l−
1
2 VL XG r−

1
2 . (122)
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The difference between these two notions of a gradient can be elucidated by looking at the
variational manifold from the perspective of differential geometry. Whereas the gradient is a
covariant vector living in the cotangent bundle, we can use the (non-trivial) metric of the MPS
manifold to define a corresponding (contravariant) vector living in the tangent bundle [11, 15].
The latter is what we have defined as the tangent-space gradient.

Note that we can also derive the expression for the tangent-space gradient from the tangent-
space projector in Eq. (81). Indeed, we can readily check that

|Ψ(G;A)〉 = PA
(
H − 〈Ψ(Ā)|H |Ψ(A)〉

)
|Ψ(A)〉 . (123)

This expression for the gradient will be the starting point for the vumps algorithm in Sec. 4.4.

4.2 Optimizing the tensors

Using these expressions for the different types of gradient, we can easily implement a gradient-
search method for minimizing the energy expectation value.

The first obvious option is a steepest-descent method, where in every iteration the tensor A is
updated in the direction of the parameter-space gradient:

Ai+1 = Ai − αg. (124)

The size of α is determined by doing a line search: we find a value for which the energy density
has decreased. In principle, we could try to find the optimal value of α, for which we can no longer
decrease the energy by taking the direction −g in parameter space. In practice, we will be satisfied
with an approximate value of α, for which certain conditions [19] are fulfilled. Other optimization
schemes based on an evaluation of the gradient, such as conjugate-gradient or quasi-Newton
methods, are more efficient. Even more efficient would be an algorithm that requires an evaluation
of the Hessian, which in principle we can also do with the techniques above.

As another road to more efficient optimization schemes we could take the tangent-space
gradient a bit more seriously. A first option amounts to computing the tangent-space gradient,
and then update the A tensor by simply adding them in parameter space, i.e. do a line search of
the form

Ai+1 = Ai − αG. (125)

This scheme can, again, be improved by implementing conjugate-gradient or quasi-Newton
optimization methods. It is expected that the use of the tangent-space gradient yields a more
efficient energy optimization, because it takes the structure of the manifold (embedded in Hilbert
space) into account. Taking a step further in this approach, instead of just adding G in parameter
space, we would like to do a line search along geodetic paths through the manifold, which would
involve integrating the geodesic equation. It remains an open question, however, whether this
could lead to more efficient optimization schemes.

Crucially, this way of variationally optimizing an MPS has a clear convergence criterion: we
say that we have reached a – possibly local – optimum if the norm of the gradient is sufficiently
small.

4.3 The energy variance

In any variational approach, finding an optimal set of parameters does not guarantee that the
state provides a good approximation to the true ground state of the hamiltonian. We do have
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access, however, to an unbiased measure of how well the MPS approximates any eigenstate of the
system, called the variance. It is defined by

v = 〈Ψ(Ā)|H2 |Ψ(A)〉 , (126)

where we have subtracted the ground-state energy density from the local nearest-neighbour term
in the hamiltonian, i.e. hn,n+1 → hn,n+1 − 〈Ψ(Ā)|hn,n+1 |Ψ(A)〉. This quantity can be readily
interpreted as a zero-momentum structure factor, so we can apply the formulas from Sec. 2.5.
The formulas are a bit more complicated, since we have a two-site operator. In the end, the
variance is given by

v = l

A A

Ā Ā

h

h

r + l r

A A A

Ā Ā Ā

h

h

+ l r

A A A

Ā Ā Ā

h

h

+ 2× Lh Rh . (127)

This quantity is supposed to be a small number obtained by a cancellation of large terms, and
therefore this expression can give rise to errors. In Ref. [20] a slightly different error was proposed
that avoids this numerical inaccuracy.

4.4 The vumps algorithm

We can now combine the notion of a tangent-space gradient with the use of the mixed gauge in
order to develop an efficient variational ground-state optimization algorithm known as vumps10

[16]. We have seen above that a variational optimum is characterized by the condition that the
gradient be zero. The error measure is therefore given by

ε =
(
〈Φ(Ḡ; ĀL; ĀR)|Φ(G;AL, AR)〉

)1/2
=
(
G†G

)1/2
. (128)

In the mixed canonical form this vector is given by using the tangent-space projector

|Φ(G;AL, AR)〉 = P{AL,AR}(H − E) |Ψ(AL, AR)〉 , (129)

yielding
G = A′C −ALC ′ or G = A′C − C ′AR (130)

10The name vumps is the acronym for variational uniform matrix product states.
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where A′C and C ′ are given by

A′C = . . .

AL AL AC AR AR

ĀL ĀL ĀR ĀR

H
. . .

=

AL AC

ĀL

h +

AC AR

ĀR

h + Lh

AC

+

AC

Rh , (131)

and

C ′ = . . .

AL AL C AR AR

ĀL ĀL ĀR ĀR

H

=

AL C AR

ĀL ĀR

h + Lh

C

+

C

Rh , (132)

with

Lh = h

AL AL

ĀL ĀL

(1− ELL)P , Rh = (1− ERR)P

AR AR

ĀR ĀR

h . (133)

These equations define effective hamiltonians HAC (·) and HC(·) such that

A′C = HAC (AC) (134)

C ′ = HC (C) . (135)

Since the gradient should be zero in the variational optimum, we can characterize this point
as A′C = ALC

′ = C ′AR. In turn this implies that in the optimum the MPS should obey the
following set of equations

HAC (AC) ∝ AC (136)

HC (C) ∝ C (137)

AC = ALC = CAR. (138)

The vumps algorithm consists now of an iterative method for finding an {AL, AR, AC , C} that
satisfies these equations simultaneously. In every step of the algorithm we first solve the two
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eigenvalue equations, yielding two new tensors ÃC and C̃. An obvious choice for the global
updates now seems to be given by ÃL = ÃC C̃

−1 and ÃR = C̃−1ÃC , but then we face additional
problems. Away from the converged solution, the resulting ÃL and ÃR will in general not be
isometric. Furthermore, we would like to avoid taking (possibly ill-conditioned) inverses of C̃
altogether, as this ruins the advantage of working with the center site. As an alternative strategy,
we determine global updates ÃL and ÃR as the left and right isometric tensors that minimize

εL = min‖ÃC − ÃLC̃‖2 (139)

εR = min‖ÃC − C̃ÃR‖2. (140)

In exact arithmetic, the solution of these minimization problems is known, namely ÃL will be
the isometry in the polar decomposition of ÃCC̃

†. Computing the singular-value decompositions
yields

ÃCC̃
† = UlΣlV

†
l → ÃL = UlV

†
l (141)

C̃†ÃC = UrΣrV
†
r → ÃR = UrV

†
r . (142)

Notice that close to (or at) an exact solution AsC = AsLC = CAsR, the singular values contained
in Σl/r are the square of the singular values of C, and might well fall below machine precision.
Consequently, in finite precision arithmetic, corresponding singular vectors will not be accurately
computed. An alternative that has proven to be robust and still close to optimal is given by
directly using the following left and right polar decompositions

ÃC = U lACP
l
AC
, C̃ = U lCP

l
C , (143)

ÃrC = P rACU
r
AC
, C̃ = P rCU

r
C , (144)

to obtain

ÃL = U lAC (U lC)†, ÃR = (U rC)†U rAC . (145)

This concludes one step of the iteration procedure, yielding a new set of tensors {ÃL, ÃR, ÃC , C̃}.
This process is repeated until the norm of the gradient ε is sufficiently small. Another error
measure is the value of either εL or εR, which can be proven to be proportional to ε close to
convergence.

5 The time-dependent variational principle

Although DMRG was originally developed for finding the ground state, and, possibly, the first
low-lying states of a given hamiltonian, the scope of DMRG simulations has since been extended
to dynamical properties as well. One of the many new applications has been the simulation of time
evolution, where the MPS formalism has been of crucial value for coming up with algorithms such
as the time-evolving block decimation [21–23]. In this section, we discuss another algorithm for
simulating time evolution in the thermodynamic limit, based on the time-dependent variational
principle (TDVP) [24–26]. This approach has the advantage of being variational – in a sense
that we will explain below – and, therefore, more controlled, and leading to a set of a symplectic
differential equations. The MPS version of the TDVP [7, 15, 27] has been applied to spin chains
[28], gauge theories [29, 30], and spin systems with long-range interactions [27, 31–34].

In these notes we are exclusively interested in the case where the initial state is a uniform
MPS and the time evolution is governed by a translation-invariant hamiltonian (global quench).
However, the framework can be extended to so-called local quenches as well.
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Algorithm 4 Vumps algorithm for nearest-neighbour hamiltonian h

1: procedure Vumps(h,A, η) . Initial guess A and a tolerance η
2: {AL, AR, C} ← MixedCanonical(A,η) . Algorithm 2
3: repeat
4: e← EvaluateEnergy(AL,AR,AC ,H)
5: h̃← h− e1 . subtract energy expectation value
6: Lh ← SumLeft(AL,h̃,δ/10) . Eq. (133)
7: Rh ← SumRight(AR,h̃,δ/10) . Eq. (133)
8: (∼, A′C)← Arnoldi(X → HAC (X),AC ,‘sr’,δ/10) . the map HAc in Eq. (131)
9: (∼, C ′)← Arnoldi(X → HC(X), C,‘sr’,δ/10) . the map HC in Eq. (132)

10: (AL, AR, C,AC)← MinAcC(A′C , C
′) . Algorithm 5

11: δ ← ‖HAC (AC)−ALHC(C)‖ . norm of the gradient [Eq. (130)]
12: until δ < η
13: return AL, AR, C, e
14: end procedure

Algorithm 5 Find {ÃL, ÃR} from a given ÃC and C̃

1: procedure MinAcC(A′C , C
′)

2: (U lAC , P
l
AC

)← PolarLeft(ÃC)

3: (U lC , P
l
C)← PolarLeft(C̃)

4: ÃL ← U lAC (U lC)†

5: (U rAC , P
r
AC

)← PolarRight(ÃC)

6: (U rC , P
r
C)← PolarRight(C̃)

7: Ãr ← (U rC)†U rAC
8: return ÃL, ÃR
9: end procedure

5.1 Time evolution on a manifold

The algorithm relies on the manifold interpretation of uniform matrix product states, and, in
particular, the concept of a tangent space. We start from the Schrödinger equation,

i
∂

∂t
|Ψ(A)〉 = H |Ψ(A)〉 , (146)

which dictates how a quantum state evolves in time. The problem with this equation is the
fact that, for a generic hamiltonian, an initial MPS |Ψ(A)〉 is immediately taken out of the
MPS manifold. Nonetheless, we would like to find a path inside the manifold |Ψ(A(t))〉, which
approximates the time evolution in an optimal way. The time-derivative of this time-evolved
MPS is a tangent vector,

i
∂

∂t
|Ψ(A(t))〉 = |Φ(Ȧ;A)〉 , (147)

but, again, the right-hand side is not. Indeed, the vector H |Ψ(A(t))〉 points out of the manifold,
so that an exact integration of the Schrödinger equation is out of the question. Finding Ȧ for
which the corresponding tangent vector provides the best approximation to H |Ψ(A(t))〉 amounts
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Figure 2: The time-dependent variational principle.

to the minimization problem

Ȧ = arg min
B

∥∥H |Ψ(A)〉 − |Φ(B;A)〉
∥∥2

2
. (148)

Note that the solution of this minimization problem is equivalent to projecting the time evolution
orthogonally onto the tangent space,

i
∂

∂t
|Ψ(A(t))〉 = PA(t)H |Ψ(A(t))〉 . (149)

This projection transforms the linear Schrödinger equation into a highly non-linear differential
equation on a manifold, and is illustrated graphically in Fig. 2.

We can work out the formal properties of the TDVP in a bit more detail. The TDVP equation
can be rewritten as

i
∂

∂t
|Ψ(A)〉 =

(
∂Ai |Ψ(A)〉

)
(G−1)ij

(
∂Āi 〈Ψ(Ā)|

)
H |Ψ(A)〉 (150)

= ∂Ai |Ψ(A)〉 (G−1)ij∂Ājh(A, Ā), (151)

where we have defined
h(A, Ā) = 〈Ψ(Ā)|H |Ψ(A)〉 . (152)

If we note that
∂

∂t
|Ψ(A)〉 = ∂tAi∂Ai |Ψ(A)〉 (153)

we obtain the TDVP in the explicit form

i∂tAi = [G−1(A, Ā)]ij∂Ājh(A, Ā) (154)

where the non-linearity follows from the non-linear dependence of both h and G on A (and Ā).
For arbitrary functions f and g of A and Ā, we can now introduce a Poisson bracket (henceforth
suppressing the explicit A dependence) as

{f, g} = −(∂Aif)(G−1)ij(∂Ājg) + (∂Aig)(G−1)ij(∂Ājf), (155)
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which is clearly anti-symmetric and bilinear, and can be shown to obey the Jacobi conditions.
Here, f (and g) would typically represent expectation values f(A, Ā) = 〈Ψ(Ā)|F |Ψ(A)〉. It follows
that the equations of motion for such expectation values are given by

∂tf = (∂Aif)∂tAi + (∂Āif)∂tĀi

= i{f, h}. (156)

This equation, in the end, shows that the TDVP for the MPS manifold gives rise to an effective
classical hamiltonian system with corresponding Poisson bracket. These equations are, howewer,
highly non-linear because of the non-linearity of the tangent-space projector. Colloquially, we
can state that the TDVP approach maps the linear quantum dynamics in an exponentially large
Hilbert space to a set of non-linear semi-classical equations of motion for the expectation values,
in terms of a smaller number of effective degrees of freedom (the variational parameters).

This observation has important consequences with respect to conservation laws. Indeed, it is
trival to see that

∂th = i{h, h} = 0, (157)

so that the energy expectation value is exactly conserved under time evolution with the TDVP.
Also, other conserved quantities are exactly conserved, under the condition that they commute
with the tangent-space projector. Indeed, if we have that for the generator of the symmetry K
(i.e. [K,H] = 0) the condition

PAK |Ψ(A)〉 = K |Ψ(A)〉 (158)

is obeyed, one can show that
∂tk = i{h, k} = 0, (159)

with k = 〈Ψ(Ā)|K |Ψ(A)〉. For the MPS manifold, this is the case for all symmetries which act
as a tensor product of one-site gates, i.e. when the generator is a sum of one-site operators.

5.2 TDVP in the uniform gauge

Let us now work out the TDVP equation

|Φ(Ȧ;A(t))〉 = −iPA(t)H |Ψ(A(t))〉 . (160)

in the uniform gauge. In Sec. 3 we have written down the tangent-space projector in the uniform
gauge. Both the original Schrödinger equation and the TDVP evolution are norm preserving
(for real time evolution), but introduce a global phase proportional to the total energy, which is
divergent with the system size. By imposing that 〈Ψ(A)|Φ(B;A)〉 = 0, this phase is eliminated
and norm preservation is explicitly enforced (now even in the case of imaginary time evolution as
introduced below). By now, we know very well that an effective parametrization of the tangent
vector in terms of the matrix X can be introduced which automatically enforces orthogonality.

In order to implement this projector, we compute the matrix element 〈Φ(B;A)|H |Ψ(A)〉
for general B. Again, we have two infinite sums, but one is eliminated because of translation
invariance and gives rise to a 2πδ(0) factor. Then we need all terms where the hamiltonian term
acts fully to the left and to the right of the B tensor, but this can again be resummed efficiently
by introducing pseudo-inverses of the transfer matrix in the following partial contractions:

Lh = l h

A A

Ā Ā

(1− E)−1 (161)
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and

Rh = (1− E)−1

A A

Ā Ā

h r . (162)

In addition, we also have the terms where the hamiltonian operator acts directly on the site where
the B tensor is located. Putting all contributions together, we obtain

〈Φ(B;A)|H |Ψ(A)〉 = Lh

A

B̄

r + l r

A A

B̄ Ā

h

+ l r

A A

Ā B̄

h + l

A

B̄

Rh . (163)

The tangent-space projected time evolution is then obtained by taking the tensor F ,

F = Lh

A

r + l r

A A

Ā

h + l r

A A

Ā

h + l

A

Rh . (164)

and compute the time evolution of the MPS tensor according to the TDVP as

Ȧ(t) = l−
1
2

F

V̄L

VLl−
1
2 r−1

, (165)

This procedure for computing the time derivative of the MPS tensor A according to the TDVP is
summarized in Algorithm 6. The simplest option for integrating this differential equation for A(t)
consists of a simple Euler scheme, where A(t+ δt) = A(t) + δtȦ(t), but a numerical integrator
that does not destroy the symplectic properties of the TDVP equation is often preferred.

At this point, the attentive reader might already have noticed that these formulas are very
similar to the ones that we obtained for the gradient of the energy that appears in a ground-state
optimization algorithm – the tangent-space gradient is the same as the right hand side of the
TDVP equation up to an imaginary factor. The connection is laid bare by noting that another
road to a ground-state optimization algorithm is found by implementing an imaginary-time
evolution (t → −iτ) on a random starting point |Ψ(A0)〉, confined within the MPS manifold.
Indeed, in the full Hilbert space, imaginary time evolution results in a projection onto the ground
state in the infinite-time limit

lim
τ→∞

e−Hτ |Ψ〉∥∥e−Hτ |Ψ〉
∥∥ = |Ψ0〉 . (166)
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Algorithm 6 Compute Ȧ according to TDVP from a given A and h

1: procedure TDVP(A, h, η) . Tolerance η
2: Find l and r matrices
3: Lh ← SumLeft(A,l,h,η) . Eq. (161)
4: Rh ← SumRight(A,r,h,η) . Eq. (162)
5: F ← ComputeF(A,l,r,h,Lh,Rh) . Eq. (164)
6: VL ← NullSpace(A,l1/2) . Eq. (70)
7: Ȧ← TangentProjector(VL,l,r) . Eq. (165)
8: return Ȧ
9: end procedure

for almost any initial state |Ψ〉. When using the TDVP to restrict imaginary time evolution to
the manifold of MPS and integrating the resulting equations using a simple Euler scheme,

A(τ + dτ) = A(τ)− dτȦ(τ), (167)

we are effectively performing a steepest-descent optimization with the tangent-space gradient,
where in every iteration the line search is replaced by taking a fixed step size α = dτ .

5.3 TDVP in the mixed gauge

We can now use this tangent-space projector to write down the TDVP equation for an MPS in
the mixed canonical form. We have explained that the optimal way for implementing real-time
evolution within the MPS manifold is by projecting the exact time derivative onto the tangent
space at every point, i.e.

∂

∂t
|Ψ(AL, AC , AR)〉 = −iPAH |Ψ(AL, AC , AR)〉 . (168)

In the mixed canonical gauge, the tangent space projector decomposes into two different parts
corresponding to the two different types of terms in Eq. (91). For each of the terms individually,
the corresponding differential equation can be integrated straightforwardly. Let us take the first
part, for which we first define the partial contractions

Lh = h

AL AL

ĀL ĀL

(1− ELL)P and Rh = (1− ERR)P

AR AR

ĀR ĀR

h , (169)

which capture the contributions where the hamiltonian is completely to the left and to right of
the open spot in the projector. Again, we have used pseudo-inverses for resumming the infinite
number of terms. These are combined into

G1 =

AC AR

ĀR

h +

AL AC

ĀL

h +

AC

Rh + Lh

AC

, (170)
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such that

P 1
|Ψ(A)〉H |Ψ(AL, AC , AR)〉 =

∑
n

. . . AL AL G1 AR AR

. . . sn−1 sn sn+1 . . .

. (171)

In order to obtain the second part, we need to contract the above G1 tensor another time with
ĀL,

G2 =

G1

ĀL

, (172)

in order to arrive at

P 2
|Ψ(A)〉H |Ψ(AL, AC , AR)〉 =

∑
n

. . . AL AL AL AR ARG2

. . . sn−1 sn sn+1 . . .

. (173)

The two parts of the differential equation can be solved separately, but in different representations
of the MPS. Indeed, if we write the MPS in the mixed canonical form with center site, the first
equation is simply

ȦC = −iG1(AC), (174)

where G1(A) is interpreted as a linear operator working on AC according to Eq. (170); the solution
is simply AC(t) = e−iG1tAC(0). Alternatively, if the MPS is written in the mixed canonical form
without center site, the second equation is

Ċ = +iG2(C), (175)

where the sign difference in the right hand side comes from having a minus sign in the second part
of the tangent-space projector. Again, G2(A) is seen as a linear operator acting on C according to
Eqs. (170) and (172) with corresponding solution given by C(t) = e+iG2tC(0). These exponentials
can be evaluated efficiently by using Lanczos-based iterative methods.

Integrating the TDVP equations

The meaning of the TDVP equations is slightly different in this mixed canonical form, and a
correct interpretation starts from considering the case of a finite lattice. There the meaning is
clear: every site in the lattice has a different MPS tensor attached to it, and performing one time
step amounts to doing one sweep through the chain. For every step in the sweep at site n, we

• start from a mixed canonical form with center site tensor ÂC(n), all tensors ÃL(n − 2),
ÃL(n− 1), etc, have already been updated, while tensors AR(n+ 1) and AR(n+ 2), etc.,
are still waiting for their update,

• we update the center-site tensor as ÃC(n) = e−iG1(n)δtÂC(n),

• we do a QR decomposition, ÃC(n) = ÃL(n)C̃(n),

• we update the center matrix as Ĉ(n) = e+iG2(n)δtC̃(n)

• we absorb this center matrix into the tensor on the right to define a new center-site tensor
ÂC(n+ 1) = Ĉ(n)AR(n+ 1).
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The version for the infinite system can be derived by starting this procedure at an arbitrary site
n in the chain – say n→ −∞, so that we will never notice the effect of this abrupt operation in
the bulk of the system – and start applying exactly the same procedure until it converges. In
this context, convergence at site n would mean that the center-site that we obtain for the next
site, ÂC(n+ 1), would give us the same as the one we started from, ÂC(n) = ÂC(n+ 1). Our
real interest, however, goes out to the converged value of ÃL, because this allows us to obtain
ÃR, ÃC and C̃. Only after we have obtained convergence in this sense, we have concluded the
integration of one time step δt.

This procedure, where each time step requires solving a consistency relation, is very costly in
practice, and therefore we propose a simpler integration procedure. The idea is that consistency
of the above scheme requires that, after one iteration of the scheme, we find the same C matrix as
the one we started from. This allows to turns things around, where we assume that we retrieve the
same C matrix after an iteration of the above scheme, evolve it with the time-reversed operator
to find C̃ = e−iG2δtC. Then, we can find an updated ÃL and ÃR from ÃC and C̃. This scheme
for time evolving an MPS {AL, AR, AC , C} to {ÃL, ÃR, C̃, ÃC} after a time step δt then boils
down to

• time evolve the center-site tensor forward in time, ÃC = e−iG1δtAC

• time evolve the center matrix backward in time, C̃ = e−iG2δtC.

• find an updated ÃL and ÃR from ÃC and C̃.

The last step can be done using Algorithm 5.
Note that the imaginary-time version of this last scheme is very close to the vumps algorithm

[Sec. 4.4]. Indeed, if we implement the above scheme with imaginary-time steps where the
size of the step is taken to infinity, the evolution operators reduce to projectors on the leading
eigenvectors, and therefore we recover the eigenvalue equations that are used in vumps. It remains
a matter of further investigation to assess whether we could gain efficiency in ground-state
optimization by working with finite imaginary-time steps.

6 Elementary excitations

We have seen that working directly in the thermodynamic limit has a number of conceptual
and numerical advantages over finite-size algorithms, but the real power of the formalism is
shown when we want to describe elementary excitations. These show up in dynamical correlation
functions [see Sec. 6.4] that can be directly measured in e.g. neutron-scattering experiments.
Typically, these experiments allow to probe the spectrum within a certain momentum sector,
giving rise to excitation spectra that look like the one in Fig. 3. The isolated branches in such
a spectrum – these will correspond to δ peaks in the spectral functions, and are seen as very
strong resonances in experimental measurements – can be interpreted as quasiparticles, which
can be thought of as local perturbations on the ground state, in a plane-wave superposition
with well-defined momentum [35]. The rest of the low-energy spectrum can be reconstructed by
summing up the energies and momenta of the isolated quasiparticles – in the thermodynamic
limit these quasiparticles will never see each other, so these energies and momenta can be simply
superposed. This picture implies that all the low-energy properties should in the end be brought
back to the properties of these quasiparticles!

Crucially, this approach differs from standard approaches for describing quasiparticles in
interacting quantum systems. Indeed, typically a quasiparticle is thought of as being defined by
starting from a non-interacting limit, and acquires a finite lifetime as interactions are turned on
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Figure 3: A typical excitation spectrum of a gapped quantum spin chain. The isolated lines are elementary
quasiparticle branches, whereas the continuum consists of two-particle states.

– think of Fermi liquid theory as the best example of this perturbative approach. In contrast,
our approach will be variational, as we will approximate exact eigenstates with a variational
ansatz. This means that our quasiparticles have an infinite lifetime, and correspond to stationary
eigenstates of the fully interacting hamiltonian.

This quasiparticle approach is only guaranteed to be applicable to gapped systems, where
isolated excitation branches are expected to arise. Still, the approach continues to work for
critical systems as well, where it leads to excellent estimates for gapless dispersion relations. The
variational excited states that are obtained are no longer expected to the elementary excitations
in these critical systems – it is not even clear if these can be unambiguously defined for a generic
interacting (non-integrable) spin chain – but rather correspond to a superposition of many gapless
excitations around the Fermi point, leading to a particle with a localized nature in a momentum
superposition.

6.1 The quasiparticle ansatz

It is in fact very natural to construct quasiparticle excitations on top of an MPS ground state in
the thermodynamic limit. The variational ansatz that we will introduce is a generalization of the
single-mode approximation [36], which appeared earlier in the context of spin chains, and the
Feynman-Bijl ansatz [37], which was used to describe the spectrum of liquid helium or quantum
Hall systems [38]. In the context of MPS, a reduced version of the ansatz appeared earlier in
Refs. [39, 40], but it was explored in full generality in Refs. [15, 41]. In recent years, the ansatz has
been succesfully applied to spin chains [13, 42, 43], spin ladders [44], spin chains with long-range
interactions [45], field theories [46], and local gauge theories [29].

The quasiparticle ansatz is given by

|Φp(B)〉 =
∑
n

eipn
∑
{s}

v†L

∏
m<n

AsmL

Bsn

∏
m>n

AsmR

vR |{s}〉

=
∑
n

eipn . . . AL AL B AR AR

. . . sn−1 sn sn+1 . . .

, (176)

i.e. we change one A tensor of the ground state at site n and make a momentum superposition.
In this whole section we work with tangent vectors in the mixed gauge. The newly introduced
tensor B contains all the variational parameters of the ansatz, and perturbs the ground state
over a finite region around site n in every term of the superposition – it uses the correlations in
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the ground state, carried over the virtual degrees of freedom in the MPS to create a lump on the
background state. Clearly, these excitations have a well-defined momentum, and, as we will see,
a finite energy above the extensive energy (and thus, finite energy density) of the ground state.

Before we start optimizing the tensor B, we will investigate the variational space in a bit
more detail. First note that the excitation ansatz is, in fact, just a boosted version of a tangent
vector, so we will be able to apply all tricks and manipulations of the previous sections. For
example, the B tensor has gauge degrees of freedom: the state is invariant under an additive
gauge transformation of the form

B → B + Y AR − eip AL Y , (177)

with Y an arbitrary D ×D matrix. This gauge freedom can be easily checked by substituting
this form in the state (176), and observing that all terms cancel, leaving the state invariant.

The gauge degrees of freedom can be eliminated – they correspond to zero modes in the
variational subspace, which would make the variational optimization ill-conditioned – by imposing
a gauge fixing condition. Again, we can impose the left gauge-fixing condition11

B

ĀL

=

AL

B̄

= 0. (178)

We can reuse the method for parametrizing the B tensor such that it automatically obeys this
gauge condition:

B = VL X . (179)

As before, this fixing of the gauge freedom entails that the excitation is orthogonal to the ground
state, because

〈Ψ(A)|Φp(B)〉 = 2πδ(p)

B

Āc

= 0. (180)

This effective parametrization has reduced the number of variational parameters in the quasipar-
ticle ansatz to D2(d− 1). Moreover, the overlap between two excitations |Φp(B)〉 and |Φp′(B

′)〉 is
computed similarly as before: we have two infinite terms, but we can eliminate one sum because
of the translation invariance of the ground state. Now this will result in a 2πδ(p− p′) function,∑

n∈Z
ei(p−p

′)n = 2πδ(p− p′), (181)

so excitations at different momenta are always orthogonal. Again, the physical norm on the
excited states reduces to the Euclidean norm on the effective parameters,

〈Φp′(B(X ′))|Φp(B(X))〉 = 2πδ(p− p′)Tr
(

(X ′)†X
)
. (182)

This will prove to be a useful property for optimizing the variational parameters. The presence of
the δ indicates that these plane wave states cannot be normalized to one, as is well known from
single-particle quantum mechanics.

11Only for p = 0 is there no contribution from the component Y ∼ C, and does one need to additionally impose
orthogonality to the ground state in order to satisfy the D2 gauge fixing equations. For p 6= 0, orthogonality to the
ground state is immediate.
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6.2 Computing expectation values

Let us first write down the expressions for evaluating expectation values, or more generally, matrix
elements of the form ∑

i

〈Φp′(B
′)|Oi |Φp(B)〉 , (183)

where the ground-state expectation value has already been subtracted, i.e. 〈Ψ(A)|Oi |Ψ(A)〉 = 0.
This implies that we will look at expectation values of O relative to the ground state density. As
we will see, this will give rise to finite quantities in the thermodynamic limit.

First we notice that the above matrix element is, in fact, a triple infinite sum. Again, one
of the sums can be eliminated and yields the factor 2πδ(p− p′) that also appears in the norm
〈Φp′(B

′)|Φp(B)〉, so that henceforth we are only interested in all different relative positions of the
operator O, the B tensor in the ket layer, and the B′ tensor in the bra layer. Let us first define
two partial contractions, corresponding to the orientations where O is to the left and to the right
of both B and B′,

LO = O

AL

ĀL

(1− ELL)P and RO = (1− ERR)P

AR

ĀR

O . (184)

Here, we can again use the pseudo-inverse becauseO was defined with zero ground state expectation
value, so that there is no diverging ‘disconnected’ contribution.

Similarly, we define the partial contractions where B travels to the outer left or right of the
chain12:

LB =

B

ĀL

(1− e−ipERL )P and RB = (1− e+ipELR)P

B

ĀR

. (185)

In these expressions, (1−e±ipE) (where E is ELR or ERL ) is not singular for p 6= 0 and (1−e±ipE)P

is not really a pseudo-inverse. It is still defined as subtracting the contribution in the subspace
corresponding to eigenvalue 1 of E. This arises because the geometric sum

∑∞
n=0 e

ipn is strictly
speaking not defined. Thanks to the gauge fixing condition, there is no contribution in this
subspace anyway, so that we could also have used the regular inverse. In the following, this should
always be kept in mind whenever a (. . . )P appears.

We use the above expressions to define all partial contractions where B and O are both either

12The first of these expressions is actually zero because of the gauge-fixing condition in Eq. (178). In the following
we will keep all terms in order to see the symmetry in the different terms, but in an implementation these are of
course not computed.
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to the left or to the right of B′,

L1 = O

B

ĀL

(1− e−ipERL )P + LO

B

ĀL

(1− e−ipERL )P

+ e−ip LB O

AR

ĀL

(1− e−ipERL )P (186)

and

R1 = (1− e+ipELR)P

B

ĀR

O + (1− e+ipELR)P

B

ĀR

RO

+ e+ip
(1− e+ipELR)P

AL

ĀR

O RB . (187)

The e±ip factors originate from the extra shift in the relative position of B in these terms.
The final expression is

〈Φp′(B
′)|O |Φp(B)〉 = 2πδ(p− p′) O

B

B̄′

+ LO

B

B̄′

+

B

B̄′

RO

+ e−ip L1

AR

B̄′

+ e−ip LB O

AR

B̄′

+ e−ip LB

AR

B̄′

RO

+ e+ip

AL

B̄′

R1 + e+ip
O

AL

B̄′

RB + e+ip
LO

AL

B̄′

RB

 . (188)

6.3 Solving the eigenvalue problem

At this point, we still need to find the algorithm for the variational optimization of the B tensor
in the excitation ansatz. We have seen that the effective parametrization in terms of an X matrix
(i) fixes all gauge degrees of freedom, (ii) removes all zero modes in the variational subspace,
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(iii) makes the computation of the norm of an excited state particularly easy, and (iv) makes
sure the excitation is orthogonal to the ground state, even at momentum zero. The variational
optimization boils down to minimizing the energy function,

min
X

〈Φp(X)|H |Φp(X)〉
〈Φp(X)|Φp(X)〉

, (189)

where we have made sure to shift the hamiltonian such that the ground state has energy density
zero. Because both numerator and denominator are quadratic functions of the variational
parameters X, this optimization problem reduces to solving the generalized eigenvalue problem

Heff(q)X = ωNeff(q)X, (190)

where the effective energy and normalization matrix are defined as

2πδ(p− p′)(X′)†Heff(q)X = 〈Φp′(X
′)|H |Φp(X)〉 (191)

2πδ(p− p′)(X′)†Neff(q)X = 〈Φp′(X
′)|Φp(X)〉 , (192)

and X is a vectorized version of the matrix X. Now since the overlap between two excited states
is of the simple Euclidean form, the effective normalization matrix reduces to the unit matrix,
and we are left with an ordinary eigenvalue problem.

Solving the eigenvalue problem requires us to find an expression of Heff, or, rather, the action
of Heff on a trial vector. Indeed, since we are typically only interested in finding its lowest
eigenvalues, we can plug the action of Heff (which is hermitian) into a Lanczos-based iterative
eigensolver. This has great implications on the computational complexity: The full computation
and diagonalization of the effective energy matrix would entail a computational complexity of
O(D6), while the action on an input vector Y can be done in O(D3) operations.

So we need the action of Heff on an arbitray vector Y . We first transform the matrix Y
to a tensor B in the usual way. Then we need all different contributions that pop up in a
matrix element of the form 〈Φp′(B

′)|H |Φp(B)〉, i.e. similarly to the expression (188), we need
all different orientations of the nearest-neighbour operator of the hamiltonian, the input B tensor
and an output. Because we are confronted with a two-site operator here, the expressions are a bit
more cumbersome. Let us again define the following partial contractions

Lh = h

AL AL

ĀL ĀL

(1− ELL)P and Rh = (1− ERR)P

AR AR

ĀR ĀR

h , (193)

and

LB =

B

ĀL

(1− e−ipERL )P and RB = (1− e+ipELR)P

B

ĀR

, (194)
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which we use for determining

L1 = Lh

B

ĀL

(1− e−ipERL )P + h

AL B

ĀL ĀL

(1− e−ipERL )P

+ e−ip h

B AR

ĀL ĀL

(1− e−ipERL )P + e−2ip
LB h

AR AR

ĀL ĀL

(1− e−ipERL )P , (195)

and

R1 = (1− e+ipELR)P

B

ĀR

Rh + (1− e+ipELR)P

B AR

ĀR ĀR

h

+ e+ip
(1− e+ipELR)P

AL B

ĀR ĀR

h + e+2ip
(1− e+ipELR)P

AL AL

ĀR ĀR

h RB . (196)

These partial contractions allow us now to implement the action of the effective energy matrix on
a given input vector B as

H̃eff(p)B(Y ) =

B AR

ĀR

h + e−ip

B ĀR

ĀL

h + e+ip

AL B

ĀR

h

+

AL B

ĀL

h +

B

Rh + Lh

B

+ e−ip L1

AR

+ e+ip

AL

R1 + e−ip LB

AR

Rh + e+ip
Lh

AL

RB

+ e−ip LB

AR AR

ĀR

h + e−2ip
LB

AR AR

ĀL

h
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Algorithm 7 Quasiparticle excitation ansatz for nearest-neighbour hamiltonian h

1: procedure Quasiparticle(h, p,A,N, η)
. Find N lowest-lying momentum-p quasiparticles on MPS |Ψ(A)〉 with tolerance η

2: {AL, AR, C} ← MixedCanonical(A,η) . Algorithm 2
3: e← EvaluateEnergy(AL,AR,AC ,h)
4: h← h− e1 . subtract energy expectation value
5: Lh ← SumLeft(AL,h̃,δ/10) . Eq. (193)
6: Rh ← SumRight(AR,h̃,δ/10) . Eq. (193)
7: (ω,X)← Arnoldi(X → Heff(p)X,‘sr’,N ,δ/10) . call the function EffectiveH below
8: return ω,X
9: end procedure

10: procedure EffectiveH(Y ,p,{AL, AR, C,AC},Lh,Rh)
11: B ← EffParamatrization(Y ,VL) . Eq. (179)
12: compute RB from Eq. (194)
13: compute L1 and R1 from Eqs. (186) and (187)
14: compute H̃eff(p)B from Eq. (197)
15: Y ′ ← InvEffParamtrization(H̃eff(p)B,VL) . Eq. (198)
16: return Y ′

17: end procedure

+ e+ip
RB

AL AL

ĀL

h + e+2ip
RB

AL AL

ĀR

h . (197)

In the last step, we need the action of Heff(p) (without the tilde), so we need to perform the last
contraction

Heff(p)X =

H̃eff(p)B

V̄L

. (198)

All contractions above have a computational complexity of O(D3).
By solving this eigenvalue equation for all momenta, we obtain direct access to the full

excitation spectrum of the system. Note that the eigenvalue equation has D2(d− 1) solutions,
but only the few lowest-lying ones have a physical meaning. Indeed, for a given value of the
momentum, one typically finds a limited number of excitations living on an isolated branch in
the spectrum, whereas all the other solutions fall within the continuous bands. It is not expected
that these states are approximated well with the quasiparticle ansatz. The accuracy of the
approximation can be assessed by computing the energy variance – just as we did with the ground
state in Sec. 4.3 – but, for an excitation this is an involved calculation [44].
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6.4 Dynamical correlations

As we have mentioned before, the excitation spectrum determines the dynamical correlation
functions or spectral functions. We will use the following definition of the spectral function:

Sαα(q, ω) =

∫ +∞

−∞
dt eiωt

∑
n∈Z

e−iqn 〈Ψ(A)|Oαn(t)Oα0 (0) |Ψ(A)〉 . (199)

where the time-evolved operator Oαn(t) = eiHtOαn(0)e−iHt is introduced. By projecting the time
evolution on all excited states of H, we obtain the following representation

Sαα(q, ω) =
∑
γ

∫ +∞

−∞
dt eiωte−i(Eγ−E0)t

∑
n∈Z

e−iqn 〈Ψ(A)|Oαn(0) |γ〉 〈γ|Oα0 (0) |Ψ(A)〉 , (200)

where γ labels all excited states of the system with excitation energies Eγ −E0. Let us now take
only the one-particle excitations into account (the excitations corresponding to isolated branches
in the excitation spectrum), for which we know that they can be described by the excitation
ansatz. For these states, which have a well-defined momentum, the sum is rewritten as∑

γ,1p

|γ〉 〈γ| =
∑
γ∈Γ1

∫
Rγ

dp

2π
|Φγ
p(B)〉 〈Φγ

p(B)| , (201)

where we have introduced Γ1 as the set of all isolated branches in the spectrum, Rγ as the
momentum region where every branch γ exists. Because of translation invariance, we have∑

n

e−iqn 〈Ψ(A)|Oαn(0) |Φγ
p(B)〉 = 2πδ(p− q) 〈Ψ(A)|Oα0 (0) |Φγ

p(B)〉 , (202)

so that we obtain for the one-particle part of the spectral function

Sαα1p (q, ω) =
∑

γ∈Γ1(q)

2πδ
(
ω − ωγ(q)

) ∣∣∣〈Ψ(A)|Oα0 (0) |Φγ
p(B)〉

∣∣∣2 , (203)

where Γ1(q) denotes the set of one-particle states in the momentum sector q and ωγ(·) is the
excitation energy of that mode.

The spectral weights are easily computed. First, we again define the following partial
contractions

LB =

B

ĀC

(1− e−ipERR)P and RB = (1− e+ipELL)P

B

ĀC

, (204)

so that we have the following contractions

〈Ψ(A)|Oα0 (0) |Φp(B)〉 = Oα

B

ĀC

+ e+ip
Oα

AL

ĀL

RB + e−ip LB Oα

AR

ĀR

. (205)
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6.5 Topological excitations

The elementary excitations in one-dimensional spin systems are not always of the simple form
that we have introduced earlier. In the case of symmetry breaking, where the ground state is
degenerate, the elementary excitations are typically kinks or domain walls, i.e. particles that
interpolate between the different ground states. These excitations are called topological, as they
cannot be created by a local operator acting on one of the ground states. It is not clear that they
are local (i.e. that the interpolation between the two ground states is happening over a small
region), and, in fact, this is not at all obvious from other approaches such as the Bethe ansatz
[47]. One expects, however, that the proof for excitations in the trivial sector in Ref. [35] can be
extended to topological excitations, and we can apply the quasiparticle ansatz here as well.

Because it is formulated in the thermodynamic limit directly, our framework can be easily
extended to target these topological sectors.13 Suppose we have a twofold-degenerate ground
state, approximated by two uMPS |Ψ(A)〉 and |Ψ(Ã)〉. The obvious ansatz for a domain wall
excitation is14

|Φp(B)〉 =
∑
n

eipn
∑
{s}

v†L

∏
m<n

AsmL

Bsn

∏
m>n

ÃsmR

vR |{s}〉

=
∑
n

eipn . . . AL AL B ÃR ÃR

. . . sn−1 sn sn+1 . . .

, (206)

i.e. the domain wall interpolates between the two ground states [41]. All the calculations of
the previous sections can be repeated in order to determine gauge-fixing conditions, compute
expectation values and solve the eigenvalue problem. The only difference concerns the appearance
of mixed transfer matrices such as

Ẽ =

ÃR

ĀL

, (207)

which determines the correlation functions corresponding to string-like operators that interpolate
between the two ground states. This matrix has spectral radius smaller than one – otherwise
the two ground states would not be orthogonal – such that the geometric sums involving these
transfer matrices should be computed with the full inverse.

Yet there is one problem with considering topological excitations. Strictly speaking the
momentum of the ansatz [Eq. (206)] is not well defined: multiplying the tensor ÃR with an
arbitrary phase factor ÃR ← ÃReiφ shifts the momentum with p ← p + φ. The origin of this
ambiguity is the fact that one domain wall cannot be properly defined when using periodic
boundary conditions. Physically, however, domain walls should come in pairs. For these states the
total momentum is well defined, although the individual momenta can be arbitrarily transferred
between the two domain walls. A heuristic way to fix the kink momentum unambiguously is
related to the above mixed transfer matrix; it can be imposed that its spectrum be symmetric
with respect to the real axis. This will give rise to a kink spectrum that is symmetric in the
momentum. This problem disappears, as we will see, when considering excitations with two
topological particles.

13In finite systems with periodic boundary conditions, topological excitations always have to be described in
pairs. In order to capture them in finite systems, non-trivial boundary conditions have to be applied.

14In quantum field theory, this ansatz has been proposed earlier [48] to study the kink excitations in the
sine-Gordon model.
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6.6 Larger blocks

There is no guarantee that the variational energies converge to the exact excitation energy of the
full hamiltonian, even for a clearly isolated excitation branch. The reason is that the effect of
physical operators of growing size cannot always be reproduced by the excitation ansatz, even by
growing the bond dimension. This can pose a problem for one-particle excitations that are very
wide, because e.g. they are very close to a scattering continuum in the spectrum.

The excitation ansatz can be systematically extended, however, in order to capture larger and
larger regions. Instead of inserting a one-site tensor, one can introduce larger blocks, which leads
to the ansatz [15, 35]

|Φp(B)〉 =
∑
n

eipn . . . AL AL B ÃR ÃR

. . . sn−1 sn . . . sn+M−1 sn+M . . .

. (208)

In principle this approach is guaranteed to converge to the exact excitation energy – assuming
the ground state energy is converged – but the number of the variational parameters in the big B
tensor grows exponentially in the number of sites, so that, practically, this becomes infeasible
quickly.

The same gauge freedom is present for these larger blocks, and the same gauge conditions can
be imposed. The left gauge condition reads

B

ĀL

= 0, (209)

and can be enforced by going to the effective parametrization of the B tensor

B = VL X , (210)

where Xs2,...,sM is a (D(d − 1) × d × · · · × d ×D) tensor containing all variational parameters.
With this effective parametrization, the overlap of states again reduces to the Euclidean norm on
the tensor X, and the variational optimization reduces to an eigenvalue problem. For further
details of this implementation we refer to Ref. [49].

6.7 Two-particle states

The excitations that were introduced in the previous section can be naturally interpreted as
particles living on a strongly-correlated background state, and we can ask the question as to
how to describe the interactions between these effective particles [42, 44, 50]. As an answer to
that question, in this section we show how to construct two-particle states and how to compute
the two-particle S matrix. We will start from a one-particle spectrum consisting of a number of
different types of particles, labelled by α, with dispersion relations ∆α(p). In the thermodynamic
limit, constructing the two-particle spectrum is trivial: the momentum and energy are the sum
of the individual momenta and energies of the two particles. The two-particle wavefunction,
however, depends on the particle interactions. These depend on both the hamiltonian and the
ground state correlations, and are reflected in the wavefunction in two ways: (i) the asymptotic
wavefunction has different terms, with the S matrix elements as the relative coefficients, and (ii)
the local part of the wavefunction.

47



Variational ansatz

In order to capture both effects of the interactions on the wavefunction, we introduce the following
ansatz for describing states with two localized, particle-like excitations with total momentum P

|Υ(P )〉 =

+∞∑
n=0

Ln∑
j=1

cj(n) |χP,j(n)〉 (211)

where the basis states are

|χP,j(n = 0)〉 =
+∞∑

n1=−∞
eiPn1

d∑
{s}=1

v†L

 ∏
m<n1

Asm

Bsn1

(j)

 ∏
m>n1

Asm

vR |{s}〉 (212)

|χP,(j1,j2)(n > 0)〉 =
+∞∑

n1=−∞
eiPn1

d∑
{s}=1

v†L

 ∏
m<n1

Asm

Bsn1

(j1)

×

 ∏
n1<m<n1+n

Asm

Bsn1+n

(j2)

 ∏
m>n1+n

Asm

vR |{s}〉 . (213)

We collect the variational coefficients either in one half-infinite vector C with Cj,n = cj(n) or
using the finite vectors c(n) with entries {cj(n), j = 1, . . . , Ln} for every n = 0, 1, . . .. Here, we
have L0 = (d− 1)D2 and Ln>0 = [(d− 1)D2]2. Note that the sum in Eq. (211) only runs over
values n ≥ 0, because a sum over all integers would result in an overcomplete basis.

At this point, we will reduce the number of variational parameters to keep the problem
tractable. The terms with n = 0 (corresponding to the basis vectors in Eq. (212)) are designed
to capture the situation where the two particles are close together. No information on how
this part should look like is available a priori, so we keep all variational parameters cj(0),
j = 1, . . . , L0 = D2(d− 1). The terms with n > 0 corresponding to the basis vectors in Eq. (213)
represent the situation where the particles are separated. We know that, as n→∞, the particles
decouple and we should obtain a combination of one-particle solutions. With this in mind, we
restrict the range of j1 and j2 to the first ` basis tensors {B(i), i = 1, . . . , `}, which can be chosen
so as to capture the momentum dependent solutions of the one-particle problem. Consequently,
the number of basis states of Eq. (213) for n > 0 satisfies Ln = `2, which we will henceforth
denote as just L.

This might seem like a big approximation for small n: when the two particles approach, their
wavefunctions might begin to deform, so that the B tensors that were obtained as solutions for
the one-particle problem, no longer apply. Note, however, that the local (n = 0) and non-local
(n > 0) part are not orthogonal, so that the local part is able to correct for the part of the
non-local wavefunction where the one-particle description is no longer valid.

As the state (211) is again linear in its variational parameters C, optimizing the energy
amounts to solving a generalized eigenvalue problem

Heff,2p(P )C = ωNeff,2p(P )C (214)

with ω the total energy of the state and

(Heff,2p(P ))n′j′,nj = 〈χP,j′(n′)|H |χP,j(n)〉 (215)

(Neff,2p(P ))n′j′,nj = 〈χP,j′(n′)|χP,j(n)〉 (216)

two half-infinite matrices. They have a block matrix structure, where the submatrices are labelled
by (n′, n) and are of size Ln′ ×Ln. The computation of the matrix elements is quite involved and
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technical – each element contains three infinite sums with each term containing two B tensors in
both ket and bra layer – so we refer to Ref. [49] for the explicit formulas.

Since the eigenvalue problem is still infinite, it cannot be diagonalized directly. Since we
actually know the possible energies ω for a scattering state with total momentum P (it follows
from the one-particle energies), we can also interpret Eq. (214) as an overdetermined system of
linear equations for the coefficients Cj,n = cj(n). In the next two sections we will show how to
reduce this problem to a finite linear equation.

Asymptotic regime

First we solve the problem in the asymptotic regime, where the two particles are completely
decoupled. This regime corresponds to the limit n′, n → ∞, where the effective norm and
hamiltonian matrices, consisting of blocks of size L × L, take on a simple form. Indeed, if we
properly normalize the basis states, the asymptotic form of the effective norm matrix reduces to
the identity, while the effective hamiltonian matrix is a repeating row of block matrices centred
around the diagonal

(Heff,2p(P ))n′,n → An−n′ , n, n′ →∞. (217)

The blocks decrease exponentially as we go further from the diagonal, so we can, in order to
solve the problem, consider them to be zero if |n − n′| > M for a sufficiently large M . In this
approximation, the coefficients c(n) obey

M∑
m=−M

Amc(n+m) = ωc(n), n→∞. (218)

We can reformulate this as a recurrence relation for the c(n) vectors and therefore look for
elementary solutions of the form c(n) = µnv. For fixed ω, the solutions µ and v are now
determined by the polynomial eigenvalue equation

M∑
m=−M

Amµ
mv = ωv. (219)

From the special structure of the blocks Am [49] and their relation to the effective one-particle
hamiltonian Heff(p), we already know a number of solutions to Eq. (219). Indeed, if we can
find Γ combinations of two types of particles (α, β) with individual momenta (p1, p2) such that
P = p1 + p2 and ω = ∆α(p1) + ∆β(p2), then the polynomial eigenvalue problem will have 2Γ
solutions µ on the unit circle. These solutions take the form µ = eip2 and the corresponding
eigenvectors are given by

v = uα(p1)⊗ uβ(p2), (220)

where uα(p) is a vector corresponding to the one-particle solution of type α with momentum p
with respect to the reduced basis {B(i), i = 1, . . . , `} (in the case of degenerate eigenvalues we
can take linear combinations of these eigenvectors that no longer have this product structure).
Every combination is counted twice, because we can have particle with momentum p1 on the left
and momentum p2 on the right, and vice versa.

Moreover, since A†m = A−m, the number of eigenvalues within and outside the unit circle
should be equal. This allows for a classification of the eigenvalues µ as

|µi| < 1 for i = 1, . . . , LM − Γ (221)

|µi| = 1 for i = LM − Γ + 1, . . . , LM + Γ (222)

|µi| > 1 for i = LM + Γ + 1, . . . , 2LM. (223)
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The last eigenvalues with modulus bigger than one are not physical (because the corresponding
c(n) ∼ µni vi yiels a non-normalizable state) and should be discarded. The 2Γ eigenvalues
with modulus 1 are the oscillating modes discussed above; we will henceforth label them with
γ = 1, . . . , 2Γ such that µ = eipγ (pγ being the momentum of the particle of the right) and the
corresponding eigenvector is given by

vγ = uαγ (P − pγ)⊗ uβγ (pγ). (224)

Finally, the first eigenvalues are exponentially decreasing and represent corrections when the
excitations are close to each other. We henceforth denote them as e−λi with Re(λi) > 0 for
i = 1, . . . , LM − Γ and denote the corresponding eigenvectors as wi.

With these solutions, we can represent the general asymptotic solution as

c(n)→
LM−Γ∑
i=1

qie−λinwi +

2Γ∑
γ=1

rγeipγnvγ . (225)

Of course, we still have to determine the coefficients {qi, rγ} by solving the local problem.

Solving the full eigenvalue equation

Since the energy ω was fixed by the solution of the asymptotic problem, the generalized eigenvalue
equation is reduced to the linear equation

(Heff,2p − ωNeff,2p)C = 0. (226)

We know that in the asymptotic regime this equation is fulfilled if and only if c(n) is of the form
of Eq. (225). We will introduce the approximation that the elements for the effective hamiltonian
matrix [Eq. (215)] and norm matrix [Eq. (216)] have reached their asymptotic values when either
n > M + N or n′ > M + N , where N is a finite value and should be chosen sufficiently large.
This implies that we can safely insert the asymptotic form for n > N in the wavefunction, which
we can implement by rewriting the wavefunction as

C = Z · x, (227)

where

Z =

(
1local

{e−λinwi} {e−ipγnvγ}

)
.

The {e−λinwi} and {e−ipγnvγ} are the vectors corresponding to the damped, resp. oscillating
modes, while the identity matrix is inserted to leave open all parameters in c(n) for n ≤ N . The
number of parameters in x is reduced to the finite value of D2(d− 1) +NL+ LM + Γ.

Since the equation is automatically fulfilled after M + N rows, we can reduce Heff,2p and
Neff,2p to the first rows, so we end up with the following linear equation

[H − ωN ]red ·Z · x = 0, (228)

with

[H − ωN ]red =



0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

(Heff,2p − ωNeff,2p)ex AM 0 . . . 0
AM−1 AM . . . 0

...
...

. . .
...

A1 A2 . . . AM


. (229)
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This ‘effective scattering matrix’ consists of the first (M + N) × (M + N) blocks of the exact
effective hamiltonian and norm matrix and the A matrices of the asymptotic part [Eq. (217)]
to make sure that these matrices remain the truncated versions of a hermitian problem. This
matrix has D2(d− 1) + (N +M)L rows, which implies that the linear equation (228) has Γ exact
solutions, which is precisely the number of scattering states we expect to find. Every solution
consists of a local part (D2(d− 1) +NL elements), the LM − Γ coefficients q of the decaying
modes and the 2Γ coefficients r of the asymptotic modes.

S matrix and normalization

After having shown how to find the solutions of the scattering problem, we can now elaborate on
the structure of the asymptotic wavefunction and define the S matrix.

We start from Γ linearly independent scattering eigenstates |Υi(P, ω)〉 (i = 1, . . . ,Γ) at total
momentum P and energy ω with asymptotic coefficients ri(P, ω). The asymptotic form of these
eigenstates is thus a linear combination of all possible non-decaying solutions of the asymptotic
problem:

|Υi(P, ω)〉as =
2Γ∑
γ=1

rγi (P, ω)×
∑
n>N

∑
j

eipγnvjγ(pγ) |χj,P (n)〉 , (230)

where the coefficients are obtained from solving the local problem. The number of eigenstates
equals half the number of oscillating modes that appear in the linear combination. With every
oscillating mode γ we can associate a function ωγ(p) giving the energy of this mode as a function of
the momentum pγ of the second particle at a fixed total momentum P . If γ corresponds to the two-
particle mode with particles αγ and βγ , this function is given by ωγ(p) = ∆αγ (P−p)+∆βγ (p). The
derivative of this function, which will prove of crucial importance, is ω′γ(p) = ∆′βγ (p)−∆′αγ (P −p).
It can be interpreted as the difference in group velocity between the two particles, i.e. the relative
group velocity in the center of mass frame.

Much like the proof of conservation of particle current in one-particle quantum mechanics, it
can be shown [49] that, if (230) is to be the asymptotic form of an eigenstate, the coefficients
rγi (P, ω) should obey ∑

γ

∣∣rγi (P, ω)
∣∣2(dωγ

dp
(pγ)

)
= 0. (231)

This equation can indeed be read as a form of conservation of particle current, with ω′γ(pγ) playing
the role of the (relative) group velocity of the asymptotic mode γ. As any linear combination of
eigenstates with the same energy ω is again an eigenstate, this relation can be extended to∑

γ

rγj (P, ω)rγi (P, ω)

(
dωγ
dp

(pγ)

)
= 0. (232)

With this equation satisfied, we can define the two-particle S matrix S(P, ω). Firstly, the different
modes are classified according to the sign of the derivative: the incoming modes have dω

dp > 0 (two

particles moving towards each other), the outgoing modes have dω
dp < 0 (two particles moving

away from each other), so that we have∑
γ∈Γin

rγj (P, ω)rγi (P, ω)

∣∣∣∣dωγdp
(pγ)

∣∣∣∣ =
∑

γ∈Γout

rγj (P, ω)rγi (P, ω)

∣∣∣∣dωγdp
(pγ)

∣∣∣∣ . (233)

If we group the coefficients of all solutions in (square) matrices Rin(P, ω) and Rout(P, ω), so that
the i’th column is a vector with the coefficients rγi for the in- and outgoing modes of the i’th
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solution, we can rewrite this equation as

Rin(P, ω)†V 2
in(P, ω)Rin(P, ω) = Rout(P, ω)†V 2

out(P, ω)Rout(P, ω), (234)

with Vin,out(P, ω)ij = δij

∣∣∣dωγdp (pγ)
∣∣∣1/2 a diagonal matrix. As Rin(P, ω) and Rout(P, ω) should be

connected linearly, we can define a unitary matrix S(P, ω) as

Vout(P, ω)Rout(P, ω) = S(P, ω)Vin(P, ω)Rin(P, ω). (235)

This definition corresponds to the S matrix that is known in standard scattering theory. Note,
however, that S(P, ω) is only defined up to a set of phases. Indeed, since the vectors vγ [Eq. (224)]
can only be determined up to a phase, the coefficient matrices Rin and Rout are only defined up
to a diagonal matrix of phase factors. These arbitrary phase factors show up in the S matrix as
well. In the case of elastic scattering of two identical particles the phase can be fixed heuristically;
in the case where we have different outgoing channels only the square of the magnitude of the
S-matrix elements is physically well-defined.

This formalism allows to calculate the norm of the scattering states in an easy way. Indeed,
the general overlap between two scattering states is given by

〈Υi′(P
′, ω′)|Υi(P, ω)〉

= 2πδ(P − P ′)
(∑
γ,γ′

rγ
′

i′ (P
′, ω′)rγi (P, ω)v†γ′vγ

∑
n,n′>N

e
i(pγ−p′γ′ )n + finite

)
(236)

= 2πδ(P − P ′)
(∑
γ,γ′

rγ
′

i′ (P
′, ω′)rγi (P, ω)v†γ′vγπδ(pγ(ω)− p′γ′(ω′)) + finite

)
. (237)

The δ factor for the momenta pγ is obviously only satisfied if ω = ω′, so we can transform this to

a δ(ω − ω′). Moreover, if pγ(ω) = p′γ′(ω
′) for γ 6= γ′, then necessarily v†γ′vγ = 0, so we can reduce

the double sum in γ, γ′ to a single one. If we omit all finite parts, we have

〈Υi′(P
′, ω′)|Υi(P, ω)〉 = 2πδ(P − P ′)πδ(ω − ω′)

∑
γ

rγi′(P
′, ω′)rγi (P, ω)

∣∣∣∣dωγdp
(pγ)

∣∣∣∣ . (238)

With the Rin/out as defined above the overlap reduces to

〈Υi′(P
′, ω′)|Υi(P, ω)〉 = 2πδ(P − P ′)2πδ(ω − ω′)

[
Rin(P, ω)

]†
i′
V 2

in(P, ω)
[
Rin(P, ω)

]
i

(239)

= 2πδ(P − P ′)2πδ(ω − ω′)
[
Rout(P, ω)

]†
i′
V 2

out(P, ω)
[
Rout(P, ω)

]
i
. (240)

Two-particle contribution to spectral functions

Similar to the one-particle contributions to the spectral functions, we can now compute the
two-particle contribution as well. The projector on the two-particle subspace can be written as∫

dP

2π

∫
dω

2π

∑
γ∈Γ2(P,ω)

|Υγ(P, ω)〉 〈Υγ(P, ω)| (241)

where Γ2 is the set of all types of two-particle states at that momentum-energy. Here we have
orthonormalized the two-particle states as

〈Υγ′(P
′, ω′)|Υγ(P, ω)〉 = 4π2δ(P ′ − P )δ(ω′ − ω)δγγ′ . (242)
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The two-particle contribution to the spectral function is then given by

Sαα2p (q, ω) =
∑

γ∈Γ2(q,ω)

∣∣〈Ψ(Ā)|Oα0 (0) |Υγ(q, ω)〉
∣∣2 . (243)

As compared to the one-particle contribution, this function is continuous (no δ peaks) in the
momentum-energy region where two-particle states exist. The expressions for the spectral weights
can be found in Ref. [44].

Bound states

Above we have seen how the one-particle ansatz can be extended to larger blocks in order
to describe very broad excitations, a situation that arises when a bound state forms out of a
two-particle continuum. We could, however, study these bound states with the two-particle
ansatz as well. Specifically, the formation of a bound state out of a two-particle continuum should
correspond to a continuous deformation of a two-particle wavefunction into a very broad, yet
localized one-particle wavefunction. As the asymptotic part of the two-particle wavefunction is
supposed to vanish in this process, we expect a non-analyticity in the S matrix – in particular,
the scattering length diverges as the bound state forms [44].

In contrast to a scattering state the energy of a bound state is not known from the one-particle
dispersions, so that we will have to scan a certain energy range in search of bound state solutions –
of course, with the one-particle ansatz we can get a pretty good idea where to look. A bound state
corresponds to solutions for the eigenvalue equation with only decaying modes in the asymptotic
regime. In principle we should even be able to find bound-state solutions within a continuum of
scattering states (i.e. a stationary bound-state, not a resonance within the continuum) by the
presence of additional localized solutions for the scattering problem.

7 Transfer matrices and fixed points

Matrix product states have been used extensively as variational ansatz for ground states of local
hamiltonians, but in the last years it has been observed that they can also provide accurate
approximations for fixed points of transfer matrices. One-dimensional transfer matrices pop up
whenever we want to contract two-dimensional tensor networks, which occur naturally in the
context of two-dimensional classical many-body systems as representations of partition functions
and can represent ground states and real-time evolution of one-dimensional quantum systems, e.g.
for systems with local interactions in terms of Trotter-Suzuki decompositions. Additionally, they
occur in the context of projected entangled-pair states (PEPS), the two-dimensional version of
matrix product states. [51]

The contraction of a two-dimensional tensor network using MPS methods goes back to the
corner transfer matrix of Baxter [52, 53] and the work of Nishino and Okunishi on classical partition
functions in two dimensions [54, 55]. Ten years later these works led to contraction algorithms
based on the time-evolving block decimation [17] or the corner transfer matrix renormalization
group [56]. Complementary to these approaches, in this section we formulate tangent-space
methods for one-dimensional transfer matrices [57].

A one-dimensional transfer matrix in the form of matrix product operator (MPO) [12, 58] is
written as

T (O) =
∑
{i}{j}

(
. . . Oin−1,jn1Oin−1,jn1Oin−1,jn1 . . .

)
. . . |in−1〉 〈jn−1| ⊗ |in〉 〈jn| ⊗ |in+1〉 〈jn+1| . . . , (244)
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or represented diagrammatically as

T (O) = . . . O O O O O . . . . (245)

Whenever we contract an infinite two-dimensional tensor network, we want to find the fixed point
of this operator, i.e. we want to solve the fixed-point equation

T (O) |Ψ〉 ∝ |Ψ〉 . (246)

We now make the ansatz that the fixed point (leading eigenvector) of this operator is an MPS,
such that it obeys the eigenvalue equation

. . .

O O O O O

A A A A A

. . .

∝ . . . A A A A A . . . . (247)

Let us first try to find a way to properly define this eigenvalue equation. Suppose we have indeed
found an MPS representation |Ψ(A)〉 of the fixed point of T (O), then the eigenvalue is given by

Λ = 〈Ψ(A)|T |Ψ(A)〉 . (248)

In order to determine Λ, we bring |Ψ(A)〉 in the mixed canonical form, such that

Λ = . . . O O O O O

AL AL AC AR AR

ĀL ĀL ĀC ĀR ĀR

. . . (249)

Contracting this infinite network requires that we find FL and FR, the fixed points of the left and
right channel operators and TL and TR, which are represented diagrammatically as

FL O

AL

ĀL

= λL FL , O

AR

ĀR

FR = λR FR . (250)

The fixed points FL and FR are normalized such that

FL

C

C̄

FR = 1 (251)
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The eigenvalues λL and λR are necessarily the same value λ, so that Λ is given by

Λ = lim
N→∞

λN , (252)

where N is the diverging number of sites. From a physical point of view, it is the ‘free energy
density’ f = − 1

N log Λ = − log λ that is the most important quantity. In the case that we want
to normalize the MPO, such that the leading eigenvalue is equal to one (or f = 0), we can just
divide by λ: O → O/λ.

7.1 The vumps algorithm for MPOs

The next step towards an algorithm [57, 59] is stating an optimality condition for |Ψ(A)〉 such
that it can serve as an approximate eigenvector of T (O). Inspired by all the above tangent-space
algorithms, we will require that the projection of the residual onto the tangent space is zero:

|Φ(G;AL, AR)〉 = PA
(
T (O) |Ψ(A)〉 − Λ |Ψ(A)〉

)
= 0. (253)

In the mixed canonical form, the tangent-space projector consists of two parts, yielding

|Φ(G;AL, AR)〉 =
∑
n


. . .

O O O O O

AL AL AC AR AR

ĀL ĀL ĀR ĀR

AL AL AR AR

. . .



−


. . .

O O O O

AL AL C AR AR

ĀL ĀL ĀR ĀR

AL AL AR AR

. . .


, (254)

or using the left and right fixed points

|Φ(G;AL, AR)〉 ∝
∑
n

λ−1


. . .

FL O

AC

AL AL AR AR

FR

. . .
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−


. . .

FL

C

AL AL AR AR

FR

. . .


(255)

or in terms of the tensor G = OAC (AC)−ALOC(C) with the maps

OAC : X → FL FRO

X

× λ−1 , (256)

and

OC : X → FL FR

X

. (257)

Now the condition for having an optimal MPS representation is equivalent to having ‖G‖ = 0.
Together with the consistency conditions, a fixed point is thus characterized by the set of equations

OAC (AC) ∝ AC (258)

OC (C) ∝ C (259)

AC = ALC = CAR. (260)

In Sec. 4.4 we have seen how the vumps algorithm finds the fixed point iteratively. In every
iteration of the algorithm, we (i) start from a given MPS {AiL, AiR, AiC , Ci}, (ii) determine FL and
FR, (iii) solve the two eigenvalue equations obtaining A′C and C ′, and (iv) determine the Ai+1

L

and Ai+1
R that minimize ‖A′C −A

i+1
L C ′‖ and ‖A′C − C ′A

i+1
R ‖. The vumps algorithm for MPOs is

summarized in Alg. 8.

7.2 Excited states of an MPO

We can also apply the excitation ansatz to compute ‘excitations’ of a transfer matrix [51, 60, 61].
The algorithms for computing dispersion relations are quite similar to the case of hamiltonians,
which we have studied extensively. In a first step, we renormalize the MPO such that the
eigenvalue λ of the fixed point equation equals one. Then we use the excitation ansatz,

|Φp(B)〉 =
∑
n

eipn . . . AL AL B AR AR

. . . sn−1 sn sn+1 . . .

.
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Algorithm 8 Find the optimal MPS approximation for the fixed point of the MPO Ô(T )

1: procedure Vumps(O,A, η) . Initial guess A and a tolerance η
2: {AL, AR, C,AC} ← MixedCanonical(A,η) . Algorithm 2
3: repeat
4: λ, FL ← FixedPointLeft(AL,O,δ/10) . Eq. (250)
5: ∼, FR ← FixedPointRight(AR,O,δ/10) . Eq. (250)
6: FL ← FL/OverlapFixedPoints(FL,FR,C) . Eq. (251)
7: (∼, A′C)← Arnoldi(X → OAC (X),AC ,‘lm’,δ/10) . the map OAc in Eq. (256)
8: (∼, C ′)← Arnoldi(X → OC(X), C,‘lm’,δ/10) . the map OC in Eq. (257)
9: (AL, AR, C,AC)← MinAcC(A′C , C

′)
10: δ ← ‖OAC (AC)/−OC(C)‖
11: until δ < η
12: return λ,AR
13: end procedure

to find the subleading eigenvectors. Again, we take recourse to the effective parametrization

B = VL X , (261)

such that optimizing the variational parameters boils down to solving the eigenvalue equation,

Teff(p)X = ωX, (262)

with the effective transfer and normalization matrix defined as

2πδ(p− p′)(X′)†Teff(p)X = 〈Φp′(X
′)|T |Φp(X)〉 (263)

2πδ(p− p′)(X′)†Neff(p)X = 〈Φp′(X
′)|Φp(X)〉 . (264)

In order to solve this eigenvalue eqation iteratively, we need the action of Teff(p) on a general
input vector X. First we compute the tensor B(X), and define the partial contractions

LB = FL O

B

ĀL

(1− e−ipELL(O))P (265)

and

RB = (1− e+ipERR(O))P O

B

ĀR

FR , (266)
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where the channel operators are defined as

ELL(O) = O

AL

ĀL

, and ERR(O) = O

AR

ĀR

. (267)

Again – if everything is properly normalized – these operators have a leading eigenvalue equal
to one (with FL and FR as fixed points), so they should be regularized in order to define the
inverses at momentum p = 0. The action of T̃eff(p) on the tensor B is then given by

T̃eff(p)B = e−ip LB

AC

O FR + e+ip
FL

AC

O RB + FL

B

O FR . (268)

In the last step, we need the action of Teff(p) (without the tilde), so we need to perform the last
contraction

Teff(p)X =

T̃eff(p)B

V̄L

. (269)

Upon solving this eigenvalue equation for all momenta, we find the dispersion relation of the
transfer matrix. The largest eigenvalue defines the gap of the transfer matrix, and is related to
the correlation length of the two-dimensional tensor network [61]. The momentum at which this
gap is reached defines the pitch vector of the correlations, and possibly indicates incommensurate
correlations in the two-dimensional tensor network.

8 Continuous matrix product states

In this section we show that the tangent-space framework for uniform MPS can be extended to
the case of continuous field theories. For the sake of simplicitly, we explain this in detail for one-
component Bose gases, and we work out the explicit equations for the Lieb-Liniger hamiltonian.
This set-up can be easily extended – with a large notational overhead – to multi-component
gases, fermions [62] and hamiltonians with superconducting terms [63] and exponentially-decaying
interactions [64].

Continuous matrix product states were originally introduced [65] as the continuum limit of a
particular subset of MPS, chosen so as to obtain a limiting state with valid physical properties.
We approximate the one-dimensional continuum by a chain with lattice spacing a and send a→ 0.
For simplicity, we restrict to a system containing a single flavor of bosonic particles, i.e. spinless
bosons (we refer to e.g. [62] for the more general case). The local basis on each site n on the

chain consists of |0〉n (empty site) and |k〉n = 1√
k!

(b†n)k |0〉n (k ≥ 1 bosons). In order to obtain

a state with a finite density of particles in the continuum limit, the probability of detecting k
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particles on a site will have to scale as ak. This quickly leads to the following parameterization

A0 = 1 + aQ (270)

A1 =
√
aR (271)

where the states corresponding to k > 1 are for most purposes irrelevant; the corresponding MPS
matrices are completely determined in terms of A1, i.e. in terms of the matrix R. If we now take
the continuum limit a→ 0 and identify the bosonic creation operator on the site with a bosonic
field operator as ψ̂†(na) = b̂n/

√
a, we obtain (through a Taylor expansion of the path-ordered

exponential)

|Ψ(Q,R)〉 = v†LPexp

(∫ +∞

−∞
dx Q⊗ 1 +R⊗ ψ̂†(x)

)
vR |Ω〉 . (272)

An alternative approach to obtain cMPS as a continuous measurement process [66], whereby the
physical degrees of freedom correspond to the field that leak out of a zero-dimensional cavity, which
plays the role of the ancilla system and thus had D internal levels. This interpretation also has a
clear holographic interpretation, which provides on possible avenue towards higher-dimensional
generalizations.

8.1 Gauge transformations and canonical forms

Just like for MPS, we focus on the case of translation invariant cMPS in the thermodynamic
limit throughout these lecture notes, which are described by position-independent (i.e. uniform)
matrices Q and R. We start by computing the norm of a uniform cMPS, which is determined by
the transfer matrix

T = Q⊗ 1 + 1⊗ Q̄+R⊗ R̄. (273)

This expression is related to the MPS transfer matrix as

T = lim
a→0

E − 1
a

= lim
a→0

1

a
logE (274)

and the properties of T can be obtained from this correspondence. In the generic (injective case),
the eigenvalue λ1 with largest real part is non-degenerate and purely real; its corresponding left
and right eigenvector should correspond to positive definite matrices l and r. The norm of the
cMPS is given by

〈Ψ(Q̄, R̄)|Ψ(Q,R)〉 =
(
v†L ⊗ v̄†L

)
Pexp

(∫ +∞

−∞
dx T

)(
vR ⊗ v̄R

)
, (275)

which implies that, in order to have a properly normalized cMPS in the thermodynamic limit,
the unique eigenvalue λ1 of T with largest real part should be zero. If this is not the case, the
cMPS needs to be rescaled, which amounts to shifting Q with the identity as Q→ Q− λ1

2 1. The
corresponding left- and right eigenvectors then obey the equations

lQ+Q†l +R†lR = 0 (276)

Qr + rQ† +RrR† = 0, (277)

and all other eigenvalues of T now have a strictly negative real part. Under these conditions, the
(path-ordered) exponential of the transfer matrix15 reduces to a projector on the fixed points. If

15In the case of a uniform, i.e. constant, transfer matrix T , the path-ordering has no effect.
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we also make sure that the overlap of the boundary vectors v†L and vR with these fixed points are
unity, then the uniform cMPS is properly normalized 〈Ψ(Q̄, R̄)|Ψ(Q,R)〉 = 1.

The parametrization of the cMPS in terms of matrices Q and R is not unique, because gauge
transformations of the form

Q→ g−1Qg, R→ g−1Rg (278)

leave the cMPS invariant. This gauge freedom in Q and R can be used to find canonical forms.
Choosing g−1 = CL where l = CLC

†
L brings the cMPS matrices into left-canonical form, where

the new left fixed point is the unit matrix, i.e.

QL +Q†L +R†LRL = 0. (279)

Similarly, using g = CR where r = CRC
†
R we obtain the right-canonical form, where the right

fixed point is the identity matrix as expressed by

QR +Q†R +RRR
†
R = 0. (280)

Again, we can combine both canonical forms in order to arrive at a mixed canonical form, where
an extra matrix C is introduced linking the two

|Ψ(Q,R)〉 = v†LPexp

(∫ a

−∞
dx QL ⊗ 1 +RL ⊗ ψ̂†(x)

)

× CPexp

(∫ +∞

a
dx QR ⊗ 1+RR ⊗ ψ̂†(x)

)
vR |Ω〉 . (281)

By diagonalizing the matrix C = USV † we arrive at a Schmidt decomposition of the state

|Ψ(Q,R)〉 =

D∑
i=1

Si |Ψi
L(QL, RL)〉 ⊗ |Ψi

R(QR, RR)〉 (282)

where we have redefined

QL → U †QLU, RL → U †RLU (283)

QR → V †QRU, RR → U †RRU. (284)

The fidelity between two different normalized cMPS |Ψ(Q1, R1)〉 and |Ψ(Q2, R2)〉 is computed
similarly as before. Indeed, the overlap is given by

〈Ψ(Q̄2, R̄2)|Ψ(Q1, R1)〉 ∝ exp

(∫ +∞

−∞
dx T12

)
, (285)

with the mixed transfer matrix

T12 = Q1 ⊗ 1 + 1⊗ Q̄2 +R1 ⊗ R̄2. (286)

The fidelity is determined by the eigenvalue λ with largest real part of T12, which should have a
real part smaller than or equal to zero if both individual cMPS are properly normalized. The
total fidelity then corresponds to zero or one respectively, so that it makes more sense to define
Reλ itself as the logarithmic fidelity density, or to define

f = exp (Reλ) , (287)

such that the overlap on a segment of length l scales as f l.
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8.2 Evaluating expectation values

After having introduced the class of uniform cMPS, we show how to use them in actual calculations.
All expectation values involve field operators, so the first step consists of finding an expression
for the action of a field operator on a cMPS. All of the results below are obtained by using the
following identity for computing the commutator between a general operator and a path-ordered
exponential Û(a, b) = Pexp{

∫ b
a Â(x) dx}

[
Ô, Û(a, b)

]
=

∫ b

a
Û(a, x)[Ô, Â(x)]Û(x, b) dx. (288)

Applying this approach to the bosonic field operator Ô = ψ̂(x), and choosing Â(x) = Q⊗ 1 +
R⊗ ψ̂†(x), we obtain

ψ̂(x) |Ψ(Q,R)〉 = v†LÛ(−∞, x)RÛ(x,+∞)vR |Ω〉 . (289)

The expectation value of the field operator is, therefore, given by

〈Ψ(Q̄, R̄)| ψ̂(x) |Ψ(Q,R)〉 = (l|R⊗ 1|r) = Tr(Rrl) (290)

Similarly, we find for the expectation value of the density operator

〈Ψ(Q̄, R̄)| ψ̂†(x)ψ̂(x) |Ψ(Q,R)〉 = (l|R⊗ R̄|r) = Tr(RrR†l). (291)

Acting with a second field operator on the same location just brings down a second matrix R, so
that we obtain for a contact interaction

〈Ψ(Q̄, R̄)| ψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x) |Ψ(Q,R)〉 = (l|R2 ⊗ R̄2|r) = Tr(R2r(R2)†l). (292)

By acting with field operators at different locations, we can compute correlation functions. The
field-field correlation function is given by (we assume x < y)

〈Ψ(Q̄, R̄)| ψ̂†(y)ψ̂(x) |Ψ(Q,R)〉 = (l| (R⊗ 1) Pe
∫ y
x T (z)dz

(
1⊗ R̄

)
|r) (293)

= (l| (R⊗ 1) eT (y−x)
(
1⊗ R̄

)
|r) (294)

and the density-density correlation function

〈Ψ(Q̄, R̄)| ψ̂†(y)ψ̂(y)ψ̂†(x)ψ̂(x) |Ψ(Q,R)〉 = (l|
(
R⊗ R̄

)
eT (y−x)

(
R⊗ R̄

)
|r). (295)

These expressions clearly show that a cMPS necessarily exhibits exponential decay of correlations.
Indeed, if we split off the fixed-point projector from the transfer matrix (assuming a properly
normalized cMPS with λ1 = 0), we obtain

eTx = |r)(l|+
D2∑
i=2

eλix|λi)(λi|, (296)

so the second eigenvalue λ2 (sorted by largest real part) of the transfer matrix determines the
correlation length as ξ = −1/Re(λ2); the imaginary part of the subleading eigenvalues again
determine the oscillations in the correlation function [13].

Using ψ̂†(p) =
∫ +∞
−∞

dx√
2π
ψ̂†(x)eipx, we can compute the correlation function directly in mo-

mentum space,
〈Ψ(Q̄, R̄)|ψ̂†(p′)ψ̂(p)|Ψ(Q,R)〉 = δ(p− p′)n(p) (297)
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so that we obtain the momentum distribution function n(p) as

n(p) =

∫ +∞

−∞
dx eipx 〈Ψ(Q̄, R̄)| ψ̂(x)†ψ̂(0) |Ψ(Q,R)〉 . (298)

Using the above expression for the real-space correlation function, we obtain

n(p) =

∫ 0

−∞
dx(l|

(
1⊗ R̄

)
e(−T+ip)x (R⊗ 1) |r) +

∫ +∞

0
dx(l| (R⊗ 1) e(T+ip)x

(
1⊗ R̄

)
|r) (299)

In order to further work out this expression, we define a regularized transfer matrix by splitting
off the fixed point projector of the exponentiated transfer matrix (see Eq. (296)); this allows to
compute the integral ∫ ∞

0
dx e(T+ip)x =

(∫ ∞
0

dxeipx

)
|r)(l| −

(
T̃ + ip

)P
, (300)

with16

(T̃ + ip)P =
D2∑
i=2

(λi + ip)−1|λi)(λi|, (301)

and to compute the momentum distribution function

n(p) = 2πδ(p)(l|
(
1⊗ R̄

)
|r)(l| (R⊗ 1) |r)

+ (l|
(
1⊗ R̄

) (
−T̃ + ip

)P
(R⊗ 1) |r) + (l| (R⊗ 1)

(
−T̃ − ip

)P (
1⊗ R̄

)
|r). (302)

Here, the δ-function contribution signals long-range order, in particular, associated with the
condensation of the bosonic particles in the ground state.

More advanced expectation values involve derivatives of field operators. Therefore, we
differentiate the above expression for the action of ψ̂(x) on a cMPS [Eq. (289)] with respect to x,

dψ̂(x)

dx
|Ψ(Q,R)〉 =

d

dx
v†LÛ(−∞, x)RÛ(x,+∞)vR |Ω〉 . (303)

Using the equations

d

dx
Û(y, x) = +Û(y, x)(Q⊗ 1 +R⊗ ψ̂†(x)) (304)

d

dx
Û(x, y) = −(Q⊗ 1 +R⊗ ψ̂†(x))Û(x, y), (305)

we obtain

dψ̂(x)

dx
|Ψ(Q,R)〉 = v†LÛ(−∞, x)

(
(QR−RQ)⊗ 1

+ (R2 −R2)⊗ ψ̂†(x)
)
Û(x,+∞)vR |Ω〉 (306)

= v†LÛ(−∞, x) [Q,R] Û(x,+∞)vR |Ω〉 . (307)

16Computing the action of (T̃ ± ip)P on a vector (to the left or right) efficiently requires to use a iterative linear
solver. When ‘p=0‘, nothing needs to be done in principle to eliminate the contribution of the zero eigenvalue, as
any contribution that would be generated is immediately killed by acting with the operator upon constructing the
Krylov subspace. In the more general case, it is useful to explicitly project out any contribution in the subspace of
eigenvalue zero, using 1− |r)(l|.
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In this expression the cancellation of the term with a creation operator is automatically obeyed,
but this is not the case for cMPS with multiple species of bosons and/or fermions; in the more
general case, additional regularity conditions on the R matrices have to imposed in order to
obtain a finite kinetic energy (see Ref. [62]). The expectation value of a kinetic energy density
term is given by

〈Ψ(Q̄, R̄)| dψ̂
†(x)

dx

dψ̂(x)

dx
|Ψ(Q,R)〉 = (l| [Q,R]⊗

[
Q̄, R̄

]
|r). (308)

8.3 Tangent vectors

We introduce a tangent vector in the uniform gauge as

|Φ(V,W ;Q,R)〉 =

∫
dx
∑
α,β

(
Vα,β(x)

∂

∂Qα,β(x)
+Wα,β(x)

∂

∂Rα,β(x)

)
|Ψ(Q,R)〉

=

∫
dx v†LÛ(−∞, x)

(
V ⊗ 1 +W ⊗ ψ̂†(x)

)
Û(x,+∞)vR |Ω〉 ,

(309)

where we have again used the notation

Û(a, b) = Pexp

(∫ b

a
dx Q⊗ 1 +R⊗ ψ̂†(x)

)
. (310)

For finding a proper parametrization of the tangent space, we first compute the overlap between
two tangent vectors,

〈Φ(V̄ ′, W̄ ′)|Φ(V,W )〉

=

∫ +∞

−∞
dx

∫ +∞

x
dy (l|

(
V ⊗ 1 +W ⊗ R̄

)
e(y−x)T

(
1⊗ V̄ ′ +R⊗ W̄ ′

)
|r)

+

∫ +∞

−∞
dx

∫ x

−∞
dy (l|

(
1⊗ V̄ ′ +R⊗ W̄ ′

)
e(x−y)T

(
V ⊗ 1 +W ⊗ R̄

)
|r)

+

∫ +∞

−∞
dx (l|W ⊗ W̄ |r) (311)

This expression is further worked out using the above inversion of the transfer matrix.

〈Φ(V̄ ′, W̄ ′)|Φ(V,W )〉 = 2πδ(0)

[
(l|W ⊗ W̄ |r)

+ (l|
(
V ⊗ 1 +W ⊗ R̄

)
(−T̃ )−1

(
1⊗ V̄ ′ +R⊗ W̄

)
|r)

+ (l|
(
1⊗ V̄ ′ +R⊗ W̄

)
(−T̃ )−1

(
V ⊗ 1 +W ⊗ R̄

)
|r)

+ 2πδ(0)(l|
(
V ⊗ 1 +W ⊗ R̄

)
|r)(l|

(
1⊗ V̄ ′ +R⊗ W̄

)
|r)

]
. (312)

The diverging prefactor corresponds to the infinite system size and originates from the fact that
the tangent vectors represent momentum zero plane waves, that cannot be normalized to one.
The additional divergence in the square brackets can be traced back to the possible overlap with
the ground state, and vanishes if orthogonality to the ground state is enforced as

〈Ψ(Q̄, R̄)|Φ(V,W )〉 = 2πδ(0)(l|
(
V ⊗ 1 +W ⊗ R̄

)
|r) = 0. (313)
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The gauge freedom in the cMPS parametrization induces a redundancy in the parametrization
of the states |Φp(V,W )〉, i.e. these states are invariant under the additive gauge transformation
V ← V + QLX − XQR + ipX and W ← W + RLX − XRR for an arbitrary matrix X. This
gauge freedom can be used to choose a parametrization that allows us to omit the non-local terms
in the expressions above, e.g. by restricting to representations (V,W ) that satisfy

(l|
(
V ⊗ 1 +W ⊗ R̄1

)
= 0⇔ V = −l−1R†lW. (314)

This condition is henceforth referred to as the left gauge condition; it is typically used in
combination with a left canonical choice for Q and R such that l = 1 and we simply have
V = −R†W . Similarly one can choose instead a right gauge condition V = −WrR†r−1, which
simplifies in the case of a right canonical cMPS with r = 1.

Before proceeding, we generalize the definition of tangent vectors to

|Φp(V,W ;Q1, R1, Q2, R2)〉

=

∫
dx eipxv†LÛ1(−∞, x)

(
V ⊗ 1 +W ⊗ ψ̂†(x)

)
Û2(x,+∞)vR |Ω〉 , (315)

which contain a boost so as to represent a momentum eigenstate with momentum p, and where
Û1 and Û2 are defined in terms of two different pairs of matrices Q1, R1 and Q2, R2, respectively.
We can work in a mixed gauge by using Q1 = QL, R1 = RL and Q2 = QR, R2 = RR, or even
Q2 = Q̃R and R2 = R̃R when there is a second ground state available and we want to target a
non-trivial topological sector. Still using the parameterization V = −l−1

1 R†l1W with l1 the left
fixed point of the transfer matrix of Q1 and R1, we obtain the local expression

〈Φp′(V̄ ′, W̄ ′)|Φp(V,W )〉 = 2πδ(p− p′)(l1|W ⊗ W̄ ′|r2), (316)

where r2 is the right fixed point of the transfer matrix of Q2, R2.
For both the time-dependent variational principle and for the quasiparticle ansatz, it is useful

to know how an annihilation operator acts on a tangent vector,

ψ̂(y) |Φp(V,W )〉

=

∫ +∞

y
dx eipxv†LÛ1(−∞, y)R1Û1(y, x)

(
V ⊗ 1 +W ⊗ ψ̂†(x)

)
Û2(x,+∞)vR |Ω〉

+

∫ y

−∞
dx eipxv†LÛ1(−∞, x)

(
V ⊗ 1+W ⊗ ψ̂†(x)

)
Û2(x, y)R2Û2(y,+∞)vR |Ω〉

+ eipyv†LÛ1(−∞, y)WÛ2(y,+∞)vR |Ω〉 . (317)

The same can be done for two annihilation operators ψ̂(z), ψ̂(y) where we assume z ≤ y,

ψ̂(z)ψ̂(y) |Φp(V,W )〉

=

∫ +∞

y
dx eipxv†LÛ1(−∞, z)R1Û1(z, y)R1Û1(y, x)

(
V ⊗ 1 +W ⊗ ψ̂†(x)

)
Û2(x,+∞)vR |Ω〉

+

∫ y

z
dx eipxv†LÛ1(−∞, z)R1Û1(z, x)

(
V ⊗ 1 +W ⊗ ψ̂†(x)

)
Û2(x, y)R2Û2(y,+∞)vR |Ω〉

+

∫ z

−∞
dx eipxv†LÛ1(−∞, x)

(
V ⊗ 1 +W ⊗ ψ̂†(x)

)
Û2(x, z)R2Û2(z, y)R2Û2(y,+∞)vR |Ω〉

+ eipzv†LÛ1(−∞, z)WÛ2(z, y)R2Û2(y,∞)vR |Ω〉

+ eipyv†LÛ1(−∞, z)R1Û1(z, y)W2Û2(y,+∞)vR |Ω〉 . (318)
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For the kinetic energy we need to know how dψ̂(y)
dy acts on a tangent vector, i.e. we have to take

the derivative of the above equation

dψ̂(y)

dy
|Φp(V,W )〉

=

∫ +∞

y
dx eipxv†LÛ1(−∞, y)[Q1, R1]Û1(y, x)

(
V ⊗ 1 +W ⊗ ψ̂†(x)

)
Û2(x,+∞)vR |Ω〉

+

∫ y

−∞
dx eipxv†LÛ1(−∞, x)

(
V ⊗ 1 +W ⊗ ψ̂†(x)

)
Û2(x, y)[Q2, R2]Û2(y,+∞)vR |Ω〉

+ eipyv†LÛ1(−∞, y)
(

[V,R] + [Q,W ] + ipW
)
Û2(y,+∞)vR |Ω〉 . (319)

One can check that a number of potentially problematic (infinite norm) terms which have a
creation operator ψ̂†(y) at the fixed position y all nicely cancel.

8.4 Ground-state optimization and time-dependent variational principle

The time-dependent varational principle for cMPS can be obtained in a similar way as for MPS.
Again, we restrict to uniform cMPS and translation invariant hamiltonians; we refer to Ref. [67]
for the more general case.

Starting from a uniform cMPS with time-dependent matrices Q(t) and R(t), we obtain for
the left-hand side of the Schrödinger equation

i
d |Ψ(Q,R)〉

dt
= |Φ(iQ̇, iṘ;Q,R)〉 , (320)

i.e. a tangent vector (momentum zero) with V = iQ̇ and W = iṘ. The TDVP prescribes to
choose Q̇ and Ṙ such that ‖|Φ(iQ̇, iṘ;Q,R)〉 −H |Ψ(Q,R)〉‖2 is minimized. Let us first compute
the general overlap 〈Φ(V,W ;Q,R)|Ĥ|Ψ(Q,R)〉, where we take as an example the Lieb-Liniger
hamiltonian

Ĥ =

∫ +∞

−∞
dx

{
dψ̂†(x)

dx

dψ̂(x)

dx
− µψ̂†(x)ψ̂(x) + gψ̂†(x)2ψ̂(x)2

}
. (321)

We define the quantities

(Lh| = (l|
{

[Q,R]⊗ [Q̄, R̄]− µR⊗ R̄+ gR2 ⊗ R̄2
}

(−T̃ )P , (322)

|Rh) = (−T̃ )P
{

[Q,R]⊗ [Q̄, R̄]− µR⊗ R̄+ gR2 ⊗ R̄2
}
|r), (323)

which play a similar role as the equally named quantities in the MPS case [Eq. (115)]. Assuming
that 〈Φ(V,W )|Ψ(Q,R)〉 ∝ (l|1⊗ V̄ +R⊗ W̄ |r) = 0, we now obtain

〈Φ(V,W )|Ĥ|Ψ(Q,R)〉 =

2πδ(0)

[
(l|
{

[Q,R]⊗ ([V̄ , R̄] + [Q̄, W̄ ])− µR⊗ W̄ + gR2 ⊗ (W̄ R̄+ R̄W̄ )
}
|r)

+ (l|
{
1⊗ V̄ +R⊗ W̄

}
|Rh) + (Lh|

{
1⊗ V̄ +R⊗ W̄

}
|r)
]
. (324)

To solve the optimization problem

min
V,W
‖|Φ(V,W )〉 − Ĥ |Ψ(Q,R)〉‖2 =

min
V,W

(
〈Φ(V,W )|Φ(V,W )〉 − 〈Φ(V,W )|Ĥ|Ψ(Q,R)〉 − 〈Ψ(Q,R)|Ĥ|Ψ(V,W )〉+ constant

)
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we also need 〈Φ(V,W )|Φ(V,W )〉. We now exploit the gauge invariance in the cMPS manifold,
which enables us to choose V = −l−1R†lW , which simplifies the latter (and also makes the
first term on the second line of Eq. (324) vanish. The minimum is then obtained by setting the
derivative with respect to W̄ equal to zero, resulting in

lWr = Q†l[Q,R]r − l[Q,R]rQ† − lR[Q,R]rR† + lRl−1R†l[Q,R]r − µlRr
+ glR2rR† + gR†lR2r + LhRr − lRl−1Lhr (325)

or thus, by also using the defining equations of l and r,

iṘ = W = −[Q, [Q,R]]− µR+ l−1R†l(gR2 + [Q,R])

+ (gR2 + [Q,R])rR†r−1 + [R, l−1R†l[Q,R]− l−1Lh] (326)

iQ̇ = V = −l−1R†lW. (327)

Note that, when the cMPS is itself in the left canonical gauge QL +Q†L +R†LRL = 0 and l = 1,

we can parameterise QL = iKL − 1/2R†LRL, with KL a Hermitian matrix. The time derivative

Q̇L = −R†LṘL is compatible with preserving this canonical form at all times, and can be cast
into a direct equation for the time derivative of K̇L as

− K̇L =
1

2
(Ṙ†LRL −R

†
LṘL). (328)

These first-order coupled differential equations can then be solved using standard ODE solvers.
By replacing t→ −iτ , we can evolve in imaginary time and obtain an algorithm to converge a
random cMPS to the ground state, as was first used in Ref. [68]. Indeed, as in the MPS case,
the right hand side of the TDVP equation is essentially the tangent-space gradient, and as such
imaginary-time evolution effectively amounts to a continuous gradient descent.

Let us now, in the spirit of established MPS algorithms, try to formulate a mixed gauge
approach. The starting point is to approximate H |Ψ〉 using the more general formulation of
tangent vectors

|Φ(V,W ;QL, RL, QR, RR)〉 = |Φ0(V,W ;QL, RL, QR, RR)〉 ,

where the left canonical matrices QL, RL and the right canonical matrices QR, RR are related by
a gauge transform C. Let us now also define QC = QLC = CQR and RC = RLC = CRR.

Furthermore, we redefine

(Lh| = (l|
{

[QL, RL]⊗ [Q̄L, R̄L]− µRL ⊗ R̄L + gR2
L ⊗ R̄2

L

}
(−T̃LL )P , (329)

|Rh) = (−T̃RR )P
{

[QR, RR]⊗ [Q̄R, R̄R]− µRR ⊗ R̄R + gR2
R ⊗ R̄2

R

}
|r), (330)

with TLL = QL ⊗ 1+ 1⊗ Q̄L +RL ⊗ R̄L and similarly for TRR . We now define F (V,W ) as

〈Φ(V,W ;QL, RL, QR, RR)|Ĥ|Ψ(Q,R)〉 = 2πδ(0)F (V,W ) (331)

and find

F (V,W ) = (1|
{

(QLRC −RLQC)⊗ (Q̄LW̄ − R̄LV̄ ) + (QCRR −RCQR)⊗ (V̄ R̄R − W̄ Q̄R)

− µRC ⊗ W̄ + g(RLRC)⊗ (R̄LW̄ ) + g(RCRR)⊗ (W̄ R̄R)
}
|1)

+ (1|
{
C ⊗ V̄ +RC ⊗ W̄

}
|Rh) + (Lh|

{
C ⊗ V̄ +RC ⊗ W̄

}
|1). (332)
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Because of the gauge transformation, there are many equivalent ways of writing this expression.
We have chosen to position C (or RC or QC) in the cMPS ket state in such a way that it
coincides with the position of V and W in the bra state. Gauge invariance still enables us
to choose a gauge condition for V and W , which could now be (1|(C ⊗ V̄ + RC ⊗ W̄ ) =

0 or (C ⊗ V̄ + RC ⊗ W̄ )|1) = 0, i.e. V = −R†LW or V = −WR†R, both of which make
‖|Φ(V,W ;QL, RL, QR, RR)〉‖2 = 2πδ(0)Tr(WW †). We then obtain

W =
∂F (V,W )

∂W̄
−RL

∂F (V,W )

∂V̄
(333)

V =

(
−R†L

∂F (V,W )

∂W̄
−Q†L

∂F (V,W )

∂V̄

)
−QL

∂F (V,W )

∂V̄
(334)

or

W =
∂F (V,W )

∂W̄
− ∂F (V,W )

∂V̄
RR (335)

V =

(
−∂F (V,W )

∂W̄
R†R −

∂F (V,W )

∂V̄
Q†R

)
− ∂F (V,W )

∂V̄
QR, (336)

where

∂F (V,W )

∂W̄
= Q†L(QLRC −RLQC)− (QCRR −RCQR)Q†R − µRC

+ gR†LRLRC + gRCRRR
†
R +RCRh + LhRc, (337)

∂F (V,W )

∂V̄
= −R†L(QLRC −RLQC) + (QCRR −RCQR)R†R + CRh + LhC. (338)

Now we need to relate V and W to an update of the cMPS matrices. In the mixed gauge
representation of tangent vectors, we can identify

− iW = iṘLC = ṘC −RLĊ (339)

− iV = Q̇LC = Q̇C −QLĊ (340)

or

− iW = CṘR = ṘC − ĊRR (341)

− iV = CQ̇R = Q̇C − ĊQR. (342)

It thus makes sense to identify

iĊ =
∂F (V,W )

∂V̄
(343)

iṘC =
∂F (V,W )

∂W̄
(344)

iQ̇C = −R†L
∂F (V,W )

∂W̄
−Q†L

∂F (V,W )

∂V̄
= −∂F (V,W )

∂W̄
R†R −

∂F (V,W )

∂V̄
Q†R (345)

because of the final identity, which can easily be verified using the definitions of the various
quantities involved. The final equations then become

iĊ = −R†L(QLRC −RLQC) + (QCRR −RCQR)R†R + CRh + LhC (346)

iṘC = +Q†L(QLRC −RLQC)− (QCRR −RCQR)Q†R − µRC
+ gR†LRLRC + gRCRRR

†
R +RCRh + LhRc, (347)

iQ̇C = R†L(QLCRR −RLCQR)Q†R −Q
†
L(QLCRR −RLCQR)R†R

− gR†LRLCRRR
†
R +QCRh + LhQC (348)
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where, in the last equation, we used some more algebra (substituting definitions). These equations
can then be integrated for a small time step, after which a new QL and RL (and corresponding
QR and RR) need to be extracted from the updated C, RC and QC .

For finding the best cMPS ground state approximation of a given Hamiltonian, we can
evolve according to these equations in imaginary time, i.e. setting t→ −iτ . Indeed, a variational
optimum is characterized by the right hand side of the above equations becoming zero. Nonetheless,
imaginary time evolution is not necessarily the fastest way to approach the variational optimum,
in particular for systems near or at criticality. In the case of MPS, the VUMPS algorithm
can be understood as being obtained from imaginary time TDVP by promoting the evolution
equations to eigenvalue equations for the center site, and then taking bigger steps corresponding
to the replacing the center site by the lowest eigenvector of that effective hamiltonian. In the
case of cMPS, this is less clear. Indeed, because the cMPS ansatz is not simply a multilinear
functional of the different Q(x) and R(x), it cannot be expected that such an interpretation as
eigenvalue problem exists. An alternative approach that starts from the center site point of view
was proposed and investigated in Ref. [69], and was found to work quite well.

8.5 Quasiparticle ansatz

Finally, we can also apply the MPS quasiparticle ansatz to the continuous field-theory setting, as
was first explored in Ref. [63]. Indeed, we have already provided a generalized definition for a
“boosted” tangent vector |Φp(V,W ;Q1, R1, Q2, R2)〉 with good momentum quantum number p in
Eq. (315). For a topologically trivial excitation, we will use the mixed gauge by setting Q1 = QL,
R1 = RL and Q2 = QR, R2 = RR. In case of symmetry breaking, we can construct domain wall
excitations by using the (right canonical) cMPS matrices of a different ground state for Q2 and
R2. For simplicity, we restrict to the topologically trivial case below, though the topologically
non-trivial case is completely analogous.

We still have gauge freedom V → V +QLX −XQR + ipX and W → W + RLX −XRR17,
which we use to parameterize V = −R†LW (or alternatively V = −WR†R). The overlap between
the two ansatz wavefunctions is then given by

〈Φp′(V
′,W ′)|Φp(V,W )〉 = 2πδ(p− p′)(1|W ⊗ W̄ ′|1) (349)

= 2πδ(p− p′)Tr(W (W ′)†). (350)

The physical norm reduces to the Euclidean norm on the parameters in W . Furthermore, the
gauge condition ensures that the excited state is always orthogonal to the ground state. This
implies that the variational optimization of the ansatz wavefunction,

min
W

〈Φp(V,W )|H |Φp(V,W )〉
〈Φp(V,W )|Φp(V,W )〉

(351)

reduces to an ordinary eigenvalue problem

Heff(p)W = ω(p)W (352)

where we have defined the effective hamiltonian matrix as

〈Φp′(V
′,W ′)|H − e |Φp(V,W )〉 = 2πδ(p− p′)(W ′)†Heff(p)W . (353)

17This can be verified by noting that the choice V = QLX −XQR + ipX and W = RLX −XRR corresponds to

|Φp(V,W ;QL, RL, QR, RR)〉 =

∫
dx

d

dx

(
eipxv†LÛL(−∞, x)XÛR(x,+∞)vR |Ω〉

)
,

where upon integration the contribution of X at +∞ or −∞ is irrelevant and both terms therefore cancel.
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In order to implement this eigenvalue problem, we need to find an expression for the expectation
value of the hamiltonian, for which we can use the expressions derived in Sec. 8.3. Again, we
restrict ourselves to the terms in the Lieb-Liniger hamiltonian. The expectation value of the
density operator is given as∫ +∞

−∞
dx 〈Φp′(V̄ ′, W̄ ′)| ψ̂†(x)ψ̂(x) |Φp(V,W )〉 = 2πδ(p− p′)×

(1|
[
RL ⊗ R̄L

(
− TLL

)P
W ⊗ W̄ ′ +W ⊗ W̄ ′

(
− TRR

)P
RR ⊗ R̄R

+RL ⊗ R̄L
(
− TLL

)P(
V ⊗ 1 +W ⊗ R̄L

)(
− TRL + ip

)P(
1⊗ V̄ ′ +RR ⊗ W̄ ′

)
+RL ⊗ R̄1

(
− TLL

)P(
1⊗ V̄ ′ +RL ⊗ W̄ ′

)(
− TLR − ip

)P(
V ⊗ 1 +W ⊗ R̄R

)
+RL ⊗ W̄ ′

(
− TLR − ip

)P(
V ⊗ 1 +W ⊗ R̄R

)
+W ⊗ R̄L

(
− TRL + ip

)P(
1⊗ V̄ ′ +RR ⊗ W̄ ′

)
+W ⊗ W̄ ′

]
|1), (354)

whereas the interaction energy is∫ +∞

−∞
dx 〈Φp′(V̄ ′, W̄ ′)| ψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x) |Φp(V,W )〉 = 2πδ(p− p′)×

(1|
[
R2
L ⊗ R̄2

L

(
− TLL

)P
W ⊗ W̄ ′ +W ⊗ W̄ ′

(
− TRR

)P
R2
R ⊗ R̄2

R

+R2
L ⊗ R̄2

L

(
− TLL

)P(
V ⊗ 1 +W ⊗ R̄1

)(
− TRL + ip

)P(
1⊗ V̄ ′ +RR ⊗ W̄ ′

)
+R2

L ⊗ R̄2
L

(
− TLL

)P(
1⊗ V̄ ′ +RL ⊗ W̄ ′

)(
− TLR − ip

)P(
V ⊗ 1 +W ⊗ R̄2

)
+R2

L ⊗ (R̄LW̄ ′ + W̄ ′R̄R)
(
− TLR − ip

)P(
V ⊗ 1+W ⊗ R̄R

)
+ (RLW +WRR)⊗ R̄2

L

(
− TRL + ip

)P(
1⊗ V̄ ′ +RR ⊗ W̄ ′

)
+ (RLW +WRR)⊗ (R̄LW̄ ′ + W̄ ′ R̄R)

]
|1), (355)

and the kinetic energy term∫ +∞

−∞
dx 〈Φp′(V̄ ′, W̄ ′)|

dψ̂†(x)

dx

dψ̂(x)

dx
|Φp(V,W )〉 = 2πδ(p− p′)×

(1|

[(
[QL, RL]⊗ [Q̄L, R̄L]

)(
− TLL

)P(
W ⊗ W̄ ′

)
+
(
W ⊗ W̄ ′

)(
− TRR

)P(
[QR, RR]⊗ [Q̄R, R̄R]

)
+
(

[QL, RL]⊗ [Q̄L, R̄L]
)(
− TLL

)P
×
(
V ⊗ 1 +W ⊗ R̄L

)(
− TRL + ip

)P(
1⊗ V̄ ′ +RR ⊗ W̄ ′

)
+
(

[QL, RL]⊗ [Q̄L, R̄L]
)(
− TLL

)P
×
(
1⊗ V̄ ′ +RL ⊗ W̄ ′

)(
− TLR − ip

)P(
V ⊗ 1 +W ⊗ R̄R

)
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+
(

((QLW −WQR) + (V RR −RLV ) + ipW )⊗ [Q̄L, R̄L]
)

(
− TRL + ip

)P(
1⊗ V̄ ′ +RR ⊗ W̄ ′

)
+
(

[QL, RL]⊗ ((Q̄LW̄ ′ − W̄ ′Q̄R) + (V̄ ′ R̄R − R̄LV̄ ′)− ipW̄ ′)
)

×
(
− TLR − ip

)P(
V ⊗ 1 +W ⊗ R̄R

)
+
(

(QLW −WQR) + (V RR −RLV ) + ipW
)

⊗
(

(Q̄LW̄ ′ − W̄ ′Q̄R) + (V̄ ′ R̄R − R̄LV̄ ′)− ipW̄ ′
)]
|1). (356)

Here, one always needs to insert V = −R†LW . Furthermore, we have defined the mixed transfer
matrices TLR = QL⊗1+1⊗ Q̄R +RL⊗ R̄R and vice versa for TRL , on top of the transfer matrices
TLL and TRR that we defined in the previous section. Note that for all of these, the left and right
eigenvectors of zero eigenvalue are easy combinations of 1, C and C†: TLL has left eigenvector
1 and right eigenvector CC†, for TRR we have C†C and 1 as left and right eigenvector. TRL has
C and C† as left and right eigenvector, whereas TLR has C† and C as left and right eigenvector.
These are needed to compute the “pseudo-inverses” using an iterative linear solver, as explained
above.

9 Outlook

In these lecture notes we have explained the most important tangent-space methods for uniform
matrix product states in full detail. Yet, this picture is far from complete, and many new
applications are still to be expected in the near future – these lecture notes should in the first
place be read as an invitation to further develop the framework. In this last section, we give a
short overview of some of the topics that we have omitted in the main text, as well as the most
exciting open directions.

Symmetries, fermions, larger unit cells and finite size

In the above we have exclusively dealt with translation-invariant matrix product states in the
thermodynamic limit without any constraints.

First of all, in many spin chains translation invariance is spontaneously broken, where the
ground state is invariant only under translations over a larger number of sites. The correct
variational MPS is constructed by periodically repeating the same multi-site unit cell of tensors
{A1, A2, . . . , AN . For example, an MPS with three-site unit cell is written down as

|Ψ({A1, A2, A3})〉 = . . . A1 A2 A3 A1 A2 A3 . . . . (357)

Just as for uniform MPS, we can find canonical forms, develop ground-state optimization
algorithms, and implement a quasiparticle excitation ansatz. For all details, we point the reader
to Refs. [16, 43].

Another extension of the above framework consists of implementing global symmetries of the
ground state on the level of the MPS tensor. This strategy is made possible by the fundamental
theorem of MPS, according to which we know that if an MPS is symmetric under a global
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symmetry operation, the MPS tensor itself transforms under this operation:

U⊗Ng |Ψ(A)〉 ∝ |Ψ(A)〉 →

Ug

A = eiφg Vg V †gA . (358)

This implies that the virtual degrees of freedom in the MPS transform under a projective
representation of the symmetry group, a property that has led to the classification of symmetry-
protected topological phases in one dimension using MPS [70, 71]. On the numerical level
this property can be exploited to great advantage. Indeed, this symmetry property imposes a
sparseness for the MPS tensor (if it is written in the correct basis), and therefore a more efficient
representation of the symmetric state itself. Moreover, symmetries in the MPS tensor can also be
used to label the quasiparticle ansatz with specific quantum numbers. For all details, we point
the reader to Ref. [43].

The traditional method to simulate fermionic chains using MPS consists of first mapping the
system to a bosonic spin chain using a Jordan-Wigner transformation. However, the uniform
MPS framework allows to parametrize fermionic states on the chain directly using the formalism
of super vector spaces [72]. This formalism allows to translate all of the above methods for
describing interacting fermions on a chain as well.

Finally, many of the above methods have a counterpart for finite systems with open boundary
conditions and without translation invariance. In that case, each tensor in the MPS is different.
In particular, the time-dependent variational principle can be nicely formulated on a finite chain,
allowing for simulating time evolution with arbitrary hamiltonians [27]. On a finite system
momentum is no longer a good quantum number, such that the quasiparticle ansatz does not
have an analog on a finite chain. Tangent-space methods can also be formulated on systems
with periodic boundary conditions [73], but, just like all MPS methods, suffer from a higher
computational cost.

Real-time evolution with conserved quantities

In Sec. 5 we have seen that the TDVP respects the conservation of energy during the time
evolution, as well as other conserved quantities that commute with the tangent-space projector.
This property, which is not shared by other time-dependent MPS algorithms, has been exploited
recently [74] to capture the long-time dynamics of thermalizing spin chains, despite huge truncation
errors. Also, we have seen that the TDVP gives rise to an effective classical hamiltonian system
with a Poisson bracket, which has recently allowed to relate the dynamics of spin chains to
classical chaotic systems [75].

It remains a matter of further research to what extent conserved quantities that are not
contained within the tangent space – e.g., the higher conserved quantities in integrable systems
– are respected in the time evolution according to the TDVP, and whether a more generalized
version can be formulated that takes more and more conserved quantities in account. Also, the
relation to hydrodynamic approaches for quantum dynamics remains an important open question.

Many-particle physics on top of an MPS

In Sec. 6 we have shown that the tangent-space framework yields a natural language for describing
elementary excitations as interacting quasiparticles on a strongly-correlated MPS background.
This result suggests that these quasiparticle excitations are the relevant degrees of freedom for
describing the low-energy dynamics in strongly-correlated spin chains. Therefore, we expect that
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the extension of the framework towards real-time and finite-temperature properties of these spin
chains will prove very interesting.

In Refs. [50] and [44] it was shown that the information on the one-particle disperson relation
and the two-particle S matrix makes it possibly to apply the formalism of the Bethe ansatz in an
approximate way to describe the condensation of magnons in a magnetic field. This approach can
be extended to out-of-equilibrium situations as well. Ideally, it would be extremely interesting to
develop an interacting many-particle theory (possibly in second quantization) that describe these
quasiparticles.

cMPS

As with MPS, cMPS are not restricted to translation-invariant systems and can easily be formulated
for inhomogeneous systems, e.g. finite systems with open boundary conditions, systems with
periodic boundary conditions [76] or infinite systems with a finite-length unit cell, by making
the cMPS matrices Q and R spatially dependent. The differential equation that follows from the
TDVP equation in this non-uniform setting can be interpreted as a non-commuting version of
the Gross-Pitaevskii equation [67]. However, because Q and R will then depend on a continuous
coordinate x, any representation in terms of a finite number of parameters will have to resort to
some sort of discretization or exploit a family of basis functions. For example, the use of splines
was investigated in Ref. [77].

More stringently, however, is the fact that a good optimization algorithm for such generic
cMPS is lacking. This is in sharp contrast to the case of MPS, where DMRG (in one of its modern
flavors) is still de facto the most robust and efficient way for optimizing a generic MPS. Ref. [78]
has investigated to leverage the robustness of DMRG while trying to construct the continuum
limit numerically.

More generally, many of the well-known methods from the MPS toolbox, such as simulations
of local quenches, finite temperature, or non-equilibrium situations with dissipation, have no
counterpart yet in terms of cMPS. Finally, in the context of tangent-space methods, we have
explained how to describe single-particle excitations. Extracting scattering information by
constructing variational approximations to two-particle states has so far not been addressed with
cMPS, but should be a straightforward generalization of the MPS case. Any further extension
that is discussed here in the context of MPS, equally applies to cMPS.

Projected entangled-pair states

The class of uniform matrix product states can be straightforwardly generalized to two dimensions.
These states are known as projected entangled-pair states (PEPS) [79] and can be represented as

|Ψ(A)〉 =

· · ·

· · ·

· · · · · ·

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

, (359)

where now the state is fully described by a single five-leg tensor A.
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The variational optimization of the PEPS ground-state approximation for a given model
hamiltonian is generally taken to be a hard problem. Traditionally, this is done by performing
imaginary-time evolution: a trial PEPS state is evolved with the operator e−τH , which should
result in a ground-state projection for very long times τ . This imaginary-time evolution is
integrated by applying small time steps δτ with a Trotter-Suzuki decomposition and, after
each time step, truncating the PEPS bond dimension in an approximate way. This truncation
can be done by a purely local singular-value decomposition – the so-called simple-update [80]
algorithm – or by taking the full PEPS wavefunction into account – the full-update [81] or fast
full-update algorithm [82]. Although computationally very cheap, ignoring the environment in
the simple-update scheme is often a bad approximation for systems with large correlations. The
full-update scheme takes the full wavefunction into account for the truncation, but requires the
inversion of the effective environment which is potentially ill-conditioned.

Recently, important steps were taken towards the formulation of tangent-space methods in
two dimensions. Variational optimization schemes were introduced in Refs. [83, 84] that aim to
optimize the energy density in the thermodynamic limit directly. In both approaches, an efficient
summation of an infinite number of terms was needed in order to compute the gradient, similarly
as we have seen in Sec. 4. A generic method for contracting overlaps of tangent vectors – a crucial
ingredient in any tangent-space method – was introduced in Ref. [61], and a benchmark of the
quasiparticle excitation ansatz was performed [85].
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