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SUMMARY

Alzheimer’s disease is the world’s most common
neurodegenerative disorder. It is associated with
neuroinflammation involving activation of microglia
by b-amyloid (Ab) deposits. Based on previous
studies showing apoptosis-associated speck-like
protein containing a CARD (ASC) binding and
cross-seeding extracellular Ab, we investigate the
propagation of ASC between primary microglia and
the effects of ASC-Ab composites on microglial
inflammasomes and function. Indeed, ASC released
by a pyroptotic cell can be functionally built into the
neighboring microglia NOD-like receptor protein
(NLRP3) inflammasome. Compared with protein-
only application, exposure to ASC-Ab composites
amplifies the proinflammatory response, resulting in
pyroptotic cell death, setting free functional ASC
and inducing a feedforward stimulating vicious cycle.
Clustering around ASC fibrils also compromises
clearance of Ab by microglia. Together, these data
enable a closer look at the turning point from acute
to chronic Ab-related neuroinflammation through
formation of ASC-Ab composites.

INTRODUCTION

Alzheimer’s disease (AD) is the most common dementing illness,

characterized by progressive memory decline and cognitive

dysfunction (Zv�e�rová, 2019). The pathological hallmarks of AD

are deposition of extracellular b-amyloid (Ab) and intraneuronal

aggregation of neurofibrillary tangles composed of the microtu-

bule-associated protein tau (Nelson et al., 2012). Under healthy

conditions, the balance of Ab and tau deposition and clearance

is maintained by brain-resident microglia. However, in the AD

brain, this equilibrium is shifted toward protein deposition (Sarlus

and Heneka 2017; Heneka et al. 2015).

As resident immune effector cells of the CNS, microglia play a

crucial role in mediating brain homeostasis and the innate

immune response against a wide range of pathogenic factors

(Clayton et al., 2017; Hanisch and Kettenmann, 2007). Microglia

sense a variety of microbial molecules called pathogen-associ-

ated molecular patterns (PAMPs) but also host-derived

danger-associated molecular patterns (DAMPs) by pattern

recognition receptors (PRRs). PRR ligation then fuels signaling

transduction pathways that induce an inflammatory response

and also lead to clearance of debris by phagocytosis (Heneka

et al., 2014). Recognition of oligomeric of fibrillar Ab, which either

serves as a PAMP or a DAMP (Terrill-Usery et al., 2014), rapidly

triggers NLRP3 inflammasome activation (Halle et al., 2008;

Kinney et al., 2018). Furthermore, NLRP3 inflammasome activa-

tion relies on two signals: transcriptional upregulation of inflam-

masome components via the transcription factor nuclear factor

kB (NF-kB) (Kawai and Akira, 2010) and a second signal gener-

ated by DAMP-induced ion fluxes, mitochondrial reactive

oxygen species (ROS) production, or lysosomal destabilization,

which, in turn, leads to assembly and activation of the inflamma-

some (Yang et al., 2019).

The NLRP3 inflammasome is a multiprotein complex in which

the receptor protein NLRP3 is bridged to the zymogen pro-cas-

pase-1 via the adaptor protein apoptosis-associated speck-like

protein containing a CARD (ASC). Upon dimerization, caspase-1

becomes activated by auto-processing, which, in turn, leads to

cleavage of pro-inflammatory cytokines such as pro-inter-

leukin-1b (pro-IL-1b) and pro-IL-18 (Boucher et al., 2018).

In addition, caspase-1 cleaves Gasdermin D (GSDMD), a pyrop-

tosis executioner protein (Bergsbaken et al., 2009), resulting in

formation of pores in the plasma membrane and leading to cell

lysis because of ion flux and subsequent cytosolic swelling (Liu

et al., 2016). Moreover, GSDMD-induced pore-formation results

in release of IL-1b into the extracellular space (Rathinam et al.,

2019).

The adaptor protein ASC is composed of a N-terminal pyrin

domain (PYD) and a C-terminal caspase recruitment domain

(CARD) (Franklin et al., 2018). Homotypic intramolecular PYD-

PYD interactions initiate formation of a helical filament, which

allows intermolecular CARD-CARD interactions with the CARD

domain of pro-caspase-1, causing its activation to form mature

caspase-1 (Fernandes-Alnemri et al., 2007). Moreover, it has

been demonstrated previously that ASC accumulates in
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cell-free supernatants of inflammasome-activatedmacrophages

and build up ASC aggregates called ASC specks. Extracellular

ASC specks have the ability to recruit and activate pro-cas-

pase-1 and pro-IL-1b in cell cytosol or cell-free supernatant,

further referred to as ‘‘prion-like’’ activities of ASC (Franklin

et al., 2014). In Alzheimer’s pathology, rapidly after being

released, Ab1–42 binds ASC specks and accelerates its oligomer-

ization, indicating cross-seeding activity of ASC in Ab

aggregation (Venegas et al., 2017).

Here we aimed to investigate the effects of ASC-Ab compos-

ites on NLRP3 inflammasome activation in primary mouse

microglia. We show that exogenous ASC induces ASC-depen-

dent mechanisms in otherwise ASC-deficient microglia.

Moreover, ASC-Ab composites amplified NLRP3 inflammasome

activation in comparison with ASC only or Ab, resulting in pyrop-

totic cell death. In addition, we show that Ab clearance by micro-

glia is impaired in the presence of extracellular ASC aggregates,

suggesting a possible mechanism involved in Ab deposition in

AD. Taken together, our findings indicate that Ab clustering

around ASC fibrils boosts its toxicity in microglia.

RESULTS

Ab monomers have been shown to associate and cluster onto

ASC specks in the extracellular space (Venegas et al., 2017).

To reproduce previous findings in our experimental setup, we

co-incubated ASC with an about 3-fold molar excess of Ab in

serum-free medium or buffer (Figure 1A). Binding of both

proteins was confirmed by transmission electron microscopy

(TEM) (Figures 1B–1D) and co-immunoprecipitation (coIP)

(Figure 1E).

In electron microscopy (EM), ASC was seen to arrange into

long, slightly twisted helical filaments showing a uniform surface

(Figure 1B). In contrast, Ab formed oligomeric complexes

(Figure 1C) that were found in close association with ASC fibrils

when co-incubated (Figure 1D). These data were confirmed by

coIP analysis using anti-ASC and anti-Ab specific antibodies,

respectively, indicating interaction of ASC and Ab in a cell-free

environment (Figure 1E).

To analyze the effect of these ASC-Ab composites on cell

survival in primary microglia, lipopolysaccharide (LPS)-primed

cells were treated with ASC1.75mM, Ab5mM, or ASC1.75mM-Ab5mM
composites for 12 h and 24 h, respectively (Figure 1F). Release

of lactate dehydrogenase (LDH) in response to ASC-Ab treat-

ment was used as an indicator of cell death (Giordano et al.,

2011). Irrespective of LPS priming, microglia exposed to ASC-Ab

composites showed a significant increase in LDH release

compared with ASC or Ab alone (Figure 1G). Interestingly, the

metabolic activity in microglia treated with ASC-Ab composites

did not change within 12 h but was significantly reduced after

24 h compared with ASC- or Ab-treated cells (Figure 1H).

ASC-Ab Composites Activate the NLRP3 Inflammasome
and Induce Pyroptotic Cell Death in Microglia
To study whether the observed cell death of microglia in

response to ASC-Ab composite treatment originates from

pyroptosis, we correlated NLRP3 inflammasome activation. As

expected, LPS treatment of microglia induced priming of the

inflammasome, as shown by an increased expression level of

the receptor protein NLRP3 in the cell lysate, whereas the levels

of pro-caspase-1 remained unaltered (Figures 2A, 2B, and 2D).

Interestingly, caspase-1 cleavage was significantly increased

in response to ASC-Ab composite treatment in both cell lysates

(Figures 2C and 2D) and supernatants (Figures 2K and 2L). More-

over, significantly higher levels of ASC were detected in cell

lysates of the composite-treated group in comparison with

ASC only, occurring with all detected ASC aggregates:

ASC-mCherry, ASC dimers, and ASC monomers (Figures 2E–

2H). In contrast, microglia supernatants showed higher levels

of ASC monomer after composite treatment (Figures 2J and

2L), whereas dimers stayed constant (Figures 2I and 2L).

To discriminate between cell-derived and recombinant human

ASC used for cell treatment, a mouse-specific anti-ASC anti-

body was applied to visualize ASC aggregation and speck

release into the extracellular environment (Figure S1). In addition

to ASC speck formation, we observed morphological changes in

microglia in the course of ASC speck formation. ASC-expressing

microglia displayed a ramified shape, whereas microglia

retracted their processes, resulting in a more activated pheno-

type during ASC speck formation. ASC speck-releasing cells

were further found to undergo transformation, resulting in a high-

ly activated phenotype, potentially indicating pyroptosis.

Tomonitor the release of IL-1b into the extracellular space as a

consequence of ASC speck formation and subsequent caspase-

1maturation, we performed ELISA experiments after 12 and 24 h

of treatment (Figure 3A). ASC only as well as ASC-Ab compos-

ites led to a significant increase in IL-1b release after both time

points compared with Ab alone. Interestingly, ASC-Ab compos-

ites significantly augmented IL-1b levels compared with ASC

only (�2.6-fold after 12 h and �1.8-fold after 24 h). The highest

absolute IL-1b levels were determined after 12 h of treatment;

hence, the following experiments were performed using this

time point only.

Besides cleavage of pro-IL1b and pro-IL-18, caspase-1 also

cleaves GSDMD, which subsequently forms GSDMD pores

that facilitate secretion of mature IL-1b into the supernatant

(Rathinamet al., 2019). Tomonitor the effect of ASC-Ab compos-

ites on cleavage of GSDMD, the levels of full-length and amino-

terminal GSDMD (NTD) in response to the respective treatment

were determined by western blotting (Figures 3B–3D). Interest-

ingly, treating the cell with ASC-Ab composites largely induced

GSDMD cleavage in microglia (Figures 3C and 3D), which is in

line with the IL-1b release we detected by ELISA readings

(Figure 3A).

To elucidate the underlying mechanism by which ASC-Ab

composites activate the NLRP3 inflammasome, we tested for

involvement of Toll-like receptors (TLRs) because these recep-

tors have been found to play a key role in neuroinflammation

(Kumar, 2019). To analyze the effect of TLR2, TLR4, and TLR5,

release of IL-1b was determined in LPS-primed microglia

exposed to ASC-Ab composites in the presence or absence of

TLR-neutralizing antibodies (Figure 3E). Here we show that

TLR2 and TLR4 neutralization significantly decreased release

of IL-1b. In contrast, inhibition of TLR5 slightly increased IL-1b

levels in the supernatant. The corresponding immunoglobulin

G (IgG) isotype controls did not have any effect.
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To determine whether release of IL-1b in response to ASC-Ab

composites is NLRP3 dependent, we again co-treated microglia

with ASC-Ab composites and the specific NLRP3 inhibitors

CRID3 (MCC950) and IFM-2384 (Figure 3F). As expected,

co-treatment with both inhibitors led to a significant reduction

in IL-1b release by about 40%. To determine whether IL-1b (Fig-

ure 3F) was processed, we performed an immunoblot analysis of

supernatants (Figure S2E). We found that CRID3 and IFM-2384

treatment decreased the release of mature IL-1b from

microglia but detected continuously high amounts of pro-IL-1b

in the supernatants. In addition, immunoblot analysis consis-

tently detected an additional unconventional precursor form of

pro-IL-1b at around 25 kDa (p25) besides the conventional

31 kDa (p31) form. These data confirm that high amounts of

pro-IL-1b were released and detected by our ELISAs.

IL-1b Release Induced by ASC-Ab Composites Depends
on ASC’s Fibrillation Ability
To determine whether activation of the NLRP3 inflammasome

and the subsequent increase in IL-1b release is dependent on

the fibrillation potential of ASC, we generated an ASC variant

incapable of filament formation. Indeed, TEM revealed that

mutant ASC carrying three mutations within the PYD interface

(K21E, K22E, and K26E) and two mutations within the CARD

domain (D134R and Y187E) lacks filament formation (Figure 3G).

Interestingly, ASC-Ab composites containing mutated ASC
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Figure 1. Ab Clusters around ASC Fibrils, Forming ASC-Ab Composites that Induce Cell Death

(A) Schematic drawing of the ASC-Ab composite-building protocol.

(B–D) EM of ASC fibrils (B), Ab (C), and ASC-Ab composites (D).

(E) coIP of pre-incubated ASC and Ab, confirming binding of ASC to Ab and formation of composites. Left: immunoblot (IB), ASC (AL-177). Center: IB, Ab (82E1).

Right: IB input control.

(F) Schematic drawing of the experimental setup used in this study.

(G and H) LDH release (G) and metabolic activity (H) measurements after 12 and 24 h of treatment with different components.

Data were collected from three independent experiments (n = 3) with three technical replicates per assay (N = 9). All graphs are presented as mean ± SEM and

were analyzed by two-way ANOVA followed by Tukey’s multiple comparisons test. Levels of significance are indicated as follows: *p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001. Asterisks indicate significance between groups connected by lines; plus symbols indicate significance between ASC-Ab composites

and volume-equal buffer control-treated groups.

Scale bars, 200 nm (B–D).
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induced only half of the IL-1b release measured after treating the

cells with non-mutated ASC-Ab composites (Figure 3H).

Exogenous ASC Induces Caspase-1 Cleavage and IL-1b
Release in ASC-Deficient Microglia
ASC is known to possess prion-like activity as it propagates from

a pyroptotic macrophage to another recipient cell while preser-

ving its activity. Moreover, accumulation of extracellular ASC

specks has been shown to induce IL-1b maturation in bone

marrow-derived macrophages (Franklin et al., 2014). To investi-

gate whether similar prion-like activity of ASC can be observed in

microglia, we treated ASC-deficient macrophages and ASC-

deficient primary microglia with exogenously applied recombi-

nant ASC (Figure 4). To mimic a second stimulus for NLRP3
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(A–C and E–G) IB analysis and quantification of cell lysates of primary WT microglia primed for 3 h with 100 ng/mL LPS and exposed to ASC, Ab, or ASC-Ab
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(I–K) IB analysis using precipitated supernatants (L)were stained for ASC dimers (I), ASC monomers (J), and cleaved caspase-1 subunit p20 (K).
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ASC-Ab composites and volume-equal buffer control-treated groups.

See also Figure S1.
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inflammasome activation, adenosine triphosphate (ATP) was

used as a positive control (Karmakar et al., 2016). As expected,

ATP induced caspase-1 activation in wild-type (WT) cells (data

not shown) but not in ASC-deficient macrophages (Figures 4A

and 4B). Interestingly, exogenously applied ASC largely induced

caspase-1 activity. In line with our data, we detected the highest

levels of caspase-1 activity in macrophages that were exposed

to ASC-Ab composites (Figure 3B). Using ASC-deficient micro-

glia, we measured significantly increased levels of the auto-pro-

cessed caspase-1 fragment p20 in cell supernatants of cells

treated with ASC and ASC-Ab composites (Figure 4C). Again,

treatment with ASC-Ab composites amplified caspase-1 cleav-

age by about 2-fold compared with ASC treatment alone.

Most importantly, exogenously applied ASC induced IL-1b

release in ASC-deficient microglia in a dose- and time-depen-

dent manner (Figure 4D). After 12 h, ASC-Ab composites

elevated IL-1b release nearly 2-fold compared with ASC only.

However, there was no significant difference remaining after

24 h (Figure 4E). When comparing the total extent of IL-1b

measured in ASC-deficient versus WT microglia, is noticeable

that the tendencies of differently treated groups are similar in

both genotypes, although total IL-1b levels are reduced to

approximately 10% in ASC-deficient cells (Figure 4F).

As expected, cell lysates of ASC-deficient microglia exposed

to exogenous ASC showed high total ASC levels (Figures 4G

and 4H). Interestingly, microglia treated with ASC-Ab com-

posites contained significantly more ASC compared with

ASC-only-treated cells.

Next we aimed to investigate whether exogenously applied

ASC, when taken up by ASC-deficient cells, still possesses the

ability to form intracellular ASC specks. Indeed, exposure of

macrophages to ASC increased the number of ASC-positive

cells, which was further enhanced in the ASC-Ab composite-

treated group (Figure 4I). Moreover, by visualization of
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Figure 3. ASC-Ab Composites Induce IL-1b by TLR2 and TLR4 Ligation, a Process Dependent on ASC’s Fibrillation Ability

(A) IL-1b levels in conditioned medium of primary microglia after 12 and 24 h of exposure to ASC, Ab, or ASC-Ab composites (n = 3 independent experiments with

triplicate treatments for all conditions).

(B–D) IB analysis and quantification of full-length Gasdermin D (GSDMD; n = 3; B and D) and cleaved NTD (n = 4; C and D). Empty wells and wells containing

experimental samples, which are not part of this study are not displayed. Vertical lines in blots indicate spliced sections (D).

(E) IL-1b levels in conditioned medium of primary microglia treated for 12 h with TLR2-, TLR4-, and TLR5-neutralizing antibodies as well as the respective IgG

isotype controls in parallel to stimulation with ASC, Ab, or ASC-Ab composites (n = 3 independent experiments with triplicate treatments for all conditions).

(F) IL-1b levels in conditioned medium of primary microglia after NALP3 inflammasome inhibition using CRID3 or IFM-2384 (n = 3 independent experiments with

triplicate treatments for all conditions).

(G) EM of ASC carrying PYD (K21E, K22E, and K26E) and CARD (D134R and Y187E) mutations after 1 and 23 h of incubation at 37�C.
(H) IL-1b levels in conditioned medium of primary microglia treated with ASC-Ab composites or mutated ASC pre-incubated with Ab (n = 3 independent

experiments with duplicate treatments for all conditions).

All graphs are presented as mean ± SEM and were analyzed by two-way ANOVA (A) or one-way ANOVA (B–H) in conjunction with Tukey’s test. Levels of

significance are indicated as follows: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Asterisks indicate significance between groups connected by lines; plus

symbol indicate significance between ASC-Ab composites and volume-equal buffer control-treated groups. Scale bar, 2 mm (G, upper panel) and 200 nm (G,

lower panel).

See also Figures S1 and S2.

Cell Reports 30, 3743–3754, March 17, 2020 3747



AS
C 

-/
-

B B A 

E D 

ASC-mCherry

ASC dimers
ASC mono-
mers 

GAPDH

LPS + + + + +
kDa
51

22

37

44

UT ct
rl. ASC

LP
S c

trl.

buffer c
trl.

ASC
-Aβ Aβ

H F G P20
LPS + + + + +
kDa

20

UT ct
rl. ASC

LP
S c

trl.

buffer c
trl.

ASC
-Aβ Aβ

C  Supernatant

ASC-AβASC Aβ buffer ctrl. ATPLPS ctrl.UT ctrl.
Ho

ec
hs

t
M

er
ge

I 

DA
PI

AS
C

Merge

I 

DA
PI

AS
C

DA
PI

AS
C

UT ctrl.
ASC-Aβ

ASC

K 

15

25

30

40

50

70

140
115

80

kDa

10

ASC
-Aβ

Aβ+ ct
rl.

82E1 ct
rl.

ASC
-Aβ

Aβ mono-
mers

heavy chain

light chain

L1 L2 L3 L1 L2 L3
IP: ASC Input
IB: Aβ 82E1

ASC
-Aβ

ASC
+ ct

rl.

AL-1
77 ct

rl.

L1 L2 L3
IP: ASC
IB: ASC AL-177

ASC mono-
mers

ASC dimers
heavy chain

15

25

30

40

50

70

140
115

80

kDa

J 

(legend on next page)

3748 Cell Reports 30, 3743–3754, March 17, 2020



internalized ASC, we saw that speck formation was further

amplified when cells were treated with ASC-Ab composites (Fig-

ure 4 I, bottom panel).

The interaction of ASC and Ab in cell lysates of ASC-deficient

microglia was still preserved, as shown in coIP experiments (Fig-

ures 4J and 4K). Interestingly, higher quantities of ASC dimers

than ASC monomers were detected in lysates of cells treated

with ASC-Ab composites (Figure 4J).

ASC Binding Exacerbates Uptake of Ab and Decelerates
Its Degradation
Microglia play an outstanding role in amyloid clearance in the

healthy brain but also during AD progression (Baik et al., 2016;

Cho et al., 2014). Thus, we analyzed the potential effect of

ASC-Ab binding on phagocytic clearance of Ab by primary

microglia. To quantify the engulfment of Ab, we treated microglia

either with fluorescein (FAM)-labeled Ab or ASC-FAM-Ab com-

posites and assessed the uptake of Ab using fluorescence-acti-

vated cell sorting (FACS) analysis (Figure S2A). Interestingly, in

the presence of ASC-Ab composites, uptake of Ab was

decreased by about 35%after 1 h comparedwith primarymicro-

glia treated with Ab only (Figures 5A–5C).

In addition to phagocytic uptake, we determined the degrada-

tion capacity of microglia to prove an imbalance in uptake and

degradation. We found that microglia constantly degrade Ab in

a time-dependent manner with a degradation rate of about

20%–25% per hour (Figures 5D and 5E). In contrast, when

microglia were exposed to ASC-FAM-Ab composites, uptake

was largely diminished, and degradation was fully blocked (Fig-

ures 5D and 5E). We confirmed these findings using immunoblot

analysis of cell lysates collected after an allowed degradation

time of 12 h (Figure S2B).

A common factor implicated in a number of cellular processes,

including phagocytosis, proliferation, survival, and regulation of

inflammatory cytokine production, is the receptor TREM2 (Ulrich

and Holtzman, 2016). Consequently, we checked for changes in

TREM2 expression levels by western blot (Figures S2C and

S2D). Interestingly, TREM2 expression was decreased in cells

treatedwith ASC-Ab, indicative of amodulatory effect of ASC-Ab

composites on TREM2 activity. Our data indicate an ASC-Ab-in-

duced imbalance between uptake and degradation, resulting

in deposition of cytotoxic protein accumulation intra- and

extracellularly.

DISCUSSION

The link between Ab deposition and microglial dysfunction has

already been studied extensively (Cai et al., 2014; Sarlus and

Heneka, 2017). Unravelling the underlying pathway, we identified

ASC as a key player (Venegas et al., 2017). Our previous study

found expression of ASC to be increased in an Alzheimer’s

disease mouse model compared with a WT control. Moreover,

ASC was shown to rapidly interact with pathogenic Ab1–42 extra-

cellularly, suggested to underlie microglial dysfunction. Data

showing a direct connection between ASC-Ab composites lead-

ing to microglial dysfunction are still pending; hence, we aimed

to unravel the resulting cellular effects on microglia exposed to

Ab-ASC composites. Indeed, our present study revealed severe

toxicity emanating from ASC-Ab composites compared ASC

only or Ab. Microglia exposed to ASC-Ab subsequently under-

went cell death, displaying increased LDH release (Figure 1G)

and reduced metabolic activity (Figure 1H). In addition, compos-

ite-treated microglia showed ASC speckling (Figure S1),

caspase-1 cleavage (Figures 2C and 2D) and release of its active

fraction (Figures 2K and 2L), pro-inflammatory cytokine matura-

tion (Figure 3A), as well as highly elevated levels of the pore-

forming NTD (Figures 3C and 3D). Thus, we considered the

observed cell death to be pyroptotic. Caspase-1 activity has

been shown to accelerate IL-1b secretion via rapid GSDMD-

dependent pathways (Monteleone et al., 2018). This mechanism

could possibly also underlie the pyroptotic cell fate detected

here.

To confirm NLRP3 dependency of the observed IL-1b release,

we used different modulators to inhibit the NLRP3-initiated ASC

assembly. The resulting total IL-1b levels were reduced by

approximately 40% (Figure 3F), possibly because of decreased

cleavage and impaired release of its mature form (Figure S2E),

also considering further ASC-dependent inflammasomes such

as the AIM or NLRC4 inflammasome (Freeman et al., 2017) to

mediate generation of the remaining IL-1b levels.

Mutagenesis studies showed that clustering of ASCPYD fila-

ments and their condensation into ASC specks is mediated by

the ASCCARD exposed to the surface of the ASCPYD-initiated fila-

ment (Hoss et al., 2017). Furthermore, filament formation served

as an amplification mechanism in inflammasome signaling,

resulting in cytokine maturation (Dick et al., 2016). By mutating

D134 and Y187 within the ASCCARD domain, filament formation

Figure 4. Exogenous ASC Can Replace Endogenous ASC in ASC-Deficient Cells and Induce ASC-Dependent Signaling Pathways

(A and B) Immunocytochemical detection (A) and quantification (B) of caspase-1 activity in ASC-deficient macrophages treated with or without exogenous ASC.

(C) The caspase-1 subunit p20 was detected by IB analysis in precipitated supernatants from ASC-deficient microglia.

(D–F) IL-1b levels in conditioned medium of ASC-deficient primary microglia after exposure to different concentrations of exogenous ASC: c1 = 0.22 mM, c2 =

0.66 mM, c3 = 1.75 mM (D); IL-1b levels in conditionedmedium of ASC-deficient primary microglia treated with ASC, Ab, or ASC-Ab composites for 12 and 24 h (E);

and IL-1b levels in conditioned medium of primary WT microglia and ASC-deficient microglia treated with ASC-Ab composites for 12 h (F).

(G and H) IB analysis and quantification (G) of ASC monomers, dimers, and ASC-mCherry in ASC-deficient microglia cell lysates (H) (n = 4).

(I) Immunostaining of ASC-deficient macrophages treated with exogenous ASC and stained for ASC internalization and ASC speck formation after ASC-Ab

composites treatment (arrowheads).

(J and K) CoIP of ASC and Ab in ASC-deficient microglia cell lysates. IP: ASC. IB: ASC (AL-177) (J), IB: Ab (82E1) and input controls (K). Empty wells and wells

containing a lysate control negative for both proteins are not displayed. Vertical lines in blots indicate spliced sections.

Data were collected from three independent experiments (n = 3) with three technical replicates per assay (N = 9) (D–F). All graphs are presented as mean ± SEM

and were analyzed by two-way ANOVA (D and E), one-way ANOVA in conjunction with Tukey’s test (B, C, and G), or unpaired t test (F). Levels of significance are

indicated as follows: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Asterisks indicate significance between groups connected by lines; plus symbols indicate

significance between ASC-Ab composites and volume-equal buffer control-treated groups. Images were taken at 403magnification. Scale bars, 10 mm (A and I).
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of the CARD domain only is almost completely disrupted (Li et al.,

2018). Particular mutations of the type I interface mediating PYD-

PYD interactions, such as K21Q, K21E/K22E, and K26E, also

abolish formation of the ASCPYD filament (Lu et al., 2014).

Recently, we showed that full-length human ASC carrying three

K-to-Amutationswithin the abovementioned PYD-PYD interface

(K21A, K22A, and K26A) does not cross-seed Ab1–40 aggregation

(Venegas et al., 2017). Using an ASC variant deficient in PYD as

well as CARD-mediated filament formation (K21E, K22E, K26E,

D134 R, and Y187E), release of proinflammatory cytokines

decreased tremendously, suggesting that the filamentary struc-

ture of ASC is mandatory for NLRP3 inflammasome activation

in response to ASC-Ab composites (Figures 3G and 3H).

Here we observed that exogenous ASC induces speck forma-

tion of cell-intrinsic ASC in WT microglia (Figure S1) and itself

formed speck-like aggregates in the cytosol of ASC-deficient

cells (Figure 4I). These findings underline the importance of

ASC aggregation in inducing the NLRP3 inflammasome pathway

(Latz et al., 2013; Stutz et al., 2013). ASC specks have been iden-

tified previously as an endogenous danger signal because injec-

tion of ASC specks caused acute inflammatory reactions in WT

mice (Franklin et al., 2014). In vitro, ASC specks were shown to

accumulated in the extracellular space but still retained the abil-

ity to mature pro-IL-1b. Moreover, it was shown that phagocy-

tosed ASC specks still induced lysosomal damage and IL-1b

production in macrophages.

Activation of the NLRP3 inflammasome by ASC-Ab compos-

ites is thought to be transferred via a still unknown mediator.

Because the expression of multiple TLRs on the microglia

surface increases with the presence of pathogens or other pro-

inflammatory stimuli (Olson and Miller, 2004), we examined the

effect of TLRs. Inhibiting TLR2 and TLR4 significantly decreased

release of IL-1b in response to ASC-Ab treatment (Figure 3E),

supporting the commonly accepted knowledge of Ab being a

target of both cell surface receptors (Letiembre et al., 2009)

and inducing NLRP3 inflammasome activation (Liu et al., 2012;

Walter et al., 2007).

It is speculated that, besides the interaction of Ab with TLR2

and TLR4, multiple cell surface receptors could also be targeted,

including CD36 and TLR6 (Doens and Fernández, 2014; Sheedy

et al., 2013; Stewart et al., 2010). Ab clustering around the ASC

fibril might enable Ab to interact with various cell surface recep-

tors simultaneously, presumably boosting intracellular inflam-

matory cascade activation, revealing the toxicity of ASC-Ab

composites.

It has been shown recently that the soluble TLR5 Fc-fragment

binds to oligomeric as well as fibrillar Ab with high affinity and

blocks its toxicity. Moreover, Ab has been shown to modulate

flagellin-mediated activation but does not by itself activate

TLR5 signaling (Chakrabarty et al., 2018). Supporting the

hypothesis of a protective role of TLR5, we showed that an

increase in IL-1b levels in response to ASC-Ab exposure is deter-

mined only in presence of a specific TLR5 inhibitor (Figure 3E).

Here, we present evidence that exogenous ASC has the abil-

ity to induce caspase-1 cleavage (Figures 4A–4C) and IL-1b

maturation (Figures 4D and 4E) not only in peripheral macro-

phages but also in microglia, using an ASC-deficient genotype.

ASC-Ab composites induced higher p20 and IL-1b levels than

ASC alone, showing the same tendencies as in the WT but

reaching lower absolute values (Figure 4F), suggesting that

cell-intrinsic ASC speck formation, which is also induced by

ASC-Ab composites (Figure S1), plays an important role in

exogenous ASC-Ab toxicity. Indeed, we detected higher levels

of ASC in microglia lysates after ASC-Ab composite treatment

compared with ASC-only exposure, assuming that the

increased uptake of ASC is composite mediated, which, in

turn, leads to increased NLRP3 inflammasome activity (Figures

4G and 4H).

Of note, a stable interaction of ASC and Ab is assumed

because both proteins stay bound within the cell lysates (Figures

4J and 4K). Thus, it is hypothesized that Ab stabilizes the ASC

fibril intracellularly and possibly extends its time of availability

and/or accelerates the pro-inflammatory cascade.

As described previously, missense variants in the TREM2

receptor are associated with a 2- to 4-fold increased risk of

developing AD (Guerreiro et al., 2013; Jonsson et al., 2013).

Moreover, it has been shown that exogenous expression of

TREM2 in Chinese hamster ovary (CHO) or HEK293 cells

increases phagocytic activity (Kleinberger et al., 2014; N’Diaye

et al., 2009). Furthermore, TREM2 overexpression promotes

clearance of Ab1–42 by BV-2 cells and restored cell viability

from Ab-mediated neuroinflammation by downregulating TLRs

(Long et al., 2019). However, inflammatory stimuli decrease

TREM2 expression in vitro but increase TREM2 expression

in vivo (Jay et al., 2017).

Our findings revealed increased pro-inflammatory cytokine

levels (Figure 3A) in a TLR2-, TLR4-, and TLR5-dependent

manner (Figure 3E). Moreover, a decrease in phagocytic activity

(Figures 5A–5C) as well as a reduction in TREM2 expression

(Figures S2C and 2D) in response to exposure of ASC-Ab

Figure 5. Ab Clearance by Microglia Is Affected When Bound to ASC

(A) Representative FACS graphics demonstrating the engulfment of Ab by microglia upon treatment with Ab only or ASC-Ab composites for 15, 30, and 60 min.

(B) Quantification of microglia engulfing Ab over time.

(C) Phagocytic index of microglia engulfing Ab over time.

(D and E) Quantification and comparison of relative Ab degradation byWTmicroglia over 1, 2, 3, and 4 h in the presence or absence of ASC, measured after 1 h of

Ab phagocytosis.

(D) Quantification of Ab-positive microglia over time.

(E) Fluorescence index of microglia degrading Ab over time.

Data were collected from three independent experiments (n = 3) with two technical replicates per assay (N = 6). All graphs are presented asmean ±SEMandwere

analyzed by paired t test for phagocytic cells and index (B and C) as well as two-way ANOVA followed by Tukey’s multiple comparisons test for degradation

analysis (D and E) and unpaired t test for area under the curve (AUC; percentage of Ab-treated primary microglia [PMG]; B–E). Levels of significance are indicated

as follows: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

See also Figure S2.
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composites suggests a connection between these findings. We

could also show that clustering of microglia to ASC fibrils

resulted in impaired Ab uptake (Figures 5A–5C). Further studies

might consider the effect of TREM1 and TREM2 on ASC-Ab

phagocytosis because there is growing evidence that their over-

expression increases Ab clearance by microglia (Jiang et al.,

2016; Xiang et al., 2016). In addition, microglia exposed to

ASC-Ab composites lost their ability to degrade Ab compared

with microglia exposed to Ab only (Figures 5D and 5E;

Figure S2B). Aggregate size as well as the interaction of ASC

and Ab itself might underlie the altered phagocytosis. Altogether,

these findings reveal a possible mechanism involved in AD

progression because Ab plaque clearance bymicroglia is essen-

tially important in the disease context (Hansen et al., 2018; Sarlus

and Heneka, 2017).

Conclusions
Taken together, ASC contributes prion-like activities in microglia

as in macrophages. Cells undergoing pyroptosis set free fully

functional ASC that can be built into the NLRP3 inflammasome

of the recipient cell. Even ASC-deficient cells were shown to

induce caspase-1 cleavage and pro-inflammatory cytokine

maturation mediated by exogenous ASC. In WT microglia, ASC

induced cell-intrinsic ASC speck formation and release. Further-

more, exogenous ASC itself also formed speck-like aggregates

inside the cell. Clustering of Ab onto ASC fibrils led to multiple

cellular responses, such as an increase in caspase-1 activation,

IL-1b maturation, and cleavage of GSDMD. Moreover, ASC

specks were found to be formed faster, and ASC was taken up

in higher quantities. ASC and Ab remained bound in the cell

lysates, assuming Ab to stabilize the ASC fibril and thereby

Figure 6. ASC-Ab Binding Induces a Vicious Cycle in Microglia

The schematic was created with BioRender (https://biorender.com). Ab induces microglia activation via multiple cell surface receptors. Here we display TLRs as

an example. Under healthy conditions, microglia activation leads to engulfment and clearance of Ab. During microglia activation, NLRP3 inflammasome

components, such as the adaptor protein ASC and the pro-inflammatory cytokines IL-1b and IL-18, are released to the extracellular space. There, Ab clusters

around ASC fibrils, resulting in ASC-Ab composite formation. ASC-Ab composites themselves boost NLRP3 inflammasome activation in the surrounding

microglia, reducing microglia Ab clearance ability and resulting in pyroptotic cell death. During pyroptosis, vast quantities of ASC are set free, starting the vicious

cycle of ASC-Ab composites all over. In the AD brain, this might be a reason for increased Ab deposition.
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boosting its toxicity. Thus, cells exposed to ASC-Ab subse-

quently underwent pyroptosis, setting free ASC and leading to

activation of the surrounding cells, inducing a vicious circle

(Figure 6). Furthermore, ASC-Ab binding was shown to prevent

Ab clearance by microglia in vitro, which might play a role in

AD progression in vivo.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-Asc (AL177) antibody AdipoGen Cat# AG-25B-0006; RRID: AB_2490440

Rat anti-Caspase-1 (clone 4B4) antibody Genentech Cat# CASP-1(mu):4175

Rabbit anti-GAPDH antibody Sigma-Aldrich Cat# G9545; RRID: AB_796208

Rabbit anti-GSDMD antibody [EPR19828] Abcam Cat# ab209845; RRID: AB_2783550

Mouse anti-NLRP3/NALP3 (Cryo-2) antibody AdipoGen Cat# AG-20B-0014-C100; RRID: AB_2490202

APC rat anti-mouse/human CD11b antibody Bio Legend Cat# 101212; RRID: AB_312795

Mouse specific rabbit anti-ASC/TMS1 (D2W8U)

antibody

Cell Signaling Technology Cat# 67824; RRID: AB_2799736

Rabbit anti-b-actin antibody Cell Signaling Technology Cat# 4967; RRID: AB_330288

Goat anti-rabbit-AlexaFluor488 (H+L) antibody Thermo Fisher Scientific Cat# A-11008, RRID: AB_143165

Goat anti-rat-AlexaFluor594 antibody Invitrogen Cat# A11007; RRID: AB_141374

Rabbit anti-IL-1b antibody GeneTex Cat# GTX74034; RRID: AB_378141

IRDye� 680LT donkey anti-mouse IgG (H+L) antibody LI-COR Biotechnology Cat# 926-68022; RRID: AB_10715072

IRDye� 800CW goat anti-rat IgG (H+L) antibody LI-COR Biotechnology Cat# 926-32219; RRID: AB_1850025

Mouse anti-Ab (82E1) antibody IBL America Cat# 10323; RRID: AB_1630806

Mouse IgG Isotype Control antibody Thermo Fisher Scientific Cat# 10400C; RRID: AB_2532980

Mouse TLR2 neutralizing antibody (C9A12) InvivoGen Cat# mabg-mtlr2; RRID: AB_11125339

Mouse TLR5 neutralizing antibody (Q23D11) InvivoGen Cat# mabg-mtlr5; RRID: AB_11124926

Rat anti-mouse CD11b antibody Serotec by Bio-Rad Cat# MCA711; RRID: AB_321292

Rat IgG Isotype Control antibody Thermo Fisher Scientific Cat# 10700; RRID: AB_2610661

TLR4/MD-2 Complex Monoclonal Antibody (MTS510) Invitrogen Cat# 14-9924-82; RRID: AB_468617

Goat anti-Trem2 antibody GeneTex Cat# GTX47596; RRID: AB_10618011

Chemicals, Peptides, and Recombinant Proteins

Ampicillin sodium salt Carl Roth Cat# K029.1

4’,6-Diamidino-20-phenylindol-dihydrochloride (DAPI) Thermo Fisher Scientific Cat# 62247

Adenosine 50-triphosphate disodium salt hydrate Sigma-Aldrich Cat# A2383

Amyloid b-Protein (1-42) (HFIP-treated) Bachem AG Cat# 4090148

Bovine Serum Albumin - Fraction V Rockland Immunochemicals, Inc. Cat# BSA-1000

FAM-labeled Amyloid b Peptide Specialty Laboratories

GmbH (PSL)

ID# CEM112812FL

Fetal Bovine Serum LIFE Technologies Cat# 10270106

Guanidine hydrochloride Carl Roth Cat# 6069.3

HisTrapTM FF crude GE Healthcare Cat# 17528601

IFM-2384 IFM Therapeutics gift from IFM

Lipopolysaccharide from Escherichia coli K12 InvivoGen Cat# tlrl-eklps

MCC950 (CRID3) InvivoGen Cat# inh-mcc

N2-Supplement GIBCO by Thermo Fisher Scientific Cat# 17502048

NdeI New England Biolabs Cat# R0111S

Normal Goat Serum Abcam Cat# ab7481

NuPAGE� 4-12% Bis-Tris gel Invitrogen Cat# NP0323BOX

NuPAGE MES SDS Running Buffer (20X) Thermo Fisher Scientific Cat# NP0002

Orange G Carl Roth Cat# 0318.2

Paraformaldehyde Sigma-Aldrich Cat# P6148

pET23a Novagen Cat# 69745

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pET23a-ASC-tev-mCherry Venegas et al., 2017 N/A

Poly-L-Lysine Hybridomide Sigma-Aldrich Cat# P1524

Protease/Phosphatase Inhibitor Cocktail (100X) Cell Signaling Technology Cat# 5872

Protein LoBind Tubes Eppendorf 0030108116

Q5 High Fidelity DNA polymerase New England Biolabs Cat# M0491S

SureBeadsTM Protein G Magnetic beads Bio-Rad Laboratories Cat# 1614023

T4 DNA Ligase New England Biolabs Cat# M0202S

Trans-Blot� Turbo Mini Nitrocellulose Transfer Packs Bio-Rad Laboratories Cat# 1704158

Critical Commercial Assays

Cytotoxicity Detection Kit (LDH) Roche Cat# 11644793001

FAM-FLICA� Caspase-1 Assay Kit ImmunoChemistry Technologies Cat# 98

Mouse IL-1 beta/IL-1F2 DuoSet ELISA R&D Systems Cat# DY401

PierceTM BCA Protein Assay kit Thermo Fischer Scientific Cat# 23225

PierceTM LAL Chromogenic Endotoxin Quantitation Kit Thermo Fischer Scientific Cat# 88282

QIAprep Spin Miniprep Kit QIAGEN Cat# 27104

QIAquick Gel Extraction Kit QIAGEN Cat# 28704

QIAquick PCR Purification Kit QIAGEN Cat# 28104

XTT Cell Viability Kit Cell Signaling Technology Cat# 9095

Experimental Models

NCTC clone 929 (L929 cells), strain: C3H/An ATCC Cat# CCL-1; RRID: CVCL_0462

Primary microglia isolated from C57BL/6 mice Charles River Laboratories RRID: IMSR_JAX:000664

Primary microglia isolated from C57BL/6 ASC�/� mice Millenium Pharmaceuticals N/A

E. coli BL21 (DE3), genotype: F– ompT hsdSB

(rB–, mB–) gal dcm (DE3)

Merck Cat#69450.

Software and Algorithms

FACSDIVA software Becton Dickinson N/A

Fiji ImageJ Wayne Rusband v2.0.0-rc-69/1.52n

FlowJo FlowJo, LLC v3.05470

Graph Pad Prism GraphPad Software Inc. v7.0e

Image Studio LI-COR Biosciences v5.2

NIS-Elements Nikon v4.0

Other

Avanti J265 XP centrifuge Beckmann Coulter equipment

ÄKTAprime plus FPLC system GE Healthcare equipment

BD FACSCantoTM II BD Biosciences equipment

Eppendorf BioPhotometer D30 Eppendorf equipment

Infinite M200 Pro TECAN equipment

JA-25.50 Fixed-Angle Rotor Beckmann Coulter equipment

JEOL JEM-2200FS Field Emission Transmission

Electron Microscope equipped with a CMOS-Camera

JEOL GmbH equipment

JLA-8.1000 Fixed-Angle Rotor Beckmann Coulter equipment

JULABO 5 water bath JULABO GmbH equipment

Lab 850 pH-Meter Schott Instruments equipment

Multitron pro Infors HT equipment

NanoDrop 2000c Spectrophotometer Thermo Scientific equipment

Nikon Eclipse Ti Fluorescence Microscope Nikon equipment

ODYSSEY CLx Imaging System LI-COR Biotechnology equipment

Optima TLX ultracentrifuge Beckmann Coulter equipment

TLA-120.2 Fixed-Angle Rotor Beckmann Coulter equipment

(Continued on next page)

e2 Cell Reports 30, 3743–3754.e1–e6, March 17, 2020



LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Michael T.

Heneka (michael.heneka@ukbonn.de).

This study did not generate new unique reagents.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Animals
All animals used for cell isolation were treated according to the legal and ethical requirements of the University of Bonn – Medical

Center (Germany). Mouse breeding and husbandry were approved by the veterinary office (Bonn, Germany) according to theGerman

animal welfare act. The procedures complied with the guidelines of animal welfare as laid down by the German Research Council

(DFG). For this study brains of P0–P2,mixed gender C57BL/6WT (purchased fromCharles River Laboratories Inc.) and ASC-deficient

(purchased from Millenium Pharmaceuticals) mice were used.

METHOD DETAILS

Cell Culture
Primary microglia were isolated according to the method of Giulian and Baker (1986). After removing the meninges, cells were

separated using mechanical shearing and 0,25% trypsin (GIBCO by lifeTechnologiesTM). Subsequently, cells were transferred into

Poly-L-Lysine (PLL) (Sigma-Aldrich) coated T75 culture flasks (Greiner Bio-One) and cultured under standard conditions at 37�C
and 5% CO2 (1-2 brains per flask). On the next day, flasks were washed three times with Dulbecco’s Phosphate Buffered Saline

(DPBS) (GIBCO) and cultured for an additional 7-10 days in Dulbecco’s modified Eagle’s medium (DMEM) (GIBCO) containing

10%heat-inactivated Fetal Bovine Serum (iFBS) (GIBCO), 1%Penicillin/Streptomycin (P/S) (GIBCO) and 1mL of filtered L929 cell su-

pernatant as a source for growth factors. Cultures were regularly checked for loosely attached mature microglia. Finally, microglia

were shaken off from the astrocyte monolayer after 7-10 days followed by two more shake off cycles every second to third day.

Preparation of Recombinant ASC
Full-length human ASC, followed by a TEV protease cleavage site and mCherry, was cloned in NdeI/XhoI sites of a pET-23a expres-

sion vector providing aC-terminal hexa-histidine tag. This construct was transformed and expressed in E. coli cells (strain BL21(DE3))

by growing the culture at 37�C to an OD600 of 0.8 and induced with 0.1 mM isopropyl b-D-1-thiogalactopyranoside for 4 h at 37�C.
Cells were collected by centrifugation and lysed by sonication in a lysis buffer A containing 20 mM Tris (pH 8.0), 500 mM NaCl and

5mM imidazole. Cell lysates were then centrifuged at 20,000 x g for 30min and the pellet was dissolved in buffer A supplementedwith

2 M Gdn-HCl for 1 h at 4�C. Subsequently, the suspension was again centrifuged at 20,000 x g for 30 min and the supernatant was

dialysed against buffer A O/N at 4�C, while continuously stirring. On the next day, the sample was centrifuged as described above

and the supernatant was administered to a pre-equilibrated HisTrapTM column using an Äkta Prime FPLC system (GE Healthcare).

The column was washed with 10 column volumes of lysis buffer A and the protein was eluted in the same buffer supplemented with

200mM imidazole. Subsequently, the purified protein was dialysed against buffer B containing 20mMTris (pH 8.0) and 300mMNaCl

O/N at 4�C, while continuously stirring. Finally, endotoxin concentration was controlled using the PierceTM LAL Chromogenic Endo-

toxin Quantification Kit (Thermo Fischer Scientific) according to the manufacturers protocol. In order to separate soluble ASCmono-

mers from insoluble aggregated forms the solution was centrifuged for 30 min at 100.000 x g in a TLA-120.2 rotor or equivalent in a

Beckman Optima TLX benchtop ultracentrifuge. To induce fibrillation the ASC-containing solution was transformed to LoBind Tubes

(Eppendorf) and incubated for 1 h at 37�C. The final concentration of ASCwas quantified byNanoDrop using the extinction coefficient

ε = 61.31. ASC fibrils were kept at 4�C for no longer than 3 weeks.

In addition to WT ASC, a mutated ASCwas generated, carrying mutations in the PYD-PYD assembly interface (K21E, K22E, K26E)

(Lu et al., 2014) and in the caspase-recruitment domain (CARD) (D134R, Y187E) (Li et al., 2018). Mutated ASC was generated

following the same procedure as WT ASC.

Preparation of Amyloid b

Amyloid b (Ab) protein (1-42) was ordered 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP)-treated (Bachem AG), dissolved in sterile

Dulbecco’s phosphate buffered saline (DPBS) (GIBCO) and stored at �80�C (Götz et al., 2001). As a working concentration, 5 mM

was used for cytotoxicity and cell viability assays, immunoblotting and ELISA.

Continued
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Trans-Blot� TurboTM Transfer System Bio-Rad Laboratories equipment

Vibra-Cell ultrasonic liquid processor Sonics equipment
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For phagocytosis and degradation assays as well as for immunocytochemistry (ICC) FAM-labeled Ab1-42 (Peptide Specialty

Laboratories GmbH) was solved in 40 mM NaOH at 4 mg/ml, diluted in Tris-HCL (pH 7.4) to 1 mg/mL (221 mM), incubated for

1 day at 37�C and finally stored at �80�C.

Building ASC-Ab Composites
Fibrillary ASC (1.75 mM) and Ab1-42 monomers (5 mM) were incubated in serum-free DMEM containing 1% P/S and 1% N-2 supple-

ment in LoBind Tubes (Eppendorf) at 37�C,O/N. The same culture procedurewas applied to single protein treatments and the volume

equal buffer controls.

Protein Determination
To determine protein concentrations of cell lysates, a bicinchoninic acid assay was performed using PierceTM BCA Protein assay kit

(Thermo Fischer Scientific) according to the manufacturer’s protocol.

Co-Immunoprecipitation (Co-IP)
For Co-IP experiments, 50 mL of SureBeadsTM Protein G Magnetic beads (Bio-Rad Laboratories) were magnetized and washed with

PBS (Dulbecco) supplementedwith 0.1%Tween-20 (PBST) for three times. Thereafter, beadswere incubatedwith either 2mgof rabbit

anti-ASC (cloneAL177, AdipoGen) or 0.3 mgofmouse anti-Ab (82E1) (IBL America) in a total volumeof 200 mLPBST for 10min at RT on

a rotator. After that, beads were magnetized and washed three times with PBST. The antigen-containing solutions were added and

incubated again for 1 h at RT on a rotator. For ASC-Ab Co-IP’s 1.75 mMASC and 5 mMAbwere pre-incubated in serum-free medium

O/N before co-culturing themwith beads. For studying the intracellular bonding state of ASC and Ab, ASC-deficient microglia lysates

containing 35 mg total protein were added to a total volume of 200 mL PBST. Cell seeding, treatments and lysate collection were

performed as explained in the ‘‘Immunoblotting (IB)’’ section. Antibody controls were incubated with 200 mL PBST in parallel.

Subsequently, beads were magnetized and washed three times with PBST. To separate the antibody-bead binding, beads were

resuspended in 40 mL loading buffer (106 mM Tris-HCL, 141 mM Tris base, 2% LDS, 10% glycerol, 0.51 mM EDTA (pH 8.5),

360 mM 1,4-Dithiothreit (DTT), and 5 mg/mL Orange G) and heated at 70�C, 600 rpm for 10 min. For immunoblotting, every vial

was divided equally into two wells. Immunoblotting was then performed as described below.

Electron Microscopy
Fibrillary ASC (1.75 mM) and Ab1-42 monomers (5 mM) were pre-incubated in buffer B (see above) O/N at 37�C. For negative staining

electronmicroscopy, 4 mL of the protein sample was applied to a glow discharged copper grid and incubated for 1min. Sampleswere

washed three times bydipping the sample side into a dropof protein buffer before fluidswere removedby the aid of a filter paper. Than

samples were negatively stained by dipping them twice into a drop of 2% uranyl acetate following a 30 s incubation step and finally

removing residual fluids using a filter paper. Afterward, the EM grid was air-dried and immediately processed. Samples were imaged

using aJEOLJEM-2200FS200kVTransmissionElectronMicroscope (TEM) equippedwith aCMOS-Camera (TemCam-F416, TVIPS).

Cytotoxicity and Cell Viability Assays
For viability and cytotoxicity experiments, primary microglia were seeded at a density of 7.5 3 104 cells/well in 150 mL DMEM

containing 1% P/S and 1% N-2 supplement (GIBCO) in a 96-well plate and allowed to attach O/N. After pre-simulation with

100 ng/mL lipopolysaccharide (LPS) (InvivoGen) for 3 h, wells were washed once with DMEM and treated with either 1.75 mM

ASC, 5 mM Ab, ASC-Ab composites (containing 1.75 mM ASC and 5 mM Ab) or its buffer controls (20 mM Tris (pH 8.0) and

300 mM NaCl (‘‘buffer B’’) for ASC and DPBS for Ab) for 12 and 24 h. Subsequently, LDH release was measured using 50 mL super-

natant and a cytotoxicity detection kit (Roche) according to the manufacturer’s protocol. The reaction was stopped with 1 N HCl and

absorbance was measured at 490 and 680 nm using a microplate reader (Infinite M200; Tecan).

To determine cell viability, the XTT Cell Viability Kit (Cell Signaling Technology�) was used according to the manufacturer’s

protocol. In brief, 150 mL phenol red-free DMEM (GIBCO) per well was mixed with 50 mL of XTT Reagent and 1 mL Electron Coupling

Solution and added to the microglia. After 1 h the absorbance was measured at 450 nm with a TECAN microplate reader.

Immunoblotting (IB)
Primarymicroglia were seeded at a density of 1.53 106 cells/well in 2mL serum free DMEM in a 6-well plate. After pre-stimulating the

microglia with 100 ng/mL LPS, cells were treated as mentioned in the ‘‘Cytotoxicity and Cell Viability Assays’’ section above. After

12 h of treatment, supernatants were collected, centrifuged at 15.000 x g for 5 min to remove cell debris, and stored at �20�C for

protein precipitation.

For protein precipitation (Scheiblich et al., 2017), 500mLmethanol and 125mL chloroform were added to 500mL supernatant and

vortex vigorously. Supernatants and used solutions were therefor kept on ice continuously. After 5 min centrifugation at 15,000 x g at

4�C the upper aqueous phase was removed carefully and again 500 mL ice-cold methanol were added to the remaining liquid.

Samples were then vortexed vigorously and repeatedly centrifuged for 5 min at 13,000 x g at 4�C. Supernatants were removed

and pellets were dried for 5 min in a vacuum dryer. The pellets were then resuspended in 10 mL 2 X loading buffer (see above)

and denaturated (see below). Subsequently, samples were subjected to western blot analysis.
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For lysate collection, cells were scraped of the well plate, centrifuged at 15,000 x g for 5 min and pellets were lysed using 1 X

ristocetin-induced platelet agglutination (RIPA) buffer (25 mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.5% sodium desoxycholate, 1%

NP-40, and 0.1% SDS) supplemented with 1 X Protease/Phosphatase Inhibitor Cocktail (Cell Signaling Technology�). Cell lysates

and precipitated supernatants were denaturated in loading buffer at 95�C and 360 rpm for 5 min in a thermo cycler. Samples were

separated on a NuPAGE� 4%–12% Bis-Tris Gel (Invitrogen) in NuPAGEMES or MOPS SDS Running Buffer (NP0002) depending on

the size of the respective protein of interest. The Trans-Blot� TurboTM Transfer System (Bio-Rad Laboratories) was used to blot the

proteins on a 0.2 mm nitrocellulose membrane (Trans-Blot� TurboTM Transfer Pack, Bio-Rad Laboratories). Thereafter, membranes

were blocked with 3% fatty acid-free bovine serum albumin (BSA) (Millipore) in Tris-buffered saline supplemented with Tween-20

(TBST) (10 mM Tris-HCl, 150 mM NaCl, 0.05% Tween-20, pH 8.0) for 1 h at RT, followed by incubation with the primary antibodies

mouse anti-NLRP3 (1:1000, AdipoGen), rat anti-caspase-1 (1:1000, clone 4B4, Genentech), rabbit anti-ASC (1:1000; clone AL177,

AdipoGen), rabbit anti-GSDMD (1:1000, Abcam), goat anti-TREM2 (1:1000, GeneTex), mouse anti-Ab (82E1) (1:1000, IBL America),

rabbit-anti-IL-1b (1:500, GeneTex), rabbit anti-GAPDH (1:1000, Sigma-Aldrich) and rabbit anti-b-actin (1:1000, Cell Signaling Tech-

nology�), O/N at 4�C, respectively. On the next day,membranes were washed three times in TBST and incubated with the respective

secondary IRDye� IgG (H + L) antibodies (1:10 000, LI-COR Biotechnology) for 1 h at RT. Proteins were then visualized with the

Odyssey Fc or CLx Imaging System (LI-COR Biosciences) and quantified using Image Studio (LI-COR Biosciences).

Measurement of Cytokine Secretion
Primary microglia were treated as described above in the ‘‘Cytotoxicity and Cell Viability Assays’’ section. Microglial IL-1b secretion

was measured in cell supernatants using the mouse IL-1b/IL-1F2 DuoSet ELISA (R&D Systems) according to the manufacturer’s

protocols. The reaction was terminated by adding 2 N H2SO4, and the optical density was measured at OD450 with a microplate

reader. To determine cytokine concentrations, values were interpolated into the standard curve by linear regression using GraphPad

Prism 7 (GraphPad Software).

For Toll-like receptor (TLR) neutralization experiments, cells were co-treated with anti-mouse TLR4/MD-2 Complex (clone:

MTS510, Invitrogen), Mab-mTLR2 and anti-mouse TLR5 IgG (InvivoGen), as well as themouse IgG Invitrogen) and rat IgG (Invitrogen)

isotype controls at a final concentration of 5 mg/mL. For NLRP3 inflammasome inhibition, cells were co-treated with 1 mM MCC950

(CRID3) (Invivogen) or 100 nM IFM-2384 (IFM Therapeutics), respectively. A volume equal dimethylsulfoxid (DMSO) control, contain-

ing 0.005% DMSO was performed additionally.

Immunocytochemistry (ICC)
Primarymicroglia or ASC-deficient macrophages were seeded at a density of 23 105 cells/well in 1mL serum free DMEM in a 24-well

plate containing PLL coated coverslips. Treatments were performed as described above. After 12 h, cells were washed once with

PBS (Dulbecco) and fixed in 4% paraformaldehyde (PFA) dissolved in PBS for 15 min. For permeabilization, cells were washed three

times with PBS containing 0.1% Triton X-100 (PTX) for 5 min. Thereafter, cells were blocked using 5% normal goat serum (Vector

Laboratories) in PTX for 20 min and primary antibodies were added for another 30 min. To check for ASC speck formation, the rabbit

anti-ASC (1:250; clone AL177, AdipoGen) or mouse-specific rabbit anti-ASC/TMS1 (1:250, D2W8U, Cell Signaling Technology�) and

rat anti-CD11b (1:250; Serotec by Bio-Rad) were used. After three more washing steps in PTX, the secondary antibodies goat anti-

rabbit (1:250; Invitrogen) and goat anti-rat (1:250; Invitrogen) were applied for 30 min followed by three washing steps.

40,6-Diamidino-20-phenylindol-dihydrochloride (DAPI) was used as a counterstain at 0.1 mg/mL for 20 min in PBS before coverslips

were mounted. Images were taken using a 40 X or 60 X objective. To visualize caspase-1 activity, we used the FAM-FLICA�
Caspase-1 Assay Kit ImmunoChemistry Technologies LLC) according to the manufacturer’s protocol. All images were acquired

using a Nikon Eclipse Ti fluorescence 2 X microscope (Nikon). Image processing was accomplished using NIS-elements 4 (Nikon)

and Fiji ImageJ (Wayne Rusband; National Institute of Health).

Phagocytosis and Degradation of Amyloid b

Primarymicroglia were seeded at 3.53 105 cells/well in 1mL serum free DMEM in a 24-well plate. Previously, 0.5 mMFAM-labeled Ab

(Fl-Ab) (1-42) (Peptide Specialty Laboratories GmbH (PSL)) and 0.66 mM ASC were co-incubated in DMEM and kept in an incubator

under standard conditions. For phagocytosis experiments, microglia were treated with either 0.5 mM FAM-Ab or ASC-FAM-Ab com-

posites also containing 0.5 mM FAM-Ab for 15, 30 and 60 min. For cell collection, supernatants were discarded, cells were washed

with DPBS (GIBCO) and detached using 0.5% Trypsin-EDTA (GIBCO). Collected cells then were centrifuged at 300 x g for 5 min at

4�C. Supernatants were again discarded and cells were blocked in 50% iFBS diluted in DPBS for 10 min on ice. Subsequently, cells

were centrifuged and pellets were resuspended in DPBS containing 2% iFBS and APC/CD11b antibody (1:100, clone M1/70,

BioLegend) for 30 min on ice. After another centrifugation step, pellets were resuspended in DBPS containing 2% iFBS, and

measured using the BD FACSCantoTM II Flow Cytometer. Detailed analysis was performed using FlowJo (FlowJo LLC/Becton Dick-

inson & Company).

For Ab degradation experiments, microglia were exposed to FAM-labeled Ab or ASC-FAM-Ab composites concentrated as

explained above for 1 h. Microglia were washed three times in PBS and subsequently incubated for 0, 1, 2, 3 or 4 h in fresh,
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FAM-Ab-free or FAM-Ab-ASC-composite-free medium. Thereafter, cells were collected and stained as described above. Degrada-

tion after 0, 1, 2, 3, and 4 h was measured using the BD FACSCantoTM II Flow Cytometer. Detailed analysis was performed using

FlowJo.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data evaluation was performed using Graph Pad Prism 7 (GraphPad Software). Data are presented as mean ± SEM in all displayed

diagrams. Every dataset is accrued from at least three independent experiments (n), containing at least two to three replicates (N).

Each dataset was analyzed for Gaussian distribution. In case of passing the normality test, one-way ANOVA or tow-way ANOVA, for

grouped datasets, were performed followed by a post hoc analysis with a Tukey test. Otherwise, non-parametric data was analyzed

using the Kruskal–Wallis test combined with a Dunn’s post hoc test. When only two groups were statistically analyzed, a t test was

performed. For non-parametric data theMann-Whitney test was applied. For each individual experiment the statistical details can be

found in the corresponding figure legends. Levels of significance are indicated as *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

DATA AND CODE AVAILABILITY

This study did not generate/analyze any unique datasets or codes.
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