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Abstract 
Due to the improvement of the wear property, rolling contact fatigue including shattered rim and shelling are 

the main failure causes of the high-speed railway wheels. In this paper, shattered rim and shelling occurred on 

the service wheels of the China Railway High-speed (CRH) trains were systematically investigated. The recorded 

data of the last ten years CRH operation indicated that all shattered rims and shelling were detected with 

serving >106 km (corresponding to the fatigue life 107–109 cycles) which is very-high-cycle fatigue (VHCF). 

The crack initiationregion of shattered rim located at the depth of 10–25 mm from the tread, while that of 

shelling located at the depth <10 mm from the tread. The VHCF features under rolling contact loading were 

observed on the opening crack surfaces, i.e., similar VHCF features in uniaxial loading including the defect, fish-

eye, and crack propagation region and unique VHCF features of the three dimensional crack surface feature, 

beach bands uniformly distributed in the crack propagation region, absence of fine granular area (FGA). The 

VHCF model considering the stress distribution, defect size and hardness were applied to discuss the failure 

mechanism of the shattered rim and shelling. 

Keywords 
High-speed railway wheel, Shattered rim, Shelling, Very-high-cycle fatigue, Rolling contact loading, Crack 

initiation 

1. Introduction 
Increased running speeds and axle loads are the main development direction in modern railway systems and 

continue to pose new challenge with respect to performance of key systems such as the wheel/rail pair 

[1,2]. Rolling contact fatigue (RCF) represents one of the main failure causes on wheel/rail pair and is attributed 

to the repeated contact between wheel and rail [[3], [4], [5]]. Three typical RCFs have been defined [[6], [7], [8]], 

i.e., surface initiated crack, subsurface crack initiation and interior initiated crack. In general, the surface and 

subsurface initiated crack tend to cause shelling on the tread [9,10], and the shattered rim is the results of 

interior crack initiation [11,12]. Due to the improvement of wear property, the failure caused by wear is rare 

while rolling contactfatigue especially the subsurface and interior crack initiation become more common which 

are lacking in systematic investigation. 

The surface initiated crack typically developed as a consequence of frictional rolling/sliding contact that 

causes localized plastic flow of the surface material. As the cyclic strain localization occurred in the form of 

persistent slip bands, a surface crack is formed. Such cracks typically propagate at a shallow angle to the surface, 

deviating first into an almost radial and later into a circumferential direction of growth due to the shear stress 

[13]. This is well known for a number of pure metals and alloys. However, the combined effects of material 

defects and the contact shear stress profile with a maximum shear stress below surface are responsible for the 

subsurface initiated crack and the interior crack initiation [14,15]. Unlike the low-cycle fatigue regime of surface 

crack initiation, the formation mechanisms of subsurface and interior crack initiation in the failure of railway 

wheels are discussed rarely. 



In recent years, the topic of very-high-cycle fatigue (VHCF) has drawn significant interest from industry because 

many components in structural application such as wheels, turbine engines and bearings can accumulate 107 to 

1010 cycles in service [[16], [17], [18]]. In some cases, high-strength steels failed at the stress lower than the 

conventional fatigue limit and the crack initiated from interior non-metallic inclusions. The whole region of crack 

initiation and early propagation exhibits a “fish-eye” pattern and a relatively rough granular morphology is often 

observed surrounding the inclusion, which is called fine granular area (FGA) [19,20]. Grabulov et al. [21,22] 

reported that butterfly cracks and nano-crystalline ferrite formed around non-metallic inclusions in the VHCF 

under rolling contact loading. Due to the fact that the serviced railway wheels bear the fatigue life beyond 

107 under rolling contact loading, this raises an interesting question: Do the subsurface and interior crack 

initiation of the railway wheels belong to VCHF? If yes, what the characterizations of the VHCF under rolling 

contact loading are? 

The shattered rim and shelling in railway wheels of China Railway High-speed (CRH) trains were systematically 

investigated in this paper. First, the severing mileage and crack initiation location for the shattered rim and 

shelling occurred in CRH for the last ten years were collected and recorded. The fatigue life and crack initiation 

location for the shattered rim and shelling of railway wheels were presented by statistical indicating that the 

shattered rim and shelling belong to the VHCF under rolling contact loading. Then, the crack surfaces taken from 

the failed railway wheels were opened to observe the characterizations of VHCF under rolling contact loading. 

Finally, the VHCF model considering the stress distribution, defect size and hardness were applied to discuss the 

failure mechanism of the shattered rim and shelling. 

2. Material and experimental procedures 

2.1. Testing wheels and experimental procedures 
Four railway wheels (two with shattered rims and two with shelling) were removed from the CRH for further 

investigation. It is worth noting that shelling in this paper refer to the subsurface defect induced failure. Fig. 

1 shows two removed shattered rims on CRH rail vehicles. A crack was observed on the rim which has extended 

to the tread as shown in Fig. 1a, called penetrating shattered rim. No crack was observed on the tread and rim of 

the wheel as shown in Fig. 1b. However, a crack was detected by ultrasonic detection, which called non-

penetrating shattered rim. The non-penetrating shattered rim will extend to the rim with further service. Fig. 

2 presents two typical shelling on the CRH wheels that caused the failure of wheels. The ultrasonic detection 

was applied to detect the crack under the tread. A crack with the area of 30 mm × 30 mm was detected in the 

wheel (Fig. 2a), and the location is 3 mm depth from the tread. The wheel in Fig. 2b also contained a crack with 

the area of 8 mm × 20 mm, and the location is about 4 mm depth from the tread surface. 

 
Fig. 1. Photographs taken from CRH wheels showing (a) penetrating, and (b) non-penetrating shattered rims. 



 
Fig. 2. Photographs taken from CRH wheels showing (a) multipoints, and (b) single point shelling. 

 

In order to observe the crack surface, the crack was opened by mountingone side of the wheel on a fixture and 

cut the other side with an electric cutting saw. Then, optical microscopy (OP), scanning electron 

microscopy (SEM) with energy dispersive spectrum analysis (EDS), and 3 Dimensional Confocal 

Microscope Phase Shift MicroXAM were applied to systematically observe the crack surface. Radial sections 

containing cracks were then prepared for metallographic analysis. Metallographic preparation consisted of 

mounting the specimens and sequentially grinding the surfaces using 400–2000 grit emery papers and polishing. 

Etching was performed using a 4% Nital solution. Brinell hardnessmeasurements were performed on the wheel 

profile in the radial direction. 

2.2. Material 
The material in the railway wheels consisted of a forged medium carbon steel ER8 having the nominal chemical 

composition given in Table 1. The heat-treatment of the wheels is that heat up to Austenite transition 

temperature and water quench on the tread. For getting excellent hardness of wheel tread that bears the 

contact loading, quenching with spraying water was conducted during heat-treatment. Due to cooling rates at 

tread and interior of wheel rim, difference in ferrite fraction was observed as shown in Fig. 3. 

The microstructure under the tread is abundant pearlite with trace ferrite (Fig. 3a). The microstructure in the 

interior was found to consist of pearlite and ferrite (Fig. 3b), and the distribution of the ferrite is 

heterogeneous. Fig. 4 presents the typical inclusions in the wheel steels. The size of the inclusion is about 

20 μm. Nonmetallic inclusion is prevalent in the steels. The aluminium acted as deoxidizer during 

the smelting processing of steels which results in the introduction of aluminium oxide inclusions to steels. In 

addition, the mechanical properties of the material were measured by tensile testingon an MTS 810 system with 

cylindrical specimens of 6 mm in diameter and at a strain rate of 10−4 s−1. Five specimens were tested to obtain 

the yield strength of 673 MPa, the tensile strength of 950 MPa and the uniform elongation of 11.5% for the 

material. 

Table 1. Nominal chemical composition (wt%) of railway wheel steel used in the investigation. 

Fe C Si Mn P S Cr Cu 

Bal. 0.56 0.40 0.80 0.020 0.015 0.30 0.30 

 

 



Fig. 3. Microstructure of the wheels by optical microscopy, (a) surface, and (b) interior. 

 
Fig. 4. Inclusions in the steels, (a) Type I, and (b) Type II. 

 

2.3. Finite element modeling of wheel/rail contact 
First, use the Solidworks to build the geometry model of the wheel and a piece of rail as shown in Fig. 5. The 

diameter of the wheel is 860 mm. About 0.2 million of 3D elements are used in the model (An 8-node linear 

brick, reduce integration in ABAQUS). The average element length that away from the contact surface of the 

wheel/rail is 5 mm. Due to the non-linearity of contact analysis, contact surface need fine mesh for accurate 

stress analysis. The average element length near the contact surface is 1 mm. Due to symmetry and to improve 

the efficiency of the calculation, only 1/6 of the wheel was modelled. A pilot point is connected to the wheel 

using rigid link elements. All the external loading and boundary conditions of the wheel are applied on the pilot 

point. Due to the variant service axle load, maximum design axle load of 150 kN was applied in the stress 

analysis. Obviously the calculated stress is larger than the serviced stress. The variation trend and distribution of 

the contact stress on the wheel are similar which has reference significance in the failure analysis. The wheel/rail 

contact surfaces are regarded as surface-to-surface contact elements. The augmented Lagrangian method is 

used for contact simulation. The friction model is the coulomb friction model. The coulomb friction model 

defines an equivalent shear stress, which is proportional to the contact pressure. 

 
Fig. 5. 3D finite element model of wheel/rail contact. 

 

3. Results and discussion 

3.1. Fatigue life and crack initiation location 
The severing mileage and crack initiation location for the shattered rim and shelling occurred in the CRH trains 

have been recorded. It is worth noted that few shattered rim and shelling were reported in the previous 

literatures [[3], [4], [5], [6]]. The data of corresponding fatigue life and crack initiation location is not abundant 

which limits the systematic investigations. For more than ten years operation, abundant shattered rim and 



shelling on the CRH wheels were collected and recorded which make the systematic investigation possible. As 

the key components, railway wheels in the CRH are under close surveillance. All the wheels are detected on by 

the automatic online ultrasonic detection every two days. During the primary repair, secondary repair and third 

repair, the careful ultrasonic detection will be conducted for every wheel. Once the cracks in the wheels were 

detected, the severing mileage and crack initiation location were recorded. Fig. 6 presents the depth of the crack 

initiation region from the tread versus the fatigue life for shattered rim and shelling. The fatigue life is 

independent with the depth of the crack initiation region. The depth of the crack initiation region from the tread 

is in the range of 10–25 mm for all the shattered rims, and that for shelling is <10 mm. The wheels with 

shattered rim or shelling were recorded with the service of 105–107 km, and the corresponding fatigue life is 

within a range of 107–109 cycles. In general, the service stress is below the conventional fatigue limit. 

Considering the crack initiation site, service stress and fatigue life, the shattered rim and shelling can regarded 

as VHCF behavior. 

 
Fig. 6. Depth of crack initiation region versus fatigue life. 

 

3.2. Characteristics of shattered rim 
Fig. 7 presents the opening crack surfaces of the shattered rims. Fig. 7a is the crack surfaces of the penetrating 

shattered rim corresponding to the wheel in Fig. 1a. Although the crack surfaces have been contaminated due to 

oxidation and the crack initiation region is slightly blurred due to the corrosion, it is clear that the crack 

initiated and fatigue fractured from interior of the wheel. Fig. 7b is the non-penetrating shattered rim surfaces 

corresponding to the wheel in Fig. 1b. The crack surface is fresh and clear which is helpful for the investigation of 

crack initiationmechanism. The crack initiation region contains a defect surrounding with a flat region marked by 

dot line. Abundant beach bands were located in the crack growth region. 

 
Fig. 7. Shattered rim surfaces, (a) penetrating, and (b) non-penetrating. 



 

The fracture surface of shattered rims was observed by the scanning electron microscope (SEM) and 3 

Dimensional Confocal MicroscopePhase Shift MicroXAM. Fig. 8a presents the SEM results, indicating three 

typical region with different morphology, i.e., the defect (Def), Fish-eye (FiE), and crack propagation region with 

beach marks (Band). Fig. 8b and c presents the 3D shape of the fracture surface. The defect, the fish-eye and the 

crack propagation region are not on the same plane. It can be seen from Fig. 8c that the defect and fish-eye 

have a height difference of about 0.4 mm. This is different from previously reported fracture surfaces of VHCF in 

uniaxial loading [23], where the defect, fish-eye, and crack propagation region all lie on the same plane. 

 

 
Fig. 8. Fracture surface morphology by SEM and phase shift microXAM-3D, (a) 2D, (b) 3D and (c) fluctuate in the profile. 

 

For shattered rims, rolling contact loading is applied on the wheels, which is multi-axial stress state. Due to the 

large confining pressures under the contact which normally suppresses any Mode I deformationof the crack, the 

crack propagates mainly in a mixed Mode II-Mode III [7]. In general, the Mode II-Mode III crack presents 

the three dimensional characteristics. The beach band in the crack propagation region is another unique feature 

of the VHCF under rolling contact loading. The essentially uniform equidistance distribution of beach bands 

indicated that the crack propagation rate is constant which is different from the rapid propagation for the case 

of uniaxial loading. Although FGA is the typical feature in the crack initiation region for VHCF under uniaxial 

loading [24], FGA was not observed around the defect for the case of rolling contact loading (Fig. 8a). Fig. 

9 presents the defects for the shattered rims, including one defect type and defect cluster type. The results by 

energy dispersive spectrum analysis (EDS) indicate that the defects are aluminium oxide as shown in the insets 

of Fig. 9. Calcium oxide was also observed in other shattered rims. Defect type, size and location play an 

important role in the VHCF of steels [25,26]. Therefore, the VHCF under rolling contact loading demonstrates 

some typical features of VHCF under uniaxial loading, but also shows some distinct characteristics. 

 
Fig. 9. Defects for the shattered rims, (a) one defect, and (b) defect cluster, Insets showing the EDS results of the defects. 



 

3.3. Characteristics of shelling 
Fig. 10a presents the sample containing the shelling crack cut from the wheel shown in Fig. 2b. Surfaces A, B and 

C are prepared for crack and microstructure observations. The cutting position on the tread was marked by the 

arrow for opening the crack. The opening crack surfaces are presented in Fig. 10b. The crack surfaces were 

somewhat corroded and extruded, but the fatigue fracture features were evident. It is worth noting that part of 

the crack surface was missing due to wearing. The crack initiation site can be distinguished (Marked by the red 

box). The morphology is similar with that in Fig. 8, which can be regarded as the same fatigue behavior. Fig. 10c 

presents the crack initiation site observed by SEM. Defect was found in this region which were confirmed by 

EDS. Fig. 9d presents the crack propagation region. Beach bands were observed in this region. 

 
Fig. 10. Observations of the opening crack surface, (a) sample cut from the wheel, (b) opening crack surface, (c) crack 
initiation site by SEM, and (d) crack propagate region. 

 

Fig. 11a presents the three surfaces prepared for observations. Surface A contains a 19 mm length crack, and the 

deepest location of the crack is about 2.3 mm. The crack in Surface B is 7.7 mm in length, and that in Surface C is 

also 7.7 mm. The deepest locations are 2 mm and 2.3 mm respectively. Fig. 11b presents the morphology of the 

crack, indicating that the crack growth direction is almost parallel to the tread. Second cracks were observed for 

all the cases, which is related to the rolling contact loading. Fig. 11c and d present the microstructure around the 

cracks. A shear plastic deformation microstructure layer with 70 μm thickness (marked by arrows) was observed 

around the crack, which supported that the crack is driven by shear stress. 



 
Fig. 11. Observations of the cracks and microstructure, (a) metallographic observation surface A, B and C, (b) Cracks in 
Surface A, B and C, (c) and (d) microstructure around the cracks. 

 

Fig. 12a presents another sample containing the shelling crack cut from the wheel in Fig. 2a. The cutting position 

on the tread was marked by the arrows for opening the crack. A surface was prepared for crack 

and microstructure observations which were presented in Fig. 12. The opening crack surfaces are presented 

in Fig. 12b. It is indicated that fatigue fracture characteristics were presented although the crack surfaces were 

corroded and extruded. Shelling occurred on the crack surface of tread. Fig. 13a presents the metallographic 

surface prepared for observations. The service load of the wheels is rolling contact, which causes plastic 

deformation (marked by arrows) on the tread as shown in Fig. 13b. The grain refinement occurred in the tread, 

and the grain size increases gradually with an increasing depth. The microstructuresaround the cracks near tread 

are presented in Fig. 13c and d, indicating also evident grain refinement (marked by arrows). 

 
Fig. 12. Observations of the opening crack surface, (a) sample cut from the wheel, (b) opening crack surface. 



 
Fig. 13. Observations of the cracks and microstructure, (a) metallographic surface, (b) microstructure on the tread, (c) and 
(d) microstructure around the cracks. 

 

3.4. Multiaxial stress state analysis 
As mentioned above, the fracture surfaces for the case of interior and subsurface crack initiation are different, 

which is attributed to the stress distribution of rolling contact loading. Here, finite element method was applied 

to analyze the stress around the contact surface. The multiaxial stress consists of a pressure stress in the radial 

direction (Fig. 14a), a shear stress in axle direction (Fig. 14b) and a shear stress in circumference direction (Fig. 

14c). The results in Fig. 14 indicated that only a small region of the contact location bears high stress, the 

maximum stress located at the depth of about 2 mm while the stress in the other parts of the wheel is almost 

zero. Fig. 14d presents the stress variation along the radial direction of the wheel. For the case of shelling 

(subsurface crack initiation) with the depth 0–10 mm, the pressure stress is very high and decreases with the 

increase of the depth. The existence of the high pressure will cause the severe plastic deformation near the 

tread (Fig. 10c and 12c) and the press of the crack surfaces (Fig. 9b and 11b). The two shear stress increase first 

from the tread surface to the 2 mm depth of the wheel, and the maximum shear stress occurs at about 2 mm 

depth from the tread. These two shear stresses are the driven force of the subsurface crack initiation and 

propagation. For the case of shattered rim (interior crack initiation) with the depth 10–25 mm, the pressure 

stress is in the elastic stage, and no evident press between the crack surface was observed (Fig. 6). Meanwhile, 

the two shear stresses are also in the low level. It is consistent with VHCF features of a relatively low cyclic 

stress below conventional fatigue limit and beyond107 fatigue cycles. 



 
Fig. 14. Stress distribution of wheel/rail contact, (a) pressure stress contour in radial direction, (b) shear stress contour in 
axle direction, and (c) shear stress in circumference direction, and (d) stress variation along the radial direction of the 
wheel. 

 

3.5. Formation mechanism of shattered rim and shelling 
As mentioned above, the formation mechanisms of shattered rim and shelling were related to the defect 

induced subsurface and interior crack initiations, which is a long-standing topic for researchers involved in the 

investigation of VHCF. Clarifying fatigue mechanisms and controlling factors have been proposed. Although a 

number of factors can influence fatigue strength, such as the defect size, shape, chemical composition, etc. 

These factors have been substantially investigated. Murakami presented a simple and useful method based only 

two basic quantities for the prediction of fatigue limit σw [25,26]: 

(1) 𝜎w =
1.56(Hv+120)

(√𝑎𝑟𝑒𝑎)
1 6⁄  

Where the Vickers hardness (Hv) is the representative material parameter, and √area is defined as the square 

root of the area obtained by projecting a small defect or crack onto a plane perpendicular to the maximum 

principal stress. 

Although the Murakami model is applied to evaluate the VHCF in uniaxial loading, the fatigue strength under 

rolling contact loading can be regarded as proportional to the hardness and inversely proportional to the defect 

size. According to Eq. (1), the defect size and hardness distribution were measured. Fig. 15 presents the defect 

size that induced shattered rim and shelling of the wheels. In general, the size of defects that induced fatigue is 

larger than the average defect size in the material. In Fig. 15, The minimum size of defect that induced shattered 

rim and shelling is 56.7 μm, which is almost more than three times of the average defect size (20 μm). The 

maximum defect size is 1439.4 μm, about 72 times of the average defect size. Therefore, all of the defect sizes 

that induce crack initiation exceeded the average size. As listed in Eq. (1), the fatigue strength decrease with the 

increase of the defect size. 



 
Fig. 15. Defect size versus depth from the tread. 

 

The hardness for the wheel profile has been tested by the method of Brinell hardness. The wheel has served for 

a while. Fig. 16 presents the hardness distribution of the wheel profile. Fig. 16a shows the measure points and 

corresponding values of Brinell hardness. Vickers hardness was used in the prediction of fatigue strength in 

Eq. (1). Then, Fig. 16b presents the corresponding Vickers hardness distribution, indicating that the hardness 

value decreases gradually with an increasing depth from the tread. The hardness for the depth of 0–10 mm to 

the tread is in range of 270–280 Hv, The value of the hardness for the 10–25 mm depth is 260–270 Hv. Although 

the stress is larger in the surface, the gradient distribution of hardness for hard surface and soft core can 

suppress the surface crack initiation. 

 
Fig. 16. Hardness distribution of the wheel profile, (a) measure points and corresponding values, and (b) 
corresponding Vickers hardness contour. 

 

Fig. 17 presents the schematic for the formation mechanism of shattered rim and shelling induced by defects. 

When the defect locates at the subsurface of the tread with the depth <10 mm, crack induced by the defect will 

prefer to propagate to the tread instead of the rim, called shelling. This will cause damage on the tread, and 

influence the service of the wheel. With turning repair, the wheel can continue the service. When the defect is 

located at interior of the wheel and is deeper than 10 mm, the crack will propagate to the rim instead of the 

tread. The shattered rim will lead to the failure of the wheel, even disaster to the train. Models such as 

“hydrogen assisted crack growth” [27,28], “decohesion of spherical carbide” [29,30], and “formation 

and debondingof fine granular layer” [19,20] have been proposed for describing the crack initiation mechanism 

for the VHCF of steels. For the mechanism of “hydrogen assisted crack growth”, it was stated that the existence 

of locally concentrated hydrogen trapped by a defect induced the discrete crack growth at a very slow rate 

during crack initiation. The mechanism of “decohesion of spherical carbide” attributes the decohesions of 

spherical carbides from the matrix to the crack initiation of VHCF. The debondings of the fine granular layer and 

the matrix are responsible for the early cracks in the model of “formation and debonding of fine granular layer”. 



 
Fig. 17. Schematic of shattered rim and shelling induced by defects. 

 

4. Conclusions 
This paper investigates a VHCF behavior under rolling contact loading in railway wheels, i.e., the shattered rim 

and shelling. The VHCF under rolling contact loading has been rarely reported. The investigation of the shattered 

rim and shelling would enrich the topic of VHCF, meanwhile the existed VHCF theories can also guide the fatigue 

design of the railway wheels. The following conclusions are drawn. 

•The recorded data of the last ten years CRH operation indicated that all shattered rims and shelling 
were detected with serving >106 km (corresponding to the fatigue life 107–109 cycles) which is very-high-
cycle fatigue (VHCF). Shattered rim initiation region located at the depth of 10–25 mm from the tread, 
while the shelling crack initiationregion located at the depth <10 mm from the tread. 
•The VHCF features under rolling contact loading show the defect, fish-eye, and crack 
propagation region which is similar with the VHCF in uniaxial loading. Also novel VHCF features were 
also observed, i.e., the three dimensional crack surface features, beach bands uniformly distributed in 
the crack propagation region, and the absence of FGA. 
•The multi-axial stress distribution, the large defect, the hardness distribution of hard surface and soft 
core are attributed to the formation of the shattered rim and shelling in VHCF regime. 
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