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Abstract 
While brake disc wear represents a significant problem in high-speed rail systems, the progressive development 

of fatigue cracks during successive braking cycles also plays a great role in braking integrity. The 

modified microstructure consisting of a white etching layer (WEL) containing nanosized ferrite was observed on 

the friction surface of worn brake discs. In order to analyze how sequential thermal and mechanical 

stress affected crack propagation and microstructure evolution in brake discs, successive braking cycles were 

simulated on a full-scale braking bench test rig. Crack initiation and propagation mechanisms were proposed 

based on the experimental results, i.e., (i) occurrence of heat checking caused by heating and cooling transients 

during braking; (ii) heat checking increasing the roughness of the friction surface which in turn caused a 

local stress concentration and (iii) localized friction stress and thermal stress driving the heat checking to 

propagate and coalesce with the radial main crack. Analysis of the thermal-mechanical conditions that exist at 

the friction surface during braking indicates that WEL formation can be attributed to severe plastic 

deformation caused by the repeated friction between the disc and pads. Mechanical testing also indicated that 

WEL formation is not detrimental to brake disc integrity. 
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1. Introduction 
Increased running speed and axle loads represent an on-going trend in the operation of modern high-speed rail 

systems, and pose greater demands not only on structural performance, but also on the integrity of key friction 

pairs such as the wheel/rail and disc/pad systems [1], [2], [3], [4]. The development of shear cracks and 

microstructural alterations adjacent to the wheel/rail contact surface have drawn significant research interest 

over the past two decades. It is believed that contact force induces structural modifications, which ultimately 

leads to microcrackformation and spalling in the wheel/rail system [5], [6]. In comparison, crack behaviour 

and microstructure transformation on railway brake disc/pad friction pairs have not been widely studied and 

less is known about the underlying causes. 

Due to the increasingly severe operating conditions, thermal damagesincluding hot spots, heat checking and 

radial main crack, as shown in Fig. 1, frequently form on the friction surface of brake discs [7]. The formation of 

hot spots is attributed to the local high temperature during braking, and the thermal stress caused by heating 

and cooling transients during service is responsible for the formation of these thermal cracks [8], [9], [10]. As 

shown in Fig. 1, alternate occurrence of the heat checking and radial main crack are presented on the fiction 

surface, indicating a kind of competition in these two crack types. Experimental and numerical techniques have 

been employed to investigate these two crack behaviours. Radial main cracks appear on the surface of service 

discs which operate at 300 km/h, while only heat checking formed after repeated emergency braking tests at 

200 km/h [7], [11]. The propagation of a surface crack in the center of a hot spot was simulated by finite 

element method at a braking speed of 400 km/h, and the fatigue crack propagation curve between the crack 



length and emergency braking cycles was obtained, indicating the propagation of the radial main 

crack [12], [13]. Thus, with the increase of the braking speed from 200 km to 400 km the surface cracks 

propagation varied. 

 
Fig. 1. Thermal damages including radial main crack, heat checking and hot spot on friction surface [7]. 

 

Gradual surface microstructure modification has been observed in rails and wheels by optical microscopy, which 

displays a white and 10- to 100-mm-thick layer called a white etching layer (WEL) [14], [15]. In general, the 

microstructure modification associated with WEL involves a combination of phase transformation and grain 

refinement with grains varying from tens to hundreds of nanometers [16], [17]. The reported WELs are 

composed of ferrites [18], martensite [19], and coexistence of various phases of severely deformed pearlite, 

nanosized martensite, austenite and carbides [6] for different initial microstructure and loading conditions. WEL 

formation mechanisms have been hypothesized to be either thermally induced through phase transformations 

(T-WL) or mechanically induced through severe plastic deformation (M-WL) [20]. Meanwhile, in what way the 

WELs change the properties is not clear in the literature [21], [22]. Both positive and negative effects have been 

described, and this warrants further investigation. This raises an interesting issue: as a key friction pair, is there 

WEL on the friction surface of brake disc? If yes, what is the composition of the WEL and the influence of the 

WEL on the mechanical properties of the friction surface? 

In this paper, crack propagation and microstructural transformation on the friction surface of high-speed railway 

brake discs were investigated. For the investigation, two brake discs on a wheel were taken from service and the 

presence of existing heat checking and radial main cracks on the friction surfaces were observed and recorded. 

A series of braking tests were then conducted using a full-scale braking bench to study how heat checking and 

radial main cracks propagated during braking cycles. WELs were observed on the friction surface by optical 

microscopy and electron back-scattered diffraction (EBSD) and the corresponding formation mechanism was 

identified. Mechanical testing was also conducted on the specimens containing a WEL to ascertain the effects on 

mechanical properties. 

2. Experiments details 

2.1. Brake disc and pad materials 
Two full size brake discs and a set of pads were used as shown in Fig. 2. Since crack 

propagation and microstructural transformation are the main concern of this paper, two used brake discs 

(referred to as A and B) with pre-existing surface cracks were employed. Each disc was 720 mm in diameter and 

weighed approximately 72 kg. The brake discs were made from a forged medium carbon low alloy steel (AISI 

4340 equivalent) with a chemical composition (mass percentage) as shown in Table 1. The 



original microstructure of the material taken from a new brake disc is presented in Fig. 3 and consists primarily 

of tempered sorbite (mixture of ferrite and carbide phases). The failure of brake discs in high-speed trains during 

service is determined by the length of radial main crack (Fig. 2b), i.e., any radial main crack exceeds a certain 

length according to the related standard, the disc is considered to have failed. A brake disc with cracks in the 

actual train is acceptable, but monitoring of the crack propagation is crucial for the safety of the train. A total of 

twenty four radial main cracks distributed uniformly on the friction surfaces of disc A and B were chosen and 

identified as A1-A12 and B1-B12 respectively. In addition, the pads are made from copper based powder 

metallurgy. 

 
Fig. 2. Photograph showing (a) brake disc A, (b) typical radial main crack and (c) corresponding set of brake pads used in the 
study. 

 

Table 1. Nominal chemical compositions of the brake disc (mass percentage). 

C Cr Ni Mo Si Mn Fe 

0.31 1.1 1.8 0.5 0.25 0.75 Balance 

 

 
Fig. 3. Microstructure of the material from a new brake disc (Carbide: Dark particle, Ferrite: light color lamella). 

 



2.2. Experimental procedure 
It was of great interest to characterize the damage evolution on the friction surface during service. The damage 

evolution on the friction surface as a function of the number of braking cycles was investigated based on the 

examination of brake discs from an actual train during scheduled maintenance work. Fig. 4 presents sequence of 

damage evolution on the friction surface of the brake disc during service. In the first one thousand braking 

cycles, only superficial scrape marks were observed on the friction surface of the brake disc. After brake disc had 

been subjected to 103–104 braking cycles, heat checking appeared on the friction surface. After 104 times 

braking cycles, radial main cracks began to appear. The sequential occurrence of heat checking and radial main 

crack is related to the corresponding formation mechanism, and will be discussed later. 

 
Fig. 4. Sequence of damage evolution on the friction surface of the brake disc during service. 

 

To study crack growth and microstructure changes resulting from successive braking cycles, the discs and pads 

were subjected to a total of 1056 braking cycles using a full-scale braking bench test rig (RENK Test System 

GmbH) which is shown in Fig. 5. The test rig consists of an electric motor and flywheel which drive a train axle 

equipped with a hydraulic braking system. The maximum wheel velocity that can be achieved by the bench is 

420 km/h which is well in excess of the operating speed used during normal high speed rail travel. Prior to 

testing, a wheel with the test discs was mounted on the axle. Grinding-in is then performed to ensure full 

contact between the disc and pad. The speed for grinding-in is 70 km/h, and the thrust force to the pads is 

35 kN. After a period of grinding-in, the pads were observed to measure the contact area. If the contact area is 

more than 85%, the grinding-in process finishes. If not, the grinding-in is continued. Then, the axle-wheel system 

is then driven to the target testing speed of 300 km/h and maintained at this value for 2 min. Due to no radial 

main crack propagation occurring at the braking speed of 200 km/h [10], the braking speed of 300 km/h in these 

tests was chosen. The axle load for one disc is 8 kN, and the amount of energy dissipated in the emergence 

braking was calculated to be about 28 MJ. Braking action is then accomplished by a hydraulic actuator which 

applied a 19 kN force to the pads and then increased to 24 kN until a complete stop. This sequence is consistent 

with the emergency braking procedure used on actual train. In service braking, first the electro-dynamic braking 

is applied, and then the disc braking at a small speed, while the disc braking is launched at the beginning of 

emergency braking. Although the emergency braking hardly ever happens in the service, the crack propagation 

on the friction surface of the disc in the extreme condition of emergency braking has scientific significance and 

reference value for understanding the reliability of a disc. The temperature on the friction surface of the disc A 

during braking was measured using a Fotric infrared system. At the completion of about one hundred and fifty 

tests, the friction surfaces were polished using 400#, 800# and 1200# abrasive papers and then photographed 



using a digital camera. The reason for polishing is that after braking the friction surface was covered by a third 

body consisting of oxide and abrasive dust which impede the observation of cracks. The lengths of the fatigue 

cracks were then measured from the photographs in the course of the tests. 

 
Fig. 5. Photograph and corresponding schematic showing (a) full-scale braking bench, and (b) diagram of the test set-up. 

 

After bench testing was completed, samples were cut from friction surface of the brake disc A using a wire-

electrode discharge machine to enable microstructure characterization and mechanical testing to be performed. 

The Vickers hardness of the matrix and the friction surface were first measured using a FUTURE-TECH ASR-

900 microhardnesstester. The specimens were then polished and etched using Nital reagent to reveal the 

microstructure on the friction surface and matrix by an OLYMPUS BX51 optical microscope and EBSD using 

100 nm step size. Optical microscopy was also used to observe the cracks on the friction surface. It is worth 

noting that the microstructure and microhardness analysis were conducted at a location far from the cracks, and 

no evident difference of microstructure and microhardness was presented between the place close and far away 

from the cracks. A 3 Dimensional Phase Shift MicroXAM was employed to measure the roughness of the chosen 

location on friction surface. Tensile specimens, with a gauge length of 15 mm and width of 4 mm, were cut from 

the friction surface of a brake disc. For investigating the effects of the WEL on the mechanical properties of 

friction surface, a series of test specimens were made having thicknesses of 0.05 mm, 0.1 mm, 0.21 mm, 

0.35 mm, and 0.5 mm. All specimens were mechanically polished prior to tensile testing in order to remove 

any surface irregularities and to permit a more accurate determination of the cross-sectional area. 

Uniaxial tensile tests were carried out at a constant strain rate of 5 × 10−4 s−1 using an MTS Landmark testing 

machine. 

3. Results and discussion 

3.1. Crack propagation on the friction surface 
Fig. 6a shows a representative distribution of heat checking and radial main cracks on the friction 

surface obtained by optical microscopy. It can be seen that a radial main crack is clearly evident and surrounded 

by a network of heat checking. The heat checking demonstrates the characteristic reticulate pattern in the 

circumferential and radial directions. The crack tip of the radial main crack joined with the heat checking. Fig. 6b 

shows a cross-section profile of heat checking and a radial main crack. It is worth noting that subsurface cracking 

was also observed in the cross-section profile. The subsurface cracks are perpendicular to the friction surface 

and locate at the depth of 400 µm from the surface. This crack type is prevalent in the fatigue of railway wheels, 

but rarely reported for the case of brake discs. Since the surface cracks including heat checking and radial main 

crack are the main cause for the failure of brake disc, the investigation of subsurface crack will be conducted in 

future. Both cracks are perpendicular to the friction surface. It is indicated that both cracks are Mode I cracks 

which is different from the shear crack in the WEL of wheels [14]. The depth of radial main crack is larger than 



that of heat checking. Measurements confirmed this and showed that crack depth of the heat checking ranges 

from 0.1 mm to 0.45 mm with an average value of 0.18 ± 0.1 mm. In comparison, the depth of the radial main 

cracks varied from 0.5 mm to 2.0 mm with an average value of 1.2 ± 0.5 mm (Fig. 6c). 

 
Fig. 6. Photographs showing representative cracks (a) on the friction surface, (b) on the cross-section, and (c) distribution of 
crack depth. 

 

Fig. 7 presents the crack propagation results where the radial main crack length was measured after increments 

of about one hundred and fifty braking cycles. As shown in Fig. 7a, the heat checking propagated and coalesced 

with the radial main crack. In this situation, the heat checking propagated instead of the radial main cracks. Fig. 

7b presents the length of the radial main crack without propagation. Two thirds of the radial main crack did not 

propagate in the whole 1056 braking cycles. Fig. 7c presents a summary of radial main crack propagation as a 

function of braking cycles. The heat checking propagated and coalesced with the radial main cracks, which 

resulted in the propagation of radial main crack. The corresponding mechanism will be discussed in the next 

section. 

 
Fig. 7. Radial main crack propagation during full-scale braking tests showing (a) representative crack propagation on 
the friction surface, (b) summary of radial main cracks without propagation, and (c) summary of radial main cracks with 
propagation. 



 

For the railway brake disc/pad friction pairs, the wear in the pad is dominating while that in disc can be 

ignored. Fig. 8 presents the wear surfaces before braking and after 12 braking cycles. The wear weight loss of 

the upper pad in Fig. 8b is 39.0 g, and that of the lower pad is 36.0 g after 12 braking cycles. The wear weight 

loss of the two pads is almost the same. However, the wear rate in each pad is different, i.e. the wear rate in the 

center of the surface is much severer than that in both sides of the surface. The wear debris filled in the gaps 

between the blocks which can relieve abrasive wear. 

 
Fig. 8. Comparison of the wear surfaces, (a) before braking and (b) after 12 braking cycles. 

 

3.2. Crack initiation and propagation mechanism 
As presented in the previous work [7], a significant number of radial main cracks appear on the surface of brake 

discs which operate at 300 km/h, while heat checking typically appears after repeated emergency braking (EB) at 

200 km/h. No crack growth was observed on disc surfaces after routine braking at about 50 km/h. The failure 

analysis of the brake disc was discussed by evaluating the braking energy for different braking speeds. However, 

the initiation and propagation for the heat checking and radial main crack were not systematically studied. In 

this paper, based on the results shown in Figs. 4 and 7, the crack initiation and propagation mechanism on the 

friction surface can be describe as three stages which include: (i) occurrence of heat checking caused by heating 

and cooling transients during braking; (ii) heat checking increasing the roughness of the friction surface which in 

turn causes local stress concentration and (iii) localized friction stress and thermal stress driving the heat 

checking to propagate and coalesce with the radial main cracks. The details of these three stages are discussed 

in the following paragraphs. 



The first stage consists of heat checking formation at the beginning of the disc failure. Heat checking is the 

typical crack type that results from thermal fatigue (Mode I crack) which has been reported in previous 

literature [7], [9]. As shown in Fig. 6b, the crack direction is nearly vertical to the friction surface, which is 

different from the reported shear crack in wheels or rails [14]. A brake disc is subjected to a series of heating 

and cooling transients which is caused by sliding between disc and pad during braking. Either expansive or 

contractive thermal stress arises when the material is totally or partly constrained. The maximum value of 

the tensile thermal stress generated on the friction surface calculated by finite element method [10], [11] was 

about 200 MPa after 300 km/h emergency braking and cooling and occurred on the external friction surface. 

Meanwhile, the brake thrust is 19 kN or 24 kN, the area of the pad A is about 175 cm2 and the friction factor can 

be taken as 0.35. According to Coulomb's friction law (𝑓 = 𝜇𝑁/𝐴), the friction stress f is about 0.4 or 0.5 MPa 

which is negligible compared with thermal stress. Thus, given the relatively low level of mechanical loading, this 

indicates that thermal fatigue of heating and cooling transients is likely responsible for the heat checking 

initiation on the friction surface of the brake disc (formation of heat checking as shown in Fig. 6) at first. 

The occurrence of the heat checking will result in a network of shallow cracks which will tend to increase the 

roughness of friction surface and further cause the local stress concentration. Fig. 9 presents the 3D morphology 

and profile of the friction surface with fatigue cracks, indicating more than 30 µm height difference. Coulomb's 

friction law is not applicable for the localization of the friction stress. Quantitative analysis of the friction stress 

localization will be conducted in a future investigation. The friction stress is in the circumferential directionwhich 

acts as the driving stress of the heat checking in the radial direction. Combined with the thermal stress, the heat 

checking in the radial direction grew into the radial main crack, which belongs to the thermal-mechanical 

fatigue [23], [24]. 

 
Fig. 9. Surface morphology of the brake disc obtained by phase shift microXAM-3D, (a) 3D morphology, and (b) profile. 

 

In the final stage local friction stress and thermal stress drive the heat checking to propagate and coalesce with 

the radial main cracks. The thermal stress calculated by finite element method indicates that the distribution of 

thermal stress decreases in the depth direction [10], [11]. As known, the friction stress tends to decrease with 

increasing depth from the surface. Fig. 10 presents the schematic of the thermal and friction stress distribution 

in the depth direction. The depth of the radial main crack is larger than the heat checking as show in Fig. 6. The 

thermal-mechanical stress (crack driving force) in the crack tip of heat checking is large, while that of a radial 

main crack is nearly zero. This is the reason for the crack propagation in this stage. 



 
Fig. 10. Schematic showing thermal stress and friction stress distribution perpendicular to the friction surface. 

 

As mentioned above, the failure of the brake disc is that any radial main crack exceeds a certain length. 

However, based on the discussion the occurrence of heat checking caused the subsequent two stages. Thus, 

heat checking is the dominant factor in the failure of brake disc. The anti-fatigue design strategy for the brake 

disc should focus on the suppression of heat checking formation. In general, repetition of heating and cooling 

transients can result in thermal fatigue of the friction surface. The rate of change in temperature 

and temperature gradient influences the damage on friction surface. Severe temperature variation may 

induce plastic deformation in surface layers, which in turn can result in heat checking in 105 or less 

cycles [25], [26]. In general, the braking energy dissipated increased with the increase of the braking speed 

and axle load, and the temperature variation of brake disc is determined by braking energy dissipated. 

Therefore, the tendency of modern high-speed rail systems (increased running speed and axle load) will increase 

the temperature variation on the friction surface and poses challenges on the integrity of the brake disc. 

3.3. WEL on the friction surface 
A hardened layer near the friction surface after a high-energy braking and oxidation of the brake disc steel near 

the crack edges were observed in the previous work [7]. However, the detail observations and corresponding 

mechanism were not provided. In this paper, the microstructure and microhardness of the friction surface and 

subsurface material after braking were characterized in the depth direction. First, Fig. 11a presents the 

microstructure by optical microscopy. The microstructure in the circumference direction (CD) was similar. 

However, the microstructure along the depth direction (DD) showed some variation. Three distinct regions can 

be defined. First, the microstructure near the surface in Fig. 11a is fine and white, and is consistent with that of a 

WEL [15], indicating that microstructural alteration and grain refinement occurred on and near the surface. 

Second, the interior microstructure was found to be tempered sorbite which is the same as that of as-received 

material (Fig. 3). Third, the intermediate layer also has a slight microstructure alteration and grain refinement 

between the WEL and Matrix. Fig. 11b presents the microstructure in the surface obtained by EBSD. The 

microstructure in the surface transformed from tempered sorbite into nanosized ferriteaccompanied by 

decarbonization. Fig. 11c shows the grain size distribution in the surface, indicating the grain size is in the range 

of 50–550 nm with an average size of 170 nm. The WEL presents the gradient structure with increasing grain size 

along the depth from nano scale to micro scale. The microstructural transformation and grain refinement is 

attributed to the friction between the brake disc and padswhich will be discussed later. Fig. 11d presents the 

tempered sorbite in the interior by EBSD, which is consistent with the results in Fig. 3. 



 
Fig. 11. Microstructure of the friction surface in the depth direction after braking, (a) Microstructure in the depth direction 
by optical microscopy(CD: the circumference direction, DD: the depth direction), (b) EBSDimage and (c) grain size 
distribution for the topmost 5 µm thick layer of the friction surface, (d) EBSD image far away from the friction surface. 

 

As conflicting results have appeared in the literature regarding the effect of WEL on mechanical properties on 

the wheels [21], [22], it is of some interest to assess the potential affects that WEL formation has on the brake 

disc. To characterize the hardness variation of the WEL and tempered sorbite, a 0.3 mm × 0.3 mm region of the 

friction surface with WEL and the matrix in the depth direction as shown in Fig. 11a were chosen. A 

microhardness test was conducted on these two regions at an interval of 150 µm starting from just below the 

friction surface. Fig. 12presents the Vickers hardness of the matrix and friction surface. Each data point in Fig. 

12c is the average of five test results. The contour of Vickers hardness is given in Fig. 12a where it can be seen 

that the hardness distribution is nearly homogeneous within the range of 324 HV~408 HV. For the case of 

friction surface, the contour of Vickers hardness is shown in Fig. 12b, indicating a pronounced gradient 

distribution in the depth direction. Fig. 12c presents the comparison of the hardness distribution on the friction 

surface and matrix. The hardness of the matrix is homogeneous, and that on the friction surface is a gradient. 

The peak hardness of 590 HV develops at the top surface, and decreases with increasing distance away from the 

surface until it reaches a minimum value of 332 HV which a little bit larger than that of the matrix. With the 

increase of the depth, the hardness will meet the value of the matrix. The occurrence of WEL on the friction 

surface as shown in Fig. 11 caused the gradient hardness distribution on the friction surface. 



 
Fig. 12. Vickers hardness of the matrix friction surface, (a) matrix, (b) friction surface with WEL. 

 

Stand-alone gradient layers of various depths from the top surface were also tested to further investigate the 

mechanical properties of the WEL. Gradient structure in grain size has been reported that can suppress 

the strain localization and offer a combination of high strength and good ductility [27], [28]. The role of the 

thickness plays an important role on the mechanical property of the specimens. A specimen with small thickness 

contains only the deformation microstructure, while that with large thickness consists of deformation 

microstructure and matrix. Engineering stress-strain curves including the specimens with different thicknesses 

and matrix are shown in Fig. 13, indicating different yield strength and uniform elongation. The top layer of 

0.05 mm thickness, i.e. GL0.05 film, has the yield strength as high as 1050 MPa but necking occurred soon after 

yielding. Increasing the thickness to 0.1 mm and 0.21 mm (GL0.1 and GL0.21 films) led to a decrease in yield 

strength and increase in uniform elongation. Further, with the increase of the thickness to 0.35 mm and 0.5 mm, 

the yield strength almost kept the same and the uniform elongation reached to 9%, which are both better than 

that of coarse grain specimen (CG). The specimens with the thickness of 0.35 mm and 0.5 mm contain the WEL 



and matrix which presents both better strength and ductility. This suggests that the WEL improves the tensile 

properties for the case of a brake disc. 

 
Fig. 13. Engineering stress-strain curves. GL: gradient layer of the friction surface. Superscript: GL thickness (mm). CG: 
coarse grain layer in the interior. 

 

3.4. WEL formation 
WEL formation consisted of tempered sorbite transforming to ferrite and significant grain refinement which is 

attributed to the friction of disc and pads. Two WEL formation mechanisms have been reported in the 

literature [20] and can be classified as either mechanically-induced or thermally-induced WEL. In general, a 

thermally-induced WEL presents a sharp transition zone between the WEL and the matrix. The thermally 

induced WELs have gone through austenitization. The austenite was a result of phase transformation from the 

original microstructure [29]. However, no sharp transition zone was observed in the WEL and matrix as shown 

in Fig. 11a. Additionally, no retained austenite was observed when the WEL was analyzed by EBSD in Fig. 11b. 

Temperature rise is also an important factor for the mechanically-induced or thermally-induced WEL formation, 

and Fig. 14 shows the results of in-situ thermographic measurements for the friction surface during braking. It 

can be seen that the maximum temperature achieved on the friction surface during braking was about 440 °C, 

which is substantially lower than the minimum austenitization temperature of 720 °C. Considering the lack of 

any discernible boundary between WEL and matrix, the absence of retained austenite in the WEL, and the peak 

temperatureduring braking being lower than the austenitization temperature, It can be concluded that the 

mechanically-induced through severe plastic deformation mechanism is likely responsible for WEL formation 

mechanism in a brake disc. Severe plastic deformation has been found to be effective in refining grains 

of polycrystalline metals and alloys [27], [28]. When applying surface severe plastic deformation with high 

strainrates and high strain gradients, a gradient nano-grained surface layer can form on a coarse grained 

substrate. Refinement of coarse grains in metals is usually governed by dislocation activities that subdivide the 

original coarse grains, such as dislocation boundaries, low and high angle grain boundaries. The mechanically-

induced mechanism of WEL formation in the sliding of disc and pads is similar to the surface mechanical 

grinding treatment which is used to manufacture gradient structure metals [30], [31]. The WEL was a typical kind 

of gradient structure, which can produce a combination of high strength and considerable ductility [32], [33]. 



 
Fig. 14. In-situ thermographic measurements showing temperature distribution on the friction surface for braking time of 
(a) 1 s, (b) 3 s, (c) 9 s, and (d) 135 s. 

 

4. Conclusions 
In this paper, fatigue crack propagation and microstructural transformation on the friction surface of a high-

speed railway brake discwere analyzed. A full-scale test bench was used to simulate a series of braking cycles, 

after which mechanical testing and metallographic observation were performed. Based on the results obtained, 

the following conclusions can be drawn. 

1) Heat checking and radial main crack were observed on the friction surface of a high-speed railway brake disc. 

Only scrape marks appeared on the friction surface in the first one thousand braking cycles. Heat checking 

initiated during the next 103–104 braking cycles. After 104 times braking cycles, radial main cracks began to 

appear. 

2) A crack initiation and propagation mechanism was proposed, i.e., (i) occurrence of heat checking caused by 

heating and cooling transients during braking; (ii) heat checking increasing the roughness of the friction surface 

which in turn caused local stress concentration and (iii) localized friction stress and thermal stress driving the 

heat checking to propagate and coalesce with the radial main crack. 

3) WEL within nanosized ferrite formed on the friction surface of railway brake disc, which caused a gradient 

hardness distribution in the depth direction. The occurrence of WEL can also improve the mechanical properties 

of brake disc. 

4) Considering the inexistence of an evident boundary between WEL and matrix, the absence of austenite in the 

WEL, and the peak temperature during braking being lower than the austenitization temperature, the formation 

of the WEL is attributed to the mechanically surface severe plastic deformation caused by the friction between 

the disc and pad during braking. 
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