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Abstract 

 

The syntheses and O2 reactivities of active-site models of cobalt-substituted ring-cleaving dioxygenases are 

presented. The pentacoordinate cobalt(II)-aminophenolate complex, [Co(TpMe2)(tBu2APH)], gives rise to two 

distinct dioxygen adducts at reduced temperatures. The first is a paramagnetic (S = 1/2) cobalt(III)-superoxo 

species that was characterized with spectroscopic and computational techniques. The identity of the second 

Co/O2 adduct was elucidated by X-ray crystallography, which revealed an unprecedented cobalt(III)-alkylperoxo 

structure generated by O2 addition to the metal ion and ligand. These results provide synthetic precedents for 

proposed intermediates in the catalytic cycles of O2-activating cobalt enzymes. 

The bacterial breakdown of organic compounds, including human-generated pollutants, often requires 

dioxygenase enzymes that oxidatively cleave aromatic carbon–carbon bonds using O2.(1) Substrates of these 

ring-cleaving dioxygenases include substituted catechols, o-aminophenols, 1,4-hydroquinones, and 

salicylates.(2) The active sites of most ring-cleaving dioxygenases feature a mononuclear nonheme iron center 

bound facially to one Glu (or Asp) and two His residues.(3) However, recent studies revealed that an extradiol 

catechol dioxygenase (CatD), homoprotocatechuate-2,3-dioxygenase (HPCD), exhibits equal or greater activity 

with Mn or Co in the active site.(4) The “promiscuity” of HPCD supports the mechanistic proposal that 

O2 activation by ring-cleaving dioxygenases does not necessitate a change in metal oxidation state. Instead, the 

metal facilitates the transfer of one electron from the coordinated substrate to O2, thereby yielding a M(II)-

superoxo species with an (imino)semiquinone radical (B in Scheme 1).(5) Formation of a substrate-based radical 

encourages attack by the superoxide ligand to generate a putative alkylperoxo species (C), which undergoes 

rearrangement to insert an O atom into the substrate ring (D).(6) Analogous mechanisms are likely employed 

by o-aminophenol and 1,4-hydroquinone dioxygenases.(7) 

 
Scheme 1. Proposed Mechanism of Ring-Cleaving Dioxygenases 

 



The surprising activity of metal-substituted HPCD has stimulated the synthesis of extradiol CatD models 

featuring Co and Mn. Yet complexes that replicate the monoanionic, bidentate coordination of the catecholate 

ligand in the enzyme active site are still lacking. Recently, the Riordan and Hikichi groups reported Co and Mn 

complexes, respectively, that feature a monoanionic catecholate ligand bound in a monodentate 

manner.(8,9) Exposure of these complexes to O2 results in formation of the corresponding M(II)-semiquinonate 

(SQ) species via loss of an electron and proton (i.e., net H atom transfer, HAT). Thus, the CatD models fail to 

replicate the initial O2 binding step of the enzymatic mechanism. In some cases, further reaction of the Co(II)-SQ 

complexes with O2 affords the intradiol ring-cleavage products in low yield.(8) 

To avoid the shortcomings of the cobalt-catecholate complexes, we decided to pursue cobalt(II) dioxygenase 

models that contain an aminophenolate ligand instead. Aminophenol dioxygenases (APDOs) are closely related 

to extradiol CatDs both structurally and mechanistically,(2) and although a cobalt-substituted APDO has not 

been generated to date, it is reasonable to expect such an enzyme to display activity. More importantly, we 

reckoned that the less acidic −NH2 donor would deter formation of a Co(II)-iminosemiquinone (ISQ) species and 

provide access to biologically relevant O2 reaction pathways. This hypothesis proved correct, and herein we 

describe the synthesis of two mononuclear Co(II) complexes (1 and 2 in Figure 1) that feature a monoanionic, 

bidentate aminophenolate ligand. The 2-histidine-1-carboxylate facial triad of the enzymatic active site is 

modeled with the TpR2 ligand (R = Ph (1) or Me (2); TpR2 = hydrotris(pyrazolyl-1-yl)borate substituted with R-

groups at the 3- and 5-positions). Although HAT reactivity is observed for 1 and 2 under certain conditions, the 

latter complex gives rise to O2-derived intermediates not observed for the analogous catecholate complexes, 

including a cobalt-superoxo species that resembles intermediate B. Furthermore, we report the first X-ray 

structure of a cobalt-alkylperoxo complex with a structure akin to C in the proposed ring-cleaving mechanism. 

 
Figure 1. Left: Schematic drawing of [Co(TpR2)(tBu2APH)] (1 and 2). Right: X-ray crystal structure of 2. 

 

The crystal structures of complexes 1 and 2 each revealed a five-coordinate Co(II) center in which the 

monoanionic tBu2APH ligand binds in a bidentate fashion (Figure 1). The TpR2 ligands coordinate facially with 

average Co–NTp bond distances of 2.11 Å. The Co–N/O bond distances (Table S1) are characteristic of 

pentacoordinate, high-spin Co(II) complexes. X-band EPR spectra of 1 and 2 (Figure S3) exhibit features arising 

from the ms = ±3/2 doublet of the S = 3/2 manifold (D < 0). In both spectra, hyperfine splitting from the 59Co 

nucleus is evident in the low-field resonance near g ∼ 7 (ACo = 85 G for 2). 

Complex 1 reacts slowly with O2 to yield a stable, dark green species (1ox; Figure 2a). X-ray crystallography 

determined that 1ox, like its precursor, is a neutral five-coordinate complex. The Co–NTp bond distances change 

only slightly from 1 to 1ox (Table S1), suggesting that the Co center remains divalent and high-spin. Despite these 

similarities, comparison of the two structures reveals that the tBu2APH ligand of 1 has been oxidized to an ISQ 

radical in 1ox. The change is apparent in the shorter O1–C1 and N2–C2 bond distances of 1ox, as well as the 

quinoidal distortion of its C–C bonds (Figure 2b). Using the “metrical oxidation state” method developed by 

Brown,(10) the tBu2ISQ ligand of 1ox carries a charge of −0.95, near the ideal value of −1.0 for an ISQ ligand. The 

presence of an tBu2ISQ radical is also evident from characteristic π → π* features in the 600–800 nm region of the 

absorption spectrum that overlap with Co(II) d-d bands (Figure 2a).(11) Complex 1ox is EPR-silent and the 



observed magnetic moment of 2.9 μB (S = 1) is indicative of antiferromagnetic coupling between the Co(II) 

and tBu2ISQ spins. 

 
Figure 2. (a) UV–vis absorption spectra of 1 and 1ox in CH2Cl2 at 20 °C. (b) Selected bond distances (Å) for the tBu2APH 
and tBu2ISQ ligands in X-ray structures of 1 and 1ox, respectively. 

 

Likewise, exposure of 2 to O2 at room temperature (RT) yields a green species (2ox) with spectral and magnetic 

properties similar to 1ox (Figure S4). A notable difference, however, is that 2ox decays within minutes at 20 °C, 

which hindered the growth of suitable crystals. Significantly, 2ox can also be generated under anaerobic 

conditions by treating 2 with one equivalent of 2,4,6-tri-tert-butylphenoxy radical (TTBP•), a well-known H atom 

abstractor (Figure S4). This result demonstrates that the conversion of 2 → 2ox involves loss of a proton and 

electron to generate [CoII(TpMe2)(tBu2ISQ)]. Nuclear magnetic resonance (NMR) analysis of the reaction mixture 

after decay of 2ox in air found that 3,5-di-tert-butyl-o-benzoquinone (DTBQ) is the only product derived from 

the tBu2APH ligand (Figure S5). Thus, the overall O2 reaction does not result in oxygenated or ring-cleaved 

products; instead, the tBu2APH ligand undergoes two-electron oxidation to the corresponding o-

iminobenzoquinone, followed by hydrolysis to DTBQ upon aqueous workup. 

While the O2 reactivity of 1 and 2 at RT is dominated by HAT chemistry, we found that it is possible to observe 

novel Co/O2 adducts at reduced temperatures. Reaction of 2 with O2 at −78 °C in CH2Cl2 or THF generates a 

metastable pink species (2-O2) with absorption features at λmax = 505 and 800 nm (Figure 3a). Purging the 

solution with Ar does not regenerate 2, and warming causes 2-O2 to convert to 2ox. The X-band EPR spectrum 

of 2-O2 presents a S = 1/2 signal with g-values of 2.084, 2.007, 1.957 and 59Co hyperfine splitting of 28 G 

(Figure 3b). Quantification of the EPR signal indicates that 2-O2 accounts for ∼80% of the Co in the sample, with 

the remainder being starting complex. Both the UV–vis and EPR spectra of 2-O2 are strikingly similar to those 

previously reported for Co/O2 adducts.(12) In particular, the clustering of the g-values near 2.0 and the 

small ACo-value of 2-O2 (relative to its Co(II) precursor) are distinctive characteristics of cobalt(III)-superoxo 

species, reflecting localization of the unpaired electron on the superoxo ligand. The presence of a superoxo-to-

Co(III) charge transfer (CT) transition near 500 nm, as observed for 2-O2, is also a common feature of known 

cobalt(III)-superoxo complexes in noncorrinoid environments.(12) Interestingly, complex 1 is unreactive with 

O2 at low temperatures, suggesting that sterics modulate the energetics of O2 binding. 

 
Figure 3. (a) UV–vis absorption spectrum of 2-O2 obtained by reaction of 2 with O2 in THF at −70 °C. [2]initial = 1.25 mM. (b) X-
band EPR spectrum (red) of 2-O2 in frozen THF at 77 K. Parameters for the simulated spectrum (gray) are provided in the SI. 



 

The geometric and electronic structures of 2-O2 were further analyzed using density functional theory (DFT) 

calculations. The geometry-optimized structure (Figure S6) features an end-on superoxo ligand in a bent 

conformation. The superoxo nature of the O2 ligand is reflected in the computed O–O distance of 1.278 Å. The 

six-coordinate Co(III) center is low-spin and nearly all of the unpaired spin density resides on the superoxo 

ligand, consistent with the EPR data. The computed 59Co A-tensor is anisotropic with a dominant hyperfine 

splitting of 26 G, in excellent agreement with the experimental value. The g-values predicted by CASSCF/NEVPT2 

calculations (g1,2,3 = 2.060, 1.991 and 1.979) reproduce the weak anisotropy of the 2-O2 signal. Thus, the 

computational data further corroborate the assignment of 2-O2 as a cobalt(III)-superoxo species. 

Interestingly, we found that a second Co/O2 adduct with spectroscopic features distinct from 2-O2 is generated 

when 2ox is treated with O2 at reduced temperatures. Aerobic solutions of 2ox in CH3CN and CH2Cl2 change from 

dark green to light brown upon cooling. Monitoring the process by UV–vis spectroscopy revealed that the 

species generated at low temperature (3) lacks well-defined absorption features in the visible region (Figure 4a). 

The absorption features of 2ox return when the solution is warmed to RT, but full intensity is not recovered due 

to its instability. No color change is observed during cooling if 2ox is generated anaerobically via reaction with 

TTBP•, indicating that formation of 3 requires O2. The characteristics of the 2ox → 3 conversion are reminiscent 

of those previously reported for the O2 reaction of cobalt(II)-semiquinonate complexes at reduced 

temperatures.(8b,9b) Because of this, we prepared and structurally characterized [CoII(TpMe2)(tBu2SQ)] (4; Figure 

S7), the SQ analogue of 2ox. Complex 4 reacts with O2 at T < −40 °C to give a brown chromophore (5) with 

absorption features similar to those of 3 (Figure S8). Like 3, species 5 is EPR-silent and variable-temperature 

NMR experiments indicate that both Co/O2 adducts are diamagnetic (Figures S9–S11). 

 
Figure 4. (a) UV–vis spectral changes for the thermal interconversion of 2ox (black) and 3 (red) in CH2Cl2 in the presence of 
O2. [Co] = 0.7 mM (b) Ellipsoid plot derived from the X-ray structure of 3. Selected bond lengths (Å) are provided in red. 

 

Due to its stability at temperatures below −25 °C, we succeeded in growing light brown crystals of 3 for X-ray 

analysis. The resulting crystal structure revealed a neutral cobalt-alkylperoxo complex in which the O2-derived 

atoms form a bridge between Co and C1 of the ligand (Figure 4b), thereby generating a five-membered 

metallocycle. The O2–O3 distance of 1.482(3) Å is typical of alkylperoxo ligands, and the sp3 hybridization of the 

C1-atom is evident from its average bond angle of 110° ± 7°. The Co–N/O bond distances in 3 are shorter than 

those of 2 by an average of 0.15 Å, indicating a change from high-spin Co(II) to low-spin Co(III). Comparison 

of 3 to 1ox reveals that the quinoidal distortion of the ligand is far more pronounced in the former complex, and 

the metric parameters observed for 3 are characteristic of iminobenzoquinone ligands.(10) Thus, formation 

of 3 is a two-electron process involving oxidation of both the Co center and tBu2ISQ ligand (Scheme 2). 



 
Scheme 2. Species Generated by Reaction of Complexes 1 and 2 with O2 

 

The “spiroendoperoxide” structure of 3 is the first of its kind among first-row transition metal complexes; 

indeed, it represents the only X-ray structure to date of a synthetic dioxygen adduct with direct relevance to 

ring-cleaving dioxygenases. The closest analogues are Rh(III)- and Ir(III)-alkylperoxo complexes generated by 

O2 addition to a 9,10-phenanthrene-catecholate(2-) ligand.(13) Similarly, Gade recently reported a square-planar 

nickel(II) complex that features an alkylperoxometallocycle derived from O2.(14) In main-group chemistry, 

Abakumov showed that a series of Sb(V)-amidophenolate complexes reversibly bind O2 to yield an alkylperoxo 

donor.(15) As for biological precedents, the structure 3 closely resembles the iron-alkylperoxo intermediate 

observed by Lipscomb in a crystal structure of HPCD.(16) 

As summarized in Scheme 2, we have explored the O2 reaction landscape of two cobalt(II)-aminophenolate 

complexes. These studies led to the isolation and characterization of cobalt(III)-superoxo (2-O2) and -alkylperoxo 

(3) species that mimic proposed intermediates of ring-cleaving dioxygenases. It is instructive that subtle 

differences between these synthetic Co/O2 adducts and their enzymatic counterparts account for the lack of 

ring-cleavage activity exhibited by our synthetic models. Specifically, the low-spin Co(III) center of 3 stabilizes 

the alkylperoxo ligand and prevents subsequent O–O bond cleavage, whereas the high-spin Co(II) ion in the 

putative enzymatic intermediate facilitates insertion of the distal O atom into the ring via Criegee 

rearrangement. In our models, the inability of 2-O2 to convert to the requisite cobalt(II)-alkylperoxo 

intermediate is likely due to the lack of unpaired spin density within the [Co3+-tBu2APH] unit, which hinders O–C 

bond formation. The enzyme avoids this scenario by coupling O2 binding to a proton transfer from the substrate 

to a conserved second-sphere His residue. According to computational studies, this process yields a superoxo-

Co(II)-substrate radical species (B in Scheme 1) that is primed for alkylperoxo formation.(17) Future efforts in 

our laboratory will be directed toward the design of functional active-site mimics that replicate the ability of the 

enzyme to control both H+ transfer and O2 binding. 
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