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Abstract 
Microtubes of near-equiatomic nickel-titanium (NiTi) alloys can be created via the Kirkendall effect during Ni

Ti interdiffusion, when nickel wires are surface-coated with titanium via pack cementation and subsequently 
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homogenized. This study explores the effect of diffusion distance upon Kirkendall microtube formation in NiTi by 

considering a range of Ni wire diameters. For Ni wire diameters of 25, 50 and 100 μm, titanized at 925 °C for 0.5, 

2, and 8 h to achieve average NiTi composition, partial interdiffusion occurs concurrently with Ti surface 

deposition, resulting in concentric shells of NiTi2, NiTi and Ni3Ti around a Ni core, with some Kirkendall porosity 

created within the wires. Upon subsequent homogenization at 925 °C, near-single-phase NiTi wires are created 

and the Kirkendall porosity increases, leading to a variety of pore/channel structures: (i) for 25 μm Ni wires 

where diffusion distances and times are short, a high volume fraction of micropores is created near the final NiTi 

wire surface, with 1–2 larger pores near its core; (ii) for 50 μm Ni wires, a single, ∼20 μm diameter pore is 

created near the NiTi wire center, transforming the wires into microtubes, and; (iii) for 100 μm Ni wires, a 

∼50 μm diameter irregular pore is formed near the NiTi wire center, along with an eccentric crescent-shaped 

pore of similar cross-section, resulting from interruption of a single diffusion path, due to the longer diffusion 

distances and times. 

Keywords 
Shape-memory alloys, Diffusion, Phase transformation, Powder metallurgy, Microstructure 

1. Introduction 
The shape-memory effect (SME) and superelastic effect (SE) exhibited by bulk NiTi alloys with near-equiatomic 

composition are useful in many applications such as stents, bone implants, mechanical actuators and 

elastocaloric cooling devices [[1], [2], [3], [4]]. Introducing open porosity in NiTi can enhance the material 

performance, e.g., for improved heat exchange via a higher surface area or for improved osseointegration in 

bone implants with low stiffness which reduces stress shielding [5,6]. To date, porous NiTi has been primarily 

fabricated using powder-metallurgy processes with placeholders, such as steel wires or tubes that are 

electrochemically dissolved [7,8], Mg ribbons which are evaporated [[9], [10], [11]], salts (NaCl [12] and NaF 

[13]) that are leached out, or an inert gas (Ar [5,14]) that is expanded at high temperatures to create the porous 

structure. However, because of the low diffusivity in the ordered NiTi lattice, NiTi sintering requires very long 

times, even at temperatures near the melting point of NiTi (1310 °C), increasing the risks of contamination or 

composition drift via Ti oxidation [15]. Alternatively, NiTi structures with fully controlled porosity or channels 

can be created via selective laser melting (SLM) of pre-alloyed NiTi powders [[15], [16], [17], [18]], but this 

method faces challenges such as high oxidation sensitivity of liquid NiTi exacerbated by the high surface/volume 

ratio of the melt pool, the need for pre-alloyed NiTi powders with tight composition control, and, upon 

solidification, development of undesirable coarse grain size, grain texture, surface roughness and residual 

porosity. Recently, we demonstrated a different additive approach to create NiTi with pores in structures, such 

as wires, where one dimension is small (below ∼200 μm): we used a gas-phase alloying technique to deposit Ti 

onto Ni wires and then homogenized the wire to achieve a uniform NiTi composition, while taking advantage of 

the Kirkendall effect during interdiffusion to form a central channel, resulting in a microtube [19,20]. We 

previously used this method to create microtubes in the Ni Cr Al system, by homogenizing Ni Cr 

microwires on which Al had been deposited [21]. 

The Kirkendall effect [22] describes the generation of microscopic voids near the interface of two atomic species 

with different diffusivities; the imbalance in diffusivities results in a net flux of atoms, leaving excess vacancies 

on the side of the faster diffusing species, which then coalesce into a large number of microvoids. Typically, the 

Kirkendall effect is considered detrimental to material properties due to the weakening associated with these 

voids [23]. For the Ni Ti system, Bastin and Rieck [24] showed that Ni diffuses faster than Ti in most of the 

relevant phases between 650 and 940 °C. However, the presence of other intermetallic phases – i.e., Ni3Ti, NiTi2, 

and Ni4Ti3 - complicates the kinetics of interdiffusion; thus, NiTi synthesis via interdiffusion demands tight 

compositional control [25]. Pack cementation, a simple and scalable chemical vapor deposition (CVD) process, is 



capable of such fine compositional control (e.g. ±0.1 at.% for equiatomic NiTi with repeatable SME or SE 

properties) [26]. Moreover, the use of pack cementation for porous metallic foams [[27], [28], [29]] and woven 

wire structures [[30], [31], [32]] is well established. 

We have recently demonstrated, for the first time, the formation of NiTi microtubes upon homogenization of Ti-

coated Ni wires where interdiffusion creates Kirkendall voids which coalesce to create a tube with a central 

channel [19,20]. This exploratory study was conducted on a single Ni wire diameter (50 μm) and focused on 3D 

tomographic reconstruction to quantify the pore formation during homogenization, with limited exploration of 

phase and pore evolution during the prior Ti deposition. Here, we further investigate the formation of NiTi 

microtubes by considering a range of Ni wire sizes (25, 50, and 100 μm) and by quantifying the evolution of 

various Ni Ti phases and the Kirkendall pores associated with the Ni Ti interdiffusion occurring during Ti 

deposition as well as subsequent homogenization. 

2. Experimental procedures 
Pure Ni wires (99.99% purity) were purchased from Alfa Aesar in 25, 50, and 100 μm diameter sizes. Wires were 

cut into 3–4 cm segments and batches of up to 12 wires were embedded in a powder pack, which consisted of 

67 wt.% TiC as an inert filler (Atlantic Equipment Engineers, −325 mesh, 99.9% purity), 30 wt.% Ti as the source 

material (Alfa Aesar, −325 mesh, 99.5% purity), and 3 wt.% NH4Cl as the activator (Alfa Aesar, 100 μm, 99.5% 

purity). Previously, it was noted that TiC powders were occasionally embedded in the wires during titanization 

where they remained during homogenization [19]. As this could have a detrimental effect on the mechanical 

properties of the wires, the as-received TiC powders were sieved using a −325 mesh (44 μm opening) sieve and 

the finer particles, which are more likely to be embedded, were discarded. After mechanically mixing for 30 min, 

∼20 g of pack was poured in an alumina crucible, which was then covered with a thin TiC powder layer, followed 

by the Ni wire segments and another thin TiC powder layer. The Ni wires were sandwiched between two thin TiC 

powder layers to allow easy removal of the wires after titanization, since the pack particles can partially sinter 

during the process. Finally, ∼20 g of pack was added on top, so that the wires were at the center of the powder 

pack. 

The crucible, covered with an alumina lid, was then placed in the water-cooled end of a pre-heated tube furnace 

which was flushed for 15 min with Ar. The crucible was then pushed into the hot zone of the furnace in ∼60 s, 

fast enough to prevent premature activation of the pack before it reaches the hot zone of the furnace but slow 

enough to prevent cracking of the crucible due to thermal shock. All titanization procedures were conducted at 

925 °C in accordance with previous work [19]. This is below the lowest eutectic temperature in the Ni Ti 

binary system (942 °C), but still corresponds to a wide composition range for the near-equiatomic NiTi. Following 

titanization, the crucible was pulled back to the water-cooled end of the furnace and allowed to cool for several 

hours under continuous Ar flow. The wires were then removed from the pack and cleaned ultrasonically in 

acetone for 15 min. 

The Ti-coated Ni wires were homogenized to create a uniform NiTi phase and the Kirkendall pores. First, the 

titanized wires were encapsulated in evacuated quartz capillaries (0.6 and 0.8 mm inside and outside diameters, 

respectively) with magnesium strips to create a Mg atmosphere, thus preventing reactions with residual oxygen 

in the capillaries. All homogenization treatments were carried out at the same temperature as the pack 

cementation, 925 °C, though times were varied to observe phase evolution mechanisms and to identify the 

homogenization duration needed to eliminate composition gradients for each wire size. After homogenization, 

the capsules were air-cooled and the wires were ultrasonically cleaned in acetone. 

Microstructural characterization was performed on wire cross-sections, using both optical microscopy (OM, 

Nikon MA-200) and scanning electron microscopy (SEM, Hitachi S3400N-II) with energy dispersive X-ray 



spectroscopy (EDS) for compositional analysis. The wires were mounted in epoxy, ground and polished down to 

0.05 μm finish. When necessary, images were analyzed using ImageJ open source digital image analysis software 

[33]. Multiple cross-sections from multiple wires were observed, and three representative micrographs for each 

processing condition were analyzed for phase and pore area fractions. 

3. Results and discussion 

3.1. Pack-titanization 

3.1.1. 25 μm diameter Ni wires 
The goal of the titanization step is to add Ti to the surface of the wiresuch that the average wire composition is 

as close as possible to equiatomic NiTi. For 50 μm diameter Ni wires, it was previously established that this 

optimal titanization time is 2 h at 925 °C [19]. Thus, for 25 μm diameter Ni wires, the optimal time is expected to 

be shorter by a factor of 4 (i.e., 0.5 h), given that diffusion distance scales with the square root of time 

(neglecting geometrical effects associated with cylindrical geometry). Thus, titanization for the 25 μm diameter 

Ni wires was carried out for 0.25, 0.5, and 1 h. Representative cross-sections of these titanized wires are 

presented in Fig. 1. Fig. 1a shows four distinct shells, which are identified via EDS, from outermost layer to the 

core, as NiTi2, NiTi, Ni3Ti, and Ni. Extensive, interconnected micro-porosity is present in the outermost, ∼10 μm 

thick NiTi2 shell, which can be explained by an uneven Ti deposition and/or local Kirkendall pore formation upon 

NiTi2 formation as Ti is deposited from the gas phase (no Ti layer is observed). Furthermore, a crescent-shaped 

pore was observed between the Ni3Ti and NiTi layers, as shown in Fig. 1a with an arrow. In other cross-sections 

(not shown here), smaller crescent-shaped pores or even smaller disconnected pores were observed. This 

suggests that the crescent-shaped pore observed in Fig. 1a is not continuous along the axis of the wire and is still 

developing in different parts of the wire. After 0.5 h titanization, two separate pores are visible in the cross-

section displayed in Fig. 1b. An irregular shaped pore (labeled I) is nearly at the halfway point between the 

center and the surface of the wire, and a crescent-shaped pore (labeled II) is near the center, which once again 

appears at the Ni3Ti/NiTi interface. Pore II likely formed early on, similar to the crescent-shaped pore observed 

after 0.25 h in Fig. 1a and was left behind as the NiTi/Ni3Ti interface moved towards the center. It is possible that 

it was larger in size, but partially sintered during interdiffusion. The near-surface micropores present after 0.25 h 

(Fig. 1a) have disappeared in Fig. 1b, and a smooth NiTi2 outer shell surrounds the fiber. However, in a small 

number of cross-sections imaged, the micropores were still present. The disappearance of the micropores may 

have occurred via sintering and/or via filling with Ti deposited from the gas phase. EDS confirmed that the 

average wire composition is close to 50 at.% Ti. Finally, after 1 h titanization (Fig. 1c), the overall Ti content 

is > 50 at.%, as expected, and the NiTi2 outer shell has thickened considerably, mostly at the expense of the NiTi 

inner shell which itself has consumed the Ni core and the thin Ni3Ti layer. No significant change is observed in 

the crescent shape or size of the inner pore/channel. 



 
Fig. 1. Backscatter electron micrographs showing radial cross-sections of 25 μm diameter Ni wires titanized at 925 °C for (a) 
0.25 h, (b) 0.5 h, (c) 1 h; thin white lines illustrate boundaries between various phases; (d) semi-logarithmic plot of phase 
fraction as a function of titanization time. Error bars smaller than the data markers are not displayed. 

 

Using three images per condition and EDS scans of each, the area fractions of the phases were calculated and 

they are plotted in Fig. 1d for each titanization time. While phases were measured as area fractions based on 

the polished circular cross-sections, 3D tomographic reconstructions in previous work [19] give a strong case for 

cylindrical symmetry, so that area fraction can be considered to be equal to volume fraction. Fig. 1d shows that 

the Ni core shrinks as Ti is added to the wire and diffuses inwards to form the other phases, in particular NiTi 

and NiTi2 which grow over the first 0.5 h. After 1 h, however, the NiTi region shrinks, as it is consumed by the 

advancing NiTi2 outer shell. 

3.1.2. 50 μm diameter Ni wires 
Expanding upon the experiments reported in Ref. [19] where a single titanization time of 2 h was used, 50 μm 

diameter Ni wires were titanized here for 0.25, 0.5, 1, 2, and 4 h at 925 °C, with representative cross-sections 

shown in Fig. 2a–e. After 0.25 h, the wires exhibit a large Ni core, surrounded by a thin Ni3Ti shell (∼3 μm wide), 

a thick NiTi shell (∼7 μm wide) and a thin NiTi2 outer shell (∼2 μm wide), as confirmed via EDS. This is the same 

shell configuration seen in Fig. 1 for 25 μm Ni wires titanized for the same time. However, less near-surface 

porosity is visible, but this difference is not significant as other cross-sections displayed more or less near-

surface porosity. As titanization time increases, the outer NiTi2 shell grows radially outwards and the NiTi shell 

grows radially inwards at the expense of the Ni3Ti inner shell and the Ni core (Fig. 2b–e). The fine pores present 

in the outer NiTi2 shell after 0.25 h (Fig. 2a) disappeared after 0.5 h (Fig. 2b), though they are still present in 

some cross-sections, consistent with the behavior of the 25 μm diameter wires over the same time range (Fig. 

1a and b), possibly due to sintering or filling with Ti. An initial uneven coating may also be responsible, as seen in 

other systems where pack cementation was used for metal deposition [34]. The rough outer surface of the wires 

observed in Fig. 2b–e, where small fragments of the NiTi2 outer shell were fractured, but are embedded in the 

mounting medium, is due to damage during metallographic preparation. 



 
Fig. 2. Backscatter electron micrographs showing radial cross-sections of 50 μm diameter Ni wires titanized at 925 °C for (a) 
0.25 h, (b) 0.5 h, (c) 1 h, (d) 2 h, and (e) 4 h; thin white lines illustrate boundaries between various phases; (f) semi-
logarithmic plot of phase fraction as a function of titanization time. Error bars smaller than the data markers are not 
displayed. 

 

A crack-like circumferential pore was observed as early as 0.5 h (Fig. 2b), which grew into crescent-shaped pores 

in later stages. At 1 h, different cross-sections showed no pores, crack-like pores, or crescent shaped pores, 

likely due to small variations in starting coating thicknesses at different cross-sections. Fig. 2d shows, after 2 h of 

titanization, the core-shell structure most clearly with a configuration of concentric cylindrical shells. A crescent-

shaped pore at the center of the wire, which seems to be the dominant pore formed at 2 h, is separating the Ni 

core from the inner Ni3Ti layer. The core-shell structure observed here is very similar to the one reported in a 

previous study, which used the same processing conditions [19]: 5, 15 and 7 μm layer thicknesses were observed 

for the Ni3Ti, NiTi and NiTi2 shell thicknesses, respectively, as compared to 5, 20 and 9 μm in Fig. 2d. Small 

variations in layer thicknesses (also reported in Ref. [19]) and in presence/absence of pores (none are reported 

in Ref. [19]) from one cross-section to the other are expected. Upon a final doubling of titanization time from 2 

to 4 h (Fig. 2e), the wires mostly consist of single-phase NiTi with a shell of NiTi2remaining close to the wire 

outer surface, suggesting over-titanization with Ti/Ni > 1 (atomic ratio). 

The phase evolution in the 50 μm diameter Ni wires is plotted in Fig. 2f. Like the 25 μm diameter wires, the Ni 

core shrinks quickly as Ti is added to the surface and diffuses inward to form the other phases. The Ni3Ti layer 

slowly disappears as the pores separate it from the Ni core and cuts off the Ni supply, whereas Ti atoms diffusing 

from the surface transform Ni3Ti into NiTi. The as-received Ni wires used here are in the annealed condition, 

hence, a coarse grain structure is expected in the Ni wire and remaining Ni core, though the newly created Ni

Ti intermetallic phases could have finer grains. As a result, volume diffusion, particularly in the early stages, 

should be the dominant mechanism during deposition and interdiffusion. 

3.1.3. 100 μm diameter Ni wires 
Given that, for 50 μm diameter Ni wires, the optimal titanization time to achieve equiatomic compositions is 

2 h at 925 °C [19], a four-fold increase in titanization time to 8 h is expected for the 100 μm diameter Ni wires. 

To gain insight into the early evolution of phases and the nature of internal void formation, Ni wires were 

subjected to titanization for times of 0.25, 0.5, 1, 2, 4, and 8 h (15, 30, 60, 120, 240, and 480 min) and 

compositions were determined via EDS. For the longer times, pack exhaustion may occur, i.e., Ti deposition 

stops due to loss of halides to the partially open system via the flowing cover gas. Therefore, at titanization 

times of 2, 4, and 6 h, wires were removed and placed into a fresh pack and the process continued for a 2 h 

interval. 

Representative cross-sections for Ni wires titanized for various times are shown in Fig. 3. As expected, as Ti is 

added to the wire and diffuses inwards, the Ni core shrinks while the NiTi2, NiTi, Ni3Ti shells (also seen in the 

smaller diameter wires) grow (Fig. 3a–c). After 0.25 h (Fig. 3a), fine porosity is present in the NiTi2 outer shell 

and to a lesser extent after 0.5 h (Fig. 3b), consistent with the behavior of the two finer wires (Fig. 1, Fig. 2a-b). 



The surface microporosity completely disappears after 1 h. Up to 2 h titanization, the microstructure evolution 

closely resembles the 50 μm wires in Fig. 2, with the growth of the outer shells and a decrease in the diameter 

of the Ni core. At 2 h, however, a thin, crack-like pore is visible between the NiTi and Ni3Ti shells, spanning an arc 

of ∼90°. This circumferential crack-like pore, created from the coalescence of numerous Kirkendall pores, 

interrupts the radial diffusion paths for Ni and Ti and thus slows homogenization kinetics, as further discussed in 

Section 3.2.3. A similar crack-like pore is also present in some cross-sections of the 50 μm diameter wires (Fig. 

2b). After 4 h titanization (following a pack change after 2 h), some cross-sections show arc-shaped crack-like 

pores between the NiTi and Ni3Ti shells (Fig. 3e), whereas others display crescent-shaped pores indicating that 

the crack-like pores formed after 2 h are growing. Finally, Fig. 3f after 8 h of titanization (following a pack change 

after 2, 4 and 6 h) shows (i) a crack-like pore (labeled I) observed at the same depth as the pore seen after 4 h 

(Fig. 3e), but spanning nearly half the circumference, and (ii) a new, near-360° crack-like pore, close to the wire 

center and surrounding the unreacted Ni core (labeled II). The new pore II is probably formed by the same 

Kirkendall mechanism as the earlier, pore I, occurring after the diffusion path has been interrupted by the 

formation of the latter pores. 

 
Fig. 3. Backscatter electron micrographs showing radial cross-sections of 100 μm diameter Ni wires titanized at 925 °C for 
(a) 0.25, (b) 0.5 h, (c) 1 h, (d) 2 h, (e) 4 h, and (f) 8 h, with pack changes every 2 h; thin white lines illustrate boundaries 
between various phases; (g) semi-logarithmic plot of phase fraction as a function of titanization time. Error bars smaller 
than the data markers are not displayed. 

 

Fig. 3g shows a plot for phase evolution during titanization of the 100 μm Ni wires. Similar to the 50 μm Ni wires, 

there is a steady decrease in Ni phase fraction as the core is consumed by the growth of Ti-rich phases. The NiTi 

fraction steadily increases during the first 2 h. The pack changes after 2, 4 and 6 h ensure that more Ti is added, 

as evidenced by the growth of both NiTi and NiTi2 phases. 

3.1.4. Titanization evaluation 
The phase evolution described so far clearly shows that interdiffusion and Kirkendall porosity occur extensively 

during the titanization step under conditions of continuing Ti deposition at the wire surface. Even for the longest 

titanization times for each wire diameter, no more than 65 vol.% NiTi is achieved. Using the stoichiometric 

composition of the phases - equiatomic for the NiTi shell and pure Ni for the Ni core (a good approximation since 

average Ti concentration in Ni is found to be very small) - the average concentration of Ti in the wires is 

calculated, as shown in Fig. 4, at each titanization step based on the measured phase fractions (given in Fig. 

1, Fig. 2, Fig. 3g). Optimal titanization times, for which near-equiatomic Ni/Ti concentration, is reached, are the 

starting points for the homogenization steps. Reaching the near-equiatomic composition is important because 

both superelastic and shape-memory properties are observed around this range. For the 25 μm Ni wires, 0.5 h is 



sufficient to achieve ∼50 at.% of Ti in the wire. For 50 μm diameter Ni wires, the equiatomic composition is 

reliably reached after 2 h, in good agreement with previous research [19]. Some 50 μm wires achieve 

equiatomic NiTi average composition after only 1 h, but error bars are large for this time; the modest Ti gain 

between 1 and 2 h may be an indicator of pack exhaustion. Finally, for 100 μm Ni wires, Fig. 4 shows that little Ti 

gain is achieved after 2 h if the pack is not changed. With pack changes every 2 h, by contrast, near equiatomic 

NiTi average composition is achieved after 8 h titanization. 

 
Fig. 4. Semi-logarithmic plot of average Ti concentration in Ni wire vs. titanization time for the three wire diameter sizes, 
including cases where the pack was changed or not changed for the 100 μm diameter wire. NiTi concentration range at 
925 °C is marked. Error bars smaller than the data markers are not displayed. 

 

3.2. Homogenization after titanization 

3.2.1. 25 μm diameter Ni wires 
The 25 μm diameter Ni wires which had been titanized for 0.5 h exhibited a diameter of ∼45 μm after Ti 

deposition (here and below, the wires are described based on their original diameter before titanization). Five 

different homogenization times at 925 °C were chosen: 0.25, 0.5, 1, 2, and 4 h. Each homogenized wire was 

divided into at least three sections, then mounted, polished, and observed via SEM. Fig. 5a–e displays a 

representative cross-section for each homogenization time, from which phase fractions were measured. 

 
Fig. 5. Backscatter electron micrographs showing radial cross-sections of 25 μm diameter Ni wires homogenized at 925 °C 
for (a) 0.25 h, (b) 0.5 h, (c) 1 h, (d) 2 h and (e) 4 h. Wires were previously titanized at 925 °C for 0.5 h. (f) Semi-logarithmic 
plot of phase fraction as a function of homogenizationtime. Error bars smaller than the data markers are not displayed. 

 

Starting from the cross-section shown in Fig. 1b after titanization - showing a small Ni core and two wide NiTi 

and NiTi2 shells, together with one crescent and one irregular pore - the homogenization process leads to 

formation of extensive near-surface porosity, likely formed viathe Kirkendall effect at one or more phase 

interfaces (Fig. 5a–e). At both 0.25 and 0.5 h (Fig. 5a and b), a small Ni core is present together with Ni3Ti and 



NiTi shells. For longer homogenization times (Fig. 5c and d), the Ni core disappears, as it is consumed by Ni3Ti 

which becomes the core, and the wire achieves 94 vol.% NiTi by 2 h, with trace amounts of NixTiySiz near the 

surface. The latter phase was probably created by reaction of the wires with SiO2 from the capsules and/or with 

gaseous SiO created by partial reduction of SiO2 with Mg vapor. The evolution of phase fraction is shown in Fig. 

5f (where pores are not considered during measurements). The short diffusion distances and times resulted in 

wires with extensive micropores (1–5 μm in size); near the surface, pore areal fraction is as high as 6%. Both 

circular and crescent-shaped pores, fewer in number but larger in size, are observed near the center of the 

wires. The crescent-shaped pores were observed during titanization (Fig. 1a–c) and early evidence for the 

formation of a central pore is seen in Fig. 1c. If they can be fabricated with repeatable and controlled 

composition, these porous NiTi microwires may be attractive for applications where high surface area is 

desirable, e.g., for rapid heat transfer. 

3.2.2. 50 μm diameter Ni wires 
The 50 μm Ni wires used for homogenization were titanized for 2 h and exhibit well-defined, smooth shells of 

∼50 vol.% NiTi, ∼35 vol.% NiTi2, ∼2 vol.% Ni3Ti, and ∼13 vol.% Ni core (Fig. 2d and f). The addition of Ti added 

∼30 μm to the overall diameter for a total ∼80 μm. Based on previous work [19], four homogenization times 

were studied at 925 °C: 2, 4, 8, and 16 h. Fig. 6a–d shows representative cross-sections for each homogenization 

time. 

 
Fig. 6. Backscatter electron micrographs showing radial cross-sections of 50 μm diameter Ni wires homogenized at 925 °C 
for (a) 2 h, (b) 4 h, (c) 8 h, and (d) 16 h. Wires were previously titanized at 925 °C for 2 h. (e) Semi-logarithmic plot of phase 
fraction as a function of homogenization time. Error bars smaller than the data markers are not displayed. 

 

After 2 h homogenization (Fig. 6a), the wire is 80 vol.% NiTi and 20 vol.% NiTi2 is present as a partial outer shell; 

the wire displays a distinct central pore/channel with near-circular cross-section. The fraction of NiTi further 

increases to ∼90 vol.% after 4 h, with a concomitant decrease to 10 vol.% NiTi2. For longer times of 8 and 16 h 

(Fig. 6c and d), this Ti-rich phase disappears indicating complete homogenization, but the NixTiySiz silicide phase 

forms at the wire surface; this phase can be avoided in future experiments by coating the quartz capsule with a 

non-reactive material such as boron nitride or by using non-quartz capsules. Nevertheless, as reported in our 

previous study [20], a NiTi wire containing significant amounts of silicide exhibited shape memory and 

superelastic properties after homogenization for 16 h. Additionally, Fig. 6b shows remaining TiC particles which 

were embedded in the wire during Ti deposition, and which can cause stress concentrations and detwinning of 

the martensitic phase, leading to lowered stiffness [35]. Fig. 6e shows the evolution of the various phases. In all 

cases, the central cavity is ∼20 μm in diameter, and does not sinter, up to the longest homogenization time of 

16 h. It shows a serrated surface indicative of merger of smaller Kirkendall pores, and is similar in shape, location 

and morphology to the cavity present in the wire titanized for 4 h (Fig. 2e). Results presented here are in good 

agreement with those discussed in our previous work [19]. In both studies, a central, near-circular pore with a 

diameter of ∼20 μm is developed at ∼2 h and stayed stable up to the longest homogenization time of 16 h. 



3.2.3. 100 μm diameter Ni wires 
For the 100 μm Ni wires, homogenization times of 4, 8,16, 24, and 32 h were used to investigate different stages 

of pore development. Representative SEM micrographs of cross-sections are shown in Fig. 7a–e for the above 

five homogenization times at 925 °C, using Ni wires which had been titanized for 8 h, and whose diameter had 

grown in the process from 100 to 165 μm. 

 
Fig. 7. Backscatter electron micrographs showing radial cross-sections of 100 μm diameter Ni wires homogenized at 925 °C 
for (a) 4 h, (b) 8 h, (c) 16 h (d) 24 h, and (e) 32 h. Wires were previously titanized at 925 °C for 8 h, with pack changes every 
2 h. (f) semi-logarithmic plot of phase fraction as a function of homogenization time. Error bars smaller than the data 
markers are not displayed. 

 

The 100 μm Ni diameter wire sections display an evolution different from those of the 50 μm Ni wires. A double-

pore configuration is dominant at all homogenization times, which is consistent with the pore structure in the 

original 8h-titanized wire with two circumferential, crack-like pores - one closer to the wire center and the other 

closer to the surface (labeled I and II in Fig. 3f) – whose formation is discussed in Section 3.1.3. Fig. 7a, after 4 h 

homogenization, shows a wide crescent-shape cavity (marked I in Fig. 7a), covering an arc of ∼180° on the left 

side of the wire. This pore interrupts the radial diffusion path between a NiTi shell and a partial NiTi2 surface 

shell on one side, and the Ni inner core on the other side of the pore. On the other (right-side) half of the wire, a 

thin crescent pore (marked II in Fig. 7a) is present, which is connected at its ends with the wider pore (I); 

together, the two pores separate completely the inner Ni core from the outer shells. Its smaller width (2–3 μm) 

and its location closer to the wire center indicate that pore II formed later than pore I which is consistent with 

the absence of NiTi2 outer shell on the right half of the wire, indicative of an uninterrupted diffusion path. The 

interruption of the radial diffusion path by pores I and II, which together fully surround the Ni core, does not 

completely preclude homogenization, since longitudinal mass transfer may still occur via solid bridges 

interrupting these pores (which are likely extending into the length of the wires as channels), outside the two-

dimensional cross-sections shown in Fig. 7a. Such bridges were imaged in Ref. [19] which provided tomographic 

reconstructions of 50 μm wires homogenized for 2 h at 925 °C; however, diffusion distances are lengthened 

through such intermittent bridges and diffusional cross-sections are reduced which slow the homogenization 

kinetics of the wires. 

Fig. 7b, after 8 h homogenization, shows the same combination of a Ni core surrounded by a wide crescent 

pore/channel (I) and thin opposite crescent pore/channel (II) closer to the wire surface, with a partial NiTi2shell 

on the wire surface closest to the wide pore (I). A third crescent pore (III) has formed between the first pore (I) 

and the surface, consistent with interdiffusion between the NiTi2 and NiTi shells. After 16 h homogenization, Fig. 

7c, the NiTi wire displays a central oblong pore (I/II) with approximate cross-section dimensions of 25 × 50 μm, 

probably created from the merger and further growth of pores I and II, together with a further decrease of the 

Ni core. The crescent pore (III) has widened and coarsened (and has a slightly larger area than pore I/II), 

consistent with its draining of nearby Kirkendall pores and vacancies. Cross-sections after 24 and 32 h 

homogenization, Fig. 7d and e, show modest growth of the near-central circular pore (I/II) and the eccentric 



crescent pore (III) (their radial orientation vary, as expected since the cross-sections are from distinct wires), as 

the Ni core is slowly being consumed, and the NiTi2 outer shell is being replaced by the NixTiySizsilicide phase due 

to Si contamination. Small amounts of the Ni3Ti outer shell remain. Our previous study [20] showed that Ni3Ti 

does not affect the superelastic properties of microtubes because NiTi can accommodate that phase. However, 

Ni3Ti is brittle and may have hindered strain recovery somewhat as the maximum strain recoverable was below 

expected [36]. 

Fig. 7f summarizes the evolution of the phase volume fractions, confirming the growth of the NiTi phase during 

homogenization. Similar to the 50 μm Ni wires (Fig. 6e), towards later times (24 and 32 h), Si contamination 

from the quartz capsule creates the NixTiySiz phase which prevents achieving pure NiTi. The values in Fig. 7f are 

averages of three cross-sections taken within the same wire at different depths. Within the same wire, there 

may be the development of somewhat different microstructures at different locations, especially with respect to 

the location of the central cavity, which forms a complex channel structure in 3D [19]. These wires are three-

dimensional, and longitudinal diffusion cannot be observed by taking 2D cross-sections. Such measurements 

would require the use of X-ray tomography as was carried out in previous studies [19,21]. 

3.3. Summary of phase and pore evolution 
The results presented above show the effect of initial wire size, or diffusion distance, on the evolution of various 

phases and Kirkendall pores in the titanized Ni wires. Fig. 8 schematically illustrates, for all three wires at the 

same magnification, the four stages of processing: as-received drawn Ni wire, early-stage titanized Ni wire, final-

stage titanized Ni wire with 50 at.% Ti, and homogenized NiTi wire. This figure illustrates and summarizes the 

effect of initial Ni wire size on the subsequent phase evolution, and pore/channel morphology, size and 

locations. 

 
 
Fig. 8. Schematic representation of the evolution of phases and Kirkendall pores in titanized Ni wires with original diameters 
of 25, 50, and 100 μm, at different stages of processing. 

 

At the early stages of titanization, some wires show small pores in the NiTi2 layer, located very close to the wire 

surface. This was particularly visible in the 25 and 100 μm wires. At the later stages of titanization, these pores 

either sintered or are filled with Ti during continued titanization. Another distinct feature is the double-pore 

structure observed in most wires at the late-stage titanization step. This is due to leaving behind a large pore (or 



a group of smaller pores) that formed early in the process, while the phase interfaces move inwards and create 

another large pore at the center of the wire. This double-pore configuration is visible in all wire sizes but 

becomes increasingly common as the wire size increases. For 100 μm Ni wires, double-pores are visible in every 

cross-section. 

The most apparent effect of the diffusion distance is seen in the homogenized structure. As the wires are 

homogenized to obtain single phase NiTi, we see (i) high volume fraction of surface porosity in 25 μm wires as 

pores preferentially annihilate at the wire surface given shorter diffusion distance; (ii) a single central pore in 

50 μm wires, which effectively drain all vacancies and smaller pores which coalesce into a single cavity; and (iii) a 

double-pore structure in 100 μm wires, where pores formed during titanization do not sinter or merge with 

other pores and continue their growth upon homogenization. 

4. Conclusions 
Building on our recent previous research performed on Ni wires with 50 μm diameter [19,20], we show here 

that porous wires with near-equiatomic NiTi composition can be fabricated by Kirkendall pore formation during 

titanization and homogenization at 925 °C of both thicker and thinner Ni wires (25 and 100 μm diameters). The 

evolution of phases and pores during titanization and homogenization indicates a strong size effect. Several 

conclusions can be drawn from this work: 

1. Ni wires with 25 μm diameter: 

(a) Titanization for 0.5 h results in the formation of a core/multiple-shell structure consisting of 

NiTi2, NiTi, Ni3Ti, and Ni phases, with a larger crescent-shaped pore forming close to the center 

of the wire. 

(b) Subsequent homogenization for 1–4 h achieves homogenous NiTi wires with many Kirkendall 

micropores near the surface and 1–2 near-cylindrical larger central Kirkendall pores. 

2. Ni wires with 50 μm diameter: 

(a) Titanization for 2 h results in a similar core/multiple-shell structure with the same phases 

seen in 25 μm wires. A few central micropores form at the NiTi/Ni3Ti interface. 

(b) Subsequent homogenization for 2–8 h results in a NiTi wire with a single, larger, ∼20 μm 

diameter central pore. 

3. Ni wires with 100 μm diameter: 

(a) Titanization for 8 h forms the same phases observed in the other wires, but with two crack-

like circumferential pores; one surrounding the unreacted Ni core and the other between the 

surface and the first pore. 

b) Subsequent 16–32 h homogenization results in NiTi wires exhibiting a dual circular and 

crescent-shape pore structure, spanning 40–80 μm in size, which evolved from the above-

mentioned pores. 
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