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Abstract
Given R € N let {Z}R, [Z]R, and L(n, k) count the number of ways of partitioning the set [n]: =

{1,2, ..., n} into k non-empty subsets, cycles and lists, respectively, with each block having cardinality in R.
We refer to these as the R-restricted Stirling numbers of the second kind, R-restricted unsigned Stirling
numbers of the first kind and the R-restricted Lah numbers, respectively. Note that the classical Stirling
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numbers of the second kind, unsigned Stirling numbers of the first kind, and Lah numbers are {Z} =

{Z}N' [Z] = [Z]N and L(n, k) = L(n, k)y, respectively.
It is well-known that the infinite matrices [{Z}]n ot [[Z” and [L(n, k)], k=1 have
= nk=1

( - k{ }] and [(—1)™ *L(n, k)], x=1 respectively. The inverse
k>1 nk=1

inverses [( 1k [k”
matrices [{ } ]nk>1 [[k] ]nk>1 and [L(n, k)g]™?! k1 EXist and have integer entries if and only if 1 € R. We

express each entry of each of these matrices as the difference between the cardinalities of two explicitly

defined families of labeled forests. In particular the entries of [{Z} have combinatorial

1
[r]] nk=1
interpretations, affirmatively answering a question of Choi, Long, Ng and Smith from 2006.

If we have 1,2 € R and if foralln € R withn odd and n > 3, we haven + 1 € R, we additionally

-1
[[k] ] and [L(n, k)g]; =1 is up to an explicit sign the cardinality
n, k>1 nkz1
of a single explicitly defined family of labeled forests. With R as before we also do the same for restriction
sets of the form R(d) = {d(r — 1) + 1:r € R} for all d = 1. Our results also provide combinatorial
interpretations of the kth Whitney numbers of the first and second kinds of H,ll'd,
the poset of partitions of [n] that have each part size congruent to 1 mod d.

show that each entry of [{ } ]

Keywords

Stirling numbers, Lah numbers, Riordan matrix, Riordan group, Reversion, Lagrange inversion, Whitney
numbers, Restricted partition poset

1. Introduction

For all integersn, k > 1, let{ } [k] and L(n, k) be the classical Stirling numbers of the second kind,
unsigned Stirling number of the first kind, and Lah numbers, respectively. These numbers are defined as
follows: {Z} is the number of partitions of [n]: = {1,2, ..., n} into k non-empty subsets, [Z] is the number of

partitions of [n] into k non-empty cyclically ordered sets, i.e. cycles, and L(n, k) is the number of partitions
of [n] into k non-empty linearly ordered sets, i.e. lists. All of our partitions will be unordered unless we

k k
rows and columns indexed by the natural numbers N: = {1,2, ... }. In this notation n is the row index and k is

[(=D)™*L(n, k)], k1. In particular, each entry of each inverse matrix has, up to sign, a combinatorial
interpretation.

specify otherwise. Let S,: = [{n}] iat’ Sii= [[n” ,and L: = [L(n, k)], k>1 be infinite matrices with
nkz1 nk=1

the column index. It is well-known that S; 1 = [(—1)n_k [Z”

We consider the following generalizations of Stirling and Lah numbers.

Definition 1.1

For R € N the R-restricted Stirling number of the second kind, {Z} , is the number of partitions
R

of [n] into k non-empty subsets such that the cardinality of each subset is restricted to lie in R. Analogously,



the R-restricted unsigned Stirling numbers of the first kind [Z]R and R-restricted Lah numbers L(n, k)g are

the numbers of partitions of [n] into k cycles and lists, respectively, with cardinalities restricted to lie in R.
Note that we recover the classical Stirling numbers of both kinds and the Lah numbers by

taking R to be N (e.g. {Z}N = {Z} etc.).

Various instances of restricted numbers have appeared in the literature. Comtet [8, page
222] introduced r-associated Stirling numbers of the second kind, {Z} withR={r,r+1,r+ 2,...},and
R

obtained recurrence relations and generating functions for them. Belbachir and Bousbaa [2]studied 7-
associated Lah numbers, L(n, k)R also with R = {r,r + 1,7 + 2, ... }. Choi and Smith [7] considered r-

restricted Stirling numbers of the second kind, {Z}R with R = [r].

We extend the classical results on the inverses of Stirling and Lah number matrices to find
combinatorial formulas for the inverses of R-restricted Stirling and Lah number matrices whenever the
inverses exist, i.e., whenever 1 € R.

Definition 1.2
Denote by{ } ([k] , L(n, k)z1) the entry in the nth row and kth column of the

matrix {7} |

ny~1 . . . . ny—1 . .
to { k} as the inverse R-restricted Stirling number of the second kind, [ k] as the /nverse R-restricted
R R

[[ k] ] , [L(n, k)gl; k=1, respectively), when the inverse matrix exists. We refer

Rin k=1 nk>1

unsigned Stirling number of the first kind, and L(n, k)z* as the inverse R-restricted Lah number.

Our first result (Theorem 3.1) is that for all R € N with 1 € R, { } [k] ,and L(n, k)z! can each
be expressed as the difference between the cardinalities of two explicitly defined sets of forests.

If Rhas more structure, we can say more.
Definition 1.3

Say that R € N has no exposed odds if it has the following properties:

1.if1 € Rthen2 € R and
2.ifnisodd,n > 3,andn € Rthenn—1,n+ 1€ R.

Ford >1and R € NsetR(d): = {d(n — 1) + 1:n € R}. We view R(d) as the set R “stretched” along
the arithmetic progression {1,d + 1,2d + 1, ... }. Our main set of results (Theorem 3.8, Theorem 3.9) is that,
for all R cN with 1 € R and with no exposed odds, and for all d > 1, each

-1
of{ } ] ,L(n, k)Y, L(n, k)Rt { }R(d), and L(n, k)E(ld) can be expressed, up to an explicit sign, as the

cardinality of a single explicitly defined set of forests.
Recursion relations and generating functions are derived in [4] for ™C(n, k): = {n}[ . "Si(n k)=

(=) k {k}[ ,and ™S,(n, k): =™ S;71(n, k) (the (n, k) entry of the matrix inverse to [S; (n, k)]).

-1
n [5] Choi, Long, Ng and Smith note that {Z}[ ] is a Bessel number [14, A100861] and has many
2



ny-1
combinatorial interpretations. For example, (—1)" % {k}[ | counts the number of size n — k matchings of
2

-1
the complete graph K,,,_1_x [6]. They asked if {Z}[ | has a combinatorial interpretation for r > 2, and
T

. . omT . .
observed that an anomalous sign behavior in {k}[ | presents an obstacle to any such interpretations.
3

But in fact our results provide such combinatorial interpretations, and these are particularly nice
whenever ris even; see Corollary 1.4 (Part 1) below.

We give below, in Corollary 1.4, some illustrative special cases of the results in our paper. We also
give some applications to calculating the Whitney numbers of a certain subposet of the partition lattice
(Theorem 1.5).

Recall that a plane tree is a rooted tree in which the set of children of each vertex of the tree is given
a linear ordering from left to right. If the leaves of a tree are labeled with integers we extend that labeling to
other vertices v by setting £(v) to be the maximum of the labels of the leaves descended from v.
Let 7 (n, k) be the set of forests consisting of an unordered collection of kplane rooted trees: (i)
with nleaves in total (an isolated root is considered a leaf) (ii) with all non-leaves having at least two
children and (iii) with the leaves labeled with the integers 1 through nin such a way that #(v) increases
from left to right across each set of siblings.

Corollary 1.4
The following are special cases of Definition 3.3, Claim 3.4, and Theorem 3.8, Theorem 3.9.
1. Letr > 1. The number{;cl}{_1 - is (—=1)"* times the number of forests in H (n, k) in which
12,027

each vertex v has0, 2, or2r children unless v is the left-most child of a vertex with two children, in
which case it has 0 or2r children.

2. Letr =2 1 andd = 2. Ifn = k(modd), then{

ny~1 ) nk
} is(=1) a4 times the number
k)1 a41,2d+1,..14Qr-na

of forests inH (n, k) in which each vertex v has0,d + 1 or1 + (2r — 1)d children unless v is the

left-most child of a vertex withd + 1 children, in which case it has 0 or1 + (2r — 1)d children. If

n £ k(modd), then the number is 0.

3. Letd > 1. Ifn = k(modd), then {Z} '
(1,d+1,2d+1,...}

inH (n, k) in which each vertex has 0 ord + 1 children and in which left-most children are always

leaves. Ifn £ k(modd), then the number is 0.

n-k
is(—1) a times the number of forests

Suppose Pis a finite ranked poset with unique minimal element 0. For all k > 0, the kth Whitney
number of the second kind, W, (P), is the number of elements of Pof rank kand the kth Whitney number of
the first kind, wy, (P), is given by wy (P) = ).,  1(0,x) where pis the Mobius function of Pand xranges
over the elements of Pof rank & The theory of subposets of the set partition lattice I1,, consisting of
partitions with restricted part sizes has received considerable attention in the literature, see for
instance [3], [15], [18], [21]. Our results give combinatorial interpretations of the Whitney numbers of the

ranked poset H,ll‘d consisting of all partitions of [n] that have each part size congruent to 1 mod d.

Theorem 1.5

Foralln,d > 1 andk = 0 we have

1,dY\ _ n
Wk(”n ) - {n — kd}{1,d+1,2d+1,...}



and

-1
b4y = n
wie(IT“) {Tl - kd}{l,d+1,2d+1,...}
In particular, wy, (H,ll'd) is (=1)¥ times the number of forests in H (n,n — kd) in which each vertex
has 0 ord + 1 children and in which left-most children are always leaves.

Our paper is organized as follows. We provide definitions related to our combinatorial
interpretations in Section 2 and then state our main results in Section 3. In Section 4, we state some
preliminary lemmas. We give proofs of our main results in Section 5. In Section 6 we note some
connections to known number sequences and indicate some directions for future research.

2. Notation

As is evident from Corollary 1.4 and Theorem 1.5, trees and forests figure heavily in our results. Our
trees will all be rooted, i.e. they will come with a distinguished root vertex. Our forests will also all
be rooted, i.e. they will consist of unordered collections of rooted trees. Let #be a rooted forest and
let vand wbe vertices of £ If vlies on the path from wto a root, then vis an ancestor of wand wis
a descendantof v.If, in addition, vand ware neighbors, we say vis the parentof wand wis a child of v. We
say vand ware siblings if they have the same parent. The degree or down-degree of v, denoted d(v), is the
number of children of vin £ We say vis a leafof Fif dp(v) = 0. Note that by our definition, isolated roots
are also leaves.

Our forests will either have ordered children or unordered children. A forest with unordered
childrenis just a graph made up of rooted trees with no ordering on sets of siblings. A forest has ordered
children if the set of children of each non-leaf vertex vis given a specific linear order from /eft-
mostto right-most. Although a rooted tree with ordered children is usually called a plane tree we avoid this
terminology as we do not consider plane forests, i.e. linearly ordered collections of plane trees. The
components of our forests will always be unordered.

If Tis a tree, a leaf-labeling of Tis an injective map £ from the leaves of T to N. A leaf-labeling of a
tree with nleaves is properif it has range [n]. We will work with two extensions of a leaf-labeling to non-
leaf vertices.

Definition 2.1

Given a leaf-labeling ¢ of the leaves of a tree 7, the labeling #,,,,4 on the vertices of 7T'is defined by
setting £ ,2x (V) to be the maximum of the labels of the leaves descended from v. The labeling #,,;, is
defined by setting € i, (v) to be the minimum of the labels of the leaves descended from v

Note that any two children of a vertex have distinct labels with respect to the €, (0r #14in)
labeling.

A phylogenetic tree (forest) is a rooted tree (forest) with unordered children such that no vertex
has down-degree 1, together with a proper leaf-labeling. For 1 < k < n, we define 7' (n) to be the family of
phylogenetic trees on nleaves and F (n, k) to be the family of phylogenetic forests with nleaves
and kunordered components. Also, let 7¢V¢"(n) denote the subset of trees in 7'(n) that have an even
number of edges, and let 7°94(n) be the complementary set of trees with an odd number of edges.

Definition 2.2

Let G'be a phylogenetic tree or forest. If each complete set of siblings (full set of children of a non-
leaf vertex of G) is assigned a linear ordering, we say that Gis a linearly ordered phylogenetic tree (forest).
Refer to Fig. 1 for some examples. We say Gis increasingly orderedif Gis linearly ordered and if



additionally for each complete set of siblings, the £ ;.4 1abel of the siblings increases from left to right. We
say Gis min-first orderedif Gis linearly ordered and if additionally for each complete set of siblings, the
left-most sibling has the smallest ¢ ,;, label amongst all the siblings.

(a) WLK (b) () 14-‘1%7
wy O wy wy

T 65 \4 %’_\ 4
C {_*é“--g
8T 65

Fig. 1. Three examples of linearly ordered phylogenetic trees.

Let 710 (n), 7™ (n), and T (n) be the families of increasingly ordered, min-first ordered, and
linearly ordered phylogenetic trees on nleaves, respectively. Forall 1 < k < n we
define F1°(n, k) F™°(n, k), F°(n, k)) to be the family of increasingly (min-first, linearly) ordered
phylogenetic forests on nleaves with kunordered components.

If R € N and C is any class of trees or forests, we write Cy for the subclass of objects in C which
have all non-zero down-degrees lying in R. For example, 7> (n) is the set of all increasingly ordered
phylogenetic trees with nleaves and all non-zero down-degrees lying in R.

Ford > 1lets,;: N — N be defined by s;(n): = d(n — 1) + 1. As we defined in the introduction,
let R(d) = s4(R) = {d(n — 1) + 1:n € R}. Note that s, is the identity and R(1) = R.

Definition 2.3

Let R € Nand letd > 1.If Gis a phylogenetic forest with all down-degrees in R(d) let (v;);—;" be
some arbitrary but fixed ordered list of the non-leaf vertices of G. For each 7let ni be the unique integer
such that d; (v;) = the down-degree of v; = s;(n;). We refer to (n;){%, as the internal sequence of G. We
say that Gis evenif )% n; is even and odd otherwise.

Note thatif d = 1 then n; = d;(v;) and Y12, n; is just the number of edges of G. We
define ﬂg‘(‘;‘)even(n) 7},}'&’)0‘1(1(11) to be the sets of even (odd) increasingly ordered trees on nleaves with
down-degrees in R(d) and define the analogous notations for the other possible subclasses of even and odd

T;IE";’)"Odd(n, k) is the set of odd min-first ordered phylogenetic

ordered trees and forests. For example
forests with down-degrees in R(d) and with nleaves and kcomponents. If d = 1 then, since R(1) = R, we

will write this as F™°°4 (n, k).

3. Results

In this section we state our main results. Using a formula for combinatorial Lagrange inversion we
obtain the following combinatorial interpretation for each inverse R-restricted number (with 1 € R) as the
difference in cardinality between two sets of forests.

Theorem 3.1

LetR C N. Then {Z}R

-1
, [Z] ,andL(n, k)g* exist ifand only if1 € R. For all R with1 € R and
R

alln, k > 1 we have



{Z};l = (_1)n—k(|TR£.o.,even(n, k)l _ |TRi'O"0dd(n, k)|)'

[Z];l = (_1)n—k(|j;-Rm.o..even(n’ k)l _ |3:Rm'0"0dd(n, k)|),

L(n k)Rt = (=) (|Fe V" (n, k)| — |Fo %, k)|).

Recall (Definition 1.3) that R € N has no exposed odds if (i) 2 € Rwhenever 1 € R, and (ii) n —
1,n+ 1 € R whenevern € R,n > 3, and nis odd. Our main result is that for £ containing 1 and with no
exposed odds, we can express each inverse entry, up to sign, as the cardinality of a single set of forests. We
next define the terms needed to describe these sets.

We write R as a disjoint union of its maximal intervals. Thus if Rhas no exposed odds it is a union of
intervals of the form [1, ), [1, b] with beven, [a, ) with aeven, or [a, b] with a < b and aand b even.
Let a(R) be the set of all left endpoints of the intervals in this decomposition of &, except 1, and let b(R) be
the set of all right endpoints. Note that if R = N = [1, o) then a(R) and b(R) are empty. Note also that
if [x, x] = {x} is one of the maximal intervals of R, then x € a(R) and x € b(R).

Definition 3.2
Let vbe a vertex in a linearly ordered tree or forest G. Then vhas 2-/eft-odd ancestry if vhas some
ancestor v, with the following properties:

ealong the path vy, ..., v, = v from v, to y; foreach 1 < i < kit holds that d; (v;) = 2, v;,4 is a left-
most child of v;, and kis even, and
*v, is not a left-most child of a vertex wwith d;(w) = 2.

For d > 1, we say vhas s;(2)-/left-odd ancestryif vhas some ancestor v; such that

ealong the path vy, ..., v, = v from v, to v, foreach 1 < i < k itholds that d;(v;) = s4(2), v;4; isa
left-most child of v;, and kis even, and
*v, is not a left-most child of a vertex wwith d;(w) = s5,4(2).

In Fig. 1(a), only vertex w2 has 2-left-odd ancestry. In Figs. 1(b) and 1(c), only
vertices w2 and w4 have 2-left-odd ancestry.

Definition 3.3

Let Gbe a linearly ordered tree or forest and let Rhave no exposed odds. Say Gis R-goodif and only
if for all vertices v, either vis aleaf or d;(v) = 2 or d;(v) € a(R), unless vhas 2-left-odd ancestry, in which
case either vis aleaf or d;(v) € b(R).

For d = 1 say that Gis R(d)-good if and only if for all vertices v, either vis a leaf or d; (v) =
sq2)(=d+ 1) ordg(v) = sz(a) for some a € a(R), unless vhas s;(2)-left-odd ancestry, in which case
either vis aleaf or d;(v) = s;(b) for some b € b(R).

Note that R-goodness and R(1)-goodness coincide. When 3 € R, the next claim shows that
“has s;(2)-left-odd ancestry” in Definition 3.3 can be replaced by the simpler “is the left-most child of a
vertex wwith d; (w) = s4(2).” So when 3 € R, all non-leaf left-children of degree s;(2)vertices in
an R(d) —good tree have degree s;(n) forn > 2.



Claim 3.4

If3 € R, then G is R(d)-good if and only if for all vertices v, either v is a leaf ord; (v) =
sq4(2) ord;(v) = s (a) for somea € a(R), unless v is the left-most child of a vertex w with d;(w) = s4(2),
in which case either v is a leaf ord;(v) = s;(b) for someb € b(R).

Proof
If 3 € R, then an R(d) —good tree or forest cannot have a vertex w, as a left-most child of a

vertex w; where d; (w;) = dg (w;) = s4(2). Indeed, one of w; or w, would have s;(2)-left-odd ancestry,
and2 ¢ b(R). O

We provide a few examples to illustrate these definitions.

Example 3.5

Suppose that R = {1,2} U {4,5,6}, so a(R) = {4} and b(R) = {2,6}. Consider the three phylogenetic
trees in Fig. 1. Trees (a) and (c) are R-good while tree (b) is not, since vertex w, has 2-left-odd ancestry,
but w, is not aleafand d; (w,) = 4 € b(R).

Example 3.6

If R = {1,2}, then an R-good tree is precisely a binary tree with ordered children and a proper leaf
labeling, and an R(d)-good tree is precisely a tree with ordered children and all degrees 0 ord + 1,
together with a proper leaf labeling.

Example 3.7

If R = [r] for evenr > 4, then an R-good tree is precisely a leaf-labeled tree with ordered children
and all degrees 0, 2, or rand where the left children of vertices of degree 2 have degree 0 or r. Note that
for R = [4], none of the trees in Fig. 1 are R-good.

We define T;'O"gOOd(n) TRi'(czi")gOOd(n) to be the class of increasingly ordered R-good (R(d) —good)

phylogenetic trees on nleaves and define the analogous notations for other classes of ordered R-

and R(d) —good trees and forests. For example, ?Rn(l;;"gmd(n, k) is the set of R(d) —good min-first ordered

phylogenetic forests with nleaves and kcomponents. If d = 1, we write this as just F5™°8°°4(n, k). It is
straightforward to check that good trees and forests are even. Indeed, since Rhas no exposed odds, the
sets a(R) and b(R) are comprised of even numbers. By the definition of R(d) —goodness, this means the
internal sequence (see Definition 2.3) of Gis comprised of even numbers and hence has even sum.

Our main results are the following theorems.

Theorem 3.8
ForallR € N with1 € R and with no exposed odds, and for alln, k > 1, we have

{i

[, = o ),

1 .
_ (_1)n—k |T};.o.,good (n, k)|,

L(n k) = (-1 k |T}:.o.,g00d (n, k)|

Theorem 3.9
ForallR € N with1 € R and with no exposed odds, alld > 1, and alIn, k > 1, we have



(i) = DT [RiE ™ 0000
Rl A O

- n—k, | d
L, K)ply = (1) @ | B2 (n, k).
Notice that Theorem 3.8 is the just the special case d = 1 of Theorem 3.9. We also note

-1 -1
that Theorem 3.9 is vacuously true if d  (n — k). In those cases, we will show that {Z} - = [Z] @ =
R R

L(n, k),;(ld) = 0 and the forest classes are empty.

We illustrate these definitions and theorems in the case where R = N. An ordered tree 7is N-good
if and only if every non-leaf vertex has two children, the left-most of which is a leaf. It follows

that | TN}'O"gOOd(n)| = (n — 1)!, because any of the (n — 1)! proper leaf-labelings in which the right-most
child of the non-leaf vertex furthest from the root gets label nyields an N-good increasingly ordered tree.

On the other hand |TNm'°"g°°d (n)| = 1, because for 7to be min-first ordered, the leaves must be labeled in

. . . . Lo.good .
increasing order when read counterclockwise from the root. Finally we have |TN ©0-800 (n)| = n!, because in

this case there is no restriction on the leaf-labeling. See Fig. 2.

(a) (&)

RS
) z}\w %ﬁ
‘:js_\ 2 Y
W 4 C’ ':::'
4

* 4 3
Fig. 2. (a) |7 5 (4)| = (4 = 1)}; (b) |rer'°"g°°d(4)| = 1;and (0) |75 (4)| = 41

Thus Theorem 3.8 tells us

{711};]1 _ (_1)n—1 |Tl\§'0"g00d

=[]

[gl]él _ (_1)n—1|g~m.o.,good| — (_1)11—1 {111}, and

L D' = D" 7 = (D ),

matching the first columns of the identities [{Z}]_l [( 1)nk [n” etc.

nk=1 k>1
Some other specific illustrations of these theorems are discussed in Section 6.
4. Preliminary lemmas
Let a = (a,),»1 be a sequence of complex numbers with a; # 0. Forn,k > 1 set
(D) ank = X{ap, ap, - aip,|: {P1, -, P} asset partitionof [n]}

and set



Aq = [an’k]n,kzl'

Note that A, is lower triangular as no partition of [n] has more than z parts, and also that a,, , = af,
so that A, is invertible if and only if a; # 0.

All the R-restricted numbers we consider are of the form a,, jfor certain choices of a,,. For example,
n -
note that [k]R = an where a, = (n — 1)! 1(;¢gy. (Here and throughout we use 1 for the indicator

function of the event S, the function which takes value 1 if Soccurs and is 0 otherwise.) This may be seen as
follows. To obtain a partition of [n] into Anon-empty cycles of the allowed sizes we first pick a partition

of [n] into Anon-empty sets {P,, ..., P, } and then for each block P; choose one of the cycles that may be
formed from the elements of P;. There are aq|p,|ap,| ** a|p,| ways of completing the second step: if P; is of

an allowed size, there are a;p, = (|P;| — 1)! possible cycles and otherwise there are ajp,| = 0 possible
cycles. Similarly, {Z} = an where a, = 1y, and L(n, k)g = a,  where a,, = n! 1g,¢g;. Inall three
R

cases a; # 0 and 4, is invertible if and only if 1 € R.

All of our numbers {Z} , {Z} — 1, etc. are thus entries of matrices of the form A, or Az1. As we
R R

shall see these matrices are submatrices of matrices belonging to the exponential Riordan group. We now
define this group and see that its law of multiplication gives a nice approach to calculating the entries
of Azt

Given a sequence of complex numbers f = (f;,)n>o We define the exponential generating function of
frobe f(x) = Y=g fux"™/nl. Given f(x) = Yoo fux™/n!, letord(f(x)): = min{n > 0: f,, # 0}.
If f(x) and g(x) are exponential generating functions with ord(f(x)) = 0 and ord(g(x)) = 1 then for k >
0let (Mn'k)nzo be the sequence whose exponential generating function is £ (x)g*(x)/k! (that

is, Z:zo My x™/n! = f(x)g*(x)/k . Denote by [f (x), g(x)] the infinite matrix [M"'k]n,kzo'

The exponential Riordan group (see e.g. [1, Chapter 8]) is the group of all matrices of the
form [f(x), g(x)] with ord(f(x)) = 0 and ord(g(x)) = 1. The binary operation of this group is matrix
multiplication and is computed by [f(x), g(x)][u(x), v(x)] = [f(x)u(g(x)), v(g(x))]. The identity element
is the identity matrix I = [1,x] and [f(x), g(x)]"! = [1/f (g~ (x)), g1 (x)]. Here g~ 1(x) is the reversion or
compositional inverse of g(x), the unique power series satisfying g(g~1(x)) = g 1(g(x)) = x.

Let a(x) be the exponential generating function of the sequence a = (a;),»1. It follows
from (1) and the exponential formula (see e.g. [22, Chapter 3]) that the exponential generating function of
the sequence (a,)n»; Of the entries of the Ath column of A, is a®(x)/k!. Thus 4, = [1, a(x)]o,0, the matrix
obtained by removing the Oth row and Oth column of the exponential Riordan matrix [1, a(x)]. Note that
the exponential generating function of the Oth column of [1, a(x)] is 1 so the (n, 0) entry
of [1,a(x)] is 1{n = 0}. Thus if b = (b,,),>1 is another sequence with b; # 0 and exponential generating
function b(x), then

AgAp = [1,a(¥)]o,0[1,6(¥)]o,0 = ([1, a()][L, b(x)Do,o = [1, b(a(x))]o0 = Ac

where, by the exponential Riordan group multiplication law, ¢ = (cn)n > 1 has exponential generating
function b(a(x)).If b(x) = a~1(x), A,Ap = I = [1, x]. This gives the following fundamental lemma.

Lemma 4.1
Leta = (a,)n»1be a sequence of complex numbers witha, # 0 and leta(x) = Y51 apx™/n! be its
exponential generating function. Let



Aq = [an’k]n,kzl
where
ng = Z{a|P1|a|P2| - ap,|: {P1, ..., P }a set partition of [n]}.

Let (by)ns1 be the sequence of complex numbers whose exponential generating function is a™*(x).
Then

Al =4, = [bn,k]n'kzl
with

2) bpy = Z{b|p1|b|p2| “bip,: {P1, ..., P }a set partition of[n]}.
As an example, we apply this lemma to the case a,, = 1 in which 4, = [{Z}] a1’ Since a(x) =

nkz

exp (x) — 1, we have b(x) = a *(x) = log(1 + x) = Z:zl (—=1)™1x™/n, which is the exponential

generating function of b,, = (—1)""1(n — 1)!. A simple calculation shows that the sign

of by i is (—1)" ¥ and that b, , = (—1)"7* [Z] (See the method of calculation of [Z]R given in the second
-1

paragraph of this section.) Applying Lemma 4.1 we obtain the classical result [{Z}] =

nk=1

[(—1)"""‘ [Z” alluded to in the introduction. The well known inverses
nk=1

of [[Z” and [L(n, k)], k>1 can be obtained similarly.
nk=1
All sequences a = (a,),>1 that we consider will consist of non-negative integers with a; = 1. This
ensures that the entries of A3 are integers, a (perhaps minimum) requirement for a combinatorial
interpretation of those entries. Indeed, if we examine the formula for a,, ;in terms of the a,, we see that the
matrix A, will in this case be lower triangular, have integer entries, and have all 1's down the diagonal.
Thus, by the co-factor formula for the inverse of a matrix, A7 will also have the same three properties.

We will also need the following combinatorial Lagrange inversion formula. If a; # 0 and 7T'is a
phylogenetic tree with nleaves and m non-leaf vertices then we define the a-weight of Tto be

wo(T) = (=1)™a; ™™ [1{ag,w):v € V(T), dr(v) # 0},

Note that if a tree 7'consists of just a root then w, (T) = 1/a,, as the root is considered a leaf. The following
result has appeared numerous times in the literature. It is the case r = 1 of the multi-variable
generalization Theorem 3.3.9 of [12] and that paper cites earlier occurrences: [23, Thm. 3.10] where it is
attributed to Towber and [13, Thm. 2.13]. The Ph.D. theses of Drake and Taylor contain generalizations of
the single variable case: [10, Thm. 1.3.3] and [19, Sec 3.2]. We include a sketch of a proof for completeness.

Lemma 4.2
Ifa(x) = Y1 apx™/n! (witha, # 0) anda™*(x) = ¥,.51 bp,x™/n! then forn > 1

b, = Z W (T).
TET (n)

Proof
Solving [x™](f g1 bpx™/n!) — x) = 0 for b,, we get b; = 1/a, and the recurrence



n 1 k
— -1 "
b, = —aj E A g E(il, zk)| |bif

k=2 e j=1
(11""'”()
forn > 2, where Y, ;) isasum over compositions (iy, ..., i) of .

Ift, = Yrern) Wa(T) then t,, satisfies the same initial condition and recurrence. Indeed t; =
1/a; = by. Forn = 2 each tree T € 7' (n) is uniquely determined by the unordered collection of
subtrees Ty, ..., T, rooted at the k > 2 children of its root. For such a tree 7, w,(T) =
(—ax/a)wq(Ty) - wo (Ty). If tree T; has i; leaves, the sets of leaves of the T; form an unordered partition
of [n] into kparts of sizes iy, ..., iy. The recurrence follows by summing w, (T) first over kand then over all
such unordered partitions. 0O

We will use Lemma 4.1, Lemma 4.2 to obtain Theorem 3.1. The idea is this: for the first part

of Theorem 3.1 ({Z}

1
) we choose (a;)»1 so that the matrix 4, in Lemma 4.1 is precisely [{Z} ] . The
R Rink=1

appropriate choice is a, = 1gcg;. Lemma 4.2 allows us to conclude that b, (the nth entry in the first
column of the inverse matrix) is a weighted sum of phylogenetic trees, and we argue that this is the same as
a signed, but otherwise unweighted, sum of increasingly ordered trees. That is, b,, is the difference between
the cardinalities of two explicitly defined sets of increasingly ordered trees. From (2) we then conclude
that b, k is the difference between the cardinalities of two explicitly defined sets of increasingly ordered
forests, as claimed. The only change in the approach to the other two parts of Theorem 3.1 is the choice

of an.

We conclude this section by briefly discussing our approach to Theorem 3.8, Theorem 3.9. We
discuss only the case d = 1 here. Suppose that for some R € N with 1 € R and with no exposed odds we
can find, for each n, an involution of 7;** (n) that in its orbits of size 2 toggles between even and odd trees,
and fixes precisely the set of R-good trees (which recall are all even; see the paragraph before the
statement of Theorem 3.8). Using this involution we get from Theorem 3.1 (in the special case k = 1)

ny~1 n—1 |i.0.good . . .
that {1} =(-1) |TR (n)|. But then from Lemma 4.1(and in particular equation (2)) we get
R

that {Z} = (-1rk |T,;'°"g°°d (n, k) | The key point here is that (b,,)n = 1 is an alternating sequence,
R

from which it follows that every summand contributing to the sum defining b,,, k contributes the same sign
— (—1)™ ¥ — something which would not necessarily be the case if (b,)n = 1was not alternating.

-1

Analogous phenomena hold for [Z] and for L(n, k)z*. So much of our proof will involve finding this
R

involution, which we give in Algorithm 5.1, and proving that it has the correct properties, which is done
in Lemma 5.3. We need to add a little more to this argument to deal with sets of the form R(d); this is also
discussed in Section 5.

5. Proofs
5.1. Proof of Theorem 3.1

That the inverse matrices under discussion exist if and only if 1 € R is evident. Let R € Nwith 1 €
R, and let (a,)n21 be a sequence of non-negative integers with a; = 1. Let A" = [by, ;] k=1 (With the
notation following that in Lemma 4.1).

For TET(n) with m non-leaf vertices, let e(T) = n + m — 1 be the number of edges of 7. Adopting
the convention ay = 1 we get from Lemma 4.2 that b, = (—=1)""* YXrer(n) No(T) where



No( = DD [ ] gy
vev(T)

Note that if 7'is turned into a tree with ordered children by assigning to each complete set
of ksiblings one of a; possible orderings, then the number of such trees obtainable from T'is |N,(T)|.

Leta, = 1gepy. If T € T (n), then [Ny (T)| = 1if Thas all down-degrees in Rand N, (T) =
0 otherwise. Thus

|g-}.?i.o.,even (n) | — z Na (T)

TeTeven(n)
and
i.o,odd
TN == ) Ne(D)
Te70dd (1)

as there is precisely one way to turn each T € 7'(n) with all down-degrees in Rinto an increasingly ordered
tree. Thus

bn — (_1)n—1(|g~i.o.,even(n)| _ |Ti.o.,odd(n)|)_

We claim that by, = (—1)" ¥ (|Flo-even(n, k)| — |F10-0dd(n, k)|), via equation (2). Indeed, a forest
on nleaves with Acomponents can be chosen in two stages. The first stage is to pick
a partition {P;, ..., P, } of the label set [n], with say |P;| = n;. The second stage is to build for each P; a tree
whose leaves are labeled with those n; labels. Examine the term b, --- by, of the sum for by, k. Since (n, —

1)+ (n — 1) =n —k, this term is
(_1)n—k(|7~i.o.,even(n1)| _ |Ti.o.,odd(n1)|) (|Ti.0.,even(nk)| _ |Ti'0"0dd(nk)|).

The internal sequence of a forest has an even (odd) sum if and only if an even (odd) number of its
trees have internal sequences with odd sum so (—1)”"‘bn1 *++ by, is the number of even forests whose trees
have label sets P; minus the number of odd forests whose trees have label sets P;. Thus b, =
(—1)""‘(|.‘]-"i'°"e"en (n, k)| — |Ti'°"°dd (n, k)|) as claimed.

We turn to the second statement in Theorem 3.1. Let a,, = (n — 1)! 1(;,¢gy. Thenif T €

T (n), |N,(T)| is the number of ways 7'can be turned into a min-first ordered tree with all down-degrees
in R Note that there are 0 ways if 7has a vertex with down-degree not in R. Thus

TROSEm = > Na(T),
TeTeven(n)

m.o.,odd _

ety == > Ne(D),
Te70dd ()

bn (_1)n—1(|Tm.o.,even(n)| _ |Tm'°"°dd(n)|),
and
bn,k — (_1)n—k(|j:m.0.,even(n, k)l _ |Tm.o.,odd(n’ k)l)

Similarly if a,, = n!1g,cgy then

bn — (_1)n—1(|7~l.0.,even(n)| _ |Tl.o.,odd(n)|



and
bn,k — (_1)n—k(|Tl.o.,even(n’ k)l _ |j;vl.o.,odd(n' k)l)

5.2. Proofs of Theorem 3.9 and Corollary 1.4

Recall that Theorem 3.8 is the special case d = 1 of Theorem 3.9, so our focus in this section
is Theorem 3.9.

All the results in Theorem 3.9 are obtained as follows. We define an involution on increasingly
(min-first, linearly) ordered phylogenetic trees with down-degrees in R(d) that maps odd trees to even
trees and vice versa and we show that the trees that are fixed by this involution are precisely the R(d)-

good trees in that class. Since good trees are even, this means b,, = (—1)™-1)/d |i7g'(c:1")g°°d (m)| and by, =

(—1)(=k)/d| gc;-(‘;)g“d(n, k)|, etc.

The image of a tree under this involution, whether the tree is increasingly, min-first, or linearly
ordered, is obtained by applying the same algorithm, Algorithm 5.1 below. We will describe this algorithm
and derive its properties for general d. The algorithm is expressed in terms of s;(n) = d(n — 1) + 1.
Since s;(n) = n, the special case d = 1 of both the algorithm and the analysis can be recovered by reading

“«_n

“sqg(n)” throughout as “n”.

Algorithm 5.1
Let R € Nwith 1 € R have no exposed odds and letd > 1.

Input: A tree 7'in 7};(“’1) (j}{?dg ) j;z(“)i))_
Output: A tree A(T) in Tp%) (Tats, T p(q), respectively).

1. (Initial phase.) Let v;, vy, ..., v be the unique right-most path in 7 from root v; to leaf vy,
i.e. vj,4 is the right-most child of v; for 1 < j < k. Consider each vertex v; in this path in increasing
orderofjforl1 <j <k —1.

(@) If v; has s54(2) children, let v]f be the left-most child of v; If vjf is not a leaf

and v} has s4(n) children for n ¢ b(R), remove vertex v; and all edges adjacent to it and
then make every child of v]f a child of v;. The vertex v; now has s;(n + 1) children: the
former children of vj’ and the original dright-most children of v;. Linearly order these
children as follows. Let each set of children inherit the linear ordering they had originally
and place the former children of v]f before the original dright-most children of v;. Leave the
orderings on the children of all other vertices v # v, vj’ unchanged. Let A(T) be the
resulting tree.

(b)If vj has s4(n) children for n > 2 where n € a(R): remove the edges between v; and its
left-most s;(n — 1) children, create a new vertex v; to be the parent of these children, and
make v; a child of v;. Let the sq(n — 1) children of v inherit the linear ordering they were
assigned as children of v;. Make vj’ be the left-most child of v; and let the other d children

of vj retain the linear ordering they had before. Now dr(v;) = s4(2). Leave the orderings on
the children of all other vertices v # v}, vj unchanged. Let A(T) be the resulting tree.

2. (Recursive phase.) Suppose now that forall 1 < j < k — 1, v; fails both criteria in step 1.
Remove vy, ..., v, and all edges adjacent to these vertices. If v; has s4(2) = d + 1 children, also



remove the left-most child vj’of v; and all edges adjacent to v]f. This leaves behind a possibly empty
forest F.

If Fis not empty consider its component trees T’ in increasing order of the £, label on their root
(or the €y, label if we are dealing with min-first ordered trees). If there is any tree T’ for which the
algorithm, when applied to T’, would produce a tree A(T") # T' then replace the first

such T"in Tby A(T") and let A(T) be the resulting tree.

If Fis empty, or if the algorithm would fix each tree T in £ let A(T) = T.

Note that in the recursive phase the component trees T' are not necessarily properiyleaf-labeled. By “apply
the algorithm to T"” what we formally mean is “for each /replace the ith largest leaf label of T" with the
label j to obtain a new tree T" that is properly labeled; then apply the algorithm to T"; and then, for each j
replace the label 7in A(T") with the ith largest leaf label of T"”.

We refer to the operation in (1a) as contraction at v; towardsvj' , because it corresponds to the usual graph-
theoretic operation of contracting the edgev;v;. We refer to the operation in (1b)
as uncontraction at v; away fromvj 1. See Fig. 3.

A contraction
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Fig. 3. Contraction and uncontraction in the initial phase (d = 1).

See Fig. 4 for an example of the recursive phase of the algorithm when d = 1 and R = {1,2} U {4,5,6}. The
right-most path is vy, v, v3, V4. Since dy(v;) = 2 and dy(v1) = 2 € b(R) = {2,6}, since d;(v;) = 0, and
since dr(v3) = 4 € a(R) = {4}, the algorithm cannot perform an operation in the initial phase. It
removes v, ..., v, and vy, v5 and recursively evaluates trees in the resulting forest.

TEIFSION

R R

Fig. 4. Recursive phase (d=1, R={1,2}U{4,5,6}).
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We establish some useful facts about Algorithm 5.1 in Lemma 5.2, Lemma 5.3, after which the proof
of Theorem 3.9 will be quite short.

Lemma 5.2
Suppose that T is a tree that produces a forest F via the recursive phase of Algorithm 5.1, and let v
be a vertex in F. Then v has s, (2)-left-odd ancestry in T if and only if v has s;(2)-left-odd ancestry in F.



Proof

If vhas s,4(2)-left-odd ancestry in 7, then in Twe have vy, ..., v, = v,dr(v;) =s54(2) (1 < i <
k), v;4+1 aleft-most child of v; (1 < i < k), keven, and v, not a left-most child of a
vertex wwith dT(w)=sd(2). If v, is not deleted then these properties hold for vin Fexactly as in 7. If v; is
deleted it must be in the right-most path. (As v, is not a left-most child of a vertex with degree s;(2), itis
not one of the v]f.) Thus v, is also deleted in the recursive phase, and so v5 is arootin £ The

path vs, ..., v, = v then demonstrates that vhas s;(2)-left-odd ancestry in £

For the converse, suppose vin Fhas s;(2)-left-odd ancestry. So in #we have a path Pon vy, ..., v}, =
v, where dg(v;) = s4(2) and v; 4 is a left-most child of v; for 1 < i < k, kis even, and v, is not a left-most
child of a vertex wwith dp(w) = s4(2). Let T' be the tree in Fcontaining v;. If v; is not the root
of T' then Pis a witness that vhas s;(2)-left-odd ancestry in 7. Suppose now that v, is the root of T".
Let v; be the ancestor of v; on the right-most path in 7'that s closest to v,. If d7(v;) =
Sq(n) with n>2then v; must be a child of v; and Pis a witness that vhas s, (2)-left-odd ancestry in 7.

Now suppose dr(v;) = s4(2). The vertex v; cannot be v} or vj,; as these vertices are deleted.
If v, is some other child of v; then Pis a witness of s, (2)-left-odd ancestry. So suppose that v, is a child
of vj. If dr (vj) = sq(n) forn > 2 orif d7(v}) = s4(2) and v, is not the left-most child of v} then Pis a
witness of s;(2)-left-odd ancestry. The remaining possibility is that d (vjf) = 54(2) and v, is the left-most
child of vj'. In this case v, vj’, Vq, ..., Vg is a witness that vhas s;(2)-left-odd ancestry, as v; is on the right-
most path so cannot be a left-most child of any vertex. O

Lemma 5.3
Algorithm 5.1 has the following properties.

1. We have A(T) =T ifand only if T is an R(d) -good tree.

2. All non-zero degrees in A(T) are in R(d).

3. Ifthe input tree T is increasingly (min-first, linearly) ordered then so is the output tree A(T).
4. We have A(A(T)) =T forall T.

Proof
We prove these statements by induction on n, the number of leaves.

The base case of the induction, n = 1, is trivial, as 7% (1), 7™ (1), and 7% (1) each consist of a
single R(d)-good tree, an isolated root with label 1, and the algorithm fixes that tree. Suppose now thatn >
1.

We now show item 1. Suppose that 7'is an R(d)-good tree. Let vbe a non-leaf vertex on the right-
most path of 7. By definition of s;(2)-left-odd ancestry, vdoes not have s;(2)-left-odd ancestry and so
either dr(v) = s4(2) or dr(v) = s4(a) for some a € a(R). If dr(v) = s4(2) the left-most child
of vhas s;(2)-left-odd ancestry and so is either a leaf or has degree s;(b) for some b € b(R).

Therefore Algorithm 5.1 proceeds to the recursive phase. This removes the vertices in the right-most path,
and the left-children of vertices with degree d(v) = s4(2). This leaves behind a possibly empty forest F.
Note that a vertex that remains in Fhas the same down-degree as in 7, and the property of having s, (2)-
left-odd ancestry transfers to vertices in by Lemma 5.2. So each component tree meets the definition of
being R(d)-good, and so by induction is fixed by Algorithm 5.1. Therefore tree T'is fixed by Algorithm 5.1,
ie, A(T) =T.

Conversely, suppose that A(T) = T. Then Algorithm 5.1 proceeds to the recursive phase, and so all
non-leaf vertices on the right-most path must have degree sd(a) for some a € a(R), or s;(2) with the left-
child a leaf or having degree s;(b) for some b € b(R). The deletion leaves a forest £ which by hypothesis



has A(T") = T' for each component T’ of % and so by induction consists of R(d)-good trees T'. So by
definition of R(d)-goodness a vertex vin Fis either a leaf or dr(v) = s4(2) or dp(v) = s4(a) for some a €
a(R), unless vhas s;(2)-left-odd ancestry in Fin which case dz(v) = s,;(b) for some b € b(R). In the last
case Lemma 5.2 shows that vhas s;(2)-left-odd ancestry in 7. Combining this with the fact that down-
degrees of vin Fare the down-degrees of vin 7, this shows that 7'is R(d)-good.

We now show items 2 and 3 in the case that A(T) is produced from a contraction at vertex v; in step
1(a) of the algorithm. Suppose dr(v;) = sq(n). Sincen & b(R),n+ 1 € Rand dyqy(v)) = sq(n + 1) €
R(d). All other vertices of A(T) are unchanged from 7, so A(T) has all down-degrees in R(d) and we have
item 2.

We now show item 3. Let vy, ... vy, and vj', Wy, ..., Wg, Vj4q be the ordered lists of children
of va and v; in Trespectively. The ordered list of children of v; in A(T) is vy, ..., Vg, W2, ..., Wg, Vj41.

If Tis increasingly ordered then
Lmax (V) <+ < Linax (V) and Linax (V) < maxW2) < < Lrmax(Wa) < Lmax(Vjr1).
Since
Pmax(Vj) = max (Cmax(V1), -, €max(Vm)) = fmax(Vim)
we have

max(v ) << ‘Emax( ) < gmax(wz) << 1?max(Wd) < gmax(vj+1)

and thus the children of v; are increasingly ordered in A(T). Since the orderings of all other children
in A(T) are unchanged from their ordering in 7, A(T) is increasingly ordered.

If Tis min-first ordered then v, " has the smallest £, label amongst vy, ..., vy, and v; has the
smallest i, label amongst vjf, W3, o, Wi, Vj41. Since in T'we have

15)min(v{,) = min (fmin(v{, mln( )) = mln(v )
v1v;" has the smallest £p,;,, label amongst the children of v in A(T). Thus A(T) is min-first ordered.

There are no restrictions on the linear orderings in a linearly ordered tree so if 7'is linearly ordered
then A(T) is automatically linearly ordered.

We now show items 2 and 3 in the case that A(T) is produced from 7’by an uncontraction at
vertex v; in step 1(b) of the algorithm. Suppose dr(v;) = sq(n) withn > 2.Sincen € a(R),n— 1 € R and,
in A(T), dary(vj) = sq(n — 1) € R(d) and dy1y(vj) = s4(2). It follows that A(T)has all down-degrees
in R(d), and we have item 2.

We now show item 3. Let v{, ... vy, Wy, ..., Wy, Vjsq be the ordered list of children
of vjin Twherem = s;(n — 1).

If T'is increasingly ordered then

1€)max(vf) << 1l')max( ) < fmax(WZ) << {max(wd) < {)max(vj+1)-

Thus the children vy, ... vy, of vj in A(T) are increasingly ordered. Since

gmax(vjl) = max ({max(V1), ) Cmax(Vm)) = Cmax(Vm)



in A(T), the children of v; are increasingly ordered in A(T):

1'pmax(v]{) < max(W2) <+ <fpax(wg) < {)max(vj+1)-
Thus, as before, A(T) is increasingly ordered.

If 7'is min-first ordered then v," has the smallest £p,,;, label amongst vy, ..., vy, Wy, ..., Wy, and vj44. Thus
the children of v} in A(T) are min-first ordered. Since

fmin(vj’) = min (Liin (V1) ) Zmin(@m)) = rmin (1),

the children of v; are min-first ordered in A(T) as well and A(T) is min-first ordered. As before, if T'is a
linearly ordered tree then A(T) is automatically linearly ordered.

If A(T) is produced by a contraction/uncontraction at vertex v; in step 1, we have shown

that A(T) has all down-degrees in R(d), and so we can apply Algorithm 5.1 to A(T). In this case, we will
now show that A(A(T)) =T.

In A(T) the right-most path is exactly as it was in 7. Further, for i < j the number of children
of v; remains unchanged from 7'to A(T), as does the left-most child of v; and its children. Since this is the
data that determines whether a contraction/uncontraction is to be performed at v;, it follows that if the
algorithm is applied to A(T), it does not call for contraction/uncontraction at v; for any i < j. However,
at v, if in 7we performed a contraction, then the algorithm calls for an uncontraction at v; in A(T), while if
in 7we performed an uncontraction, then the algorithm calls for a contraction at v; in A(T). In either case,
we have A(A(T)) = T, which gives item 4 in this case.

We now suppose that A(T) is produced by step 2, the recursive phase of the algorithm. If A(T) =T,
the results are immediate. Therefore we assume that A(T) # T, and so there isa T' in Fwith A(T") # T,
and A(T) is obtained from 7by replacing T’ with A(T"). Thus by the initial phase and induction, A(T) has all
down-degrees in R(d) and remains increasingly (min-first, linearly) ordered. This gives items 2 and 3.

Finally we show item 4 in the case where A(T) is produced by step 2. The right-most path stays the
same from 7'to A(T). Every vertex v; on the path keeps the children in A(T) it had in 7and if d7(v;) =
5q(2), then its left-most child vj’ keeps the children in A(T) it had in 7. Thus when the algorithm is applied
to A(T) it also produces the same forest in the recursive phase. The collection of subtrees examined when
applying the algorithm to A(T') is the same one examined when applying the algorithm to 7, except
that T’ has become A(T"). The ordering on subtrees remains unchanged, so now A(T’) is the first
component that is not R(d)-good. By induction A(A(T")) = T',s0 A(A(T)) =T. O

Example 5.4

Let R = {1,2} U {4,5,6} and consider the tree 7'in Fig. 5 below, which was the only tree in Fig. 1 that was
not R-good (here we use linear ordering). In this case 7 contracts edge w3w#4 via Algorithm 5.1 to
produce A(T). Notice also that Algorithm 5.1 applied to A(T) shows A(A(T)) =T.

T 'i‘f-'/_lf,_{‘ A(T): un(
e {3 {_‘ ilta O

—

] A
Uk iy l"_‘;'l \’Q
\ 2
Wy O OO0
T 3 76543
JAOD
76 5 4

Fig. 5. Tree Tproduces A(T) via Algorithm 5.1.



Proof of Theorem 3.9

As noted after the statement of Theorem 3.9, if {P;, ..., P, } is a partition of [n] with part sizes
restricted to lie in R(d), thenn = |Py| + -+ + |P;| = sq(my) + -+ s4(my) = d(mqy + -+ my — k) + k,

n n . .. .
50 {k}R(d) = [k]R(d) = L(n, k)peay = 0ifd + (n — k). Similarly, Frcqy(n, k) = @if d + (n — k). Indeed,

let Fbe a phylogenetic forest with nleaves, kcomponents, and down-degrees in R(d), i.e. Fhas mnon-leaf
vertices v; with dg(v;) = s4(n;). The number of edges of Fis(n +m) — k = Zzl(d(ni -1 +1),
givingn —k = d(n; + --- + n,, — m). For this reason in the sequel we only consider

triples (d, n, k) with d|n — k.

If Thas internal sequence (n;)}%, then, by case k = 1 of the edge count of Fin the previous
paragraph, ithasm = —(n — 1)/d + Y%, n; internal vertices. Thus, from Lemma 4.2, we have

ni i.o,even i.o,odd
b, = bn,l =(-1)4d (lT ” R(d)(n)| |7;2(d) (n)l)

where vy, ..., vy, is the set of non-leaf vertices of the index tree 7'in the summation.

We begin with the first statement of Theorem 3.9.If a;, = 1g,c(q)) then by the method of Theorem
3.1 we have

_ i dd
by = by = (=) D/A(TI0RvEn L ()] = [Ty (D).

Indeed, since a, = 1epra)) the [1i=4 m Aq,(v;) factor of the summand is the number of ways of
turning the index tree 7, a properly labeled phylogenetic tree with unordered children, into an increasingly

ordered tree with down-degrees in R(d). The (—1)Z?=11 i factor of the summand ensures even trees are
counted positively and odd trees negatively.

When A(T) # T the internal sequence of A(T) is obtained from the internal sequence of 7by
replacing a pair of indices n; + n; — 1 with a single entry n; + n; — 1 or vice versa. Thus A(T) is even
when 7'is odd and vice versa. Since A(T) = T if and only if 7'is R(d)-good and since R(d)-good trees are
even we get

_ n-1 o ,good
by = (—1) @ [T ).

Using that b,, is alternating along the arithmetic progression {1,d + 1,2d + 1, ... } it is easy to check
that in this case the sign of all the summands on the right-hand side of equation (2) is (—=1)™%)/4, and so

n-k d
b = (1)@ [FLSEm, 0],

as claimed.

For the second statement of Theorem 3.9, if we take a,, = (n — 1)! 1;,¢p(q); then we get

_( 1) a (l I?d(; even | | r?dg Odd(n)l)—( 1) a |g;?1?d(; good n)l

and by, = (—1)(*~ ")/d|Tm° 8°°d (1 k)]. Similarly, if we take a,, = n! 1(ner(ay then we get
1 l dd —— | +lo. good
= O (T 0] - IR ml) = (0T [T )

and byy = (1) @ |T1(°d)g°°d(n,k)|.



Proof of Corollary 1.4

This easily follows from the definitions and theorems indicated. O

5.3. Proof of Theorem 1.5

Itis clear that ois covered by rin l'[,ll’d if and only if some part of zis the union of d+1 parts of cand

every other part of ois a part of © Thus H}l'd is ranked, the partitions at rank kare precisely the partitions
with n — kd parts, and

Lay _ [ T
W, (I1;%) = {n - kd}{l,d+1,2d+1,..-}

Suppose o = {0y, ..., 0} and T = {74, ..., Tp} are partitions in Hrll'd. Ifo < 1,i.e. o is arefinement of 7
lete = €(0,7) = {€y, ..., €,} be the unique partition of [k] such thatforall1 <i < ¢,7;, =], - We

have e € H,lc‘d. Indeed, since |t;| = Z v el = Xjee, 1= Z |c7j| = |t;| = 1(modd) for all i
Jjeei

o
JEE€;

Fix o€ l'[rll’d with kparts and let P = [g,0) = {7 € H,ﬁ’dlr > o}. We have T < 7’ in Pif and only
1,d

ife(o,7) < €(o,7") in H,lc'd. Thus [0, ) is isomorphic to 1,

via the isomorphism f(7) = €(o, 7). Since the
isomorphism type of [, ) depends only on the number of parts of g, this type also depends only on the

. 1d . .
rank of g; i.e. l'[n‘d is uniform.

n

We set W, (-) = 0 for non-integer and negative values of zso that Wn;k(l-[}l'd) = {k for
d

}{1,d+1,2d+1,...}
alln, k > 1. We also set w, () = 0 for non-integer or negative values of zand show

o] =16

nk=1

-1
}{1,d+1,2d+1,...}]nk21'

-1 -1

This will prove wn_r(Tly%) = {Z} or wy (M%) = { " as desired.
d

(1,d+1,2d+1,...} n-— kd}{l,d+1,2d+1,...}

Let

n 1,d 1,d 1,d
S lg = — H ! = W _ H 4 _ H »
) : :{k}{l,d+1,2d+1,...}w¥( k) E "Tk( n )W"Tf( K)
k k

We have to show that S(n, £) = 1,-, foralln, £ = 1. Since the summand in S(n, ¢) is 0 unless ¢ <
k < n,wehave S(n,#) = 0 for £ > n. Clearly if £ = n, S(n,¥) = 1. We now suppose that £ < n. The
summand is also 0 unless k = £(modd) and k = n(modd). So S(n, ¥) = 0 if n # £(modd). Suppose now
that n = £(modd). We may restrict the index of summation to those kfor which k = n — jd for some
integer j > 0. (All other terms are 0.) Fix j, so that £ = n — j,d and reindex the summation by j. Then

Jo
S(n, ) = Z W (M Ywjy—; (M%),
=0

Forn = 1let{ = {,, and u = u, be the zeta and Mdbius functions of H,ll’d, ie.{(0,7) = 1(5<q for

allo, T € H,ll‘d and [u(o, T)]J certd = [¢ (o, T)]c_rlrenl'd (see [17]). Let p,, be the rank function of l'[,li'd,

i.e. pp(0) = (n — k)/d where kis the number of parts of o. Let On be the unique minimal element of H,ﬁ’d,
i.e. the partition of [n] into singletons.



Fix jwith 0 < j < j0. We have
W= > 00
€My pp(0)=j
and by definition
Wi M) = D> ja(Onjae)
EEH,l{fjd'Pn—jd(E):jo_j
Fix an element oin l'l,ll'd with p,,(d) = j, i.e. with k = n — jd parts. Then [g, =) is isomorphic
to H,ll‘fjd and so py_jq(0n—ja, €(0,7)) = pn(0,7) and py_;q(€(0,7)) = pr(7) — pp(0o) forallt = 0. Thus
Wjo-i(M%5q) = z tn(0,7)
7€[0,00),pn(T)=Jo

and

St) = 2 2 00w D meo)

J=0 gent4 p,(0)=j 7€[0,%0),pn(T)=Jo

{n(0p, 0)pin (0, 7).
e} p,(0)=j, 9€10n 7l

For each 7in the summation the inner summation is 0 as xzand {are inverses.

Remark 5.5
This proof was inspired by Exercise 3-130 of [17] (which in turn generalizes Theorem 6 of [9]). The
statement in [17] only covers uniform, ranked posets with a 0 and a 1, leaving out l'[,ll'd with n#1(modd).

6. Discussion and some open questions

For R € N with 1 € R and with no exposed odds, it is straightforward to enumerate R-good and R(d)-good
increasingly ordered, min-first ordered and linearly ordered trees by number of leaves. Indeed, from our
results we have the following for all such R; here we use the notation [x™/n!]f (x) to denote the coefficient
of x™/n! in the Taylor series of f(x), and recall that f ~1(x) denotes the compositional inverse or series
reversion of f(x).

eThe number of R-good increasingly ordered trees with nleaves is (—1)""1[x™/n!] X
fi' (x) where fi(x) = ), . x*/k!,and

sthe number of R(d)-good increasingly ordered trees with d(n—1)+1leaves is
d(n-1)+1

(dn—-1)+ 1)!

(=Dt [ ]fz‘l(x)

where f,(x) = ZRER x@K=D+1/(d(k — 1) + 1)!

The same holds for min-first ordered trees, with



xd(k—1)+1

xk
fi(x) = Z T'fz(x) = L m;

KER
and for linearly ordered trees, with
A=)k f = ) xdkoi,

kER KER
For example, the series reversion of f(x) = x + x2/2 is

i =y (e G

n
nx1

(where m!! = m(m — 2)(in — 4) ... is the double factorial), and so the sequence of both [2]-good
increasingly ordered trees and [2]-good min-first ordered trees is (1,1,3,15,105,945,10395, ...) [14,
A001147], while the series reversion of g(x) = x + x2 is

B g @n—2)1x™
g () = Z(—l) lm,

n=1
and so the sequence of [2]-good linearly ordered trees is (1,2,12,120,1680,30240,665280, ...) [14,
A001813].

Another interesting example relates to the following special functions. For d > 1 the Ayperbolic
function of order d of the first kind (see for example [20]) is the function H, ; (x) defined by the power
series

xd(n—1)+1
Haa(0) = Z dmn-D+ 1

n=1

so for example H; 1 (x) = e* — 1 and H, ; (x) = sinh x. The study of these functions goes back to the mid-
1700's. As an immediate by-product of Theorem 3.9 and Theorem 1.5 we obtain combinatorial
interpretations for the coefficients of the compositional inverses of these functions and their connection to
Whitney numbers of the poset Hé’&_l)ﬂ.

Corollary 6.1
Ford = 1, leth, 1 (x) be the compositional inverse ofH, 1 (x) (satistyinghg 1 (Hy1(x))) = Hg1(hg1(X))) =
x for all x). Then writing hg ; (x) in the form

) xd(n—1)+1
haa () = Z(_l) @ =D+

nz1

we have

(a) hy, is the number of increasingly ordered trees withd(n — 1) + 1 leaves that areN(d) -good, i.e.
have all vertices of degreed + 1 or0 and all left-most children of degree 0, and

(b) w,,_1 (11 cli'gl—n +1) = (=" h,, ie, the Whitney numbers of the first kind of the

posetll cli'gl—n +1 are the coefficients of the exponential generating function of the compositional

inverse ofHy 1 (x).



As discussed after Definition 3.3, there are (n — 1)! N(1) -good increasingly ordered trees
with nleaves, and indeed the compositional inverse of H; 1 (x) = e* — 1islog(1 + x) =

Z (D) (n-1)x™
nz1 n! -

For d = 2 the sequence nth term is the number of N(2) -good increasingly ordered trees with 2(n —
1) + 1 leaves begins (1,1,9,225,11025,893025,108056025, ...), and is the sequence of squares of double
factorials of odd numbers [14, A001818]. It is well-known that this sequence arises in the power series of
the inverse of the hyperbolic sine function. For d = 3 it
begins (1,1,34,5446,2405116,2261938588,3887833883752, ...) [14, A292750].

ny~1 1

We have given combinatorial interpretations for each of {k}R , [k]R and L(n, k),';1 forall Rwith1 €
R, but for many Rthese interpretations are as the difference in cardinalities of two sets of forests. Only
for Rand R(d) with 1 € R and with no exposed odds can we interpret the inverse entries as counts of
single sets of forests. In all of these special cases we have the crucial property that the compositional

inverses of Ynep X /1], Tnep X /1 e 6™ 2 o ¥ /(d(n— 1) + D), ) x4 "DH/(d(n -
1)+ 1)and ZnER x4(M=D+1 each have alternating coefficient sequences (in the latter three cases,
alternating along an arithmetic progression). Here we say that a series ),,,51 ¢,x™ with ¢; > 0

is alternatingif (—1)" !¢, = 0 for alln > 1; it is alternating along the arithmetic progression 4 = {1,d +
1,2d + 1,...}ifc, = 0 foralln & A and if (—1)*cgq4q = 0 forall k > 0.

This raises a number of natural questions.

Question 6.2

Can we characterize those R € N with 1 € R for which the compositional inverse
of Yer x™/N! Xnerx™/n, Yner x™) has an alternating coefficient sequence or one alternating along an
arithmetic progression starting at 1?7

Question 6.3
For those R, is there an analog of Algorithm 5.1 that furnishes a combinatorial interpretation of the

n _1
numbers {k} , etc.?
R

In the case of },,cg x™, we can say definitively that the characterization sought in Question 6.2 is not
simply having no exposed odds. Let f(x) be a power series with ord(f(x)) = 1 and with a positive
coefficient of x. In what follows we say that a series Y, ,,5¢ ¢, x™ with ¢y > 0 is alternatingif (—1)"c, > 0 for
alln > 0.

Claim 6.4

A sufficient condition for the compositional inverse f 1 (x) of f(x) to be alternating is
thatx/f (x) is alternating.

Proof

Since the product of alternating power series with positive constant terms is again alternating with
positive constant term, under the hypothesis of the claim we get that for all n = 1 the power series
of (x/f (x))" is alternating. The Lagrange inversion formula (see e.g. [16, Chapter 5]), which says that for
all nthe coefficient of x™ in f ~1(x) is the same as (1/n) times the coefficient of x™ 1 in (x/f (x))", then says
that the sign of the coefficient of x™ in f~1(x) is (—1)" tor 0. O



This is not a terribly useful test for the power series that come up when studying restricted Stirling
numbers, but it is quite useful for restricted Lah numbers, where the series under consideration take the
form f(x) = Yegrx™, and the geometric series can sometimes be used to find an explicit expression for the
coefficients of the power series of x/f (x). For example, when R = {1,2,r + 1,r + 2} for r > 2, we have

x 1
x+x2 4+ x4+ x™2 T (14 x)(1+x")

[e) r—1
(Z (—1)’<—1kz (—=1)ix®&D+i  ifrodd
_ k=1 j=0

- o3 r—1
Z z (—1) x20e=Dr+) ifreven,
k=1 &= j=0

which is alternating. This shows that L(n, k)z* has sign (—1)""* (or 0) for all n, k > 1, whenever Ris of the
form {1,2,r + 1,r + 2} for r > 2; but only in the case r = 2 is this a set Rwith 1 € R and with no exposed
odds.

There is some computational evidence in favor of an affirmative answer to the following question,
but perhaps not enough to merit forming a conjecture.

Question 6.5
[s it the case that for R € N with 1 € R, we have that the inverse of },,cg x™/nlis alternating if and
only if the inverse of },,cg ~ x™/n is alternating and if and only if the inverse of },,cg  x™ is alternating?

In light of the discussion after Question 6.3, it is worth noting that the compositional inverses of
both x + x2/2 + x*/24 + x>/120 and x + x?/2 + x*/4 + x> /5 are alternating for their first 1200 terms.

We have shown in this paper, by a combinatorial argument (Algorithm 5.1) thatif R € Nwith 1 €
R has no exposed odds, then f(x) = XY ,cr x™/n!, g(x) = Yperx™/nand h(x) = Y ,egx™ have
compositional inverses with alternating coefficient sequences. In [11, Section 5] we also show h(x) =
Yner X™ has an alternating inverse by a different combinatorial argument expressing inverse Lah numbers
in terms of Dyck paths. There we also showed analytically that x/h(x) is alternating. Together with Claim
6.4 this gives an analytical proof that h~1(x) is alternating.

This leads us to the following non-combinatorial question: are there analytical proofs
that f ~1(x) and g~1(x) are alternating? We do not even know of an analytical way of showing, for example,
that x + x2/2 + x3/3 + x* /4, the degree four Taylor approximation to log (1 + x), has alternating
compositional inverse (note that x/(x + x2/2 + x3/3 + x*/4) does not have an alternating power series,
so we cannot apply Claim 6.4).
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