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Abstract 
Given 𝑅 ⊆ ℕ let {

𝑛
𝑘
}
𝑅

, [
𝑛
𝑘
]
𝑅

, and 𝐿(𝑛, 𝑘)𝑅 count the number of ways of partitioning the set [𝑛]:=

{1,2,… , 𝑛} into k non-empty subsets, cycles and lists, respectively, with each block having cardinality in R. 

We refer to these as the R-restricted Stirling numbers of the second kind, R-restricted unsigned Stirling 

numbers of the first kind and the R-restricted Lah numbers, respectively. Note that the classical Stirling 

https://doi.org/10.1016/j.jcta.2018.08.001
http://epublications.marquette.edu/


numbers of the second kind, unsigned Stirling numbers of the first kind, and Lah numbers are {
𝑛
𝑘
} =

{
𝑛
𝑘
}
ℕ

, [
𝑛
𝑘
] = [

𝑛
𝑘
]
ℕ

 and 𝐿(𝑛, 𝑘) = 𝐿(𝑛, 𝑘)ℕ, respectively. 

It is well-known that the infinite matrices [{
𝑛
𝑘
}]
𝑛,𝑘≥1

, [[
𝑛
𝑘
]]
𝑛,𝑘≥1

 and [𝐿(𝑛, 𝑘)]𝑛,𝑘≥1 have 

inverses [(−1)𝑛−𝑘 [
𝑛
𝑘
]]
𝑛,𝑘≥1

, [(−1)𝑛−𝑘 {
𝑛
𝑘
}]
𝑛,𝑘≥1

 and [(−1)𝑛−𝑘𝐿(𝑛, 𝑘)]𝑛,𝑘≥1 respectively. The inverse 

matrices [{
𝑛
𝑘
}
𝑅
]
𝑛,𝑘≥1

−1
, [[
𝑛
𝑘
]
𝑅
]
𝑛,𝑘≥1

−1
 and [𝐿(𝑛, 𝑘)𝑅]

−1
𝑛,𝑘≥1 exist and have integer entries if and only if 1 ∈ 𝑅. We 

express each entry of each of these matrices as the difference between the cardinalities of two explicitly 

defined families of labeled forests. In particular the entries of [{
𝑛
𝑘
}
[𝑟]
]
−1

𝑛,𝑘≥1

 have combinatorial 

interpretations, affirmatively answering a question of Choi, Long, Ng and Smith from 2006. 

If we have 1,2 ∈ 𝑅 and if for all 𝑛 ∈ 𝑅 with n odd and 𝑛 ≥ 3, we have 𝑛 ± 1 ∈ 𝑅, we additionally 

show that each entry of [{
𝑛
𝑘
}
𝑅
]
𝑛,𝑘≥1

−1
, [[
𝑛
𝑘
]
𝑅
]
−1

𝑛,𝑘≥1
 and [𝐿(𝑛, 𝑘)𝑅]𝑛,𝑘≥1

−1  is up to an explicit sign the cardinality 

of a single explicitly defined family of labeled forests. With R as before we also do the same for restriction 

sets of the form 𝑅(𝑑) = {𝑑(𝑟 − 1) + 1: 𝑟 ∈ 𝑅} for all 𝑑 ≥ 1. Our results also provide combinatorial 

interpretations of the kth Whitney numbers of the first and second kinds of Π𝑛
1,𝑑, 

the poset of partitions of [n] that have each part size congruent to 1 mod d. 

Keywords 
Stirling numbers, Lah numbers, Riordan matrix, Riordan group, Reversion, Lagrange inversion, Whitney 

numbers, Restricted partition poset 

1. Introduction 
For all integers 𝑛, 𝑘 ≥ 1, let {

𝑛
𝑘
}, [
𝑛
𝑘
], and 𝐿(𝑛, 𝑘) be the classical Stirling numbers of the second kind, 

unsigned Stirling number of the first kind, and Lah numbers, respectively. These numbers are defined as 

follows: {
𝑛
𝑘
} is the number of partitions of [𝑛]:= {1,2,… , 𝑛} into k non-empty subsets, [

𝑛
𝑘
] is the number of 

partitions of [𝑛] into k non-empty cyclically ordered sets, i.e. cycles, and 𝐿(𝑛, 𝑘) is the number of partitions 

of [𝑛] into k non-empty linearly ordered sets, i.e. lists. All of our partitions will be unordered unless we 

specify otherwise. Let 𝑆2: = [{
𝑛
𝑘
}]
𝑛,𝑘≥1

, 𝑆1:= [[
𝑛
𝑘
]]
𝑛,𝑘≥1

, and 𝐿:= [𝐿(𝑛, 𝑘)]𝑛,𝑘≥1 be infinite matrices with 

rows and columns indexed by the natural numbers ℕ:= {1,2,… }. In this notation n is the row index and k is 

the column index. It is well-known that 𝑆2
−1 = [(−1)𝑛−𝑘 [

𝑛
𝑘
]]
𝑛,𝑘≥1

, 𝑆1
−1 = [(−1)𝑛−𝑘 {

𝑛
𝑘
}]
𝑛,𝑘≥1

 and 𝐿−1 =

[(−1)𝑛−𝑘𝐿(𝑛, 𝑘)]𝑛,𝑘≥1. In particular, each entry of each inverse matrix has, up to sign, a combinatorial 

interpretation. 

We consider the following generalizations of Stirling and Lah numbers. 

Definition 1.1 

For 𝑅 ⊆ ℕ the R-restricted Stirling number of the second kind, {
𝑛
𝑘
}
𝑅

, is the number of partitions 

of [𝑛] into k non-empty subsets such that the cardinality of each subset is restricted to lie in R. Analogously, 



the R-restricted unsigned Stirling numbers of the first kind [
𝑛
𝑘
]
𝑅

 and R-restricted Lah numbers 𝐿(𝑛, 𝑘)𝑅 are 

the numbers of partitions of [𝑛] into k cycles and lists, respectively, with cardinalities restricted to lie in R. 

Note that we recover the classical Stirling numbers of both kinds and the Lah numbers by 

taking R to be 𝑁 (e.g. {
𝑛
𝑘
}
ℕ
= {

𝑛
𝑘
} etc.). 

Various instances of restricted numbers have appeared in the literature. Comtet [8, page 

222] introduced r-associated Stirling numbers of the second kind, {
𝑛
𝑘
}
𝑅

 with 𝑅 = {𝑟, 𝑟 + 1, 𝑟 + 2,… }, and 

obtained recurrence relations and generating functions for them. Belbachir and Bousbaa [2]studied r-
associated Lah numbers, 𝐿(𝑛, 𝑘)𝑅 also with 𝑅 = {𝑟, 𝑟 + 1, 𝑟 + 2,… }. Choi and Smith [7] considered r-

restricted Stirling numbers of the second kind, {
𝑛
𝑘
}
𝑅

 with 𝑅 = [𝑟]. 

We extend the classical results on the inverses of Stirling and Lah number matrices to find 

combinatorial formulas for the inverses of R-restricted Stirling and Lah number matrices whenever the 

inverses exist, i.e., whenever 1 ∈ 𝑅. 

Definition 1.2 

Denote by {
𝑛
𝑘
}
𝑅

−1
 ([
𝑛
𝑘
]
𝑅

−1
, 𝐿(𝑛, 𝑘)𝑅

−1) the entry in the nth row and kth column of the 

matrix [{
𝑛
𝑘
}
𝑅
]
𝑛,𝑘≥1

−1
 ( [[

𝑛
𝑘
]
𝑅
]
−1

𝑛,𝑘≥1
, [𝐿(𝑛, 𝑘)𝑅]𝑛,𝑘≥1

−1 , respectively), when the inverse matrix exists. We refer 

to {
𝑛
𝑘
}
𝑅

−1
 as the inverse R-restricted Stirling number of the second kind, [

𝑛
𝑘
]
𝑅

−1
 as the inverse R-restricted 

unsigned Stirling number of the first kind, and 𝐿(𝑛, 𝑘)𝑅
−1 as the inverse R-restricted Lah number. 

Our first result (Theorem 3.1) is that for all 𝑅 ⊆ ℕ with 1 ∈ 𝑅, {
𝑛
𝑘
}
𝑅

−1
, [
𝑛
𝑘
]
𝑅

−1
, and 𝐿(𝑛, 𝑘)𝑅

−1 can each 

be expressed as the difference between the cardinalities of two explicitly defined sets of forests. 

If R has more structure, we can say more. 

Definition 1.3 
Say that 𝑅 ⊆ ℕ has no exposed odds if it has the following properties: 

1. if 1 ∈ 𝑅 then 2 ∈ 𝑅 and 
2. if n is odd, 𝑛 ≥ 3, and 𝑛 ∈ 𝑅 then 𝑛 − 1, 𝑛 + 1 ∈ 𝑅. 

 

For 𝑑 ≥1 and 𝑅 ⊆ ℕ set 𝑅(𝑑): = {𝑑(𝑛 − 1) + 1: 𝑛 ∈ 𝑅}. We view 𝑅(𝑑) as the set R “stretched” along 

the arithmetic progression {1, 𝑑 + 1,2𝑑 + 1,… }. Our main set of results (Theorem 3.8, Theorem 3.9) is that, 

for all 𝑅 ⊆ ℕ with 1 ∈ 𝑅 and with no exposed odds, and for all 𝑑 ≥ 1, each 

of {
𝑛
𝑘
}
𝑅

−1
, [
𝑛
𝑘
]
𝑅

−1
, 𝐿(𝑛, 𝑘)𝑅

−1, 𝐿(𝑛, 𝑘)𝑅
−1, {

𝑛
𝑘
}
𝑅(𝑑)

−1
, and 𝐿(𝑛, 𝑘)𝑅(𝑑)

−1  can be expressed, up to an explicit sign, as the 

cardinality of a single explicitly defined set of forests. 

Recursion relations and generating functions are derived in [4] for 𝐶 
𝑚 (𝑛, 𝑘):= {

𝑛
𝑘
}
[𝑚]

, 𝑆1
𝑚 (𝑛, 𝑘):=

(−1)𝑛−𝑘 {
𝑛
𝑘
}
[𝑚]

, and 𝑆2 
𝑚 (𝑛, 𝑘):=𝑚 𝑆1

−1(𝑛, 𝑘) (the (𝑛, 𝑘) entry of the matrix inverse to [ 𝑆1 
𝑚 (𝑛, 𝑘)]). 

In [5] Choi, Long, Ng and Smith note that {
𝑛
𝑘
}
[2]

−1
 is a Bessel number [14, A100861] and has many 



combinatorial interpretations. For example, (−1)𝑛−𝑘 {
𝑛
𝑘
}
[2]

−1
 counts the number of size 𝑛 − 𝑘 matchings of 

the complete graph 𝐾2𝑛−1−𝑘 [6]. They asked if {
𝑛
𝑘
}
[𝑟]

−1
 has a combinatorial interpretation for 𝑟 > 2, and 

observed that an anomalous sign behavior in {
𝑛
𝑘
}
[3]

−1
 presents an obstacle to any such interpretations. 

But in fact our results provide such combinatorial interpretations, and these are particularly nice 

whenever r is even; see Corollary 1.4 (Part 1) below. 

We give below, in Corollary 1.4, some illustrative special cases of the results in our paper. We also 

give some applications to calculating the Whitney numbers of a certain subposet of the partition lattice 

(Theorem 1.5). 

Recall that a plane tree is a rooted tree in which the set of children of each vertex of the tree is given 

a linear ordering from left to right. If the leaves of a tree are labeled with integers we extend that labeling to 

other vertices 𝑣 by setting ℓ(𝑣) to be the maximum of the labels of the leaves descended from 𝑣. 

Let ℋ(𝑛, 𝑘) be the set of forests consisting of an unordered collection of k plane rooted trees: (i) 

with n leaves in total (an isolated root is considered a leaf) (ii) with all non-leaves having at least two 

children and (iii) with the leaves labeled with the integers 1 through n in such a way that ℓ(𝑣) increases 

from left to right across each set of siblings. 

Corollary 1.4 
The following are special cases of Definition 3.3, Claim 3.4, and Theorem 3.8, Theorem 3.9. 

1. Let 𝑟 ≥ 1. The number {
𝑛
𝑘
}
{1,2,…,2𝑟}

−1
 is (−1)𝑛−𝑘  times the number of forests in ℋ(𝑛, 𝑘) in which 

each vertex v has 0, 2, or 2r children unless v is the left-most child of a vertex with two children, in 
which case it has 0 or 2r children. 

2. Let 𝑟 ≥ 1 and 𝑑 ≥ 2. If 𝑛 ≡ 𝑘(mod𝑑), then {
𝑛
𝑘
}
{1,𝑑+1,2𝑑+1,…,1+(2𝑟−1)𝑑}

−1
 is (−1)

𝑛−𝑘

𝑑  times the number 

of forests in ℋ(𝑛, 𝑘) in which each vertex v has 0, 𝑑 + 1 or 1 + (2𝑟 − 1)𝑑 children unless v is the 
left-most child of a vertex with 𝑑 + 1 children, in which case it has 0 or 1 + (2𝑟 − 1)𝑑 children. If 
𝑛 ≢ 𝑘(mod𝑑), then the number is 0. 

3. Let 𝑑 ≥ 1. If 𝑛 ≡ 𝑘(mod𝑑), then {
𝑛
𝑘
}
{1,𝑑+1,2𝑑+1,… }

−1
 is (−1)

𝑛−𝑘

𝑑  times the number of forests 

in ℋ(𝑛, 𝑘) in which each vertex has 0 or 𝑑 + 1 children and in which left-most children are always 
leaves. If 𝑛 ≢ 𝑘(mod𝑑), then the number is 0. 
 

Suppose P is a finite ranked poset with unique minimal element 0. For all 𝑘 ≥ 0, the kth Whitney 
number of the second kind, 𝑊𝑘(𝑃), is the number of elements of P of rank k and the kth Whitney number of 
the first kind, 𝑤𝑘(𝑃), is given by 𝑤𝑘(𝑃) = ∑𝑥 𝜇(0, 𝑥) where μ is the Möbius function of P and x ranges 

over the elements of P of rank k. The theory of subposets of the set partition lattice Π𝑛 consisting of 

partitions with restricted part sizes has received considerable attention in the literature, see for 

instance [3], [15], [18], [21]. Our results give combinatorial interpretations of the Whitney numbers of the 

ranked poset Π𝑛
1,𝑑 consisting of all partitions of [𝑛] that have each part size congruent to 1 mod d. 

Theorem 1.5 
For all 𝑛, 𝑑 ≥ 1 and 𝑘 ≥ 0 we have 

𝑊𝑘(𝛱𝑛
1,𝑑) = {

𝑛
𝑛 − 𝑘𝑑

}
{1,𝑑+1,2𝑑+1,… }

 



and 

𝑤𝑘(𝛱𝑛
1,𝑑) = {

𝑛
𝑛 − 𝑘𝑑

}
{1,𝑑+1,2𝑑+1,… }

−1
 

In particular, 𝑤𝑘(𝛱𝑛
1,𝑑) is (−1)𝑘 times the number of forests in ℋ(𝑛, 𝑛 − 𝑘𝑑) in which each vertex 

has 0 or 𝑑 + 1 children and in which left-most children are always leaves. 

Our paper is organized as follows. We provide definitions related to our combinatorial 

interpretations in Section 2 and then state our main results in Section 3. In Section 4, we state some 

preliminary lemmas. We give proofs of our main results in Section 5. In Section 6 we note some 

connections to known number sequences and indicate some directions for future research. 

2. Notation 
As is evident from Corollary 1.4 and Theorem 1.5, trees and forests figure heavily in our results. Our 

trees will all be rooted, i.e. they will come with a distinguished root vertex. Our forests will also all 

be rooted, i.e. they will consist of unordered collections of rooted trees. Let F be a rooted forest and 

let v and w be vertices of F. If v lies on the path from wto a root, then v is an ancestor of w and w is 

a descendant of v. If, in addition, v and w are neighbors, we say v is the parent of w and w is a child of v. We 

say v and w are siblings if they have the same parent. The degree or down-degree of v, denoted 𝑑𝐹(𝑣), is the 

number of children of vin F. We say v is a leaf of F if 𝑑𝐹(𝑣) = 0. Note that by our definition, isolated roots 

are also leaves. 

Our forests will either have ordered children or unordered children. A forest with unordered 
children is just a graph made up of rooted trees with no ordering on sets of siblings. A forest has ordered 
children if the set of children of each non-leaf vertex v is given a specific linear order from left-
most to right-most. Although a rooted tree with ordered children is usually called a plane tree we avoid this 

terminology as we do not consider plane forests, i.e. linearly ordered collections of plane trees. The 

components of our forests will always be unordered. 

If T is a tree, a leaf-labeling of T is an injective map ℓ from the leaves of 𝑇 to ℕ. A leaf-labeling of a 

tree with n leaves is proper if it has range [𝑛]. We will work with two extensions of a leaf-labeling to non-

leaf vertices. 

Definition 2.1 
Given a leaf-labeling ℓ of the leaves of a tree T, the labeling ℓmax on the vertices of T is defined by 

setting ℓmax(𝑣) to be the maximum of the labels of the leaves descended from v. The labeling ℓmin is 

defined by setting ℓmin(𝑣) to be the minimum of the labels of the leaves descended from v. 

Note that any two children of a vertex have distinct labels with respect to the ℓmax (or ℓmin) 

labeling. 

A phylogenetic tree (forest) is a rooted tree (forest) with unordered children such that no vertex 

has down-degree 1, together with a proper leaf-labeling. For 1 ≤ 𝑘 ≤ 𝑛, we define 𝒯(𝑛) to be the family of 

phylogenetic trees on n leaves and ℱ(𝑛, 𝑘) to be the family of phylogenetic forests with n leaves 

and k unordered components. Also, let 𝒯even(𝑛) denote the subset of trees in 𝒯(𝑛) that have an even 

number of edges, and let 𝒯odd(𝑛) be the complementary set of trees with an odd number of edges. 

Definition 2.2 
Let G be a phylogenetic tree or forest. If each complete set of siblings (full set of children of a non-

leaf vertex of G) is assigned a linear ordering, we say that G is a linearly ordered phylogenetic tree (forest). 

Refer to Fig. 1 for some examples. We say G is increasingly ordered if G is linearly ordered and if 



additionally for each complete set of siblings, the ℓmax label of the siblings increases from left to right. We 

say G is min-first ordered if G is linearly ordered and if additionally for each complete set of siblings, the 

left-most sibling has the smallest ℓmin label amongst all the siblings. 

 
Fig. 1. Three examples of linearly ordered phylogenetic trees. 

Let 𝒯 i.o.(𝑛), 𝒯m.o.(𝑛), and 𝒯l.o.(𝑛) be the families of increasingly ordered, min-first ordered, and 

linearly ordered phylogenetic trees on nleaves, respectively. For all 1 ≤ 𝑘 ≤ 𝑛 we 

define ℱ i.o.(𝑛, 𝑘) ℱm.o.(𝑛, 𝑘), ℱ l.o.(𝑛, 𝑘)) to be the family of increasingly (min-first, linearly) ordered 

phylogenetic forests on n leaves with k unordered components. 

If 𝑅 ⊆ ℕ and 𝒞 is any class of trees or forests, we write 𝒞𝑅 for the subclass of objects in 𝒞 which 

have all non-zero down-degrees lying in R. For example, 𝒯𝑅
i.o.(𝑛) is the set of all increasingly ordered 

phylogenetic trees with n leaves and all non-zero down-degrees lying in R. 

For 𝑑 ≥ 1 let 𝑠𝑑: ℕ → ℕ be defined by 𝑠𝑑(𝑛):= 𝑑(𝑛 − 1) + 1. As we defined in the introduction, 

let 𝑅(𝑑) = 𝑠𝑑(𝑅) = {𝑑(𝑛 − 1) + 1: 𝑛 ∈ 𝑅}. Note that 𝑠1 is the identity and 𝑅(1) = 𝑅. 

Definition 2.3 
Let 𝑅 ⊆ ℕ and let 𝑑 ≥ 1. If G is a phylogenetic forest with all down-degrees in 𝑅(𝑑) let (𝑣𝑖)𝑖=1

𝑚
 be 

some arbitrary but fixed ordered list of the non-leaf vertices of G. For each i let ni be the unique integer 

such that 𝑑𝐺(𝑣𝑖) = the down-degree of 𝑣𝑖 = 𝑠𝑑(𝑛𝑖). We refer to (𝑛𝑖)𝑖=1
𝑚  as the internal sequence of G. We 

say that G is even if ∑ 𝑛𝑖
𝑚
𝑖=1  is even and odd otherwise. 

Note that if 𝑑 = 1 then 𝑛𝑖 = 𝑑𝐺(𝑣𝑖) and ∑ 𝑛𝑖
𝑚
𝑖=1  is just the number of edges of G. We 

define 𝒯𝑅(𝑑)
i.o.,even(𝑛) 𝒯𝑅(𝑑)

i.o.,odd(𝑛) to be the sets of even (odd) increasingly ordered trees on n leaves with 

down-degrees in 𝑅(𝑑) and define the analogous notations for the other possible subclasses of even and odd 

ordered trees and forests. For example ℱ𝑅(𝑑)
m.o.,odd(𝑛, 𝑘) is the set of odd min-first ordered phylogenetic 

forests with down-degrees in 𝑅(𝑑) and with n leaves and k components. If 𝑑 = 1 then, since 𝑅(1) = 𝑅, we 

will write this as ℱ𝑅
m.o.,odd(𝑛, 𝑘). 

3. Results 
In this section we state our main results. Using a formula for combinatorial Lagrange inversion we 

obtain the following combinatorial interpretation for each inverse R-restricted number (with 1 ∈ 𝑅) as the 

difference in cardinality between two sets of forests. 

Theorem 3.1 

Let 𝑅 ⊆ ℕ. Then {
𝑛
𝑘
}
𝑅

−1
, [
𝑛
𝑘
]
𝑅

−1
, and 𝐿(𝑛, 𝑘)𝑅

−1 exist if and only if 1 ∈ 𝑅. For all R with 1 ∈ 𝑅 and 

all 𝑛, 𝑘 ≥ 1 we have 



{
𝑛
𝑘
}
𝑅

−1
= (−1)𝑛−𝑘(|ℱ𝑅

i.o.,even(𝑛, 𝑘)| − |ℱ𝑅
i.o.,odd(𝑛, 𝑘)|), 

[
𝑛
𝑘
]
𝑅

−1
= (−1)𝑛−𝑘(|ℱ𝑅

m.o.,even(𝑛, 𝑘)| − |ℱ𝑅
m.o.,odd(𝑛, 𝑘)|), 

𝐿(𝑛, 𝑘)𝑅
−1 = (−1)𝑛−𝑘(|ℱ𝑅

l.o.,even(𝑛, 𝑘)| − |ℱ𝑅
l.o.,odd(𝑛, 𝑘)|). 

Recall (Definition 1.3) that 𝑅 ⊆ ℕ has no exposed odds if (i) 2 ∈ 𝑅whenever 1 ∈ 𝑅, and (ii) 𝑛 −

1, 𝑛 + 1 ∈ 𝑅 whenever 𝑛 ∈ 𝑅, 𝑛 ≥ 3, and n is odd. Our main result is that for R containing 1 and with no 

exposed odds, we can express each inverse entry, up to sign, as the cardinality of a single set of forests. We 

next define the terms needed to describe these sets. 

We write R as a disjoint union of its maximal intervals. Thus if R has no exposed odds it is a union of 

intervals of the form [1,∞), [1, 𝑏] with beven, [𝑎,∞) with a even, or [𝑎, 𝑏] with 𝑎 ≤ 𝑏 and a and b even. 

Let 𝑎(𝑅) be the set of all left endpoints of the intervals in this decomposition of R, except 1, and let 𝑏(𝑅) be 

the set of all right endpoints. Note that if 𝑅 = ℕ = [1,∞) then 𝑎(𝑅) and 𝑏(𝑅) are empty. Note also that 

if [𝑥, 𝑥] = {𝑥} is one of the maximal intervals of R, then 𝑥 ∈ 𝑎(𝑅) and 𝑥 ∈ 𝑏(𝑅). 

Definition 3.2 
Let v be a vertex in a linearly ordered tree or forest G. Then v has 2-left-odd ancestry if v has some 

ancestor 𝑣1 with the following properties: 

•along the path 𝑣1, … , 𝑣𝑘 = 𝑣 from 𝑣1 to v, for each 1 ≤ 𝑖 < 𝑘 it holds that 𝑑𝐺(𝑣𝑖) = 2, 𝑣𝑖+1 is a left-
most child of 𝑣𝑖, and k is even, and 
•𝑣1 is not a left-most child of a vertex w with 𝑑𝐺(𝑤) = 2. 

 

For 𝑑 ≥ 1, we say v has 𝑠𝑑(2)-left-odd ancestry if v has some ancestor 𝑣1 such that 

•along the path 𝑣1, … , 𝑣𝑘 = 𝑣 from 𝑣1 to v, for each 1 ≤ 𝑖 < 𝑘 it holds that 𝑑𝐺(𝑣𝑖) = 𝑠𝑑(2), 𝑣𝑖+1 is a 
left-most child of 𝑣𝑖, and k is even, and 
•𝑣1 is not a left-most child of a vertex w with 𝑑𝐺(𝑤) = 𝑠𝑑(2). 

 

In Fig. 1(a), only vertex w2 has 2-left-odd ancestry. In Figs. 1(b) and 1(c), only 

vertices w2 and w4 have 2-left-odd ancestry. 

Definition 3.3 
Let G be a linearly ordered tree or forest and let R have no exposed odds. Say G is R-good if and only 

if for all vertices v, either v is a leaf or 𝑑𝐺(𝑣) = 2 or 𝑑𝐺(𝑣) ∈ 𝑎(𝑅), unless v has 2-left-odd ancestry, in which 

case either v is a leaf or 𝑑𝐺(𝑣) ∈ 𝑏(𝑅). 

For 𝑑 ≥ 1 say that G is 𝑅(𝑑)-good if and only if for all vertices v, either v is a leaf or 𝑑𝐺(𝑣) =

𝑠𝑑(2)(= 𝑑 + 1) or 𝑑𝐺(𝑣) = 𝑠𝑑(𝑎) for some 𝑎 ∈ 𝑎(𝑅), unless v has 𝑠𝑑(2)-left-odd ancestry, in which case 

either v is a leaf or 𝑑𝐺(𝑣) = 𝑠𝑑(𝑏) for some 𝑏 ∈ 𝑏(𝑅). 

Note that R-goodness and 𝑅(1)-goodness coincide. When 3 ∈ 𝑅, the next claim shows that 

“has 𝑠𝑑(2)-left-odd ancestry” in Definition 3.3 can be replaced by the simpler “is the left-most child of a 

vertex w with 𝑑𝐺(𝑤) = 𝑠𝑑(2).” So when 3 ∈ 𝑅, all non-leaf left-children of degree 𝑠𝑑(2)vertices in 

an 𝑅(𝑑) −good tree have degree 𝑠𝑑(𝑛) for 𝑛 > 2. 



Claim 3.4 
If 3 ∈ 𝑅, then G is 𝑅(𝑑)-good if and only if for all vertices v, either v is a leaf or 𝑑𝐺(𝑣) =

𝑠𝑑(2) or 𝑑𝐺(𝑣) = 𝑠𝑑(𝑎) for some 𝑎 ∈ 𝑎(𝑅), unless v is the left-most child of a vertex w with 𝑑𝐺(𝑤) = 𝑠𝑑(2), 
in which case either v is a leaf or 𝑑𝐺(𝑣) = 𝑠𝑑(𝑏) for some 𝑏 ∈ 𝑏(𝑅). 

Proof 
If 3 ∈ 𝑅, then an 𝑅(𝑑) −good tree or forest cannot have a vertex 𝑤2 as a left-most child of a 

vertex 𝑤1 where 𝑑𝐺(𝑤2) = 𝑑𝐺(𝑤1) = 𝑠𝑑(2). Indeed, one of 𝑤1 or 𝑤2 would have 𝑠𝑑(2)-left-odd ancestry, 

and 2 ∉ 𝑏(𝑅). □ 

We provide a few examples to illustrate these definitions. 

Example 3.5 
Suppose that 𝑅 = {1,2} ∪ {4,5,6}, so 𝑎(𝑅) = {4} and 𝑏(𝑅) = {2,6}. Consider the three phylogenetic 

trees in Fig. 1. Trees (a) and (c) are R-good while tree (b) is not, since vertex 𝑤4 has 2-left-odd ancestry, 

but 𝑤4 is not a leaf and 𝑑𝐺(𝑤4) = 4 ∉ 𝑏(𝑅). 

Example 3.6 
If 𝑅 = {1,2}, then an R-good tree is precisely a binary tree with ordered children and a proper leaf 

labeling, and an 𝑅(𝑑)-good tree is precisely a tree with ordered children and all degrees 0 or 𝑑 + 1, 

together with a proper leaf labeling. 

Example 3.7 
If 𝑅 = [𝑟] for even 𝑟 ≥ 4, then an R-good tree is precisely a leaf-labeled tree with ordered children 

and all degrees 0, 2, or r and where the left children of vertices of degree 2 have degree 0 or r. Note that 

for 𝑅 = [4], none of the trees in Fig. 1 are R-good. 

We define 𝒯𝑅
i.o.,good(𝑛) 𝒯𝑅(𝑑)

i.o.,good(𝑛) to be the class of increasingly ordered R-good (𝑅(𝑑) −good) 

phylogenetic trees on n leaves and define the analogous notations for other classes of ordered R- 

and 𝑅(𝑑) −good trees and forests. For example, ℱ𝑅(𝑑)
m.o.,good(𝑛, 𝑘) is the set of 𝑅(𝑑) −good min-first ordered 

phylogenetic forests with n leaves and k components. If 𝑑 = 1, we write this as just ℱ𝑅
m.o.,good(𝑛, 𝑘). It is 

straightforward to check that good trees and forests are even. Indeed, since R has no exposed odds, the 

sets a(R) and b(R) are comprised of even numbers. By the definition of 𝑅(𝑑) −goodness, this means the 

internal sequence (see Definition 2.3) of G is comprised of even numbers and hence has even sum. 

Our main results are the following theorems. 

Theorem 3.8 
For all 𝑅 ⊆ ℕ with 1 ∈ 𝑅 and with no exposed odds, and for all 𝑛, 𝑘 ≥ 1, we have 

{
𝑛
𝑘
}
𝑅

−1
= (−1)𝑛−𝑘 |ℱ𝑅

i.o.,good(𝑛, 𝑘)|, 

[
𝑛
𝑘
]
𝑅

−1
= (−1)𝑛−𝑘 |ℱ𝑅

m.o.,good(𝑛, 𝑘)|, 

𝐿(𝑛, 𝑘)𝑅
−1 = (−1)𝑛−𝑘 |ℱ𝑅

l.o.,good(𝑛, 𝑘)|. 

Theorem 3.9 
For all 𝑅 ⊆ ℕ with 1 ∈ 𝑅 and with no exposed odds, all 𝑑 ≥ 1, and all 𝑛, 𝑘 ≥ 1, we have 



{
𝑛
𝑘
}
𝑅(𝑑)

−1
= (−1)

𝑛−𝑘
𝑑 |ℱ𝑅(𝑑)

i.o.,good
(𝑛, 𝑘)|, 

[
𝑛
𝑘
]
𝑅(𝑑)

−1
= (−1)

𝑛−𝑘
𝑑 |ℱ𝑅(𝑑)

m.o.,good(𝑛, 𝑘)|, 

𝐿(𝑛, 𝑘)𝑅(𝑑)
−1 = (−1)

𝑛−𝑘
𝑑 |ℱ𝑅(𝑑)

l.o.,good
(𝑛, 𝑘)|. 

Notice that Theorem 3.8 is the just the special case 𝑑 = 1 of Theorem 3.9. We also note 

that Theorem 3.9 is vacuously true if 𝑑 ∤ (𝑛 − 𝑘). In those cases, we will show that {
𝑛
𝑘
}
−1

𝑅(𝑑)
= [

𝑛
𝑘
]
𝑅(𝑑)

−1
=

𝐿(𝑛, 𝑘)𝑅(𝑑)
−1 = 0 and the forest classes are empty. 

We illustrate these definitions and theorems in the case where 𝑅 = ℕ. An ordered tree T is ℕ-good 

if and only if every non-leaf vertex has two children, the left-most of which is a leaf. It follows 

that ||𝒯ℕ
i.o.,good(𝑛)| = (𝑛 − 1)!, because any of the (𝑛 − 1)! proper leaf-labelings in which the right-most 

child of the non-leaf vertex furthest from the root gets label n yields an ℕ-good increasingly ordered tree. 

On the other hand |𝒯ℕ
m.o.,good

(𝑛)| = 1, because for T to be min-first ordered, the leaves must be labeled in 

increasing order when read counterclockwise from the root. Finally we have |𝒯ℕ
l.o.,good(𝑛)| = 𝑛!, because in 

this case there is no restriction on the leaf-labeling. See Fig. 2. 

 

Fig. 2. (a) |𝒯ℕ
i.o.,good(4)| = (4 − 1)!; (b) |𝒯ℕ

m.o.,good(4)| = 1; and (c) |𝒯ℕ
l.o.,good(4)| = 4!. 

Thus Theorem 3.8 tells us 

{
𝑛
1
}
ℕ

−1
= (−1)𝑛−1 |𝒯ℕ

i.o.,good
| = (−1)𝑛−1 [

𝑛
1
], 

[
𝑛
1
]
ℕ

−1
= (−1)𝑛−1|𝒯m.o.,good| = (−1)𝑛−1 {

𝑛
1
} , and 

𝐿(𝑛, 1)ℕ
−1 = (−1)𝑛−1 |𝒯ℕ

l.o.,good
| = (−1)𝑛−1𝐿(𝑛, 1), 

matching the first columns of the identities [{
𝑛
𝑘
}]
𝑛,𝑘≥1

−1
= [(−1)𝑛−𝑘 [

𝑛
𝑘
]]
𝑛,𝑘≥1

, etc. 

Some other specific illustrations of these theorems are discussed in Section 6. 

4. Preliminary lemmas 
Let 𝑎 = (𝑎𝑛)𝑛≥1 be a sequence of complex numbers with 𝑎1 ≠ 0. For 𝑛, 𝑘 ≥ 1 set 

(1) 𝑎𝑛,𝑘 = ∑{𝑎|𝑃1|𝑎|𝑃2|⋯𝑎|𝑃𝑘|: {𝑃1, … , 𝑃𝑘} asset partitionof [𝑛]} 

and set 



𝐴𝑎 = [𝑎𝑛,𝑘]𝑛,𝑘≥1. 

Note that 𝐴𝑎 is lower triangular as no partition of [𝑛] has more than n parts, and also that 𝑎𝑛,𝑛 = 𝑎1
𝑛, 

so that 𝐴𝑎 is invertible if and only if 𝑎1 ≠ 0. 

All the R-restricted numbers we consider are of the form 𝑎𝑛,𝑘for certain choices of 𝑎𝑛. For example, 

note that [
𝑛
𝑘
]
𝑅
= 𝑎𝑛,𝑘 where 𝑎𝑛 = (𝑛 − 1)! 𝟏{𝑛∈𝑅}. (Here and throughout we use 𝟏𝑆 for the indicator 

function of the event S, the function which takes value 1 if S occurs and is 0 otherwise.) This may be seen as 

follows. To obtain a partition of [𝑛] into k non-empty cycles of the allowed sizes we first pick a partition 

of [𝑛] into k non-empty sets {𝑃1, … , 𝑃𝑘} and then for each block 𝑃𝑖 choose one of the cycles that may be 

formed from the elements of 𝑃𝑖. There are a𝑎|𝑃1|𝑎|𝑃2|⋯𝑎|𝑃𝑘| ways of completing the second step: if 𝑃𝑖 is of 

an allowed size, there are 𝑎|𝑃𝑖| = (|𝑃𝑖| − 1)! possible cycles and otherwise there are 𝑎|𝑃𝑖| = 0 possible 

cycles. Similarly, {
𝑛
𝑘
}
𝑅
= 𝑎𝑛,𝑘 where 𝑎𝑛 = 𝟏{𝑛∈𝑅}, and 𝐿(𝑛, 𝑘)𝑅 = 𝑎𝑛,𝑘 where 𝑎𝑛 = 𝑛! 𝟏{𝑛∈𝑅}. In all three 

cases 𝑎1 ≠ 0 and 𝐴𝑎 is invertible if and only if 1 ∈ 𝑅. 

All of our numbers {
𝑛
𝑘
}
𝑅

, {
𝑛
𝑘
}
𝑅
− 1, etc. are thus entries of matrices of the form 𝐴𝑎 or 𝐴𝑎

−1. As we 

shall see these matrices are submatrices of matrices belonging to the exponential Riordan group. We now 

define this group and see that its law of multiplication gives a nice approach to calculating the entries 

of 𝐴𝑎
−1. 

Given a sequence of complex numbers 𝑓 = (𝑓𝑛)𝑛≥0 we define the exponential generating function of 

f to be 𝑓(𝑥) = ∑ 𝑓𝑛𝑥
𝑛 𝑛⁄∞

𝑛=0 !. Given 𝑓(𝑥) = ∑ 𝑓𝑛𝑥
𝑛 𝑛⁄∞

𝑛=0 !, let ord(𝑓(𝑥)):= min{𝑛 ≥ 0: 𝑓𝑛 ≠ 0}. 

If 𝑓(𝑥) and 𝑔(𝑥) are exponential generating functions with ord(𝑓(𝑥)) = 0 and ord(𝑔(𝑥)) = 1 then for 𝑘 ≥

0 let (𝑀𝑛,𝑘)𝑛≥0 be the sequence whose exponential generating function is 𝑓(𝑥)𝑔𝑘(𝑥)/𝑘! (that 

is, ∑ 𝑀𝑛,𝑘𝑥
𝑛 𝑛!⁄ = 𝑓(𝑥)𝑔𝑘(𝑥) 𝑘⁄

∞

𝑛=0
!. Denote by [𝑓(𝑥), 𝑔(𝑥)] the infinite matrix [𝑀𝑛,𝑘]𝑛,𝑘≥0. 

The exponential Riordan group (see e.g. [1, Chapter 8]) is the group of all matrices of the 

form [𝑓(𝑥), 𝑔(𝑥)] with ord(𝑓(𝑥)) = 0 and ord(𝑔(𝑥)) = 1. The binary operation of this group is matrix 

multiplication and is computed by [𝑓(𝑥), 𝑔(𝑥)][𝑢(𝑥), 𝑣(𝑥)] = [𝑓(𝑥)𝑢(𝑔(𝑥)), 𝑣(𝑔(𝑥))]. The identity element 

is the identity matrix 𝐼 = [1, 𝑥] and [𝑓(𝑥), 𝑔(𝑥)]−1 = [1/𝑓(𝑔−1(𝑥)), 𝑔−1(𝑥)]. Here 𝑔−1(𝑥) is the reversion or 

compositional inverse of 𝑔(𝑥), the unique power series satisfying 𝑔(𝑔−1(𝑥)) = 𝑔−1(𝑔(𝑥)) = 𝑥. 

Let 𝑎(𝑥) be the exponential generating function of the sequence 𝑎 = (𝑎𝑛)𝑛≥1. It follows 

from (1) and the exponential formula (see e.g. [22, Chapter 3]) that the exponential generating function of 

the sequence (𝑎𝑛)𝑛≥1 of the entries of the kth column of 𝐴𝑎 is 𝑎𝑘(𝑥)/𝑘!. Thus 𝐴𝑎 = [1, 𝑎(𝑥)]0,0, the matrix 

obtained by removing the 0th row and 0th column of the exponential Riordan matrix [1, 𝑎(𝑥)]. Note that 

the exponential generating function of the 0th column of [1, 𝑎(𝑥)] is 1 so the (𝑛, 0) entry 

of [1, 𝑎(𝑥)] is 𝟏{𝑛 = 0}. Thus if 𝑏 = (𝑏𝑛)𝑛≥1 is another sequence with 𝑏1 ≠ 0 and exponential generating 

function 𝑏(𝑥), then 

𝐴𝑎𝐴𝑏 = [1, 𝑎(𝑥)]0,0[1, 𝑏(𝑥)]0,0 = ([1, 𝑎(𝑥)][1, 𝑏(𝑥)])0,0 = [1, 𝑏(𝑎(𝑥))]0,0 = 𝐴𝑐 

where, by the exponential Riordan group multiplication law, 𝑐 = (𝑐𝑛)𝑛 ≥ 1 has exponential generating 

function 𝑏(𝑎(𝑥)). If 𝑏(𝑥) = 𝑎−1(𝑥), 𝐴𝑎𝐴𝑏 = 𝐼 = [1, 𝑥]. This gives the following fundamental lemma. 

Lemma 4.1 
Let 𝑎 = (𝑎𝑛)𝑛≥1be a sequence of complex numbers with 𝑎1 ≠ 0 and let 𝑎(𝑥) = ∑ 𝑎𝑛𝑥

𝑛 𝑛⁄∞
𝑛=1 ! be its 

exponential generating function. Let 



𝐴𝑎 = [𝑎𝑛,𝑘]𝑛,𝑘≥1 

where 

𝑎𝑛,𝑘 = ∑{𝑎|𝑃1|𝑎|𝑃2|⋯𝑎|𝑃𝑘|: {𝑃1, … , 𝑃𝑘}𝑎 𝑠𝑒𝑡 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑜𝑓[𝑛]}. 

Let (𝑏𝑛)𝑛≥1 be the sequence of complex numbers whose exponential generating function is 𝑎−1(𝑥). 
Then 

𝐴𝑎
−1 = 𝐴𝑏 = [𝑏𝑛,𝑘]𝑛,𝑘≥1 

with 

(2) 𝑏𝑛,𝑘 = ∑{𝑏|𝑃1|𝑏|𝑃2|⋯𝑏|𝑃𝑘|: {𝑃1, … , 𝑃𝑘}𝑎 𝑠𝑒𝑡 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑜𝑓[𝑛]}. 

As an example, we apply this lemma to the case 𝑎𝑛 = 1 in which 𝐴𝑎 = [{
𝑛
𝑘
}]
𝑛,𝑘≥1

. Since 𝑎(𝑥) =

exp (𝑥) − 1, we have 𝑏(𝑥) = 𝑎−1(𝑥) = log(1 + 𝑥) = ∑ (−1)𝑛−1𝑥𝑛 𝑛⁄
∞

𝑛=1
, which is the exponential 

generating function of 𝑏𝑛 = (−1)
𝑛−1(𝑛 − 1)!. A simple calculation shows that the sign 

of 𝑏𝑛,𝑘 is (−1)𝑛−𝑘 and that 𝑏𝑛,𝑘 = (−1)
𝑛−𝑘 [

𝑛
𝑘
]. (See the method of calculation of [

𝑛
𝑘
]
𝑅

 given in the second 

paragraph of this section.) Applying Lemma 4.1 we obtain the classical result [{
𝑛
𝑘
}]
𝑛,𝑘≥1

−1
=

[(−1)𝑛−𝑘 [
𝑛
𝑘
]]
𝑛,𝑘≥1

 alluded to in the introduction. The well known inverses 

of [[
𝑛
𝑘
]]
𝑛,𝑘≥1

 and [𝐿(𝑛, 𝑘)]𝑛,𝑘≥1 can be obtained similarly. 

All sequences 𝑎 = (𝑎𝑛)𝑛≥1 that we consider will consist of non-negative integers with 𝑎1 = 1. This 

ensures that the entries of 𝐴𝑎
−1 are integers, a (perhaps minimum) requirement for a combinatorial 

interpretation of those entries. Indeed, if we examine the formula for 𝑎𝑛,𝑘in terms of the 𝑎𝑛 we see that the 

matrix 𝐴𝑎 will in this case be lower triangular, have integer entries, and have all 1's down the diagonal. 

Thus, by the co-factor formula for the inverse of a matrix, 𝐴𝑎
−1 will also have the same three properties. 

We will also need the following combinatorial Lagrange inversion formula. If 𝑎1 ≠ 0 and T is a 

phylogenetic tree with n leaves and m non-leaf vertices then we define the a-weight of T to be 

𝑤𝑎(𝑇) = (−1)
𝑚𝑎1

−(𝑚+𝑛)∏{𝑎𝑑𝑇(𝑣): 𝑣 ∈ 𝑉(𝑇), 𝑑𝑇(𝑣) ≠ 0}. 

Note that if a tree T consists of just a root then 𝑤𝑎(𝑇) = 1/𝑎1, as the root is considered a leaf. The following 

result has appeared numerous times in the literature. It is the case 𝑟 = 1 of the multi-variable 

generalization Theorem 3.3.9 of [12] and that paper cites earlier occurrences: [23, Thm. 3.10] where it is 

attributed to Towber and [13, Thm. 2.13]. The Ph.D. theses of Drake and Taylor contain generalizations of 

the single variable case: [10, Thm. 1.3.3] and [19, Sec 3.2]. We include a sketch of a proof for completeness. 

Lemma 4.2 
If 𝑎(𝑥) = ∑ 𝑎𝑛𝑥

𝑛 𝑛⁄𝑛≥1 ! (with 𝑎1 ≠ 0) and 𝑎−1(𝑥) = ∑ 𝑏𝑛𝑥
𝑛 𝑛⁄𝑛≥1 ! then for 𝑛 ≥ 1 

𝑏𝑛 = ∑ 𝑤𝑎(𝑇).

𝑇∈𝒯(𝑛)

 

Proof 
Solving [𝑥𝑛](𝑓(∑ 𝑏𝑛𝑥

𝑛 𝑛⁄∞
𝑛=1 !) − 𝑥) = 0 for 𝑏𝑛 we get 𝑏1 = 1/𝑎1 and the recurrence 



𝑏𝑛 = −𝑎1
−1∑𝑎𝑘

𝑛

𝑘=2

(∑
1

𝑘!
(

𝑛
𝑖1, … , 𝑖𝑘

)

(𝑖1,…,𝑖𝑘)

∏𝑏𝑖𝑗

𝑘

𝑗=1

) 

for 𝑛 ≥ 2, where ∑  (𝑖1,…,𝑖𝑘)  is a sum over compositions (𝑖1, … , 𝑖𝑘) of n. 

If 𝑡𝑛 = ∑ 𝑤𝑎(𝑇) 𝑇∈𝒯(𝑛) then 𝑡𝑛 satisfies the same initial condition and recurrence. Indeed 𝑡1 =

1/𝑎1 = 𝑏1. For 𝑛 ≥ 2 each tree 𝑇 ∈ 𝒯(𝑛) is uniquely determined by the unordered collection of 

subtrees 𝑇1, … , 𝑇𝑘 rooted at the 𝑘 ≥ 2 children of its root. For such a tree T, 𝑤𝑎(𝑇) =
(−𝑎𝑘 𝑎1⁄ )𝑤𝑎(𝑇1)⋯𝑤𝑎(𝑇𝑘). If tree 𝑇𝑗 has 𝑖𝑗 leaves, the sets of leaves of the 𝑇𝑗 form an unordered partition 

of [𝑛] into k parts of sizes 𝑖1, … , 𝑖𝑘 . The recurrence follows by summing 𝑤𝑎(𝑇) first over k and then over all 

such unordered partitions. □ 

We will use Lemma 4.1, Lemma 4.2 to obtain Theorem 3.1. The idea is this: for the first part 

of Theorem 3.1 ({
𝑛
𝑘
}
𝑅

−1
) we choose (𝑎𝑛)𝑛≥1 so that the matrix 𝐴𝑎 in Lemma 4.1 is precisely [{

𝑛
𝑘
}
𝑅
]
𝑛,𝑘≥1

. The 

appropriate choice is 𝑎𝑛 = 𝟏{𝑛∈𝑅}. Lemma 4.2 allows us to conclude that 𝑏𝑛 (the nth entry in the first 

column of the inverse matrix) is a weighted sum of phylogenetic trees, and we argue that this is the same as 

a signed, but otherwise unweighted, sum of increasingly ordered trees. That is, 𝑏𝑛 is the difference between 

the cardinalities of two explicitly defined sets of increasingly ordered trees. From (2) we then conclude 

that 𝑏𝑛, 𝑘 is the difference between the cardinalities of two explicitly defined sets of increasingly ordered 

forests, as claimed. The only change in the approach to the other two parts of Theorem 3.1 is the choice 

of an. 

We conclude this section by briefly discussing our approach to Theorem 3.8, Theorem 3.9. We 

discuss only the case 𝑑 = 1 here. Suppose that for some 𝑅 ⊆ ℕ with 1 ∈ 𝑅 and with no exposed odds we 

can find, for each n, an involution of 𝒯𝑅
i.o.(𝑛) that in its orbits of size 2 toggles between even and odd trees, 

and fixes precisely the set of R-good trees (which recall are all even; see the paragraph before the 

statement of Theorem 3.8). Using this involution we get from Theorem 3.1 (in the special case 𝑘 = 1) 

that {
𝑛
1
}
𝑅

−1
= (−1)𝑛−1 |𝒯𝑅

i.o.,good
(𝑛)|. But then from Lemma 4.1(and in particular equation (2)) we get 

that {
𝑛
𝑘
}
𝑅

−1
= (−1)𝑛−𝑘 |ℱ𝑅

i.o.,good(𝑛, 𝑘)|. The key point here is that (𝑏𝑛)𝑛 ≥ 1 is an alternating sequence, 

from which it follows that every summand contributing to the sum defining 𝑏𝑛, 𝑘 contributes the same sign 

— (−1)𝑛−𝑘— something which would not necessarily be the case if (𝑏𝑛)𝑛 ≥ 1was not alternating. 

Analogous phenomena hold for [
𝑛
𝑘
]
𝑅

−1
 and for 𝐿(𝑛, 𝑘)𝑅

−1. So much of our proof will involve finding this 

involution, which we give in Algorithm 5.1, and proving that it has the correct properties, which is done 

in Lemma 5.3. We need to add a little more to this argument to deal with sets of the form 𝑅(𝑑); this is also 

discussed in Section 5. 

5. Proofs 

5.1. Proof of Theorem 3.1 
That the inverse matrices under discussion exist if and only if 1 ∈ 𝑅 is evident. Let 𝑅 ⊆ ℕ with 1 ∈

𝑅, and let (𝑎𝑛)𝑛≥1 be a sequence of non-negative integers with 𝑎1 = 1. Let 𝐴𝑎
−1 = [𝑏𝑛,𝑘]𝑛,𝑘≥1 (with the 

notation following that in Lemma 4.1). 

For T∈T(n) with m non-leaf vertices, let 𝑒(𝑇) = 𝑛 +𝑚 − 1 be the number of edges of T. Adopting 

the convention 𝑎0 = 1 we get from Lemma 4.2 that 𝑏𝑛 = (−1)
𝑛−1∑ 𝑁𝑎(𝑇) 𝑇∈𝒯(𝑛) where 



𝑁𝑎(𝑇) = (−1)
𝑒(𝑇) ∏ 𝑎𝑑𝑇(𝑣)

𝑣∈𝑉(𝑇)

. 

Note that if T is turned into a tree with ordered children by assigning to each complete set 

of k siblings one of 𝑎𝑘 possible orderings, then the number of such trees obtainable from T is |𝑁𝑎(𝑇)|. 

Let 𝑎𝑛 = 𝟏{𝑛∈𝑅}. If 𝑇 ∈ 𝒯(𝑛), then |𝑁𝑎(𝑇)| = 1 if T has all down-degrees in R and 𝑁𝑎(𝑇) =

0 otherwise. Thus 

|𝒯𝑅
i.o.,even(𝑛)| = ∑ 𝑁𝑎(𝑇)

𝑇∈𝒯even(𝑛)

 

and 

|𝒯𝑅
i.o.,odd(𝑛)| = − ∑ 𝑁𝑎(𝑇)

𝑇∈𝒯odd(𝑛)

 

as there is precisely one way to turn each 𝑇 ∈ 𝒯(𝑛) with all down-degrees in R into an increasingly ordered 

tree. Thus 

𝑏𝑛 = (−1)
𝑛−1(|𝒯i.o.,even(𝑛)| − |𝒯 i.o.,odd(𝑛)|). 

We claim that 𝑏𝑛,𝑘 = (−1)
𝑛−𝑘(|ℱ i.o.,even(𝑛, 𝑘)| − |ℱ i.o.,odd(𝑛, 𝑘)|), via equation (2). Indeed, a forest 

on n leaves with k components can be chosen in two stages. The first stage is to pick 

a partition {𝑃1, … , 𝑃𝑘} of the label set [n], with say |𝑃𝑖| = 𝑛𝑖 . The second stage is to build for each 𝑃𝑖 a tree 

whose leaves are labeled with those 𝑛𝑖 labels. Examine the term 𝑏𝑛1⋯𝑏𝑛𝑘 of the sum for 𝑏𝑛, 𝑘. Since (𝑛1 −

1) +⋯(𝑛𝑘 − 1) = 𝑛 − 𝑘, this term is 

(−1)𝑛−𝑘(|𝒯i.o.,even(𝑛1)| − |𝒯
i.o.,odd(𝑛1)|)⋯(|𝒯

i.o.,even(𝑛𝑘)| − |𝒯
i.o.,odd(𝑛𝑘)|). 

The internal sequence of a forest has an even (odd) sum if and only if an even (odd) number of its 

trees have internal sequences with odd sum so (−1)𝑛−𝑘𝑏𝑛1⋯𝑏𝑛𝑘  is the number of even forests whose trees 

have label sets 𝑃𝑖 minus the number of odd forests whose trees have label sets 𝑃𝑖. Thus 𝑏𝑛,𝑘 =

(−1)𝑛−𝑘(|ℱ i.o.,even(𝑛, 𝑘)| − |ℱ i.o.,odd(𝑛, 𝑘)|) as claimed. 

We turn to the second statement in Theorem 3.1. Let 𝑎𝑛 = (𝑛 − 1)! 𝟏{𝑛∈𝑅}. Then if 𝑇 ∈

𝒯(𝑛), |𝑁𝑎(𝑇)| is the number of ways T can be turned into a min-first ordered tree with all down-degrees 

in R. Note that there are 0 ways if T has a vertex with down-degree not in R. Thus 

|𝒯𝑅
m.o.,even(𝑛)| = ∑ 𝑁𝑎(𝑇)

𝑇∈𝒯even(𝑛)

,

|𝒯𝑅
m.o.,odd(𝑛)| = − ∑ 𝑁𝑎(𝑇)

𝑇∈𝒯odd(𝑛)

,

𝑏𝑛 = (−1)𝑛−1(|𝒯m.o.,even(𝑛)| − |𝒯m.o.,odd(𝑛)|),

 

and 

𝑏𝑛,𝑘 = (−1)
𝑛−𝑘(|ℱm.o.,even(𝑛, 𝑘)| − |ℱm.o.,odd(𝑛, 𝑘)|). 

Similarly if 𝑎𝑛 = 𝑛!𝟏{𝑛∈𝑅} then 

𝑏𝑛 = (−1)
𝑛−1(|𝒯l.o.,even(𝑛)| − |𝒯 l.o.,odd(𝑛)| 



and 

𝑏𝑛,𝑘 = (−1)
𝑛−𝑘(|ℱ l.o.,even(𝑛, 𝑘)| − |ℱ l.o.,odd(𝑛, 𝑘)|). 

5.2. Proofs of Theorem 3.9 and Corollary 1.4 
Recall that Theorem 3.8 is the special case 𝑑 = 1 of Theorem 3.9, so our focus in this section 

is Theorem 3.9. 

All the results in Theorem 3.9 are obtained as follows. We define an involution on increasingly 

(min-first, linearly) ordered phylogenetic trees with down-degrees in 𝑅(𝑑) that maps odd trees to even 

trees and vice versa and we show that the trees that are fixed by this involution are precisely the 𝑅(𝑑)-

good trees in that class. Since good trees are even, this means 𝑏𝑛 = (−1)
(𝑛−1)/𝑑|𝒯𝑅(𝑑)

i.o.,good
(𝑛)| and 𝑏𝑛,𝑘 =

(−1)(𝑛−𝑘)/𝑑|ℱ𝑅(𝑑)
i.o.,good

(𝑛, 𝑘)|, etc. 

The image of a tree under this involution, whether the tree is increasingly, min-first, or linearly 

ordered, is obtained by applying the same algorithm, Algorithm 5.1 below. We will describe this algorithm 

and derive its properties for general d. The algorithm is expressed in terms of 𝑠𝑑(𝑛) = 𝑑(𝑛 − 1) + 1. 

Since 𝑠1(𝑛) = 𝑛, the special case 𝑑 = 1 of both the algorithm and the analysis can be recovered by reading 

“𝑠𝑑(𝑛)” throughout as “n”. 

Algorithm 5.1 
Let 𝑅 ⊆ ℕ with 1 ∈ 𝑅 have no exposed odds and let 𝑑 ≥ 1. 

Input: A tree T in 𝒯𝑅(𝑑)
i.o.  (𝒯𝑅(𝑑)

m.o., 𝒯𝑅(𝑑)
l.o. ). 

Output: A tree 𝐴(𝑇) in 𝒯𝑅(𝑑)
i.o.  (𝒯𝑅(𝑑)

m.o., 𝒯 l.o.𝑅(𝑑), respectively). 

1. (Initial phase.) Let 𝑣1, 𝑣2, … , 𝑣𝑘 be the unique right-most path in T from root 𝑣1 to leaf 𝑣𝑘, 

i.e. 𝑣𝑗+1 is the right-most child of 𝑣𝑗 for 1 ≤ 𝑗 < 𝑘. Consider each vertex 𝑣𝑗 in this path in increasing 

order of j for 1 ≤ 𝑗 ≤ 𝑘 − 1. 

(a) If 𝑣𝑗 has 𝑠𝑑(2) children, let 𝑣𝑗
′ be the left-most child of 𝑣𝑗 If 𝑣𝑗

′ is not a leaf 

and 𝑣𝑗
′ has 𝑠𝑑(𝑛) children for 𝑛 ∉ 𝑏(𝑅), remove vertex 𝑣𝑗

′ and all edges adjacent to it and 

then make every child of 𝑣𝑗
′ a child of 𝑣𝑗. The vertex 𝑣𝑗 now has 𝑠𝑑(𝑛 + 1) children: the 

former children of 𝑣𝑗
′ and the original d right-most children of 𝑣𝑗. Linearly order these 

children as follows. Let each set of children inherit the linear ordering they had originally 

and place the former children of 𝑣𝑗
′ before the original d right-most children of 𝑣𝑗. Leave the 

orderings on the children of all other vertices 𝑣 ≠ 𝑣𝑗, 𝑣𝑗
′ unchanged. Let 𝐴(𝑇) be the 

resulting tree. 

(b)If 𝑣𝑗 has 𝑠𝑑(𝑛) children for 𝑛 > 2 where 𝑛 ∉ 𝑎(𝑅): remove the edges between 𝑣𝑗 and its 

left-most 𝑠𝑑(𝑛 − 1) children, create a new vertex 𝑣𝑗
′ to be the parent of these children, and 

make 𝑣𝑗
′ a child of 𝑣𝑗. Let the 𝑠𝑑(𝑛 − 1) children of 𝑣𝑗

′ inherit the linear ordering they were 

assigned as children of 𝑣𝑗. Make 𝑣𝑗
′ be the left-most child of 𝑣𝑗 and let the other d children 

of 𝑣𝑗 retain the linear ordering they had before. Now 𝑑𝑇(𝑣𝑗) = 𝑠𝑑(2). Leave the orderings on 

the children of all other vertices 𝑣 ≠ 𝑣𝑗, 𝑣𝑗
′ unchanged. Let 𝐴(𝑇) be the resulting tree. 

2. (Recursive phase.) Suppose now that for all 1 ≤ 𝑗 ≤ 𝑘 − 1, 𝑣𝑗 fails both criteria in step 1. 

Remove 𝑣1, … , 𝑣𝑘  and all edges adjacent to these vertices. If 𝑣𝑗 has 𝑠𝑑(2) = 𝑑 + 1 children, also 



remove the left-most child 𝑣𝑗
′of 𝑣𝑗 and all edges adjacent to 𝑣𝑗

′. This leaves behind a possibly empty 

forest F. 

If F is not empty consider its component trees 𝑇′ in increasing order of the ℓmax label on their root 

(or the ℓmin label if we are dealing with min-first ordered trees). If there is any tree 𝑇′ for which the 
algorithm, when applied to 𝑇′, would produce a tree 𝐴(𝑇′) ≠ 𝑇′ then replace the first 

such 𝑇′ in T by 𝐴(𝑇′) and let 𝐴(𝑇) be the resulting tree. 

If F is empty, or if the algorithm would fix each tree 𝑇′ in F, let 𝐴(𝑇) = 𝑇. 

Note that in the recursive phase the component trees 𝑇′ are not necessarily properly leaf-labeled. By “apply 

the algorithm to 𝑇′” what we formally mean is “for each i replace the ith largest leaf label of 𝑇′ with the 

label i, to obtain a new tree 𝑇″ that is properly labeled; then apply the algorithm to 𝑇″; and then, for each i, 
replace the label i in 𝐴(𝑇″) with the ith largest leaf label of 𝑇′”. 

We refer to the operation in (1a) as contraction at 𝑣𝑗 towards 𝑣𝑗
′, because it corresponds to the usual graph-

theoretic operation of contracting the edge𝑣𝑗𝑣𝑗
′. We refer to the operation in (1b) 

as uncontraction at 𝑣𝑗 away from 𝑣𝑗+1. See Fig. 3. 

 
Fig. 3. Contraction and uncontraction in the initial phase (𝑑  =  1). 

See Fig. 4 for an example of the recursive phase of the algorithm when 𝑑 = 1 and 𝑅 = {1,2} ∪ {4,5,6}. The 

right-most path is 𝑣1, 𝑣2, 𝑣3, 𝑣4. Since 𝑑𝑇(𝑣1) = 2 and 𝑑𝑇(𝑣1
′) = 2 ∈ 𝑏(𝑅) = {2,6}, since 𝑑𝑇(𝑣2

′ ) = 0, and 

since 𝑑𝑇(𝑣3) = 4 ∈ 𝑎(𝑅) = {4}, the algorithm cannot perform an operation in the initial phase. It 

removes 𝑣1, … , 𝑣4 and 𝑣1
′ , 𝑣2

′  and recursively evaluates trees in the resulting forest. 

 
Fig. 4. Recursive phase (d = 1, R = {1,2}∪{4,5,6}). 

We establish some useful facts about Algorithm 5.1 in Lemma 5.2, Lemma 5.3, after which the proof 

of Theorem 3.9 will be quite short. 

Lemma 5.2 
Suppose that T is a tree that produces a forest F via the recursive phase of Algorithm 5.1, and let v 

be a vertex in F. Then v has 𝑠𝑑(2)-left-odd ancestry in T if and only if v has 𝑠𝑑(2)-left-odd ancestry in F. 



Proof 
If v has 𝑠𝑑(2)-left-odd ancestry in T, then in T we have 𝑣1, … , 𝑣𝑘 = 𝑣, 𝑑𝑇(𝑣𝑖) = 𝑠𝑑(2) (1 ≤ 𝑖 <

𝑘), 𝑣𝑖+1 a left-most child of 𝑣𝑖 (1 ≤ 𝑖 < 𝑘), k even, and 𝑣1 not a left-most child of a 

vertex w with dT(w)=sd(2). If 𝑣1 is not deleted then these properties hold for v in F exactly as in T. If 𝑣1 is 

deleted it must be in the right-most path. (As 𝑣1 is not a left-most child of a vertex with degree 𝑠𝑑(2), it is 

not one of the 𝑣𝑗
′.) Thus 𝑣2 is also deleted in the recursive phase, and so 𝑣3 is a root in F. The 

path 𝑣3, … , 𝑣𝑘 = 𝑣 then demonstrates that v has 𝑠𝑑(2)-left-odd ancestry in F. 

For the converse, suppose v in F has 𝑠𝑑(2)-left-odd ancestry. So in F we have a path P on 𝑣1, … , 𝑣𝑘 =

𝑣, where 𝑑𝐹(𝑣𝑖) = 𝑠𝑑(2) and 𝑣𝑖+1 is a left-most child of 𝑣𝑖 for 1 ≤ 𝑖 < 𝑘,  k is even, and 𝑣1 is not a left-most 

child of a vertex w with 𝑑𝐹(𝑤) = 𝑠𝑑(2). Let 𝑇′ be the tree in F containing 𝑣1. If 𝑣1 is not the root 

of 𝑇′ then P is a witness that v has 𝑠𝑑(2)-left-odd ancestry in T. Suppose now that 𝑣1 is the root of 𝑇′. 

Let 𝑣𝑗 be the ancestor of 𝑣1 on the right-most path in T that is closest to 𝑣1. If 𝑑𝑇(𝑣𝑗) =

𝑠𝑑(𝑛) with n>2then 𝑣1 must be a child of 𝑣𝑗 and P is a witness that v has 𝑠𝑑(2)-left-odd ancestry in T. 

Now suppose 𝑑𝑇(𝑣𝑗) = 𝑠𝑑(2). The vertex 𝑣1 cannot be 𝑣𝑗
′ or 𝑣𝑗+1 as these vertices are deleted. 

If 𝑣1 is some other child of 𝑣𝑗 then P is a witness of 𝑠𝑑(2)-left-odd ancestry. So suppose that 𝑣1 is a child 

of 𝑣𝑗
′. If 𝑑𝑇(𝑣𝑗

′) = 𝑠𝑑(𝑛) for 𝑛 > 2 or if 𝑑𝑇(𝑣𝑗
′) = 𝑠𝑑(2) and 𝑣1 is not the left-most child of 𝑣𝑗

′ then P is a 

witness of 𝑠𝑑(2)-left-odd ancestry. The remaining possibility is that 𝑑𝑇(𝑣𝑗
′) = 𝑠𝑑(2) and 𝑣1 is the left-most 

child of 𝑣𝑗
′. In this case 𝑣𝑗, 𝑣𝑗

′, 𝑣1, … , 𝑣𝑘 is a witness that v has 𝑠𝑑(2)-left-odd ancestry, as 𝑣𝑗 is on the right-

most path so cannot be a left-most child of any vertex. □ 

Lemma 5.3 
Algorithm 5.1 has the following properties. 

1. We have 𝐴(𝑇) = 𝑇 if and only if T is an 𝑅(𝑑)-good tree. 
2. All non-zero degrees in 𝐴(𝑇) are in 𝑅(𝑑). 
3. If the input tree T is increasingly (min-first, linearly) ordered then so is the output tree 𝐴(𝑇). 

4. We have 𝐴(𝐴(𝑇)) = 𝑇 for all T. 

Proof 
We prove these statements by induction on n, the number of leaves. 

The base case of the induction, 𝑛 = 1, is trivial, as 𝒯 i.o.(1), 𝒯m.o.(1), and 𝒯 l.o.(1) each consist of a 

single 𝑅(𝑑)-good tree, an isolated root with label 1, and the algorithm fixes that tree. Suppose now that 𝑛 >

1. 

We now show item 1. Suppose that T is an 𝑅(𝑑)-good tree. Let v be a non-leaf vertex on the right-

most path of T. By definition of 𝑠𝑑(2)-left-odd ancestry, v does not have 𝑠𝑑(2)-left-odd ancestry and so 

either 𝑑𝑇(𝑣) = 𝑠𝑑(2) or 𝑑𝑇(𝑣) = 𝑠𝑑(𝑎) for some 𝑎 ∈ 𝑎(𝑅). If 𝑑𝑇(𝑣) = 𝑠𝑑(2) the left-most child 

of v has 𝑠𝑑(2)-left-odd ancestry and so is either a leaf or has degree 𝑠𝑑(𝑏) for some 𝑏 ∈ 𝑏(𝑅). 

Therefore Algorithm 5.1 proceeds to the recursive phase. This removes the vertices in the right-most path, 

and the left-children of vertices with degree 𝑑𝑇(𝑣) = 𝑠𝑑(2). This leaves behind a possibly empty forest F. 

Note that a vertex that remains in F has the same down-degree as in T, and the property of having 𝑠𝑑(2)-
left-odd ancestry transfers to vertices in F by Lemma 5.2. So each component tree meets the definition of 

being 𝑅(𝑑)-good, and so by induction is fixed by Algorithm 5.1. Therefore tree T is fixed by Algorithm 5.1, 

i.e., 𝐴(𝑇) = 𝑇. 

Conversely, suppose that 𝐴(𝑇) = 𝑇. Then Algorithm 5.1 proceeds to the recursive phase, and so all 

non-leaf vertices on the right-most path must have degree sd(a) for some 𝑎 ∈ 𝑎(𝑅), or 𝑠𝑑(2) with the left-

child a leaf or having degree 𝑠𝑑(𝑏) for some 𝑏 ∈ 𝑏(𝑅). The deletion leaves a forest F, which by hypothesis 



has 𝐴(𝑇′) = 𝑇′ for each component 𝑇′ of F, and so by induction consists of 𝑅(𝑑)-good trees 𝑇′. So by 

definition of 𝑅(𝑑)-goodness a vertex v in F is either a leaf or 𝑑𝐹(𝑣) = 𝑠𝑑(2) or 𝑑𝐹(𝑣) = 𝑠𝑑(𝑎) for some 𝑎 ∈

𝑎(𝑅), unless v has 𝑠𝑑(2)-left-odd ancestry in F in which case 𝑑𝐹(𝑣) = 𝑠𝑑(𝑏) for some 𝑏 ∈ 𝑏(𝑅). In the last 

case Lemma 5.2 shows that v has 𝑠𝑑(2)-left-odd ancestry in T. Combining this with the fact that down-

degrees of v in F are the down-degrees of v in T, this shows that T is 𝑅(𝑑)-good. 

We now show items 2 and 3 in the case that 𝐴(𝑇) is produced from a contraction at vertex 𝑣𝑗 in step 

1(a) of the algorithm. Suppose 𝑑𝑇(𝑣𝑗
′) = 𝑠𝑑(𝑛). Since 𝑛 ∉ 𝑏(𝑅), 𝑛 + 1 ∈ 𝑅 and 𝑑𝐴(𝑇)(𝑣𝑗) = 𝑠𝑑(𝑛 + 1) ∈

𝑅(𝑑). All other vertices of 𝐴(𝑇) are unchanged from T, so 𝐴(𝑇) has all down-degrees in 𝑅(𝑑) and we have 

item 2. 

We now show item 3. Let 𝑣1
″, … 𝑣𝑚

″  and 𝑣𝑗
′, 𝑤2, … , 𝑤𝑑 , 𝑣𝑗+1 be the ordered lists of children 

of 𝑣𝑗
′ and 𝑣𝑗 in T respectively. The ordered list of children of 𝑣𝑗 in 𝐴(𝑇) is 𝑣1

″, … , 𝑣𝑚
″ , 𝑤2, … , 𝑤𝑑 , 𝑣𝑗+1. 

If T is increasingly ordered then 

ℓmax(𝑣1
″) < ⋯ < ℓmax(𝑣𝑚

″ ) and ℓmax(𝑣𝑗
′) < ℓmax(𝑤2) < ⋯ < ℓmax(𝑤𝑑) < ℓmax(𝑣𝑗+1). 

Since 

ℓmax(𝑣𝑗
′) = max (ℓmax(𝑣1

″),… , ℓmax(𝑣𝑚
″ )) = ℓmax(𝑣𝑚

″ ) 

we have 

ℓmax(𝑣1
″) < ⋯ < ℓmax(𝑣𝑚

″ ) < ℓmax(𝑤2) < ⋯ < ℓmax(𝑤𝑑) < ℓmax(𝑣𝑗+1) 

and thus the children of 𝑣𝑗 are increasingly ordered in 𝐴(𝑇). Since the orderings of all other children 

in 𝐴(𝑇) are unchanged from their ordering in T, 𝐴(𝑇) is increasingly ordered. 

If T is min-first ordered then 𝑣1″ has the smallest ℓmin label amongst 𝑣1
″, … , 𝑣𝑚

″  and 𝑣𝑗
′ has the 

smallest ℓmin label amongst 𝑣𝑗
′, 𝑤2, … , 𝑤𝑚, 𝑣𝑗+1. Since in T we have 

ℓmin(𝑣1
″) = min (ℓmin(𝑣1

″),… , ℓmin(𝑣𝑚
″ )) = ℓmin(𝑣𝑗

′), 

𝑣1𝑣1″ has the smallest ℓmin label amongst the children of 𝑣𝑗 in 𝐴(𝑇). Thus 𝐴(𝑇) is min-first ordered. 

There are no restrictions on the linear orderings in a linearly ordered tree so if T is linearly ordered 

then 𝐴(𝑇) is automatically linearly ordered. 

We now show items 2 and 3 in the case that 𝐴(𝑇) is produced from T by an uncontraction at 

vertex 𝑣𝑗 in step 1(b) of the algorithm. Suppose 𝑑𝑇(𝑣𝑗) = 𝑠𝑑(𝑛) with 𝑛 > 2. Since 𝑛 ∉ 𝑎(𝑅), 𝑛 − 1 ∈ 𝑅 and, 

in 𝐴(𝑇), 𝑑𝐴(𝑇)(𝑣𝑗) = 𝑠𝑑(𝑛 − 1) ∈ 𝑅(𝑑) and 𝑑𝐴(𝑇)(𝑣𝑗) = 𝑠𝑑(2). It follows that 𝐴(𝑇)has all down-degrees 

in 𝑅(𝑑), and we have item 2. 

We now show item 3. Let 𝑣1
″, … 𝑣𝑚

″ , 𝑤2, … , 𝑤𝑑 , 𝑣𝑗+1 be the ordered list of children 

of 𝑣𝑗 in T where 𝑚 = 𝑠𝑑(𝑛 − 1). 

If T is increasingly ordered then 

ℓmax(𝑣1
″) < ⋯ < ℓmax(𝑣𝑚

″ ) < ℓmax(𝑤2) < ⋯ < ℓmax(𝑤𝑑) < ℓmax(𝑣𝑗+1). 

Thus the children 𝑣1
″, … 𝑣𝑚

″  of 𝑣𝑗
′ in 𝐴(𝑇) are increasingly ordered. Since 

ℓmax(𝑣𝑗
′) = max (ℓmax(𝑣1

″),… , ℓmax(𝑣𝑚
″ )) = ℓmax(𝑣𝑚

″ ) 



in 𝐴(𝑇), the children of 𝑣𝑗 are increasingly ordered in 𝐴(𝑇): 

ℓmax(𝑣𝑗
′) < ℓmax(𝑤2) < ⋯ < ℓmax(𝑤𝑑) < ℓmax(𝑣𝑗+1). 

Thus, as before, 𝐴(𝑇) is increasingly ordered. 

If T is min-first ordered then 𝑣1″ has the smallest ℓmin label amongst 𝑣1
″, … , 𝑣𝑚

″ , 𝑤2, … , 𝑤𝑑 , and 𝑣𝑗+1. Thus 

the children of 𝑣𝑗
′ in 𝐴(𝑇) are min-first ordered. Since 

ℓmin(𝑣𝑗
′) = min (ℓmin(𝑣1

″),… , ℓmin(𝑣𝑚
″ )) = ℓmin(𝑣1

″), 

the children of 𝑣𝑗 are min-first ordered in 𝐴(𝑇) as well and 𝐴(𝑇) is min-first ordered. As before, if T is a 

linearly ordered tree then 𝐴(𝑇) is automatically linearly ordered. 

If 𝐴(𝑇) is produced by a contraction/uncontraction at vertex 𝑣𝑗 in step 1, we have shown 

that 𝐴(𝑇) has all down-degrees in 𝑅(𝑑), and so we can apply Algorithm 5.1 to 𝐴(𝑇). In this case, we will 

now show that 𝐴(𝐴(𝑇)) = 𝑇. 

In 𝐴(𝑇) the right-most path is exactly as it was in T. Further, for 𝑖 < 𝑗 the number of children 

of 𝑣𝑖 remains unchanged from T to 𝐴(𝑇), as does the left-most child of 𝑣𝑖 and its children. Since this is the 

data that determines whether a contraction/uncontraction is to be performed at 𝑣𝑖, it follows that if the 

algorithm is applied to 𝐴(𝑇), it does not call for contraction/uncontraction at 𝑣𝑖 for any 𝑖 < 𝑗. However, 

at 𝑣𝑗, if in T we performed a contraction, then the algorithm calls for an uncontraction at 𝑣𝑗 in 𝐴(𝑇), while if 

in T we performed an uncontraction, then the algorithm calls for a contraction at 𝑣𝑗 in 𝐴(𝑇). In either case, 

we have 𝐴(𝐴(𝑇)) = 𝑇, which gives item 4 in this case. 

We now suppose that 𝐴(𝑇) is produced by step 2, the recursive phase of the algorithm. If 𝐴(𝑇) = 𝑇, 

the results are immediate. Therefore we assume that 𝐴(𝑇) ≠ 𝑇, and so there is a 𝑇′ in F with 𝐴(𝑇′) ≠ 𝑇′, 

and 𝐴(𝑇) is obtained from T by replacing 𝑇′ with 𝐴(𝑇′). Thus by the initial phase and induction, 𝐴(𝑇) has all 

down-degrees in 𝑅(𝑑) and remains increasingly (min-first, linearly) ordered. This gives items 2 and 3. 

Finally we show item 4 in the case where 𝐴(𝑇) is produced by step 2. The right-most path stays the 

same from T to 𝐴(𝑇). Every vertex 𝑣𝑗 on the path keeps the children in 𝐴(𝑇) it had in T and if 𝑑𝑇(𝑣𝑗) =

𝑠𝑑(2), then its left-most child 𝑣𝑗
′ keeps the children in 𝐴(𝑇) it had in T. Thus when the algorithm is applied 

to 𝐴(𝑇) it also produces the same forest in the recursive phase. The collection of subtrees examined when 

applying the algorithm to 𝐴(𝑇) is the same one examined when applying the algorithm to T, except 

that 𝑇′ has become 𝐴(𝑇′). The ordering on subtrees remains unchanged, so now 𝐴(𝑇′) is the first 

component that is not 𝑅(𝑑)-good. By induction 𝐴(𝐴(𝑇′)) = 𝑇′, so 𝐴(𝐴(𝑇)) = 𝑇. □ 

Example 5.4 
Let 𝑅 = {1,2} ∪ {4,5,6} and consider the tree T in Fig. 5 below, which was the only tree in Fig. 1 that was 

not R-good (here we use linear ordering). In this case T contracts edge w3w4 via Algorithm 5.1 to 

produce 𝐴(𝑇). Notice also that Algorithm 5.1 applied to 𝐴(𝑇) shows 𝐴(𝐴(𝑇)) = 𝑇. 

 
Fig. 5. Tree T produces 𝐴(𝑇) via Algorithm 5.1. 



Proof of Theorem 3.9 
As noted after the statement of Theorem 3.9, if {𝑃1, … , 𝑃𝑘} is a partition of [𝑛] with part sizes 

restricted to lie in 𝑅(𝑑), then 𝑛 = |𝑃1| + ⋯+ |𝑃𝑘| = 𝑠𝑑(𝑚1) + ⋯+ 𝑠𝑑(𝑚𝑘) = 𝑑(𝑚1 +⋯+𝑚𝑘 − 𝑘) + 𝑘, 

so {
𝑛
𝑘
}
𝑅(𝑑)

= [
𝑛
𝑘
]
𝑅(𝑑)

= 𝐿(𝑛, 𝑘)𝑅(𝑑) = 0 if 𝑑 ∤ (𝑛 − 𝑘). Similarly, ℱ𝑅(𝑑)(𝑛, 𝑘) = ∅ if 𝑑 ∤ (𝑛 − 𝑘). Indeed, 

let F be a phylogenetic forest with n leaves, k components, and down-degrees in 𝑅(𝑑), i.e. F has m non-leaf 

vertices 𝑣𝑖 with 𝑑𝐹(𝑣𝑖) = 𝑠𝑑(𝑛𝑖). The number of edges of F is (𝑛 + 𝑚) − 𝑘 = ∑ (𝑑(𝑛𝑖 − 1) + 1)
𝑚

𝑖=1
, 

giving 𝑛 − 𝑘 = 𝑑(𝑛1 +⋯+ 𝑛𝑚 −𝑚). For this reason in the sequel we only consider 

triples (𝑑, 𝑛, 𝑘) with 𝑑|𝑛 − 𝑘. 

If T has internal sequence (𝑛𝑖)𝑖=1
𝑚  then, by case 𝑘 = 1 of the edge count of F in the previous 

paragraph, it has 𝑚 = −(𝑛 − 1)/𝑑 + ∑ 𝑛𝑖
𝑚
𝑖=1  internal vertices. Thus, from Lemma 4.2, we have 

𝑏𝑛 = 𝑏𝑛,1 = (−1)
𝑛−1
𝑑 (|𝒯i.o.,even𝑅(𝑑)(𝑛)| − |𝒯𝑅(𝑑)

i.o.,odd(𝑛)|). 

where 𝑣1, … , 𝑣𝑚 is the set of non-leaf vertices of the index tree T in the summation. 

We begin with the first statement of Theorem 3.9. If 𝑎𝑛 = 𝟏{𝑛∈𝑅(𝑑)} then by the method of Theorem 

3.1 we have 

𝑏𝑛 = 𝑏𝑛,1 = (−1)
(𝑛−1)/𝑑(|𝒯i.o.,even𝑅(𝑑)(𝑛)| − |𝒯𝑅(𝑑)

i.o.,odd(𝑛)|). 

Indeed, since 𝑎𝑛 = 𝟏{𝑛∈𝑅(𝑑)}, the ∏  𝑖=1
𝑚
𝑎𝑑𝑇(𝑣𝑖) factor of the summand is the number of ways of 

turning the index tree T, a properly labeled phylogenetic tree with unordered children, into an increasingly 

ordered tree with down-degrees in 𝑅(𝑑). The (−1)∑
𝑚
𝑖=1 𝑛𝑖 factor of the summand ensures even trees are 

counted positively and odd trees negatively. 

When 𝐴(𝑇) ≠ 𝑇 the internal sequence of 𝐴(𝑇) is obtained from the internal sequence of T by 

replacing a pair of indices 𝑛𝑖 + 𝑛𝑗 − 1 with a single entry 𝑛𝑖 + 𝑛𝑗 − 1 or vice versa. Thus 𝐴(𝑇) is even 

when T is odd and vice versa. Since 𝐴(𝑇) = 𝑇 if and only if T is 𝑅(𝑑)-good and since 𝑅(𝑑)-good trees are 

even we get 

𝑏𝑛 = (−1)
𝑛−1
𝑑 |𝒯𝑅(𝑑)

i.o.,good
(𝑛)|. 

Using that 𝑏𝑛 is alternating along the arithmetic progression {1, 𝑑 + 1,2𝑑 + 1,… } it is easy to check 

that in this case the sign of all the summands on the right-hand side of equation (2) is (−1)(𝑛−𝑘)/𝑑, and so 

𝑏𝑛,𝑘 = (−1)
𝑛−𝑘
𝑑 |ℱ𝑅(𝑑)

i.o.,good(𝑛, 𝑘)|, 

as claimed. 

For the second statement of Theorem 3.9, if we take 𝑎𝑛 = (𝑛 − 1)! 𝟏{𝑛∈𝑅(𝑑)} then we get 

𝑏𝑛 = (−1)
𝑛−1
𝑑 (|𝒯𝑅(𝑑)

m.o.,even(𝑛)| − |𝒯𝑅(𝑑)
m.o.,odd(𝑛)|) = (−1)

𝑛−1
𝑑 |𝒯𝑅(𝑑)

m.o.,good(𝑛)| 

and 𝑏𝑛,𝑘 = (−1)
(𝑛−𝑘)/𝑑|ℱ𝑅(𝑑)

m.o.,good
(𝑛, 𝑘)|. Similarly, if we take 𝑎𝑛 = 𝑛! 𝟏{𝑛∈𝑅(𝑑)} then we get 

𝑏𝑛 = (−1)
𝑛−1
𝑑 (|𝒯𝑅(𝑑)

l.o.,even(𝑛)| − |𝒯𝑅(𝑑)
l.o.,odd(𝑛)|) = (−1)

𝑛−1
𝑑 |𝒯𝑅(𝑑)

l.o.,good(𝑛)| 

and 𝑏𝑛,𝑘 = (−1)
𝑛−𝑘

𝑑 |ℱ𝑅(𝑑)
l.o.,good(𝑛, 𝑘)|. □ 



Proof of Corollary 1.4 
This easily follows from the definitions and theorems indicated. □ 

5.3. Proof of Theorem 1.5 
It is clear that σ is covered by τ in Π𝑛

1,𝑑 if and only if some part of τ is the union of d+1 parts of σ and 

every other part of σ is a part of τ. Thus Π𝑛
1,𝑑 is ranked, the partitions at rank k are precisely the partitions 

with 𝑛 − 𝑘𝑑 parts, and  

𝑊𝑘(Π𝑛
1,𝑑) = {

𝑛
𝑛 − 𝑘𝑑

}
{1,𝑑+1,2𝑑+1,… }

 

Suppose 𝜎 = {𝜎1, … , 𝜎𝑘} and 𝜏 = {𝜏1, … , 𝜏ℓ} are partitions in Π𝑛
1,𝑑. If 𝜎 ≤ 𝜏, i.e. 𝜎 is a refinement of τ, 

let 𝜖 = 𝜖(𝜎, 𝜏) = {𝜖1, … , 𝜖ℓ} be the unique partition of [𝑘] such that for all 1 ≤ 𝑖 ≤ ℓ, 𝜏𝑖 = ⋃ 𝜎𝑗𝑗∈𝜖𝑖
. We 

have 𝜖 ∈ Π𝑘
1,𝑑. Indeed, since |𝜏𝑖| =∑ |𝜎𝑗|,  

𝑗∈𝜖𝑖

 |𝜖𝑖| ≡ ∑ 1𝑗∈𝜖𝑖 ≡∑ |𝜎𝑗| ≡ |𝜏𝑖| ≡ 1(mod𝑑)
𝑗∈𝜖𝑖

 for all i. 

Fix σ∈ Π𝑛
1,𝑑 with k parts and let 𝑃 = [𝜎,∞) = {𝜏 ∈ Π𝑛

1,𝑑|𝜏 ≥ 𝜎}. We have 𝜏 ≤ 𝜏′ in P if and only 

if 𝜖(𝜎, 𝜏) ≤ 𝜖(𝜎, 𝜏′) in Π𝑘
1,𝑑. Thus [𝜎,∞) is isomorphic to Π|𝜎|

1,𝑑 via the isomorphism 𝑓(𝜏) = 𝜖(𝜎, 𝜏). Since the 

isomorphism type of [𝜎,∞) depends only on the number of parts of σ, this type also depends only on the 

rank of σ, i.e. Π𝑛
1,𝑑 is uniform. 

We set 𝑊𝑧(⋅) = 0 for non-integer and negative values of z so that 𝑊𝑛−𝑘

𝑑

(Π𝑛
1,𝑑) = {

𝑛
𝑘
}
{1,𝑑+1,2𝑑+1,… }

 for 

all 𝑛, 𝑘 ≥ 1. We also set 𝑤𝑧(⋅) = 0 for non-integer or negative values of z and show 

[𝑤𝑛−𝑘
𝑑
(Π𝑛

1,𝑑)]
𝑛,𝑘≥1

= [{
𝑛
𝑘
}
{1,𝑑+1,2𝑑+1,… }

]
𝑛,𝑘≥1

−1

. 

This will prove 𝑤𝑛−𝑘

𝑑

(Π𝑛
1,𝑑) = {

𝑛
𝑘
}
{1,𝑑+1,2𝑑+1,… }

−1
 or 𝑤𝑘(Π𝑛

1,𝑑) = {
𝑛

𝑛 − 𝑘𝑑
}
{1,𝑑+1,2𝑑+1,… }

−1
 as desired. 

Let 

𝑆(𝑛, ℓ) =∑{
𝑛
𝑘
}
{1,𝑑+1,2𝑑+1,… }

𝑤𝑘−ℓ
𝑑

𝑘

(Π𝑘
1,𝑑) =∑𝑊𝑛−𝑘

𝑑
(Π𝑛

1,𝑑)𝑤𝑘−ℓ
𝑑

(Π𝑘
1,𝑑

𝑘

) 

We have to show that 𝑆(𝑛, ℓ) = 𝟏{𝑛=ℓ}, for all 𝑛, ℓ ≥ 1. Since the summand in 𝑆(𝑛, ℓ) is 0 unless ℓ ≤

𝑘 ≤ 𝑛, we have 𝑆(𝑛, ℓ) = 0 for ℓ > 𝑛. Clearly if ℓ = 𝑛,  𝑆(𝑛, ℓ) = 1. We now suppose that ℓ < 𝑛. The 

summand is also 0 unless 𝑘 ≡ ℓ(mod𝑑) and 𝑘 ≡ 𝑛(mod𝑑). So 𝑆(𝑛, ℓ) = 0 if 𝑛 ≢ ℓ(mod𝑑). Suppose now 

that 𝑛 ≡ ℓ(mod𝑑). We may restrict the index of summation to those k for which 𝑘 = 𝑛 − 𝑗𝑑 for some 

integer 𝑗 ≥ 0. (All other terms are 0.) Fix 𝑗0 so that ℓ = 𝑛 − 𝑗0𝑑 and reindex the summation by j. Then 

𝑆(𝑛, ℓ) =∑𝑊𝑗(Π𝑛
1,𝑑)𝑤𝑗0−𝑗(Π𝑛−𝑗𝑑

1,𝑑 ).

𝑗0

𝑗=0

 

For 𝑛 ≥ 1 let 𝜁 = 𝜁𝑛 and 𝜇 = 𝜇𝑛 be the zeta and Möbius functions of Π𝑛
1,𝑑, i.e. 𝜁(𝜎, 𝜏) = 𝟏{𝜎≤𝜏} for 

all 𝜎, 𝜏 ∈ Π𝑛
1,𝑑 and [𝜇(𝜎, 𝜏)]

𝜎,𝜏∈Π𝑛
1,𝑑 = [𝜁(𝜎, 𝜏)]

𝜎,𝜏∈Π𝑛
1,𝑑

−1  (see [17]). Let 𝜌𝑛 be the rank function of Π𝑛
1,𝑑, 

i.e. 𝜌𝑛(𝜎) = (𝑛 − 𝑘)/𝑑 where k is the number of parts of σ. Let 0n be the unique minimal element of Π𝑛
1,𝑑, 

i.e. the partition of [𝑛] into singletons. 



Fix j with 0 ≤ 𝑗 ≤ 𝑗0. We have 

𝑊𝑗(Π𝑛
1,𝑑) = ∑ 𝜁(0𝑛 , 𝜎)

𝜎∈Π𝑛
1,𝑑,𝜌𝑛(𝜎)=𝑗

 

and by definition 

𝑤𝑗0−𝑗(Π𝑛−𝑗𝑑
1,𝑑 ) = ∑ 𝜇𝑛−𝑗𝑑(0𝑛−𝑗𝑑 , 𝜖).

𝜖∈Π𝑛−𝑗𝑑
1,𝑑 ,𝜌𝑛−𝑗𝑑(𝜖)=𝑗0−𝑗

 

Fix an element σ in Π𝑛
1,𝑑 with 𝜌𝑛(𝜎) = 𝑗, i.e. with 𝑘 = 𝑛 − 𝑗𝑑 parts. Then [𝜎,∞) is isomorphic 

to Π𝑛−𝑗𝑑
1,𝑑  and so 𝜇𝑛−𝑗𝑑(0𝑛−𝑗𝑑 , 𝜖(𝜎, 𝜏)) = 𝜇𝑛(𝜎, 𝜏) and 𝜌𝑛−𝑗𝑑(𝜖(𝜎, 𝜏)) = 𝜌𝑛(𝜏) − 𝜌𝑛(𝜎) for all 𝜏 ≥ 𝜎. Thus 

𝑤𝑗0−𝑗(Π𝑛−𝑗𝑑
1,𝑑 ) = ∑ 𝜇𝑛(𝜎, 𝜏)

𝜏∈[𝜎,∞),𝜌𝑛(𝜏)=𝑗0

 

and 

𝑆(𝑛, ℓ) = ∑ 

𝑗0

𝑗=0

∑  

𝜎∈Π𝑛
1,𝑑,𝜌𝑛(𝜎)=𝑗

𝜁𝑛(0𝑛, 𝜎) ∑  

𝜏∈[𝜎,∞),𝜌𝑛(𝜏)=𝑗0

𝜇𝑛(𝜎, 𝜏)

= ∑  

𝜏∈Π𝑛
1,𝑑,𝜌𝑛(𝜏)=𝑗0

∑  

𝜎∈[0𝑛,𝜏]

𝜁𝑛(0𝑛, 𝜎)𝜇𝑛(𝜎, 𝜏).

 

For each τ in the summation the inner summation is 0 as μ and ζ are inverses. 

Remark 5.5 
This proof was inspired by Exercise 3–130 of [17] (which in turn generalizes Theorem 6 of [9]). The 

statement in [17] only covers uniform, ranked posets with a 0 and a 1, leaving out Π𝑛
1,𝑑 with n≢1(modd). 

6. Discussion and some open questions 
For 𝑅 ⊆ ℕ with 1 ∈ 𝑅 and with no exposed odds, it is straightforward to enumerate R-good and 𝑅(𝑑)-good 

increasingly ordered, min-first ordered and linearly ordered trees by number of leaves. Indeed, from our 

results we have the following for all such R; here we use the notation [𝑥𝑛/𝑛!]𝑓(𝑥) to denote the coefficient 

of 𝑥𝑛/𝑛! in the Taylor series of 𝑓(𝑥), and recall that 𝑓−1(𝑥) denotes the compositional inverse or series 

reversion of 𝑓(𝑥). 

•The number of R-good increasingly ordered trees with n leaves is (−1)𝑛−1[𝑥𝑛/𝑛!] ×

𝑓1
−1(𝑥) where 𝑓1(𝑥) = ∑ 𝑥𝑘/𝑘!,

𝑘∈𝑅
and 

•the number of 𝑅(𝑑)-good increasingly ordered trees with d(n−1)+1leaves is 

(−1)𝑛−1 [
𝑥𝑑(𝑛−1)+1

(𝑑(𝑛 − 1) + 1)!
] 𝑓2

−1(𝑥) 

where 𝑓2(𝑥) = ∑ 𝑥𝑑(𝑘−1)+1 (𝑑(𝑘 − 1) + 1)!⁄
𝑘∈𝑅

 

The same holds for min-first ordered trees, with 



𝑓1(𝑥) = ∑  

𝑘∈𝑅

𝑥𝑘

𝑘
, 𝑓2(𝑥) = ∑  

𝑘∈𝑅

𝑥𝑑(𝑘−1)+1

𝑑(𝑘 − 1) + 1
, 

and for linearly ordered trees, with 

𝑓1(𝑥) = ∑  

𝑘∈𝑅

𝑥𝑘 , 𝑓2(𝑥) = ∑  

𝑘∈𝑅

𝑥𝑑(𝑘−1)+1. 

For example, the series reversion of 𝑓(𝑥) = 𝑥 + 𝑥2/2 is 

𝑓−1(𝑥) =∑  

𝑛≥1

(−1)𝑛−1
(2𝑛 − 3)‼ 𝑥𝑛

𝑛!
 

(where 𝑚!! = 𝑚(𝑚 − 2)(𝑚 − 4)… is the double factorial), and so the sequence of both [2]-good 

increasingly ordered trees and [2]-good min-first ordered trees is (1,1,3,15,105,945,10395,… ) [14, 

A001147], while the series reversion of 𝑔(𝑥) = 𝑥 + 𝑥2 is 

𝑔−1(𝑥) =∑(−1)𝑛−1
(2𝑛 − 2)! 𝑥𝑛

(𝑛 − 1)! 𝑛!
𝑛≥1

, 

and so the sequence of [2]-good linearly ordered trees is (1,2,12,120,1680,30240,665280,… ) [14, 

A001813]. 

Another interesting example relates to the following special functions. For 𝑑 ≥ 1 the hyperbolic 
function of order d of the first kind (see for example [20]) is the function 𝐻𝑑,1(𝑥) defined by the power 

series 

𝐻𝑑,1(𝑥) =∑
𝑥𝑑(𝑛−1)+1

(𝑑(𝑛 − 1) + 1)!
𝑛≥1

; 

so for example 𝐻1,1(𝑥) = 𝑒
𝑥 − 1 and 𝐻2,1(𝑥) = sinh 𝑥. The study of these functions goes back to the mid-

1700's. As an immediate by-product of Theorem 3.9 and Theorem 1.5 we obtain combinatorial 

interpretations for the coefficients of the compositional inverses of these functions and their connection to 

Whitney numbers of the poset Π𝑑(𝑛−1)+1
1,𝑑 . 

Corollary 6.1 
For 𝑑 ≥ 1, let ℎ𝑑,1(𝑥) be the compositional inverse of 𝐻𝑑,1(𝑥) (satisfying ℎ𝑑,1(𝐻𝑑,1(𝑥))) = 𝐻𝑑,1(ℎ𝑑,1(𝑥))) =

𝑥 for all x). Then writing ℎ𝑑,1(𝑥) in the form 

ℎ𝑑,1(𝑥) =∑(−1)𝑛−1ℎ𝑛
𝑥𝑑(𝑛−1)+1

(𝑑(𝑛 − 1) + 1)!
𝑛≥1

 

we have 

(a) ℎ𝑛 is the number of increasingly ordered trees with 𝑑(𝑛 − 1) + 1 leaves that are ℕ(𝑑) -good, i.e. 
have all vertices of degree 𝑑 + 1 or 0 and all left-most children of degree 0; and 

(b) 𝑤𝑛−1(𝛱𝑑(𝑛−1)+1
1,𝑑 ) = (−1)𝑛−1ℎ𝑛, i.e., the Whitney numbers of the first kind of the 

poset 𝛱𝑑(𝑛−1)+1
1,𝑑  are the coefficients of the exponential generating function of the compositional 

inverse of 𝐻𝑑,1(𝑥). 



As discussed after Definition 3.3, there are (𝑛 − 1)! ℕ(1) -good increasingly ordered trees 

with n leaves, and indeed the compositional inverse of 𝐻1,1(𝑥) = 𝑒
𝑥 − 1 is log(1 + 𝑥) =

∑
(−1)𝑛−1(𝑛−1)!𝑥𝑛

𝑛!𝑛≥1
. 

For 𝑑 = 2 the sequence nth term is the number of ℕ(2) -good increasingly ordered trees with 2(𝑛 −

1) + 1 leaves begins (1,1,9,225,11025,893025,108056025,… ), and is the sequence of squares of double 

factorials of odd numbers [14, A001818]. It is well-known that this sequence arises in the power series of 

the inverse of the hyperbolic sine function. For 𝑑 = 3 it 

begins (1,1,34,5446,2405116,2261938588,3887833883752,… ) [14, A292750]. 

We have given combinatorial interpretations for each of {
𝑛
𝑘
}
𝑅

−1
, [
𝑛
𝑘
]
𝑅

−1
and 𝐿(𝑛, 𝑘)𝑅

−1 for all R with 1 ∈

𝑅, but for many R these interpretations are as the difference in cardinalities of two sets of forests. Only 

for R and 𝑅(𝑑) with 1 ∈ 𝑅 and with no exposed odds can we interpret the inverse entries as counts of 

single sets of forests. In all of these special cases we have the crucial property that the compositional 

inverses of ∑ 𝑥𝑛/𝑛𝑛∈𝑅 !, ∑ 𝑥𝑛/𝑛𝑛∈𝑅 , ∑ 𝑥𝑛𝑛∈𝑅 , ∑ 𝑥𝑑(𝑛−1)+1/(𝑑(𝑛 − 1) + 1)!
𝑛∈𝑅

, ∑ 𝑥𝑑(𝑛−1)+1/(𝑑(𝑛 −
𝑛∈𝑅

1) + 1) and ∑ 𝑥𝑑(𝑛−1)+1
𝑛∈𝑅

 each have alternating coefficient sequences (in the latter three cases, 

alternating along an arithmetic progression). Here we say that a series ∑ 𝑐𝑛𝑥
𝑛

𝑛≥1  with 𝑐1 > 0 

is alternating if (−1)𝑛−1𝑐𝑛 ≥ 0 for all 𝑛 ≥ 1; it is alternating along the arithmetic progression 𝐴 = {1, 𝑑 +

1,2𝑑 + 1,… } if 𝑐𝑛 = 0 for all 𝑛 ∉ 𝐴 and if (−1)𝑘𝑐𝑘𝑑+1 ≥ 0 for all 𝑘 ≥ 0. 

This raises a number of natural questions. 

Question 6.2 
Can we characterize those 𝑅 ⊆ ℕ with 1 ∈ 𝑅 for which the compositional inverse 

of ∑ 𝑥𝑛/𝑛!  𝑛∈𝑅 (∑ 𝑥𝑛/𝑛𝑛∈𝑅 , ∑ 𝑥𝑛𝑛∈𝑅 ) has an alternating coefficient sequence or one alternating along an 

arithmetic progression starting at 1? 

Question 6.3 
For those R, is there an analog of Algorithm 5.1 that furnishes a combinatorial interpretation of the 

numbers {
𝑛
𝑘
}
𝑅

−1
, etc.? 

In the case of ∑ 𝑥𝑛𝑛∈𝑅 , we can say definitively that the characterization sought in Question 6.2 is not 

simply having no exposed odds. Let 𝑓(𝑥) be a power series with ord(𝑓(𝑥)) = 1 and with a positive 

coefficient of x. In what follows we say that a series ∑ 𝑐𝑛𝑥
𝑛

𝑛≥0  with 𝑐0 > 0 is alternating if (−1)𝑛𝑐𝑛 ≥ 0 for 

all 𝑛 ≥ 0. 

Claim 6.4 
A sufficient condition for the compositional inverse 𝑓−1(𝑥) of 𝑓(𝑥) to be alternating is 

that 𝑥/𝑓(𝑥) is alternating. 

Proof 
Since the product of alternating power series with positive constant terms is again alternating with 

positive constant term, under the hypothesis of the claim we get that for all 𝑛 ≥ 1 the power series 

of (𝑥/𝑓(𝑥))𝑛 is alternating. The Lagrange inversion formula (see e.g. [16, Chapter 5]), which says that for 

all n the coefficient of 𝑥𝑛 in 𝑓−1(𝑥) is the same as (1/𝑛) times the coefficient of 𝑥𝑛−1 in (𝑥/𝑓(𝑥))𝑛, then says 

that the sign of the coefficient of 𝑥𝑛 in 𝑓−1(𝑥) is (−1)𝑛−1 or 0. □ 



This is not a terribly useful test for the power series that come up when studying restricted Stirling 

numbers, but it is quite useful for restricted Lah numbers, where the series under consideration take the 

form 𝑓(𝑥) = ∑ 𝑥𝑛𝑛∈𝑅 , and the geometric series can sometimes be used to find an explicit expression for the 

coefficients of the power series of 𝑥/𝑓(𝑥). For example, when 𝑅 = {1,2, 𝑟 + 1, 𝑟 + 2} for 𝑟 ≥ 2, we have 

𝑥

𝑥 + 𝑥2 + 𝑥𝑟+1 + 𝑥𝑟+2
=

1

(1 + 𝑥)(1 + 𝑥𝑟)

=

{
 
 

 
 ∑  

∞

𝑘=1
(−1)𝑘−1𝑘∑  

𝑟−1

𝑗=0
(−1)𝑗𝑥(𝑘−1)𝑟+𝑗 if𝑟odd

∑  
∞

𝑘=1
∑  

𝑟−1

𝑗=0
(−1)𝑗𝑥2(𝑘−1)𝑟+𝑗 if𝑟even,

 

which is alternating. This shows that 𝐿(𝑛, 𝑘)𝑅
−1 has sign (−1)𝑛−𝑘 (or 0) for all 𝑛, 𝑘 ≥ 1, whenever R is of the 

form {1,2, 𝑟 + 1, 𝑟 + 2} for 𝑟 ≥ 2; but only in the case 𝑟 = 2 is this a set R with 1 ∈ 𝑅 and with no exposed 

odds. 

There is some computational evidence in favor of an affirmative answer to the following question, 

but perhaps not enough to merit forming a conjecture. 

Question 6.5 
Is it the case that for 𝑅 ⊆ ℕ with 1 ∈ 𝑅, we have that the inverse of ∑  𝑛∈𝑅 𝑥𝑛 𝑛!⁄ is alternating if and 

only if the inverse of ∑𝑛∈𝑅 𝑥𝑛/𝑛 is alternating and if and only if the inverse of ∑𝑛∈𝑅 𝑥𝑛 is alternating? 

In light of the discussion after Question 6.3, it is worth noting that the compositional inverses of 

both 𝑥 + 𝑥2/2 + 𝑥4/24 + 𝑥5/120 and 𝑥 + 𝑥2/2 + 𝑥4/4 + 𝑥5/5 are alternating for their first 1200 terms. 

We have shown in this paper, by a combinatorial argument (Algorithm 5.1) that if 𝑅 ⊆ ℕ with 1 ∈

𝑅 has no exposed odds, then 𝑓(𝑥) = ∑ 𝑥𝑛/𝑛!,  𝑛∈𝑅 𝑔(𝑥) = ∑ 𝑥𝑛/𝑛 𝑛∈𝑅 and ℎ(𝑥) = ∑ 𝑥𝑛𝑛∈𝑅  have 

compositional inverses with alternating coefficient sequences. In [11, Section 5] we also show ℎ(𝑥) =
∑ 𝑥𝑛𝑛∈𝑅  has an alternating inverse by a different combinatorial argument expressing inverse Lah numbers 

in terms of Dyck paths. There we also showed analytically that 𝑥/ℎ(𝑥) is alternating. Together with Claim 

6.4 this gives an analytical proof that ℎ−1(𝑥) is alternating. 

This leads us to the following non-combinatorial question: are there analytical proofs 

that 𝑓−1(𝑥) and 𝑔−1(𝑥) are alternating? We do not even know of an analytical way of showing, for example, 

that 𝑥 + 𝑥2/2 + 𝑥3/3 + 𝑥4/4, the degree four Taylor approximation to log (1 + 𝑥), has alternating 

compositional inverse (note that 𝑥/(𝑥 + 𝑥2/2 + 𝑥3/3 + 𝑥4/4) does not have an alternating power series, 

so we cannot apply Claim 6.4). 
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