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Comparing D-Bar and Common 
Regularization-Based Methods for Electrical 
Impedance Tomography 
 

S. J. Hamilton 
Department of Mathematics, Statistics, and Computer Science, Marquette University, Milwaukee, WI 

W. R. B. Lionheart 
School of Mathematics, University of Manchester, Manchester, United Kingdom 

A. Adler 
Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada 
 

Abstract 
Objective: To compare D-bar difference reconstruction with regularized linear reconstruction in electrical 

impedance tomography. Approach: A standard regularized linear approach using a Laplacian penalty and the 

GREIT method for comparison to the D-bar difference images. Simulated data was generated using a circular 

phantom with small objects, as well as a 'Pac-Man' shaped conductivity target. An L-curve method was used for 
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parameter selection in both D-bar and the regularized methods. Main results: We found that the D-bar method 

had a more position independent point spread function, was less sensitive to errors in electrode position and 

behaved differently with respect to additive noise than the regularized methods. Significance: The results allow 

a novel pathway between traditional and D-bar algorithm comparison. 

1. Introduction 
Electrical impedance tomography (EIT) images the conductivity distribution within a body using body-surface 

measurements. Because electrical current propagates in a diffuse way, EIT is much less sensitive at depth than 

close to the electrodes. Reconstruction of EIT images is thus a challenging non-linear problem. Over the years, 

many EIT reconstruction methods have been proposed for 2D and 3D geometries, as well as difference, 

absolute, and frequency difference reconstructions. Two approaches to difference EIT reconstruction algorithms 

have been widely used in experimental studies in biomedical application (Adler et al 2012). One that gained 

wide popularity in the 1990s, Sheffield backprojection (Barber et al 1992), was implemented in the Sheffield and 

Goettingen EIT devices and reported in most of the early EIT experimental studies. Subsequently, reconstruction 

methods based on regularization techniques have become most widely used, and are distributed with EIT 

devices from Dräger, SenTec and Timpal. While in biomedical EIT difference imaging has been widely used 

mainly due to the difficulty in modeling body shape and electrode position, in geophysical applications of EIT 

difference data was typically not available and consequently absolute EIT reconstruction is common (Adler et 

al 2015). In this case, an accurate forward model is used and the absolute conductivity iteratively fitted to the 

data. Absolute EIT reconstruction was reported for the human chest (Newell et al 1992) but is still not widely 

used in vivo. 

One relatively novel approach to 2D EIT image reconstruction is D-bar, a non-iterative absolute imaging 

approach (Nachman 1996, Isaacson et al 2004, Knudsen et al 2009). The literature on D-bar image 

reconstruction describes several potential advantages to other techniques, such as a robustness to errors in 

electrode positions and the body shape. The D-bar literature is rich, but there is little direct comparison of its 

performance to that of traditional (regularized) approaches. 

The goal of our paper is thus to directly compare D-bar to other widely used EIT reconstruction algorithms. Since 

a general comparison is a vast problem, we have decided to limit this paper to consideration of the linearized 

difference EIT problem. 

Comparison of algorithms is challenging, as there are multiple comparison criteria: resolution, position error, 

reconstruction shape accuracy, ability to suppress noise, ability to maintain sharp edges, resistance to electrode 

movement and other artefacts. In the following sections, we review the methods considered (section 2), discuss 

the comparison framework and criteria (section 3), present results (section 4), and analyze and discuss those 

results while drawing conclusions and suggesting further work in section 5. 

2. Methods: reconstruction 
We compare the results of three separate reconstruction methods: (1) the D-bar difference method, (2) 

generalized Tikhonov regularized linear difference imaging with a Laplacian penalty: or RL for regularized linear 

method, and (3) the GREIT method. Each method is briefly explained in this section. For notation, a difference 

EIT reconstruction calculates a vector of image elements, 𝐱, from a vector of difference EIT measurements, 𝐲 =

𝐯𝜎 − 𝐯ref, between two frames of voltage measurements, 𝐯𝜎 and 𝐯ref. 
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2.1. The D-bar method for difference imaging 
D-bar methods for EIT use nonlinear Fourier transforms specific to the EIT problem. The most common D-bar 

method (Nachman 1996, Isaacson et al 2004, Knudsen et al 2009) comes from transforming the conductivity 

equation 

∇ ⋅ 𝜎∇𝑢 = 0, (1) 

to a Schrödinger equation 

(−∇2 + 𝑞(𝑧))𝑢
~

(𝑧) = 0, (2) 

via the change of variables 𝑢
~

(𝑧) = 𝜎1/2(𝑧)𝑢(𝑧) where 𝑞(𝑧) = ∇2√𝜎(𝑧) √𝜎(𝑧)⁄ for 𝑧 ∈ Ω ⊂ ℝ2, and ∇2 denotes 

the Laplacian operator. This Schrödinger equation (2) can be solved using a D-bar method (Beals and 

Coifman 1985) which introduces an auxiliary parameter 𝑘 ∈ ℂ and uses special solutions 𝜓(𝑧, 𝑘) to 

(−∇2 + 𝑞(𝑧))𝜓(𝑧, 𝑘) = 0, (3) 

asymptotic to 𝑒𝑖𝑘𝑧 for large |𝑘| or |𝑧|. We associate ℝ2 with ℂ via 𝑧 = (𝑧1, 𝑧2) ↦ 𝑧1 + 𝑖𝑧2 here so 𝑘𝑧 is the 

complex product. The solution process involves using a special transform, which can be thought of as a 

nonlinear Fourier transform, specific to this problem (3). The breakthrough for EIT is that this special nonlinear 

Fourier data (called Scattering data), can be computed from current and voltage measurement data. Then, the 

conductivity can be recovered using the inverse transform. 

Difference imaging with the D-bar method uses a modified scattering transform, called the differencing 

scattering transform (Isaacson et al 2006). The process is 

Current/VoltageData
(Λ𝜎, Λ𝜎ref

) ⟶
1 ScatteringData

𝐭𝑅
diff(𝑘)

⟶
2 Conductivity

𝜎diff(𝑧).
 

Step 1:   

Compute the low-pass differencing scattering data 𝐭𝑅
diff(𝑘). For each 𝑘 ∈ ℂ ∖ {0}, evaluate the approximate 

scattering data 

𝐭𝑅
diff(𝑘) = {

1

𝜎𝑏
∫ 𝑒𝑖𝑘𝑧

∂Ω

(Λ𝜎 − Λref)𝑒𝑖𝑘𝑧𝑑𝑆(𝑧), 0 < |𝑘| ⩽ 𝑅

0 |𝑘| > 𝑅

 (4) 

where 𝜎𝑏 denotes the best constant conductivity approximation to the conductivity near the 

boundary, Λ𝜎 and Λref are the Dirichlet-to-Neumann (DN) maps corresponding to the two frames of voltage 

measurements 𝐯𝜎 and 𝐯ref, respectively, for the chosen applied current patterns. Matrix approximations to the 

DN maps can be formed using discrete inner products (see Isaacson et al (2004)). 

Step 2:   

Recover the low-pass conductivity 𝜎diff(𝑧). For each 𝑧 ∈ Ω, solve the D-bar equation via the integral equation 

𝜇𝑅
diff(𝑧, 𝑘) = 1 +

1

4𝜋2 ∫
𝐭𝑅

diff(𝑘′)𝑒−𝑖(𝑘′𝑧+𝑘′𝑧)

(𝑘−𝑘′)𝑘′
𝜇𝑅

diff(𝑧, 𝑘′)𝑑𝑘1
′ 𝑑𝑘2

′

ℂ

, (5) 

and recover the low-pass D-bar difference conductivity 

𝜎diff(𝑧) = 𝜎𝑏[𝜇𝑅
diff(𝑧, 0)]2 − 𝜎𝑏 (6) 
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which corresponds to the reconstructed image, 𝐱, in other methods. 

The parameter R is considered the regularization parameter in the D-bar method as it controls the radius of the 

low-pass filter in the nonlinear Fourier domain. For additional stability, a thresholding is also commonly used by 

setting 𝐭𝑅
diff(𝑘) = 0 if either |Re{𝐭𝑅

diff(𝑘)}| or |Im{𝐭𝑅
diff(𝑘)}| is greater than a chosen threshold. The thresholding 

helps to control blowup in the scattering domain where neighboring pixels can differ by a factor of 10, 100, etc. 

Note that Step 2 is the inverse transform step, whereas in Step 1 we bypass the full plane ℝ2 formulation of the 

forward transform by instead computing the scattering data from a boundary integral equivalent through 

integration by parts. 

2.1.1. Computational notes 
In practice, equations (4) and (5) are discretized and computed with matrices. Note that the integral equation in 

(5) can be written using convolutions: 

𝜇𝑅
diff(𝑧, 𝑘) = 1 +

1

𝜋𝑘
∗ (

𝐭𝑅
diff(𝑘)𝑒−𝑖(𝑘𝑧+𝑘𝑧)𝜇𝑅

diff(𝑧,𝑘)

4𝜋𝑘
) , (7) 

where ∗ denotes convolution over 𝑘 ∈ ℂ. Therefore, we can solve the integral equation (5) using fast Fourier 

transforms (FFTs) as in Vainikko (2000), Knudsen et al (2004) and Mueller and Siltanen (2012). We use a 

uniformly spaced k-grid on a square [−𝐷𝑘, 𝐷𝑘) 2, where 𝐷𝑘 ⩾ 𝑅, of size 𝑀 × 𝑀, where 𝑀 is a power of 2, and 

the grid-size is ℎ𝑘 = 2𝐷𝑘/(𝑀 − 1). This k-grid defines the points where we compute the scattering data 𝐭𝑅
diff(𝑘). 

For the reconstructed image 𝜎diff(𝑧), the computational z-grid is very flexible since the solution to the D-bar 

equation is computed point-wise. One can use whatever type of grid is most appropriate for the task: uniformly 

spaced, non-uniformly spaced, FEM mesh, etc. 

The evaluation of the scattering transform 𝐭𝑅
diff(𝑘) in Step 1 requires knowledge of how the DN 

maps Λ𝜎 and Λref act on the exponential function 𝑒𝑖𝑘𝑧 for 𝑧 ∈ ∂Ω. We approximate this by using the discrete 

matrix approximations 𝐋𝜎 = (𝐑𝜎) −1 and 𝐋ref = (𝐑ref) −1, where, e.g. 

𝐑𝜎(𝑚, 𝑛): = ∑
𝜙ℓ

𝑚𝑣ℓ
𝑛

|𝑒ℓ|
,

𝐿

ℓ=1
1 ⩽ 𝑚, 𝑛, ⩽ 𝑛𝑢𝑚𝐿𝐼 , 1 ⩽ ℓ ⩽ 𝐿, (8) 

where {𝜙𝑚} and {𝑣𝑛} are the normalized current, and voltage, patterns respectively, 𝐧𝐮𝐦𝐿𝐼 denotes the 

number of linearly independent current patterns applied, L the number of electrodes used, and |𝑒ℓ| denotes the 

area of the ℓth electrode. We then expand the asymptotic behavior 𝑒𝑖𝑘𝑧, at the centers of the electrodes 𝑧ℓ, in 

the orthonormal basis of normalized current patterns {𝜙𝑚} as 

𝑒𝑖𝑘𝑧ℓ ≈ ∑ 𝑎𝑚(𝑘)𝜙ℓ
𝑚𝑛𝑢𝑚𝐿𝐼

𝑚=1
. (9) 

Discretizing (4) using a simple Simpson's type rule gives 

𝐭𝑅
diff(𝑘) ≈ {

1

𝜎𝑏

𝑃

𝐿
𝑒𝑖𝑘𝐳𝚽(𝐋𝜎 − 𝐋ref)𝐚(𝑘), 0 < |𝑘| ⩽ 𝑅

0 |𝑘| > 𝑅,
 (10) 

where 𝑃 is the perimeter of the domain Ω, 𝐳 ∈ ℂ1×𝐿 is the row vector of positions of the centers of the 

electrodes, Φ the orthonormal matrix of normalized current patterns 𝜙𝑚, and 𝐚(𝑘) the vector of coefficients in 

the expansion (9). 

To solve the D-bar equation, and recover the D-bar conductivity 𝜎diff, the integral equation must be solved for 

each 𝑧 point in your chosen mesh. Using convolution, (5) can be written as (7), and thus can be written as a 

linear system 
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[𝐼 − 𝒜𝒯(⋅)]𝜇diff = 1, (11) 

for each value of 𝑧, where 𝒜 and 𝒯 are defined by their actions via 

𝒜𝑔(𝑘) =
1

𝜋𝑘
∗ 𝑔(𝑘), and𝒯𝑓(𝑘) =

𝐭𝑅
diff(𝑘)𝑒−𝑖(𝑘𝑧+𝑘𝑧)

4𝜋𝑘
𝑓(𝑘).. 

The convolutions can be computed using 2D fast Fourier transforms as 

1

𝜋𝑘
∗ 𝑔(𝑘) = ℎ𝑘

2IFFT2 [FFT2 (
1

𝜋𝑘
) FFT2(𝑓(𝑘))] , 

and thus the linear system (11) solved using a matrix-free solver such as GMRES, separating the real and 

imaginary parts. For further details of the numerical implementation of the D-bar method the interested reader 

is referred to Mueller and Siltanen (2012) and Hamilton et al (2018). 

2.2. RL 
Tikhonov regularization-based approaches to EIT were developed in the 1980s, e.g. Yorkey (1986). The key idea 

is to separate the reconstruction into a 'forward' and an 'inverse' problem. First, the body region is discretized 

into elements that map to a finite element grid, and represented as a vector, 𝝈. 

Linear difference EIT uses as data a change, Δ𝝈 = 𝝈 − 𝝈ref, between a time of interest, 𝝈, and a reference 

instant 𝝈ref, which we model as homogeneous. 

A frame of voltage measurement data, 𝐯, is acquired through a set of drive and measurement patterns. 

Measurement data are simulated using a forward problem, 𝐹(⋅), typically using a FEM: 𝐯𝜎 = 𝐹(𝝈) and 𝐯ref =

𝐹(𝝈ref), from which the measurement change vector, 𝐲 = 𝐯𝜎 − 𝐯ref is calculated. 

Differences from the reference value of the discrete conductivity in the forward model 𝝈 are parametrized by a 

coarse-to-fine map, Δ𝝈 = 𝐌𝐱, where 𝐱 is the vector of image voxel values. Here, each element, 𝐌𝑖𝑗, represents 

the volume fraction of forward model element i contained within the image element 𝑗 . Since the forward model 

requires a high density of mesh parameterization in areas near the electrodes (Grychtol and Adler 2013). Using 

the map 𝐌, we parameterize the body onto the reconstruction mesh. 

The sensitivity of measurement i to changes in voxel element j , is then given by the matrix, 𝐉𝑖𝑗 =

∂𝐲𝑖/ ∂𝐱𝑗  evaluated at 𝝈ref.. 

As 𝐉 is a severely ill conditioned matrix (Breckon and Pidcock 1988), rather than simply solving for 𝐱, 

reconstruction methods seek an 𝐱 to minimize 

||𝐉𝐱 − 𝐲||2 + 𝜆Ψ2(𝐱), (12) 

where Ψ is a regularizing penalty term, and the regularization hyperparameter 𝜆 > 0 controls the trade-off 

between fitting the data of the linearized problem and satisfying the a priori assumption that Ψ(𝑥) is small. To 

enforce a smoothing assumption on the images we choose Ψ(𝐱) = ||𝐿𝐱||2 where 𝐿𝐱 is an approximation to the 

Laplacian of the conductivity. This corresponds also in the Bayesian formulation to the MAP estimate when the 

errors in the data are assumed to be Gaussian and uncorrelated with equal variance, and the prior distribution is 

a generalized multivariate Gaussian with inverse covariance matrix proportional to 𝐿𝑇𝐿. The generalized 

Tikhonov regularized solution to the Regularized Linear(RL) problem is given by 

𝐱LR = (𝐉𝑇𝐉 + 𝜆𝐿𝑇𝐿)−1𝐉𝑇𝐲. (13) 
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Other common choices for regularization penalty terms in EIT include truncated singular value decomposition, 

and Total Variation. For further details see Adler et al (2015), and the references therein, as well as other 

chapters in the same work. 

2.2.1. GREIT 
The GREIT algorithm (Adler et al 2009) is a type of regularized image reconstruction in which the values of the 

reconstruction parameters are set in a systematic way, from a set of desired characteristics defined by the 

authors. 

We use the formulation of GREIT developed by Grychtol et al (2016), which we briefly review to illustrate the 

relevant choices. Linear algorithms for difference EIT represent image reconstruction by a reconstruction 

matrix, 𝐑, which calculates a reconstructed image 𝐱 = 𝐑𝐲, from difference data, 𝐲. The GREIT reconstruction 

matrix minimizes an error 𝜖2(𝐑) = E[‖𝐱 − 𝐑𝐲‖2]. The expectation, E[⋅] is over a distribution of 'training' 

targets, 𝐭(𝑖), for which the corresponding data, 𝐲(𝑖), and a 'desired' image, 𝐱(𝑖) = 𝐃𝐭(𝑖), are calculated, 

where 𝐃 is the 'desired image' matrix, which maps each training sample location onto a larger image region. The 

reconstruction matrix which minimizes ϵϵ is 𝐑 = E[𝐱𝐲𝑇](E[𝐲𝐲𝑇]) −1. 

Given a distribution 𝐭 ∼ 𝒩(0, 𝚺𝑡) of training targets and noise 𝐧 ∼ 𝒩(0, 𝚺𝑛), 

𝐑 = 𝐃𝚺𝑡
−1𝐉𝑇(𝐉𝚺𝑡

−1𝐉𝑇 + 𝜆𝚺𝑛)−1. (14) 

The parameter 𝜆 is selected so that noise performance of the reconstruction matrix matches a selected 'noise 

figure' (NF) value. 

3. Methods: evaluation 
Here we present the simulated phantoms used for the experiments, as well as figures of merit that will be used 

to evaluate and compare the various reconstruction methods. Since we plan to compare D-bar to linear 

difference reconstructions, we choose phantoms with very small contrasts (Δ𝜎/𝜎 ⩽ 0.1) for which the linearized 

problem is a good approximation. 

3.1. Simulation models 
We examined the behavior of the algorithms on three different phantoms: 'Pac-Man', a small single point target, 

and two point targets (see figure 1). These three targets have quite different characteristics; 'Pac-Man' has sharp 

edges and a hole, the single point target example studies a point target moving from the center of the domain to 

the outside, and the two point targets start close to each other in the center of the domain and move away from 

each other towards the boundary. Small contrasts were used in this study, 0.1×0.1× the background value. 'Skip-

4' stimulation was simulated, using 32 equally spaced electrodes of width 0.05 m, with monopolar voltage 

measurements on all electrodes (including the driven electrodes). All algorithms computed difference image 

reconstructions on the FEM reconstruction grid shown in figure 1 (right). 

 
Figure 1. Phantoms: 'Pac-Man' shape (left), point targets (middle), and reconstruction grid. Two scenarios are considered 
for the point targets phantom. The first tracks the response of each reconstruction method to a single point target as it 
moves across the domain. The second explores the algorithms' responses two two point targets located close together 
versus further away. 
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In order to reduce the possibility of an 'inverse crime' simulation and reconstruction models were intentionally 

different. Simulation models were three dimensional, based on a complete electrode model, and used finite 

element models based on 9800 ('Pac-Man') and 94 400 ('moving targets') vertices. All 3D models were circular 

with a radius of 1 m and a height of 0.2 m, and with a background conductivity of 1.0 S m−1. The 'Pac-Man' 

region had a radius of 0.75 with a 90° 'mouth' and an 'eye' of radius 0.2 m, centered half-way (0.375) between 

the center and the region edge. The point targets were cylinders of radius 0.01 m a height 0.2 m spaced by 
1

21
 of 

the region radius on each side of the center. The reconstruction mesh was a regular 2D mesh with 1024 

elements and 545 vertices and used point electrodes. 

3.2. Figures of merit 
Most EIT reconstruction methods allow control of the trade-off between resolution and noise performance. We 

use the term 'hyperparameter' for the parameter which controls this behavior. For, D-bar, the parameter is the 

radius R of the admissible scattering data in (4). Regularized techniques use a hyperparameter to control the 

weighting of the regularizing penalty function. In RL, this hyperparameter is 𝜆, while for GREIT this 

hyperparameters is typically converted into a noise figure (NF) value. 

Since each method has an independent parameter space, a 'fair' method to select comparable values was 

needed. We chose a method based on the 'L curve' (Hansen and O'Leary 1993). We use the notation that a 

reconstruction method at hyperparameter value 𝜆 calculates an image 𝐱𝜆 from difference EIT data 𝐲. We then 

find the best fitting multiplicative factor 𝑓𝜆 which minimizes the norm 

𝐷𝜆(𝐱) = ‖𝐹(𝜎ref + 𝑓𝜆𝐱𝜆) − 𝐹(𝜎ref) − 𝐲‖2. (15) 

For each reconstructed image we calculated two norms, an image norm Ψ𝜆 = ‖𝐿𝐱‖2 (equal to the regularization 

penalty function), and a data misfit 𝐷𝜆. We chose L as a matrix formulation of the discrete Laplacian on the 

reconstruction FEM and the ‖ ⋅ ‖2 norm. We note that these norms are the ones used in the RL algorithm, which 

thus had an 'advantage' in the sense that it was formulated to minimize the norms against which it is 

subsequently evaluated. 

Next, we plotted Ψ𝜆 against 𝐷𝜆 and selected 𝜆𝑚 as the hyperparameter value at the L-curve corner. Since in EIT 

the L-curve minimum is typically over-regularized with respect to a visual selection, we also chose 

values, 𝜆2𝑚, 𝜆3𝑚, and 𝜆4𝑚, where 𝜆𝐾𝑚 was chosen so that the image norm Ψ𝜆𝐾𝑚
= 𝐾Ψ𝜆𝑚

 was a multiple of the 

L-curve minimum. Using the zero noise 'Pac-Man' data, the parameter values 𝜆𝑚, 𝜆2𝑚, 𝜆3𝑚, and 𝜆4𝑚 were 

chosen and then held fixed across all other experiments. The parameters were thus fixed at 𝜆 =

46.4 × 10−3, 𝜆 = 5.41 × 10−3, 𝜆 = 0.903 × 10−3, and 𝜆 = 0.215 × 10−3 for the RL method, NF  =  0.921, 

NF  =  3.43, NF  =  9.19, and NF  =  36.4 for GREIT, and R  =  4.0, R  =  5.6, R  =  6.6, and R  =  7.6 for the D-bar 

method. 

In order to evaluate reconstruction algorithm performance, various figures of merit (FoM) have been proposed 

over the years. We chose FoM which were proposed in Adler et al (2009) and have subsequently seen fairly wide 

application (figure 2). For this calculation, small targets were simulated at known radial positions, 𝑟𝑡 in a 

cylindrical medium. From each reconstructed image, A, a threshold was chosen at 
1

4
 of the maximum difference, 

and a thresholded-image, B calculated. The center of gravity of B is 𝑟𝑞 and its area 𝐴𝑞. We used the following 

parameters: AR (amplitude response) equal to the sum of all image elements (scaled so the center target is 1), 

PE (position error) the difference in original to reconstructed position, and Res (resolution) the square root of 

the resolution ratio compared to the medium (𝜋). 
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Figure 2. Illustration of figures of merit used. A: Reconstructed image with position of the simulated target, 𝑟𝑡. B: 
Thresholded reconstructed image, with center of gravity, 𝑟𝑞. 

 

4. Results 
The first step was an analysis of reconstructions parameter values using the L-curve approach, as shown in 

figure 3. For each reconstruction method (and two variants of the D-bar method) images were calculated across 

a large range of hyperparameter values. Data were simulated using the 'Pac-Man' model (1) with no-noise (𝑁0) 

and two levels of added noise (𝑁1, 𝑁2). To ensure comparability, the same noise values were used for all images. 

For each reconstruction method, ten representative hyperparameter values were chosen corresponding to the 

L-curve minimum, m, and its multiples, as well as examples of extremely smooth (left images) and noisy (right 

images). 

 
Figure 3. Left: Reconstructed difference images displayed for varying hyperparameters from smoothest reconstruction to 
least smoothed for the RL, GREIT, and D-bar methods. D-bar reconstructions are shown for a fixed threshold of 2.5 as well 
as 5.0. Each row in the respective subfigures corresponds to a different data noise level. The boxed images (m) correspond 
to the L-curve minimum selected from the corresponding L-curve shown on the right. Images 2m, 3m, and 4m correspond 
to reconstructions whose image norms are 2, 3, and 4 times the L-curve minimum. Right: The 'L curve' of data-norm 
(horizontal axis) versus the image-norm (vertical axis) with each square marker corresponding to a reconstruction on the 
left for the noise levels: 𝑁0: No noise (yellow), 𝑁1: SNR  =  105 (blue), and 𝑁2: SNR  =  104 (red). 

 

We note that the L-curve shape displays a 'folded' pattern in which the noisiest images have an increased data 

fit in comparison to the L-curve minimum. This effect is explained by the mismatch between the forward and 

reconstruction models, and is most severe for D-bar, which does not perform an explicit fitting of a forward 

model. 

The visual patterns are reflective of the details of each method. For 𝑁0, the pattern of noise at the right reflects 

the effect of model mismatch. This effect is seen as a boundary artefact for RL and as a more interior noise in 

GREIT. The pattern of noise is also central, and has a lower spatial frequency in D-bar, and this depends on the 
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threshold chosen. Thresholds of 2.5 and 5.0 were used. The accuracy with which the methods were able to 

reconstruct features of the target varies across algorithms. For example, the edges of the 'Pac-Man' 'mouth' 

were best reconstructed by RL, and this effect was likely due to the closeness of match of the RL forward and 

inverse models. For the noisy images, 𝑁1 and 𝑁2, the visual effect became more severe for as the 

hyperparameter increased from m up to 4m. Again the visual pattern of the projected noise had a different 

behavior in D-bar versus the regularized algorithms. 

To explore the spatial variation in image reconstruction performance, figure 4 shows the images reconstructed 

for small targets moving from the center to the edge of the domain. For all methods, as expected, the resolution 

is relatively low at m, but improves as the image norm is allowed to increase 2m ... 4m. We note that D-bar 

shows a very spatially uniform reconstruction: both the resolution and the 'ringing' region around it is extremely 

uniform with position. The RL method shows a characteristic improvement in resolution toward the boundary, 

and also displays a changing spatial pattern with a increase in the level of ringing with a smaller reconstructed 

target near the boundary. The GREIT algorithm shows somewhat more uniform spatial resolution than RL, but 

less so than D-bar. It also shows much lower levels of ringing, as is expected since this was a key design 

requirement for the algorithm. 

 
Figure 4. Images as a function of position using the single moving target phantom in figure 1. Simulated target positions are 
shown above (Sim). Reconstructions are compared for RL (first), GREIT (second), and D-bar with a threshold of 5.0 (third). 
Fixed parameter values of 𝜆, NF, and R were used for the algorithms. 

 

To quantify the image reconstruction characteristics of figure 4, we calculated figures of merit for the amplitude 

(AR), position error (PE) and resolution (RES) (figure 5). AR is roughly uniform for regularized algorithms, but is 

less uniform at the hyperparameters corresponding to 4m than m. Here D-bar has an oscillating AR behavior 

with a spatial frequency that increased with image resolution. This spatially-varying behavior appears to be due 

to the ringing in the D-bar images; as a part of the otherwise spatially-uniform image response is 'cut' outside 

the domain, the AR varies with the amplitude of the ringing. 
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Figure 5. Figures of merit for the reconstructions of the single point-targets shown in figure 4, computed as a function of 
radial position (horizontal axis with center 0 and boundary 1). 

 

PE was fairly low for all methods and increased toward the medium boundary. PE was lower for GREIT than RL, 

again because this is a design requirement for the method. For both regularized methods, PE was higher for 

hyperparameters corresponding to m than 4m, largely due to the increased RES. On the other hand, D-bar 

showed a very uniform PE with both radial position and with hyperparameter level, except for right next to the 

boundary for some hyperparameter values. Using a calibration factor (i.e. spatially scaling the image by about 

5%), it would be possible to create D-bar images with very low PE. The RES for the regularized methods was 

large in the center but decreased (improved resolution) toward the boundary. This effect was less visible in 

GREIT than RL, because GREIT explicitly seeks to achieve uniform, rather than small, RES. This spatially-varying 

behavior was not seen in D-bar, which had extremely uniform resolution at all radial positions. 

The ability of EIT to resolve separate objects was determined by the resolution and also influenced by image 

reconstruction features such as ringing. Figure 6 shows the images as a function of target separation. Using the 

point target phantom, figure 1, targets were simulated at opposite radial positions, moving away from each 

other. The resulting images show the resolving ability of each algorithm as a function of hyperparameter. There 

is a clear influence of both the point resolution and the ringing in each case. 
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Figure 6. Comparison of reconstructions with a two moving targets for RL (first), GREIT (second), and D-bar with a threshold 
of 5.0 (third) with fixed parameter (𝜆, NF, 𝑅) values corresponding. Simulated target positions are shown above (Sim). 

 

Lastly, we explored the ability to reconstruct difference images where electrodes move between measurements, 

as shown in figure 7. These figures reconstructed data from the 'Pac-Man' phantom, in which the electrode in 

the center of the 'mouth' was moved between the 𝑉𝜎 and 𝑉ref measurements. These reconstructions evaluated 

the ability of the algorithms to manage data with uncertainty in the electrode positions for four fixed 

regularization parameters. For all methods, with the hyperparameter corresponding to m, very little effect of 

electrode movement was seen, but the effect increased and was visible for all methods at 4m. Overall, the 

influence on the reconstructed image is greatest for the RL algorithm and least for D-bar when looking at the 

response of the algorithms to only electrode displacement. For the regularized approaches, the electrode 

movement effect was seen largely at the medium boundary, while for D-bar there effect appeared to move 

inside the domain as well (only for 4m). 

 
Figure 7. Reconstructions of an electrode position error for the 'Pac-Man' phantom. The electrode at the 'mouth' was 
moved between voltage measurements by the indicated amount (degrees). Fixed values of the regularization 
parameters (𝜆, NF, 𝑅) were used. 
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5. Discussion and conclusions 
In this paper we compared three reconstruction methods for 2D difference EIT that are linear once 

regularization parameters are chosen. While GREIT and RL explicitly trade off data fit of the linearized problem 

against a penalty on the image term, D-bar uses an explicit theoretically devised approximate inverse where 

regularization is applied at an intermediate step. 

Our analysis in this paper was limited to the region where linear difference EIT reconstruction is valid. All 

simulated contrasts were constrained to be small to ensure this validity. This means that this paper does not 

explore the very interesting comparison of D-bar and iterative regularized methods in cases where the non-

linearities are important. The small level of contrasts also explains why very small levels of noise (SNR   =    105) 

have a perceptible influence on the reconstructed images. 

Numerous differences were seen between the reconstruction behavior of D-bar and that of regularized 

algorithms. To our knowledge, we are the first to observe these effects and thus cannot validate them against 

other reports. In many cases, the behavior is consistent with our understanding of the mathematics of the 

methods; however, in some cases these differences are less well understood and would merit further study, see 

end of this section. 

The GREIT and RL methods have a position dependent resolution operator. Since the sensitivity of boundary 

measurements to a conductivity change decreases with distance from the driven and measurement electrodes, 

these methods compensate for the lack of information in the measurements by applying the a priori information 

included in the regularization term which results in broader point spread function. The effect of noise in the data 

on the reconstructed images is very different in the case of D-bar and regularized approaches. RL (and to a lesser 

extent) GREIT 'project' noise to the image boundary, while the noise in the D-bar images is roughly uniformly 

distributed. In regularized algorithms, this boundary effect can be explained by the increased sensitivity of EIT 

near the electrodes; if a method wants to 'explain' measurement noise, it can do it most economically using 

contrasts at the boundary. 

Measurements near the boundary are inevitably much more sensitive to changes in electrode position and 

changes in the boundary shape than they are to conductivity changes deep in the body. In Lionheart (1999) the 

case is made that the dimension has the biggest effect and 2D data will generally not fit a 2D model. It is also 

claimed that one needs to get the shape and electrode positions correct before one can expect to use the 

measurements to fit the conductivity. However that is not the whole story as the boundary voltage data, in the 

linear approximation, contains some components that are related only to conductivity changes and not 

confounded by shape and electrode position error (Lionheart 1999, Boyle et al 2012). We observed that D-bar 

appears to be much less sensitive to electrode position errors than regularized reconstructions, holding the 

regularization parameter fixed. Future work will explore and quantify the effect of boundary shape errors across 

methods, in particular for the D-bar method. 

In this work, we present numerical evidence for these properties of D-bar, but we hope that a greater 

theoretical understanding will follow in the future. If we can understand theoretically the approximate position 

invariant point spread function and the robustness to electrode position error in D-bar difference imaging, then 

there is a hope that it will spur the development of 3D EIT reconstruction methods with the same qualities. 

D-bar methods use a complete set of voltage data from the system of electrodes, and approximate the 

continuum Dirichlet-to-Neumann map from those measurements. In this paper, we used this complete data set 

for all methods, whereas several biomedical EIT systems discard the voltages on driven electrodes. Future 

research will include studying the effect of interpolating this missing data using a priori assumptions about the 

conductivity near the boundary. 
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Regularized linear difference methods, as well as the regularized non-linear fitting methods, are derived from 

systematic assumptions about the noise distribution in the data and a priori assumptions about the image. By 

contrast D-bar methods use an explicit reconstruction method that is exact for noise free continuum data. This 

situation is similar to exact methods for CT reconstruction, such as filtered back projection in 2D and Katsevich's 

method in 3D, in that regularization is applied at an intermediate step. These methods also do not include an 

explicit forward problem so that the misfit to the data is not calculated and the effect of inconsistent data 

unpredictable. In EIT, we do not have a complete characterization of the range in 3D, so in contrast to CT it is 

harder to detect inconsistent data. In EIT and CT, data fitting methods give a reasonable idea of inconsistent 

data as the residual difference between fitted forward model and measured data will be large. An interesting 

area for future exploration is the combination of explicit inversion methods such as D-bar with a forward model 

test consistency, a work we began in this work with the L-curve plots. 
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