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Abstract: 
As missing sensor data may severely degrade the overall system performance and stability, reliable state 

estimation is of great importance in modern data-intensive control, computing, and power systems applications. 

Aiming at providing a more robust and resilient state estimation technique, this paper presents a novel second-

order fault-tolerant extended Kalman filter estimation framework for discrete-time stochastic nonlinear systems 

under sensor failures, bounded observer-gain perturbation, extraneous noise, and external disturbances 

condition. The failure mechanism of multiple sensors is assumed to be independent of each other with various 
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malfunction rates. The proposed approach is a locally unbiased, minimum estimation error covariance based 

nonlinear observer designed for dynamic state estimation under these conditions. It has been successfully 

applied to a benchmark target-trajectory tracking application. Computer simulation studies have demonstrated 

that the proposed second-order fault-tolerant extended Kalman filter provides more accurate estimation 

results, in comparison with traditional first- and second-order extended Kalman filter. Experimental results have 

demonstrated that the proposed second-order fault-tolerant extended Kalman filter can serve as a powerful 

alternative to the existing nonlinear estimation approaches. 

SECTION I. Introduction 
Kalman filter, the extended Kalman filter, and the second-order extended Kalman filter have a wide range of 

industrial applications for dynamic estimation over the past 50 years. The original work of celebrated Kalman 

filter can be found in [1], [2]. The first-order extended Kalman filter, also known as the quasilinear Kalman filter, 

has been reported in [3]–[6]. Among them, the stochastic stability of extended Kalman filter has been 

investigated by Reif et al. [5] and [6]. The second-order extended Kalman filter was proposed in the paper 

written by Athens et al. [7]. 

To improve the robustness of nonlinear estimation, the 𝐻∞ type of nonlinear filtering is developed, which 

guarantees the 𝐻∞ norm of the mapping between estimation error and the extraneous disturbances is upper-

bounded by a positive preset value. Different from the Kalman filtering approaches, 𝐻∞ filters do not require 

any statistical properties of the external disturbances, but require the disturbances to be of ℒ2 type. The first-

order extended 𝐻∞ filter was proposed by Berman and Shaked for continuous and discrete-time nonlinear 

systems in [8] and [9], respectively. Zhang et al. presented a stochastic H∞ estimation problem in [10], involving 

Itô stochastic differential equation and nonlinear Hamilton–Jacobi inequalities. The mixed 𝐻2/𝐻∞discrete-time 

nonlinear filtering combines the advantages of quadratic optimality with the 𝐻∞ type of disturbance 

rejection [11]–[16]. The second-order extended 𝐻∞ filter for nonlinear discrete-time systems using quadratic 

error matrix approximation was studied by Hu and Yang [17]. 

It is not uncommon that sensor measurements do not contain accurate signals, but corrupted signals thanks to 

extraneous noise, external disturbances, sensor failures, delays, attenuations, distortions, multipaths, 

electromagnetic interference, etc. To address this issue, the problem of estimation with missing measurements 

was first pointed out by Nahi [18], Hadidi and Schwartz [19], in which the missing data were modeled by a binary 

switching sequence specified by a conditional probability distribution. Research in the area of linear filtering 

with missing measurements has been mushrooming during the past decades [20], [21]. Wang et al. considered 

the variance-constrained filtering problem for discrete-time stochastic systems with probabilistic missing 

measurements, subject to norm-bounded parameter uncertainties [20]. In [21], Wang et al. presented a robust 

finite-horizon estimator for linear system with missing measurements. Recent development involving the case of 

nonlinear systems with multiple sensors, which may malfunction independently, has been studied by Hounkpevi 

and Yaz in [22]. Hu et al. applied the extended Kalman filter to estimate the state variables of stochastic 

nonlinear systems with multiple missing measurement in [23]. 

The purpose of this paper is to present a second-order fault-tolerant estimator, which can be used to generate 

state estimates for discrete-time nonlinear dynamical system, from noisy observations of its outputs with faulty 

sensors, made in discrete instants of time. Leveraging our previous effort in [24] and [25], we propose a novel 

second-order, locally unbiased, minimum estimation error covariance based nonlinear observer, which is 

customized for state estimation under sensor failures, bounded observer gain perturbation, and external 

disturbances. Hence, the filter proposed herein shall be referred as the second-order fault-tolerant extended 

Kalman filter. 



The paper is organized as follows: First, the system and measurement model formulation is investigated 

in Section II. Then, the structure of the second-order fault-tolerant extended Kalman filter (second-order FTEKF) 

is derived in Section III. After that, Section IV presents special cases, which are the second-order fault-tolerant 

extended Kalman filter without estimator-gain uncertainties, and the second-order extended Kalman filter. 

Application to a benchmark problem involving reconstructing the trajectory of a target using the recorded range 

measurements is discussed in Section V. In this section, comparisons of the first-, second-order extended 

Kalman filter (EKF), and the second-order fault tolerant extended Kalman filter (FTEKF) nonlinear estimation are 

illustrated through computer simulation studies. Finally, conclusion is reached in Section VI. 

The following standard notation is used in this work: 𝑥 ∈ ℛ𝑛denotes n-dimensional real vector with norm ‖𝑥‖ =

(𝑥𝑇𝑥)1/2where (⋅)𝑇 indicates matrix transpose. 𝐴 ≥ 0 for a symmetric matrix denotes a positive semidefinite 

matrix. 𝑃 denotes the covariance matrix. 𝑥 is the mean value for 𝑥. 𝑃𝑟𝑜𝑏(⋅)is the probability of an 

event. 𝐸{𝑥} = 𝑥 is the mean/expectation value of a random variable 𝑥. 𝑥 ∼ (𝑥, 𝑋) denotes a random 

variable 𝑥 with arbitrary distribution with mean 𝑥 and covariance𝑋 . 𝛿𝑘−𝑗 is the Kronecker delta function; that 

is, 𝛿𝑘−𝑗 = 1 when 𝑘 = 𝑗; and 𝛿𝑘−𝑗 = 0 when 𝑘 ≠ 𝑗. Let 𝐴 and 𝐵 be 𝑛 × 𝑚 matrices, the Hadamard product 

of 𝐴 and 𝐵 is denoted by 𝐴 ∘ 𝐵, and is defined as [𝐴 ∘ 𝐵]𝑖,𝑗 = [𝐴]𝑖𝑗[𝐵]𝑖𝑗  for 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚. Matrix form 

of Rayleigh's inequality is also used in the derivation of this work, which may be stated as: for matrices 𝑋 =

𝑋𝑇 ∈ ℛ𝑛×𝑛and 𝑌 ∈ ℛ𝑚×𝑛, the matrix inequality 𝜆min(𝑋)𝑌𝑌𝑇 ≤ 𝑌𝑋𝑌𝑇 ≤ 𝜆max(𝑋)𝑌𝑌𝑇 holds. 𝜆min(⋅), 𝜆max(⋅

)stand for the minimum and maximum eigenvalues of a matrix. tr{⋅}denotes the trace of a matrix. 

SECTION II. Structure of the Plant 
Consider the following discrete-time nonlinear stochastic system: 

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) + 𝑣𝑘

𝑦𝑘 =

(

 
 

𝛾𝑘
1ℎ1(𝑥𝑘 , 𝑢𝑘) + 𝑤𝑘

1

𝛾𝑘
2ℎ2(𝑥𝑘 , 𝑢𝑘) + 𝑤𝑘

2

⋮
𝛾𝑘

𝑝
ℎ𝑝(𝑥𝑘 , 𝑢𝑘) + 𝑤𝑘

𝑝

)

 
  (1) 

where 

𝑥𝑘 ∈ ℛ𝑛 state space variable;
𝑢𝑘 ∈ ℛ𝑚 control input;

𝑣𝑘 ∈ ℛ𝑛 process disturbance and perturbation;

𝑦𝑘 ∈ ℛ𝑝 measurement output;

𝑤𝑘
𝑖 ∈ ℛ measurement disturbance in each sensor;

𝑓, ℎ nonlinear process and measurement equations. 

 

The mean of initial state 𝑥0 is 𝐸{𝑥0} = 𝑥0 and covariance 𝑋0 = 𝐸{(𝑥0 − 𝑥0)(𝑥0 − 𝑥0)
𝑇}. The noise 

processes, 𝑣𝑘 and 𝑤𝑘, are white, zero mean, uncorrelated with each other and with 𝑥0, and have 

covariance 𝑉𝑘 and 𝑊𝑘, respectively 

𝑣𝑘 ∼ (0, 𝑉𝑘),𝑤𝑘 ∼ (0,𝑊𝑘)

𝐸{𝑣𝑘𝑣𝑗
𝑇} = 𝑉𝑘𝛿𝑘−𝑗, 𝐸{𝑤𝑘𝑤𝑗

𝑇} = 𝑊𝑘𝛿𝑘−𝑗

𝐸{𝑣𝑘𝑤𝑗
𝑇} = 0, 𝐸{𝑣𝑘𝑥0

𝑇} = 0, 𝐸{𝑤𝑘𝑥0
𝑇} = 0.

 (2)(3) 

The scalar binary Bernoulli distributed random variables 𝛾𝑘
𝑖  are with mean 𝜋𝑖 and variance 𝜋𝑖(1 − 𝜋𝑖), whose 

possible outcomes ({0,1}) are defined as 𝑃(𝛾𝑘
𝑖 = 1) = 𝜋𝑖 and 𝑃(𝛾𝑘

𝑖 = 0) = 1 − 𝜋𝑖. The formulation involves 



hard sensor failures, where the sensor either works perfectly or it fails totally. There is no other alternative 

considered in this work. 

To simplify (1), let us denote the sensing condition matrix as 

Γ𝑘 = diag[𝛾𝑘
1, 𝛾𝑘

2, … , 𝛾𝑘
𝑝
]. (4) 

Denote the measurement dynamics matrix as 

ℎ(𝑥𝑘 , 𝑢𝑘) = [ℎ1(𝑥𝑘, 𝑢𝑘), ℎ2(𝑥𝑘, 𝑢𝑘),… , ℎ𝑝(𝑥𝑘 , 𝑢𝑘)]𝑇. (5) 

Denote the extraneous measurement noise vector as 

𝑤𝑘 = [𝑤𝑘
1, 𝑤𝑘

2, … , 𝑤𝑘
𝑝
]𝑇 . (6) 

Hence, the measurement equation can be written as 

𝑦𝑘 = Γ𝑘ℎ(𝑥𝑘 , 𝑢𝑘) + 𝑤𝑘. (7) 

Neglect the higher-order terms, the second-order Taylor series expansions of 𝑓(𝑥𝑘 , 𝑢𝑘), ℎ(𝑥𝑘 , 𝑢𝑘) around the 

estimated state 𝑥
^

𝑘 can be expressed as 

𝑓(𝑥𝑘 , 𝑢𝑘) ≈ 𝑓 (𝑥
^

𝑘 , 𝑢𝑘) +
∂𝑓

∂𝑥𝑘
|
𝑥𝑘=𝑥

^
𝑘
(𝑥𝑘 − 𝑥

^

𝑘)

+
1

2
∑ 𝜙𝑖

𝑓
⋅ (𝑥𝑘 − 𝑥

^

𝑘)𝑇 ∂2𝑓𝑖

∂𝑥𝑘
2 |

𝑥𝑘=𝑥
^
𝑘
(𝑥𝑘 − 𝑥

^

𝑘)
𝑛

𝑖=1

 (8) 

and 

ℎ(𝑥𝑘 , 𝑢𝑘) ≈ ℎ(𝑥
^

𝑘 , 𝑢𝑘) +
∂ℎ

∂𝑥𝑘
|
𝑥𝑘=𝑥

^
𝑘
(𝑥𝑘 − 𝑥

^

𝑘)

+
1

2
∑ 𝜙𝑖

ℎ ⋅ (𝑥𝑘 − 𝑥
^

𝑘)𝑇 ∂2ℎ𝑖

∂𝑥𝑘
2 |

𝑥𝑘=𝑥
^
𝑘
(𝑥𝑘 − 𝑥

^

𝑘)
𝑝

𝑖=1

 (9) 

where 𝑓𝑖 and ℎ𝑖 are the 𝑖th element of 𝑓(𝑥𝑘 , 𝑢𝑘) and ℎ(𝑥𝑘 , 𝑢𝑘), respectively. 𝜙𝑖
𝑓

 and 𝜙𝑖
ℎ are 𝑛 × 1 and 𝑝 ×

1 column vectors, respectively. 𝜙𝑖 denotes a column vector with all zeros except for a one in the 𝑖th element, 

i.e., 

𝜙𝑖 = [0 . . . 0 1 0 . . . 0]𝑇 . (10) 

The quadratic terms in (8) and (9) can be written as 

(𝑥𝑘 − 𝑥
^

𝑘)𝑇 ∂2𝑓𝑖

∂𝑥𝑘
2 |

𝑥𝑘=𝑥
^
𝑘
(𝑥𝑘 − 𝑥

^

𝑘)

= tr {
∂2𝑓𝑖

∂𝑥𝑘
2 |

𝑥𝑘=𝑥
^
𝑘
(𝑥𝑘 − 𝑥

^

𝑘)(𝑥𝑘 − 𝑥
^

𝑘)𝑇}
 (11) 

and 

(𝑥𝑘 − 𝑥
^

𝑘)𝑇 ∂2ℎ𝑖

∂𝑥𝑘
2 |

𝑥𝑘=𝑥
^
𝑘
(𝑥𝑘 − 𝑥

^

𝑘)

= tr {
∂2ℎ𝑖

∂𝑥𝑘
2 |

𝑥𝑘=𝑥
^
𝑘
(𝑥𝑘 − 𝑥

^

𝑘)(𝑥𝑘 − 𝑥
^

𝑘)𝑇} .
(12) 

By denoting the estimation error covariance matrix 𝑃𝑘 as 

https://ieeexplore.ieee.org/document/#deqn1
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𝑃𝑘 = 𝐸 {(𝑥𝑘 − 𝑥
^

𝑘)(𝑥𝑘 − 𝑥
^

𝑘)𝑇} (13) 

(11) and (12) can be approximated as 

(𝑥𝑘 − 𝑥
^

𝑘)𝑇 ∂2𝑓𝑖

∂𝑥𝑘
2 (𝑥𝑘 − 𝑥

^

𝑘) ≈ tr {
∂2𝑓𝑖

∂𝑥𝑘
2 |

𝑥
^
𝑘
𝑃𝑘} (14) 

and 

(𝑥𝑘 − 𝑥
^

𝑘)𝑇 ∂2ℎ𝑖

∂𝑥𝑘
2 (𝑥𝑘 − 𝑥

^

𝑘) ≈ tr {
∂2ℎ𝑖

∂𝑥𝑘
2 |

𝑥
^
𝑘
𝑃𝑘} . (15) 

Hence, if we evaluate (8) at 𝑥𝑘 = 𝑥
^

𝑘 and substitute (14) in the summation, we have 

𝑓(𝑥𝑘 , 𝑢𝑘) ≈ 𝑓(𝑥
^

𝑘 , 𝑢𝑘) +
∂𝑓

∂𝑥𝑘
|
𝑥𝑘=𝑥

^
𝑘
(𝑥𝑘 − 𝑥

^

𝑘)

+
1

2
∑ 𝜙𝑖

𝑓
tr {

∂2𝑓𝑖

∂𝑥𝑘
2 |

𝑥
^
𝑘
𝑃𝑘}

𝑛

𝑖=1
.

 (16) 

Likewise, if we evaluate (9) at 𝑥𝑘 = 𝑥
^

𝑘  and substitute (15) in the summation, we have 

ℎ(𝑥𝑘 , 𝑢𝑘) ≈ ℎ(𝑥
^

𝑘 , 𝑢𝑘) +
∂ℎ

∂𝑥𝑘
|
𝑥𝑘=𝑥

^
𝑘
(𝑥𝑘 − 𝑥

^

𝑘)

+
1

2
∑ 𝜙𝑖

ℎtr {
∂2ℎ𝑖

∂𝑥𝑘
2 |

𝑥
^
𝑘
𝑃𝑘}

𝑝

𝑖=1
.

 (17) 

SECTION III. Structure of the Second-Order Fault-Tolerant Extended Kalman 

Filter 
The purpose of this novel second-order fault-tolerant nonlinear filter is to estimate the state vector 𝑥𝑘 based on 

the knowledge of system dynamics and the availability of noisy measurement 𝑦𝑘  under the effect of random 

sensor failures, bounded observer-gain perturbation, external disturbances, and extraneous noise. 

The objective is to minimize the cost function defined as 

𝐽 = 𝑚𝑖𝑛
𝐾𝑘

𝐸 {∑ |𝑁
𝑘=0 |𝑥𝑘 − 𝑥

^

𝑘||2
2} (18) 

subject to 

𝐸{𝑥𝑘 − 𝑥
^

𝑘} = 0.(19) 

Motivated by the one-step Kalman filter form in [26], the following discrete-time nonlinear Luenberger-type 

observer is adopted in this paper 

𝑥
^

𝑘+1 = 𝑓(𝑥
^

𝑘 , 𝑢𝑘) +
1

2
∑ 𝜙𝑖

𝑓
tr {

∂2𝑓𝑖

∂𝑥𝑘
2 |

𝑥
^
𝑘
𝑃𝑘}

𝑛

𝑖=1

+(𝐾𝑘 + Δ𝑘)[𝑦𝑘 − Γ𝑘ℎ(𝑥
^

𝑘 , 𝑢𝑘)] − 𝜚𝑘 .

 (20) 

To develop a resilient nonlinear estimator against observer gain perturbation, Kalman gain 𝐾𝑘 + Δ𝑘 is utilized 

in (20). Though the Kalman filter gain should be 𝐾𝑘, due to computational or tuning uncertainties Δ𝑘, it is 

erroneously implemented as 𝐾𝑘 + Δ𝑘. 

The term Γ𝑘, the reliability expectation matrix of 𝑝 independent sensors, can be defined as 

https://ieeexplore.ieee.org/document/#deqn11
https://ieeexplore.ieee.org/document/#deqn12
https://ieeexplore.ieee.org/document/#deqn8
https://ieeexplore.ieee.org/document/#deqn14
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Γ𝑘 = 𝐸{Γ𝑘} = diag[𝜋1, 𝜋2, … , 𝜋𝑝] (21) 

with 𝜋𝑖 is the probability of the 𝑖th sensor to work perfectly, i.e., being an accurate sensor to provide reliable 

measurements. 

The predictor part of (20) is a replica of the nonlinear plant dynamics. The correction term corrects future state 

estimates based on the present error in estimation of the measured value. The vector 𝜚𝑘 is the output bias 

correction term. The choice of 𝜚𝑘 makes 𝑥
^

𝑘+1an unbiased estimate of 𝑥𝑘+1. 

𝐾𝑘 is the feedback gain with additive uncertainty Δ𝑘. The uncertainty, Δ𝑘, is assumed to have zero mean, 

bounded second moment, and be uncorrelated with initial state, process, and measurement noises, i.e., 

𝐸{Δ𝑘Δ𝑘
𝑇} ≤ 𝛿𝐼, 𝐸{Δ𝑘

𝑇𝑥0} = 0

𝐸{Δ𝑘
𝑇𝑣𝑘} = 0, 𝐸{Δ𝑘𝑤𝑘} = 0

 (22) 

where the upper-bound 𝛿 is a positive constant. 

III. Theorem 1: 
The Second-Order Fault-Tolerant Extended Kalman Filter 

The second-order fault-tolerant extended Kalman filter is initialized by 

𝑥
^

0 = 𝐸{𝑥0}

𝑃0 = 𝐸{(𝑥0 − 𝑥
^

0)(𝑥0 − 𝑥
^

0)
𝑇}.

.(23) 

By computing the Jacobian matrices 

𝐴𝑘 =
𝜕𝑓

𝜕𝑥
| 

𝑥=𝑥
^
𝑘
, 𝐶𝑘 =

𝜕ℎ

𝜕𝑥
|
𝑥=𝑥

^
𝑘
.(24) 

For time steps 𝑘 = 1,2,3,…, denote 

𝜁(𝑥
^

𝑘) = ℎ(𝑥
^

𝑘 , 𝑢𝑘) +
1

2
∑ 𝜙𝑖

ℎ𝑡𝑟 {
𝜕2ℎ𝑖

𝜕𝑥𝑘
2 |

𝑥𝑘=𝑥
^
𝑘
𝑃𝑘}

𝑝

𝑖=1
.(25) 

The nonlinear estimator propagates by computing the Kalman filter gain 

𝐾𝑘
𝑜 = (𝐴𝑘𝑃𝑘𝐶𝑘

𝑇𝛤𝑘

𝑇
)[𝛤𝑘𝐶𝑘𝑃𝑘𝐶𝑘

𝑇𝛤𝑘

𝑇

+𝛶 ∘ (𝜁(𝑥
^

𝑘)𝜁𝑇(𝑥
^

𝑘) + 𝐶𝑘𝑃𝑘𝐶𝑘
𝑇) + 𝑊𝑘]−1.

(26) 

The upper-bound of estimation error covariance is updated through 

𝑃𝑘+1 = 𝐴𝑘𝑃𝑘𝐴𝑘
𝑇 + 𝑉𝑘 + 𝜆max{𝛤𝑘𝐶𝑘𝑃𝑘𝐶𝑘

𝑇𝛤𝑘

𝑇
+ 𝑊𝑘

+𝛶 ∘ [𝜁(𝑥
^

𝑘)𝜁𝑇(𝑥
^

𝑘) + 𝐶𝑘𝑃𝑘𝐶𝑘
𝑇]}𝛿𝐼

−(𝐴𝑘𝑃𝑘𝐶𝑘
𝑇𝛤𝑘

𝑇
){𝛤𝑘𝐶𝑘𝑃𝑘𝐶𝑘

𝑇𝛤𝑘

𝑇

+𝛶 ∘ [𝜁(𝑥
^

𝑘)𝜁𝑇(𝑥
^

𝑘) + 𝐶𝑘𝑃𝑘𝐶𝑘
𝑇] + 𝑊𝑘}−1(𝛤𝑘𝐶𝑘𝑃𝑘𝐴𝑘

𝑇).

 (27) 

The state estimate is updated through 
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𝑥
^

𝑘+1 = 𝑓(𝑥
^

𝑘 , 𝑢𝑘) +
1

2
∑ 𝜙𝑖

𝑓
𝑡𝑟 {

𝜕2𝑓𝑖

𝜕𝑥𝑘
2 |

𝑥
^
𝑘
𝑃𝑘}

𝑛

𝑖=1

+(𝐾𝑘
𝑜 + 𝛥𝑘)[𝑦𝑘 − 𝛤𝑘ℎ(𝑥

^

𝑘 , 𝑢𝑘)

−𝛤𝑘
1

2
∑ 𝜙𝑖

ℎ𝑡𝑟 {
𝜕2ℎ𝑖

𝜕𝑥𝑘
2 |

𝑥
^
𝑘
𝑃𝑘}

𝑝

𝑖=1
]

(28) 

where 

𝛶 = diag[𝜋1(1 − 𝜋1), 𝜋2(1 − 𝜋2),… , 𝜋𝑝(1 − 𝜋𝑝)]

= (

𝜋1(1 − 𝜋1) 0 ⋯ 0
0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 𝜋𝑝(1 − 𝜋𝑝)

).
 (29) 

III. Proof: 

By denoting the estimation error 𝑒𝑘 = 𝑥𝑘 − 𝑥
^

𝑘, and applying Taylor series expansion results in (8) and (9), we 

have 

𝑒𝑘+1 = 𝑥𝑘+1 − 𝑥
^

𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) + 𝑣𝑘 − {𝑓(𝑥
^

𝑘 , 𝑢𝑘)

+
1

2
∑ 𝜙𝑖

𝑓
𝑡𝑟 {

𝜕2𝑓𝑖

𝜕𝑥𝑘
2 |

𝑥𝑘=𝑥
^
𝑘
𝑃𝑘}

𝑛

𝑖=1

+(𝐾𝑘 + 𝛥𝑘)[𝑦𝑘 − 𝛤𝑘ℎ(𝑥
^

𝑘 , 𝑢𝑘)]} + 𝜚𝑘

= 𝐴𝑘𝑒𝑘 + 𝑣𝑘 − (𝐾𝑘 + 𝛥𝑘){𝛤𝑘[ℎ(𝑥
^

𝑘 , 𝑢𝑘) + 𝐶𝑘𝑒𝑘)]

+𝛤𝑘
1

2
∑ 𝜙𝑖

ℎ ⋅ (𝑥𝑘 − 𝑥
^

𝑘)𝑇 𝜕2ℎ𝑖

𝜕𝑥𝑘
2 |

𝑥𝑘=𝑥
^
𝑘
(𝑥𝑘 − 𝑥

^

𝑘)
𝑝

𝑖=1

+𝑤𝑘 − 𝛤𝑘ℎ(𝑥
^

𝑘 , 𝑢𝑘)} + 𝜚𝑘 + 𝒪(𝑒𝑘
2).

(30) 

Apply constraint (19) to (30), we demand that 𝑥
^

𝑘+1is an unbiased estimate of 𝑥𝑘+1. The following choice 

of 𝜚𝑘 makes 𝑥
^

𝑘+1 an unbiased estimate 

𝜚 = (𝐾𝑘 + 𝛥𝑘)𝛤𝑘
1

2
∑ 𝜙𝑖

ℎ𝑡𝑟 {
𝜕2ℎ𝑖

𝜕𝑥𝑘
2 |

𝑥𝑘=𝑥
^
𝑘
𝑃𝑘}

𝑝

𝑖=1
. (31) 

By neglecting the higher-order error term 𝒪(𝑒𝑘
2), and applying (17), we have 

𝑒𝑘+1 ≈ [𝐴𝑘 − (𝐾𝑘 + 𝛥𝑘)𝛤𝑘𝐶𝑘]𝑒𝑘 + 𝑣𝑘 − (𝐾𝑘 + 𝛥𝑘)𝑤𝑘

−(𝐾𝑘 + 𝛥𝑘)𝛤
~

𝑘[ℎ(𝑥
^

𝑘 , 𝑢𝑘)

+
1

2
∑ 𝜙𝑖

ℎ𝑡𝑟 {
𝜕2ℎ𝑖

𝜕𝑥𝑘
2 |

𝑥𝑘=𝑥
^
𝑘
𝑃𝑘}

𝑝

𝑖=1
]

 (32) 

where 

𝛤
~

𝑘 = 𝛤𝑘 − 𝛤𝑘 . (33) 

To simplify (32) in the derivation process, let us denote 

𝜁(𝑥
^

𝑘) = ℎ(𝑥
^

𝑘 , 𝑢𝑘) +
1

2
∑ 𝜙𝑖

ℎ𝑡𝑟 {
𝜕2ℎ𝑖

𝜕𝑥𝑘
2 |

𝑥𝑘=𝑥
^
𝑘
𝑃𝑘}

𝑝

𝑖=1
.(34) 

To derive the optimal estimator gain 𝐾𝑘, applying (32), the estimation error covariance matrix evolves as 
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𝑃𝑘+1 = 𝐸{𝑒𝑘+1𝑒𝑘+1
𝑇 }

= 𝐸{[𝐴𝑘 − (𝐾𝑘 + 𝛥𝑘)𝛤𝑘𝐶𝑘]𝑒𝑘𝑒𝑘
𝑇[𝐴𝑘 − (𝐾𝑘 + 𝛥𝑘)𝛤𝑘𝐶𝑘]

𝑇}

+𝐸{[𝐴𝑘 − (𝐾𝑘 + 𝛥𝑘)𝛤𝑘𝐶𝑘]𝑒𝑘𝑣𝑘
𝑇}

+𝐸{𝑣𝑘𝑒𝑘
𝑇[𝐴𝑘 − (𝐾𝑘 + 𝛥𝑘)𝛤𝑘𝐶𝑘]

𝑇}

−𝐸{(𝐴𝑘 − (𝐾𝑘 + 𝛥𝑘)𝛤𝑘𝐶𝑘)𝑒𝑘𝑤𝑘
𝑇(𝐾𝑘 + 𝛥𝑘)𝑇}

−𝐸{(𝐾𝑘 + 𝛥𝑘)𝑤𝑘𝑒𝑘
𝑇(𝐴𝑘 − (𝐾𝑘 + 𝛥𝑘)𝛤𝑘𝐶𝑘)

𝑇}

−𝐸{[𝐴𝑘 − (𝐾𝑘 + 𝛥𝑘)𝛤𝑘𝐶𝑘]𝑒𝑘𝜁
𝑇(𝑥

^

𝑘)𝛤
~

𝑘
𝑇(𝐾𝑘 + 𝛥𝑘)𝑇}

−𝐸{(𝐾𝑘 + 𝛥𝑘)𝛤
~

𝑘𝜁(𝑥
^

𝑘)𝑒𝑘
𝑇[𝐴𝑘 − (𝐾𝑘 + 𝛥𝑘)𝛤𝑘𝐶𝑘]

𝑇}

+𝑉𝑘 + 𝐸{(𝐾𝑘 + 𝛥𝑘)𝑊𝑘(𝐾𝑘 + 𝛥𝑘)𝑇}

−𝐸{𝑣𝑘𝑤𝑘
𝑇(𝐾𝑘 + 𝛥𝑘)𝑇 + (𝐾𝑘 + 𝛥𝑘)𝑤𝑘𝑣𝑘

𝑇}

−𝐸{𝑣𝑘𝜁𝑇(𝑥
^

𝑘)𝛤
~

𝑘
𝑇(𝐾𝑘 + 𝛥𝑘)𝑇 + (𝐾𝑘 + 𝛥𝑘)𝛤

~

𝑘𝜁(𝑥
^

𝑘)𝑣𝑘
𝑇}

+𝐸{(𝐾𝑘 + 𝛥𝑘)𝑤𝑘𝜁
𝑇(𝑥

^

𝑘)𝛤
~

𝑘
𝑇(𝐾𝑘 + 𝛥𝑘)𝑇

+(𝐾𝑘 + 𝛥𝑘)𝛤
~

𝑘𝜁(𝑥
^

𝑘)𝑤𝑘
𝑇(𝐾𝑘 + 𝛥𝑘)𝑇}

+𝐸{(𝐾𝑘 + 𝛥𝑘)𝛤
~

𝑘𝜁(𝑥
^

𝑘)𝜁𝑇(𝑥
^

𝑘)𝛤
~

𝑘
𝑇(𝐾𝑘 + 𝛥𝑘)𝑇}.

 (35) 

Each individual term of (35) can be reduced as follows: Applying (22) and Rayleigh's matrix inequality, the first 

term can be simplified to 

𝐸{[𝐴𝑘 − (𝐾𝑘 + 𝛥𝑘)𝛤𝑘𝐶𝑘]𝑒𝑘𝑒𝑘
𝑇[𝐴𝑘 − (𝐾𝑘 + 𝛥𝑘)𝛤𝑘𝐶𝑘]

𝑇}

≤ [𝐴𝑘 − 𝐾𝑘𝛤𝑘𝐶𝑘]𝑃𝑘[𝐴𝑘 − 𝐾𝑘𝛤𝑘𝐶𝑘]
𝑇

+𝐾𝑘𝐸{𝛤
~

𝑘𝐶𝑘𝑃𝑘𝐶𝑘
𝑇𝛤

~

𝑘}𝐾𝑘
𝑇

+𝜆max(𝛤𝑘𝐶𝑘𝑃𝑘𝐶𝑘
𝑇𝛤𝑘

𝑇
+ 𝐸{𝛤

~

𝑘𝐶𝑘𝑃𝑘𝐶𝑘
𝑇𝛤

~

𝑘
𝑇})𝛿𝐼.

 (36) 

Since 𝑒𝑘 and 𝑣𝑘 are uncorrelated, we have 

𝐸{[𝐴𝑘 − (𝐾𝑘 + 𝛥𝑘)𝛤𝑘𝐶𝑘]𝑒𝑘𝑣𝑘
𝑇}

+𝐸{𝑣𝑘𝑒𝑘
𝑇[𝐴𝑘 − (𝐾𝑘 + 𝛥𝑘)𝛤𝑘𝐶𝑘]

𝑇} = 0.
 (37) 

Since 𝑒𝑘 and 𝑤𝑘 are uncorrelated, we have 

𝐸{(𝐴𝑘 − (𝐾𝑘 + 𝛥𝑘)𝛤𝑘𝐶𝑘)𝑒𝑘𝑤𝑘
𝑇(𝐾𝑘 + 𝛥𝑘)𝑇}

+𝐸{(𝐾𝑘 + 𝛥𝑘)𝑤𝑘𝑒𝑘
𝑇(𝐴𝑘 − (𝐾𝑘 + 𝛥𝑘)𝛤𝑘𝐶𝑘)

𝑇} = 0.
 

Since 𝑒𝑘 , Δ𝑘 , Γ
~

𝑘  are mutually uncorrelated and 𝐸{𝑒𝑘} = 0, 𝐸{Γ
~

𝑘} = 0, the following term is zero as shown below 

𝐸{[𝐴𝑘 − (𝐾𝑘 + 𝛥𝑘)𝛤𝑘𝐶𝑘]𝑒𝑘𝜁𝑇(𝑥
^

𝑘)𝛤
~

𝑘
𝑇(𝐾𝑘 + 𝛥𝑘)𝑇}

+𝐸{(𝐾𝑘 + 𝛥𝑘)𝛤
~

𝑘𝜁(𝑥
^

𝑘)𝑒𝑘
𝑇[𝐴𝑘 − (𝐾𝑘 + 𝛥𝑘)𝛤𝑘𝐶𝑘]

𝑇} = 0.
 (38) 

Applying (22), it is easy to show that 

𝑉𝑘 + 𝐸{(𝐾𝑘 + 𝛥𝑘)𝑊𝑘(𝐾𝑘 + 𝛥𝑘)𝑇}

≤ 𝑉𝑘 + 𝐾𝑘𝑊𝑘𝐾𝑘
𝑇 + 𝜆max(𝑊𝑘)𝛿𝐼.

 (39) 

Since 𝑣𝑘 , 𝑤𝑘are uncorrelated, the term is reduced to 

𝐸{𝑣𝑘𝑤𝑘
𝑇(𝐾𝑘 + 𝛥𝑘)𝑇 + (𝐾𝑘 + 𝛥𝑘)𝑤𝑘𝑣𝑘

𝑇} = 0.(40) 

Since 𝑣𝑘 , Δ𝑘 are uncorrelated, and 𝐸{𝑣𝑘} = 0, we have 
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𝐸{𝑣𝑘𝜁
𝑇(𝑥

^

𝑘)𝛤
~

𝑘
𝑇[𝐾𝑘 + 𝛥𝑘]𝑇

−[𝐾𝑘 + 𝛥𝑘]𝛤
~

𝑘𝜁(𝑥
^

𝑘)𝑣𝑘
𝑇} = 0.

(41) 

Since 𝑣𝑘 , Δ𝑘, Γ
~

𝑘  are mutually uncorrelated, and 𝐸{𝑤𝑘} = 0, 𝐸{Γ
~

𝑘} = 0, the term is zero as follows: 

𝐸{(𝐾𝑘 + 𝛥𝑘)𝑤𝑘𝜁
𝑇(𝑥

^

𝑘)𝛤
~

𝑘
𝑇(𝐾𝑘 + 𝛥𝑘)𝑇

+(𝐾𝑘 + 𝛥𝑘)𝑇𝛤
~

𝑘𝜁(𝑥
^

𝑘)𝑤𝑘
𝑇(𝐾𝑘 + 𝛥𝑘)} = 0.

 (42) 

Applying (22), the term has an upper-bound as shown below 

𝐸{(𝐾𝑘 + 𝛥𝑘)𝛤
~

𝑘𝜁(𝑥
^

𝑘)𝜁(𝑥
^

𝑘)𝑇𝛤
~

𝑘
𝑇(𝐾𝑘 + 𝛥𝑘)𝑇}

≤ 𝐾𝑘𝐸{𝛤
~

𝑘𝜁(𝑥
^

𝑘)𝜁(𝑥
^

𝑘)𝑇𝛤
~

𝑘
𝑇}𝐾𝑘

𝑇

+𝜆max(𝐸{𝛤
~

𝑘𝜁(𝑥
^

𝑘)𝜁(𝑥
^

𝑘)𝑇𝛤
~

𝑘
𝑇})𝛿𝐼.

 (43) 

Hence, based on the aforementioned reductions in (36)–(43), (35) yields 

𝑃𝑘+1 ≤ [𝐴𝑘 − 𝐾𝑘𝛤𝑘𝐶𝑘]𝑃𝑘[𝐴𝑘 − 𝐾𝑘𝛤𝑘𝐶𝑘]
𝑇

+𝐾𝑘𝐸{𝛤
~

𝑘𝐶𝑘𝑃𝑘𝐶𝑘
𝑇𝛤

~

𝑘
𝑇 + 𝛤

~

𝑘𝜁(𝑥
^

𝑘)𝜁(𝑥
^

𝑘)𝑇𝛤
~

𝑘
𝑇 + 𝑊𝑘}𝐾𝑘

𝑇

+𝜆max(𝛤𝑘𝐶𝑘𝑃𝑘𝐶𝑘
𝑇𝛤𝑘

𝑇
+ 𝑊𝑘

+𝐸{𝛤
~

𝑘𝐶𝑘𝑃𝑘𝐶𝑘
𝑇𝛤

~

𝑘
𝑇 + 𝛤

~

𝑘𝜁(𝑥
^

𝑘)𝜁(𝑥
^

𝑘)𝑇𝛤
~

𝑘
𝑇})𝛿𝐼 + 𝑉𝑘.

. 

Since we have 

𝐸{[𝛤
~

𝑘𝜁(𝑥
^

𝑘)][𝛤
~

𝑘𝜁(𝑥
^

𝑘)]𝑇 + [𝛤
~

𝑘𝐶𝑘]𝑃𝑘[𝛤
~

𝑘𝐶𝑘]
𝑇}

= 𝛶 ∘ (𝜁(𝑥
^

𝑘)𝜁𝑇(𝑥
^

𝑘) + 𝐶𝑘𝑃𝑘𝐶𝑘
𝑇)

 

where 𝛶 is defined in (29), the upper bound on the error covariance equation can be obtained as 

𝑃𝑘+1 = [𝐴𝑘 − 𝐾𝑘𝛤𝑘𝐶𝑘]𝑃𝑘[𝐴𝑘 − 𝐾𝑘𝛤𝑘𝐶𝑘]
𝑇 + 𝑉𝑘

+𝐾𝑘[𝑊𝑘 + 𝛶 ∘ (𝜁(𝑥
^

𝑘)𝜁𝑇(𝑥
^

𝑘) + 𝐶𝑘𝑃𝑘𝐶𝑘
𝑇)]𝐾𝑘

𝑇

+𝜆max{𝛤𝑘𝐶𝑘𝑃𝑘𝐶𝑘
𝑇𝛤𝑘

𝑇
+ 𝑊𝑘

+𝛶 ∘ [𝜁(𝑥
^

𝑘)𝜁𝑇(𝑥
^

𝑘) + 𝐶𝑘𝑃𝑘𝐶𝑘
𝑇]}𝛿𝐼.

δI. 

Equivalently, it can be organized as 

𝑃𝑘+1 = 𝛺𝑘 + 𝐾𝑘𝛬𝑘 + 𝛬𝑘
𝑇𝐾𝑘

𝑇 + 𝐾𝑘𝛷𝑘𝐾𝑘
𝑇 (47) 

where 

𝛷𝑘 = 𝛤𝑘𝐶𝑘𝑃𝑘𝐶𝑘
𝑘𝛤𝑘

𝑇
+ 𝛶 ∘ (𝜁(𝑥

^

𝑘)𝜁𝑇(𝑥
^

𝑘) + 𝐶𝑘𝑃𝑘𝐶𝑘
𝑇) + 𝑊𝑘

𝛬𝑘 = −𝛤𝑘𝐶𝑘𝑃𝑘𝐴𝑘
𝑇

𝛺𝑘 = 𝐴𝑘𝑃𝑘𝐴𝑘
𝑇 + 𝑉𝑘 + 𝜆max{𝛤𝑘𝐶𝑘𝑃𝑘𝐶𝑘

𝑇𝛤𝑘

𝑇
+ 𝑊𝑘 +

𝛶 ∘ [𝜁(𝑥
^

𝑘)𝜁𝑇(𝑥
^

𝑘) + 𝐶𝑘𝑃𝑘𝐶𝑘
𝑇]}𝛿𝐼.

 (48) 

Applying completing the square in observer gain Kk 

𝑃𝑘+1 = 𝛺𝑘 + (𝐾𝑘 − 𝐾𝑘
𝑜)𝛷𝑘(𝐾𝑘 − 𝐾𝑘

𝑜)𝑇 − 𝐾𝑘
𝑜𝛷𝑘𝐾𝑘

𝑜𝑇 .(49) 
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For (44) to be equal to (46), the following condition must hold: 

𝐾𝑘𝛬𝑘 = −𝐾𝑘𝛷𝑘𝐾𝑘
𝑜𝑇 .(50) 

Therefore, the robust optimal feedback gain 

𝐾𝑘
𝑜 = −𝛬𝑘

𝑇𝛷𝑘
−1 = 𝐴𝑘𝑃𝑘𝐶𝑘

𝑇𝛤𝑘

𝑇
{𝛤𝑘𝐶𝑘𝑃𝑘𝐶𝑘

𝑇𝛤𝑘

𝑇

+𝛶 ∘ [𝜁(𝑥
^

𝑘)𝜁𝑇(𝑥
^

𝑘) + 𝐶𝑘𝑃𝑘𝐶𝑘
𝑇] + 𝑊𝑘}−1.

 (51) 

By setting 𝐾𝑘 = 𝐾𝑘
𝑜, the resulting matrix difference equation for the minimum of the upper bound on the 

estimation error covariance is given as 𝑃𝑘+1 = Ω𝑘 − 𝐾𝑘
𝑜Φ𝑘𝐾𝑘

𝑜𝑇, which leads to (27). This concludes the proof of 

Theorem 1.■ 

SECTION IV. Special Cases 

A. Second-Order Fault-Tolerant Extended Kalman Filter Without Estimator Gain 

Uncertainties 
Consider an extreme case, when we neglect perturbations on the estimator gain, i.e., 𝛿 = 0, then it is easy to 

derive the second-order fault-tolerant extended Kalman filter without estimator gain, as follows. 

The optimal Kalman observer gain is 

𝐾𝑘
𝑜 = (𝐴𝑃𝑘𝐶𝑘

𝑇Γ𝑘

𝑇
)[Γ𝑘𝐶𝑘𝑃𝑘𝐶𝑘

𝑇Γ𝑘

𝑇

+Υ ∘ (𝜁(𝑥
^

𝑘)𝜁𝑇(𝑥
^

𝑘) + 𝐶𝑘𝑃𝑘𝐶𝑘
𝑇) + 𝑊𝑘]−1.

 (52) 

The upper-bound on minimum estimation error covariance is given as 

𝑃𝑘+1 = 𝐴𝑘𝑃𝑘𝐴𝑘
𝑇 + 𝑉𝑘 − (𝐴𝑘𝑃𝑘𝐶𝑘

𝑇Γ𝑘

𝑇
)[Γ𝑘𝐶𝑘𝑃𝑘𝐶𝑘

𝑇Γ𝑘

𝑇

+Υ ∘ (𝜁(𝑥
^

𝑘)𝜁𝑇(𝑥
^

𝑘) + 𝐶𝑘𝑃𝑘𝐶𝑘
𝑇) + 𝑊𝑘]−1(Γ𝑘𝐶𝑘𝑃𝑘𝐴𝑘

𝑇)
 (53) 

and the state estimate can be updated as follows: 

𝑥
^

𝑘+1 = 𝑓(𝑥
^

𝑘 , 𝑢𝑘) +
1

2
∑ 𝜙𝑖

𝑓
tr {

∂2𝑓𝑖

∂𝑥𝑘
2 |

𝑥
^
𝑘
𝑃𝑘}

𝑛

𝑖=1

+𝐾𝑘
𝑜 [𝑦𝑘 − Γ𝑘ℎ(𝑥

^

𝑘 , 𝑢𝑘) −
1

2
∑ 𝜙𝑖

ℎtr {
∂2ℎ𝑖

∂𝑥𝑘
2 |

𝑥
^
𝑘
𝑃𝑘}

𝑝

𝑖=1
] .

 (54) 

B. Second-Order Extended Kalman Filter 
Consider a more extreme case, when we further neglect the effect of sensor faults, i.e., 𝛾𝑘

𝑖 = 1 for all sensors, 

then reliability matrix Γ𝑘 becomes an identity matrix, and Υ matrix reduces to a zero matrix; the one-step 

second-order extended Kalman filter is obtained as a limiting case of the proposed second-order fault-tolerant 

extended Kalman filter in the following form. 

The Kalman observer gain can be written as 

𝐾𝑘 = (𝐴𝑘𝑃𝑘𝐶𝑘
𝑇)[𝐶𝑘𝑃𝑘𝐶𝑘

𝑇 + 𝑊𝑘]−1. (55) 

The upper-bound on the minimum estimation error covariance equation can be found as 

𝑃𝑘+1 = 𝐴𝑘𝑃𝑘𝐴𝑘
𝑇 + 𝑉𝑘

−(𝐴𝑘𝑃𝑘𝐶𝑘
𝑇)[𝐶𝑘𝑃𝑘𝐶𝑘

𝑇 + 𝑊𝑘]−1(𝐶𝑘𝑃𝑘𝐴𝑘
𝑇)

 (56) 
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and the state estimate is updated in the form of 

𝑥
^

𝑘+1 = 𝑓(𝑥
^

𝑘 , 𝑢𝑘) +
1

2
∑ 𝜙𝑖

𝑓
tr {

∂2𝑓𝑖

∂𝑥𝑘
2 |

𝑥
^
𝑘
𝑃𝑘}

𝑛

𝑖=1

+𝐾𝑘 [𝑦𝑘 − ℎ(𝑥
^

𝑘 , 𝑢𝑘) −
1

2
∑ 𝜙𝑖

ℎtr {
∂2ℎ𝑖

∂𝑥𝑘
2 |

𝑥
^
𝑘
𝑃𝑘}

𝑝

𝑖=1
] .

 (57) 

SECTION V. Applications to Benchmark Nonlinear Filtering Problem 
This section presents the application of our novel second-order fault-tolerant extended Kalman filter to the 

problem of reconstructing the trajectory of a target using the recorded range measurements from a range-

measuring device. Since its initial introduction in [7], this benchmark problem has been widely known and 

extensively used for examining the performance of nonlinear estimators [27], [28]. The purpose of this model is 

to estimate the trajectory of an object falling through an exponential atmosphere with a constant, yet unknown, 

drag coefficient. Measurement is the spatial distance from the range measuring device to the target. The system 

dynamics are summarized below [7], [27], [28] 

𝑥
˙

1 = 𝑥2

𝑥
˙

2 =
𝐶𝐷𝐴𝜌

2𝑚
𝑥2

2 − 𝑔
 (58)(59) 

where 𝐶𝐷 is the air drag coefficient; 𝐴 is the cross-sectional area; 𝑔 is the gravitational acceleration; and 𝜌 is the 

atmospheric density, which is governed by the following dynamics: 

𝜌 = 𝜌0𝑒
−𝜂𝑥1 = 𝜌0𝑒

−𝑥1/𝜅 .(60) 

The parameter 𝜂 = 1/𝜅 is known as the constant inverse density scale height. 

If the aerodynamics of the target are unknown, a third state variable, constant ballistic coefficient, can be setup 

to estimate in real time in order to characterize the dynamics of the target. This third state variable can be 

expressed as a positive constant from (56) 

𝑥3 =
𝐶𝐷𝐴𝜌

𝑚
> 0.(61) 

The measuring device itself is located at an altitude of 𝑎, and at a horizontal distance 𝑏 from the target's vertical 

line of fall. The range measuring device measures the spatial distance of this falling object as 

ℎ(𝑥) = √𝑏2 + (𝑥1 − 𝑎)2.(62) 

Hence, by including the process and measurement noise, and considering the effect of measurement failures, 

the complete system dynamics can be reached from (56), (58), and (59) as 

𝑥
˙

1 = 𝑥2 + 𝑣1

𝑥
˙

2 =
1

2
𝜌0𝑒

−𝑥1/𝜅𝑥2
2𝑥3 − 𝑔 + 𝑣2

𝑥
˙

3 = 𝑣3

𝑦 = 𝛾√𝑏2 + (𝑥1 − 𝑎)2 + 𝑤

 (63)(64)(65)(66) 

where the process noise 𝑣 = [𝑣1𝑣2𝑣3]
𝑇and the measurement noise 𝑤 are mutually independent with zero 

mean Gaussian probability distributions. Due to external disturbance, the range measurement device may 

provide corrupted measurement, i.e., bad data. In measurement equation (63), 𝛾 is the variable to characterize 
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the reliable measurement rate, while the mean value of 𝛾 is 𝜋 = 0.95. In another word, the Bernoulli distributed 

measure failure rate is 1 − 𝛾. 

The Jacobian matrices can be derived by taking partial derivatives as follows: 

𝐴 =
∂𝑓

∂𝑥
= [

0 1 0
𝐴21 𝐴22 𝐴23

0 0 0
] (67) 

with 

𝐴21 = −
1

2𝑘
𝜌0𝑒

−𝑥1/𝜅𝑥2
2𝑥3

𝐴22 = 𝜌0𝑒
−𝑥1/𝜅𝑥2𝑥3

𝐴23 =
1

2
𝜌0𝑒

−𝑥1/𝜅𝑥2
2

 (68) 

and 

𝐶 =
∂ℎ

∂𝑥
= [

𝑥1−𝑎

√𝑏2+(𝑥1−𝑎)2
0 0] . (69) 

The Hessian matrices can be found as follows: 

∂2𝑓1

∂𝑥2 =
∂2𝑓3

∂𝑥2 = 03×3

∂2𝑓2

∂𝑥2 = 𝜌0𝑒
−𝑥1/𝜅

[
 
 
 
 

𝑥2
2𝑥3

2𝜅2 −𝑥2𝑥3/𝜅 −
𝑥2

2

2𝜅

−𝑥2𝑥3/𝜅 𝑥3 𝑥2

−
𝑥2

2

2𝜅
𝑥2 0 ]

 
 
 
  (70) 

and 

∂2ℎ

∂𝑥2 = [
ℎ−1[1 − (𝑥1 − 𝑎)2ℎ−2] 0 0

0 0 0
0 0 0

]

= [

1

[𝑏2+(𝑥1−𝑎)2]1/2 −
(𝑥1−𝑎)2

[𝑏2+(𝑥1−𝑎)2]3/2 0 0

0 0 0
0 0 0

] .

 (71) 

The parameters and initial values used for conducting computer simulation studies are summarized in Table I. 

TABLE I Model Parameter Values and Initial Values for Performing Nonlinear Estimation 

 

Item Unit Value 

𝑎 𝑓𝑡 200 
𝑏 𝑓𝑡 105 
𝜅 𝑓𝑡 2 𝑋 10

4 

𝑔 𝑓𝑡/𝑠2 32.2 
𝜌𝑂  𝑙𝑏 −  𝑠𝑒𝑐2 /𝑓𝑡4 2 

𝐸{ 𝑣𝑖
2} 𝑓𝑡2 0 

𝐸{ 𝑤2 } 𝑓𝑡2 100 
𝛾  0.95 

𝑥0  [100000 −  6000 1/ 2000]𝑇 

�̂�0  [100100 −  6100 1/ 2600]𝑇 

𝑃0  𝑑𝑖𝑎𝑔{[500, 20000, 1 / 250000 ]𝑇 } 

 



Applying the Euler's discretization, the discrete time system model is derived with sampling period of 𝑇 =

0.01 s. The simulation results are summarized as follows: The measurement 𝑦 with sensor failures is shown 

in Fig. 1. 

 
Fig. 1. Measurements with sensor failures when π=0.97. 

The comparisons of true and estimated altitude values using the first-order EKF, the second-order EKF, and the 

proposed second-order FTEKF are shown in Fig. 2. Notice that under sensor failure conditions, the second-order 

fault-tolerant extended Kalman filter is a more accurate estimator. The altitude estimation results of FTEKF, 

shown in magenta dashed line, is much closer to the true altitude shown in black colored dashed-dotted line. 

 
Fig. 2. True altitude and estimated altitude. 

The comparisons of true and estimated velocity values using the first-order EKF, the second-order EKF, and the 

proposed second-order FTEKF are summarized in Fig. 3. Again, under sensor failure conditions, the second-order 

fault-tolerant extended Kalman filter is a more accurate estimator. The velocity estimation results of FTEKF, 

shown in magenta dashed line, are much closer to the true velocity shown in black colored dashed-dotted line. 
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Fig. 3. True velocity and estimated velocity. 

To better evaluate the performance improvement of the proposed second-order fault-tolerant extended Kalman 

filter. The performance metric we used to evaluate second-order FTEKF and other nonlinear estimation methods 

is the root-mean-square (rms) deviation, which is given as 

RMS Deviation = √∑ (�̂�𝑘−𝑥𝑘)2
𝑁

𝑘=1

𝑁
 (72) 

where 𝑁 is the number of time steps. 

As shown in Fig. 4, the altitude estimation rms deviation is summarized. The second-order EKF performance is 

close to the first-order EKF performance, with slightly more accurate estimation results under sensor failure 

conditions. The first-order EKF rms altitude estimation error is 77.914. The second-order EKF rms altitude 

estimation error is 77.8874. The second-order FTEKF rms altitude estimation error is 5.3288, which is much 

more robust against sensor failures. 

 
Fig. 4. Altitude estimation RMS comparison. 

Similarly, Fig. 5 illustrates the rms deviation comparison of velocity estimation. The second-order EKF 

performance slightly improves the first-order EKF performance, by including the second-order terms in Taylor 

series. The first-order EKF rms velocity estimation error is 9.5316. The second-order EKF rms velocity estimation 

error is 9.5288. The second-order FTEKF rms velocity estimation error is 0.65276, which is a more accurate 

nonlinear estimator. 
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Fig. 5. Velocity estimation rms comparison. 

Last but not the least, Fig. 6 illustrates the rms deviation comparison of the constant ballistic coefficient. All 

nonlinear estimators show good tracking accuracies of the ballistic coefficient. The first-order EKF rms ballistic 

coefficient estimation error is 9.1315 × 10−3. The second-order EKF rms ballistic coefficient estimation error 

is 9.1067 × 10−3. The second-order FTEKF rms ballistic coefficient estimation error is 9.0002 × 10−3, which 

again shows better accuracies. 

 
Fig. 6. Constant ballistic coefficient estimation rms comparison. 

It should also be noted that various sensor failure rates have been examined. Results are clearly encouraging 

based on rms deviations of various experiments, we may conclude that the second-order fault-tolerant 

extended Kalman filter shows superior estimation accuracy, greater robustness, and resiliency in the presence of 

bad data, external disturbances, and noises. 

SECTION VI. Conclusion 
Accurate nonlinear estimation under bad data, faulty sensing measurements, extraneous noise, and external 

disturbances conditions is of great importance in industrial applications. The purpose of this paper is to present 

a novel second-order fault-tolerant extended Kalman filter. On the basis of a benchmark problem of 

reconstructing the trajectory of a target with the recorded range measurements from a range-measuring device, 

computer simulation results indicate that second-order fault-tolerant extended Kalman filter provides superior 

accuracy than the traditional first- and second-order extended Kalman filter, with similar computational 

complexity and running time. The proposed second-order fault-tolerant extended Kalman filter is suitable for 

robust and resilient dynamic state estimation applications. 
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