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Down syndrome (DS) is associated with development of dementia due to Alzheimer’s
disease (AD). However, due to considerable heterogeneity in intellectual function among
persons with DS, it is difficult to assess whether a person with DS has developed
dementia due to AD (DS-AD). EEG spectral power has previously shown very promising
results with increased slowing in DS-AD compared to DS. However, another technique
called microstates may be used to assess whole-brain dynamics and has to our
knowledge not previously been investigated in either DS or DS-AD. The aim of the
current study was to assess whether microstates could be used to differentiate between
adults with DS, and DS-AD. We included EEGs from 10 persons with DS and 15
persons with DS-AD in the analysis. For the microstate analyses, we calculated four
global maps, which were then back-fitted to all the EEGs. Lastly, we extracted the
duration, occurrence, and coverage for each of the microstates. Here, we found the four
archetypical maps as has previously been reported in the literature. We did not find any
significant difference between DS and DS-AD but the largest difference in microstate
duration between DS and DS-AD was found in microstate A and D. These findings
are in line with structural MR studies showing that both the frontal and temporal lobes
are affected in persons with DS-AD. Microstates may potentially serve as a diagnostic
marker, but larger studies are needed to confirm these findings.

Keywords: Down syndrome, EEG, Alzheimer’s disease, microstates, diagnostic

INTRODUCTION

Down syndrome (DS) is the most common chromosomal defect, which leads to mental retardation
and is caused by trisomy of chromosome 21 (Bittles et al., 2007). Studies have found that DS
is associated with later development of dementia due to Alzheimer’s disease (AD), and that the
neuropathological features of AD are present in adults and even children with DS (Olson and Shaw,
1969; Mann, 1988; Zigman and Lott, 2007; Wilcock and Griffin, 2013). However, the number of
persons with DS who develop AD (DS-AD) varies between studies with one study showing that 9%
of adults with DS in their thirties and around 55% in their fifties suffer from dementia (Prasher and
Filer, 1995). Another study has found that nearly 20% of people with DS at the age of 45 or more
suffers from AD (McCarron et al., 2014).
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One reason for varying estimates may be that persons with
DS have a low baseline intellectual function with considerable
heterogeneity, which makes it difficult to establish reliable cut-
off scores on cognitive tests. Furthermore, AD has an initial
presentation in DS that differs compared to AD in the general
populations, often with changes in personality and executive
function seen before memory impairment (Wilson et al., 2014).
This may be due to abnormalities in the brain development
that results in hypoplasia of the frontal lobes in persons with
DS, and thus vulnerability to amyloid depositions (Holland
et al., 2000). In addition, persons with DS may struggle with
communication which leads to a reliance on informant-based
questionnaires when documenting cognitive impairment. Ideally,
the clinical evaluation should be supplemented by biomarkers.
Such biomarkers could include atrophy on structural scans such
as CT or MRI. However, due to their intellectual disability it is
often difficult for persons with DS to lie still when performing
MRI scans and thereby the assessment of brain networks with
fMRI can be difficult.

Electroencephalography (EEG) is on the other hand easier to
apply and methods like EEG-based microstate analysis have been
able to show topographical maps associated with resting state
networks as measured with resting state fMRI (Van de Ville et al.,
2010; Yuan et al., 2012). Microstates is a technique where the EEG
signals are divided into a number of distinct states (Lehmann
et al., 1987). The states occur in a time range of milliseconds but
it has been shown that momentary stable spatial patterns occur,
which last approximately 100 ms (Khanna et al., 2015). Studies
looking at the clinical applicability of EEG microstates have
found alterations in the structure and temporal representation
of microstates in both AD (Ihl et al., 1993; Dierks et al., 1997;
Strik et al., 1997; Stevens and Kircher, 1998; Nishida et al., 2013;
Musaeus et al., 2019a), frontotemporal dementia (Nishida et al.,
2013) and schizophrenia (Lehmann et al., 2005; Irisawa et al.,
2006; Kikuchi et al., 2007; Kindler et al., 2011; Nishida et al., 2013;
Andreou et al., 2014; Tomescu et al., 2014) thereby supporting it
as a novel biomarker of both neurological and psychiatric disease.
Meanwhile, no studies have so far investigated this technique in
persons with DS or whether it could be used to assess whether a
person with DS has developed AD.

In the current exploratory study, we assessed whether
microstates could be used to differentiate between persons with
DS and persons with DS-AD. In addition, we wanted to explore
whether the scores on an informant-based questionnaire were
associated with the changes in the microstates that are related to
frontal and temporal brain areas.

MATERIALS AND METHODS

Participants
The persons with DS-AD were recruited from the Memory
Clinic at Rigshospitalet while the adults with DS were recruited
from institutions for adults with intellectual disabilities. Informed
consent was obtained from the legal guardian, or if no legal
guardian was appointed, the family doctor gave informed
consent. Both the subjects and caregivers were informed that

they could request the interruption of the clinical procedures
at any time. This study was approved by the Regional
Ethical Committee.

Inclusion and Exclusion Criteria
The following inclusion criteria were applied for persons with
DS-AD: (1) karyotype examination, which confirm trisomy of
chromosome 21; (2) ability to cooperate; (3) over 35 years
old, and (4) fulfilling the clinical criteria for probable AD
(McKhann et al., 1984). The inclusion criteria for the DS were the
fulfillment of criteria 1–3 and lack of fulfillment of criteria 4. The
exclusion criterion for all participants was an untreated somatic
or psychiatric condition that may influence cognition.

A total of 21 persons with DS-AD and 16 with DS
and no cognitive decline were recruited as assessed with
the informant-based Dementia Screening Questionnaire in
Intellectual Disability (DSQIID) (Deb et al., 2007), which
has been shown to be a valid and reliable observer-rated
questionnaire for screening for dementia among adults with DS
(Deb et al., 2007; Gomiero et al., 2017).

Clinical Assessment
We performed a medical history including medication
status and history of symptoms of dementia from family
members and/or caregivers to establish the dementia diagnosis.
Furthermore, the participants were assessed with physical and
neurological examinations including assessment of symptoms
of depression. Furthermore, we used the informant-based
questionnaire DSQIID to screen for dementia symptoms.
Lastly, blood tests were performed in accordance with
international clinical guidelines available (Hort et al., 2010)
and confirmation of genetic status from the medical records were
investigated. Furthermore, if the person could cooperate, cranial
CT was performed.

Dementia was diagnosed according to the ICD-10 and/or
DSM-IV criteria. The diagnosis of AD was established according
to the criteria of the NINCDS-ADRDA criteria for probable
AD (McKhann et al., 1984), supported by the ICD-10 Symptom
Checklist for Mental Disorders and international guidelines
by the International Association for the Scientific Study of
Intellectual Disabilities (Aylward et al., 1997). A consensus
diagnosis was established by a multidisciplinary team after the
initial work-up. The severity of the dementia was found to
be in a mild-to-moderate phase. Each control subject with
DS included in this study was examined at baseline with all
procedures except CT.

Electroencephalography Recording
The participants were instructed to lay on a bed and try to relax
and if it was possible then asked to close their eyes. If needed, the
technician was holding the participants hands. The EEGs were
recorded using Nicolet One EEG (Nervus) recording software
5.82 (Natus) with a standard 44-channel headbox. Each subject
was fitted with a cap using silver-silver-chloride-coated electrodes
and the data were sampled at 1 kHz. The EEGs was recorded
in a 30-min period in subjects in the wake resting state from
19 electrodes positioned according to the International 10–20
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system. For impedance, the aim was to reach below 10 kOhm for
all electrodes during the recordings. However, we do not have any
records of the impedance before or after the recording.

Preprocessing of
Electroencephalography
Results from analysis of spectral power have been presented
elsewhere (Salem et al., 2015; Musaeus et al., 2019b). All
preprocessing was performed in MATLAB (Mathworks, v2016a)
using the EEGLAB toolbox (Delorme and Makeig, 2004). The
electrodes were computationally located on the scalp using the
DIPFIT toolbox (Oostenveld et al., 2011) with the standard 10–
20 cap model. The excessive channels were removed, and the data
was bandpass filtered from 1 to 70 Hz, and bandstop filtered
from 45 to 55 Hz using the pop_firws function in MATLAB,
with a filter order of 2. Afterward, the data were then re-
referenced to a common average montage. Then segments of
both eyes open and closed were selected. Next, the data was
divided into 1-s epochs and the EEGs were visually inspected
and epochs with excessive artifacts were removed. If there was
less than three channels with excessive artifacts, they were then
interpolated using spherical interpolation otherwise the segments
were rejected. Afterward, independent component analysis was
performed with the extended infomax algorithm (Lee et al.,
1999), and components containing eye blinks or eye movement
were removed. Lastly, the EEGs were visually inspected and
epochs with artifacts were removed. The person performing
the preprocessing was blinded to whether the participants
were DS or DS-AD.

After the preprocessing, only subjects with at least 30 1-s
epochs were used for further analysis. Furthermore, all epochs
were selected within the first 30 s after the participants closed
their eyes to avoid any effects from drowsiness or sleep. In the
eyes closed condition, EEGs from 16 DS-AD, and 12 DS were
included. We did not look at the eyes open segments due to the
varying activities and focus for the participant when they had
their eyes open.

Microstate Analysis
The microstates analysis was performed using the Microstate
EEGlab Toolbox (Poulsen et al., 2018). Before the microstate
analysis, we first band-pass filtered the data between 2 and
20 Hz with the same settings as mentioned above. Afterward, we
concatenated the epochs for each subject, i.e., ending up having
one continuous EEG file instead of 1-s epochs. To assure the

quality of the individual microstate maps, we first extracted the
global field power (GFP) peaks for each participant with the
following settings: minimum peak distance of 10 ms, the number
of GFP peaks was set at the maximum for the shortest EEG file,
and GFP peaks that exceeded two times the standard deviation of
the GFP of all maps were excluded. For segmentation, we used the
Topographic Atomize and Agglomerate Hierarchical Clustering
(TAAHC) algorithm. Afterward, each map was visually inspected
and subsequently removed from the analysis if they did not
resemble the four maps previous reported in the literature
(Michel and Koenig, 2018). Here, we excluded EEGs from two
persons with DS, and one person with DS-AD.

In the final analysis, we concatenated the GFP peaks from
all subjects (nDS = 10, nDS−AD = 15) into one file before
segmentation. This was done for the maximum number of peaks
for the shortest EEG file (GFP peaks = 508) with the goal to
maximize the similarity between the microstates they would be
assigned to, and not to make the contribution to the global
maps uneven between groups. For segmentation, we used the
TAAHC algorithm with the same settings as described above.
First, we estimated four microstates, since that has been reported
as the most common (Khanna et al., 2014) and reproduceable
(Khanna et al., 2015). Due to the low GEV, we also extracted
both five and six microstates (see Supplementary Material). The
global maps (see Figure 1) were then back-fitted to each of the
EEG files by labeling each of EEG segments with the class of
microstates it is most familiar. The labels A-D are accordance
to the previous literature in the microstate field. The labels of
time frames in small segments (less than 30 ms) were changed to
the next most likely microstate class, as measured by global map
dissimilarity (Poulsen et al., 2018). After back-fitting the global
maps, we calculated global explained variance (GEV), duration,
occurrence, and coverage for the EEG files.

Duration was defined as the average time for each map to
be present before transitioning to another map while occurrence
is defined as the average of times a microstate occurred during
each second, and coverage is defined as the percent of the EEG
recording that a microstate was accounted for. GEV is defined as
the variance of EEG activity explained by all four microstates.

For the syntax analyses, we performed the same analysis
as previously described (Lehmann et al., 2005; Nishida et al.,
2013). Basically, we calculated the observed transitions based
on all transitions and then the expected transitions based on
the occurrence of the microstates for each subject separately.
The values were averaged across subjects for each group, and
the difference was assessed using the chi-square distance. We

FIGURE 1 | The global maps that were calculated based the aggregated dataset from all participants and were back-fitted to each of the EEG recordings. The labels
(A–D) are according to the previous literature in the microstate field.
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performed a permutation test with 5000 repetitions where the
labels ‘expected’ and ‘observed’ were randomly assigned to the
subjects’ sets of the 12 transition probabilities, and the chi-square
distance was computed.

Statistical Analysis
All statistical analyses were performed in Mathworks, v2016a.
Firstly, we compared age and DSQIID score between DS, and DS-
AD using Wilcoxon rank sum test. When comparing DS-AD and
DS we performed an ANCOVA with age and gender as covariates
for each of the microstate features with the significance level set
at 0.05. Before performing the ANCOVA, we log-transformed
the data. Due to the exploratory nature of the study, we did not
correct for multiple comparisons. To assess whether the scores
were associated with clinical measures, we performed correlation
using Spearman’s rho between DSQIID and the duration of
microstate D and the duration of microstate A. We choose to
correlate the microstate features with the DSQIID score since it
represented a broad number of areas.

RESULTS

Demographics
The mean age was lower in the DS group [mean (SD) = 47.1
(9.49)] as compared to the DS-AD group [mean (SD) = 51.80
(5.13)] with a p-value of 0.055. However, no differences in gender
was found between DS and DS-AD with a p-value of 0.137. The
mean DSQIID score was significantly higher in the DS-AD [mean
(SD) = 21.6 (5.72)] compared to DS [mean (SD) = 2.60 (2.84)]
with a p-value of < 0.001. The number of 1-s epochs for DS-AD
[mean (SD) = 86.80 (52.85)] was not significantly different from
DS [mean (SD) 108.3 (57.72)] with a p-value of 0.347.

Microstate Features
See Figure 1 for global maps of the microstates that were
used for back-fitting and Table 1 for the mean values, standard
deviation, and p-values. The average GEV was not significantly
different between DS (mean = 58.99%, SD = 4.02), and DS-
AD (mean = 58.92%, SD = 7.96) (p-value = 0.979). When
examining the microstate features, we found a shorter duration
for microstate D and a longer duration for microstate A for DS-
AD as compared with DS, see Table 1. The largest difference
was found for microstate A (p-value = 0.091, t-value = 3.131).
The same pattern was found for occurrence, and coverage for
microstates A and D. See Supplementary Material for results
from five and six microstates. When extracting six microstates,
we found that there was a larger difference in the duration
of microstate D1, which is more centered on the left side as
compared with D2, which is more centered on the right side (see
Supplementary Figure 2).

No significant differences were found for the syntax analyses.

Correlations
We performed the Spearman’s correlation between DSQIID and
the duration of microstate A and found a negative correlation
(p-value = 0.617, ρ = −0.105). Furthermore, we correlated the TA
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FIGURE 2 | Scatterplots for (A) DSQIID and the duration of microstate D, and (B) DSQIID and the duration of microstate A.

duration of microstate A with the DSQIID score and found a
positive correlation (p-value = 0.128, ρ = 0.313). See Figure 2
for scatterplot.

DISCUSSION

In the current exploratory study, we found that the largest
differences in microstate features were found for microstate
D and in particular for microstate A in persons with DS
compared to DS-AD. Specifically, DS-AD had a shorter duration
of microstate D, and a longer duration of microstate A as
compared to DS. No significant differences were found for the
syntax analyses. Lastly, we found that the DSQIID score was
positively correlated with the occurrence of microstate A (p-
value = 0.128, ρ = 0.313) although not significant.

No previous studies have to our knowledge investigated the
microstate changes in persons with DS-AD nor in persons with
DS. However, previous studies have investigated microstates in
patients with AD (Ihl et al., 1993; Dierks et al., 1997; Strik et al.,
1997; Stevens and Kircher, 1998; Nishida et al., 2013) without DS
and the majority found a shorter duration of the microstates in
patients suffering from AD (Dierks et al., 1997; Strik et al., 1997;
Stevens and Kircher, 1998) compared to healthy older controls.
One recent study did not find any significant difference between
patients with AD and healthy controls (Nishida et al., 2013),
which could be due to low sample size or as previously suggested
temporal disorganization in patients with AD (Koenig et al., 2005;
Nishida et al., 2013). Another study found that patients with AD
showed an increased occurrence of microstate A compared to
healthy controls (Musaeus et al., 2019a). In the current study, we
found that features of microstate A were indeed increased in DS-
AD compared to DS when applying four microstates, which is in
line with one of the more recent studies (Musaeus et al., 2019a).
This finding could suggest that microstate A is associated with
underlying AD pathology in the temporal lobes. However, we
also found a large difference in duration in microstate D. This
difference may be more pronounced in the left frontal lobe since

D1 was more affected than D2 as seen in Supplementary Figure 2
and Supplementary Table 2. This difference may be due to the
initial presentation of AD in DS with changes in personality and
executive function before memory impairment (Wilson et al.,
2014; Fonseca et al., 2016). This is further supported by recent
imaging studies using MR (Powell et al., 2014; Sabbagh et al.,
2015) showing that also the frontal areas of the brain are affected
in persons with DS-AD. No significant correlations were found
between DSQIID and the duration of microstate A, and D. This
may in large part be due to the DSQIID examining multiple
domains. Overall, these findings support the notion that the
symptoms of AD in DS are due to affection of both temporal and
frontal areas of the brain. However, larger studies are needed to
confirm these findings.

Microstate classes have also been associated with BOLD signal
and resting state networks obtained with fMRI in multiple studies
(Britz et al., 2010; Van de Ville et al., 2010; Yuan et al., 2012).
Here, microstate A has been associated with the superior and
middle temporal gyri as well as the left middle frontal gyrus (Britz
et al., 2010). Furthermore, microstate D has been associated with
BOLD activations in the right superior and middle frontal gyri
as well as the right superior and inferior parietal lobules (Britz
et al., 2010). Both the temporal and frontal areas of the brain have
been associated with the early development of AD as measured
with beta-amyloid depositions using PiB-PET in persons with
DS (Landt et al., 2011; Sabbagh et al., 2011; Handen et al., 2012;
Jennings et al., 2015). The reason for the frontal affection may
be explained by the underdevelopment of the frontal lobe in
persons with DS, which may make it more vulnerable to amyloid
depositions (Holland et al., 2000). However, longitudinal studies
are needed to assess the order of microstate changes during the
development of AD in persons with DS.

Looking at the GEV, we found it was not significantly
different between the groups for any of the analyses but
was low compared to other studies with most commonly
reporting a GEV > 70% (Michel and Koenig, 2018).
There may be multiple reasons for the lower GEV in the
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current study. First, we extracted global maps from the GFP peaks
of all the subjects to create global maps as opposed to extracting
maps for each subject. By doing this, we decreased the GEV.
Secondly, the filter width was 2–20 Hz, and it may increase the
GEV to narrow the band width since microstates are mostly
based on the alpha band. In an attempt to examine whether
increasing the number of microstates would increase the GEV, we
also looked at both five and six microstates (see Supplementary
Material) but this only increased the GEV by a few percents (five
microstates = 60.00%, six microstates = 61.39%). In the current
analysis, we included only the maximum number of GFP peaks
for the shortest EEG to the segmentation to avoid problems in
terms of larger contributions from the longer EEG files in creating
the global maps.

The current study has some limitations. Firstly, there was a
difference in the age between the DS, and DS-AD, which is due
to the prevalence of AD in persons with DS increases with age
(Head et al., 2012). In an attempt to overcome this issue, we
have used both age and gender as covariates in the ANCOVA.
In addition, the sample size is small, making it hard to set up
reliable classification models, and as previously mentioned, larger
studies are needed to confirm the findings from the current study.
However, we demonstrated changes in microstates in general and
specifically in microstate A and D reflecting temporal and frontal
network changes in persons with DS developing AD. Secondly,
individuals with a severe intellectual disability were excluded
from the study, and therefore results may not be generalizable
to all individuals with DS. Lastly, some studies have recorded
EEG with clear instructions to the participants when they should
close and open their eyes. This is not the case in the current
study, it is therefore possible that drowsiness is a potential
confounder of the data. However, structured EEG recordings
might be difficult as adults with intellectual impairment can have
difficulty cooperating.

CONCLUSION

In the current study, we found that the microstates associated
with temporal and frontal areas of the brain were altered in
DS-AD compared to DS. These findings suggest that the initial
functional brain changes in persons with DS, who develop
AD, are both temporal and frontal. This is in line with some
studies showing that affected executive function may be an initial
symptom in person with DS-AD and imaging studies showing
that DS-AD display both temporal and frontal atrophy. EEG

microstates may potentially serve as a diagnostic marker, but
larger studies are needed to confirm these findings.
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