Supplementary data for the article:

García-Fernández, P.; Aramburu, J. A.; Moreno, M.; Zlatar, M.; Gruden-Pavlović, M. A Practical Computational Approach to Study Molecular Instability Using the Pseudo-Jahn-Teller Effect. *Journal of Chemical Theory and Computation* **2014**, *10* (4), 1824–1833. https://doi.org/10.1021/ct4011097

Supporting Information for: A Practical Computational Approach to Study Molecular Instability Using the Pseudo Jahn-Teller Effect

Pablo García-Fernández ,^{*,†} Jose Antonio Aramburu,[†] Miguel Moreno,[†] Matija Zlatar,[‡] and Maja Gruden-Pavlović[¶]

Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, Santander, Spain, Center for Chemistry, IHTM, University of Belgrade, Belgrade, Serbia, and Faculty of Chemistry, University of Belgrade, Belgrade, Serbia

E-mail: garciapa@unican.es

^{*}To whom correspondence should be addressed

[†]Universidad de Cantabria

[‡]Center for Chemistry, IHTM, University of Belgrade

 $[\]P{\ensuremath{\mathsf{Faculty}}}$ of Chemistry, University of Belgrade

List of Figures

- S2 Calculation of the orbital contributions for each of the occupied orbitals of $\rm NH_3$ to the total force constant for several basis-sets at LDA level of theory . s4

List of Tables

S1	Orbital contributions ${\rm for}{\rm NH}_3$ and ${\rm BH}_3$ at GGA (BLYP and PBE)/cc-pvtz	
	level of theory	s5
S2	Contributions of K_0 , K_v and K_e to the force constant of the orbital $1a_2''$	
	NH_3 and their decomposition in kinetic energy, electron-electron repulsion,	
	electron-nuclear interactions at GGA (BLYP and PBE)/cc-pvtz level of theory.	s5

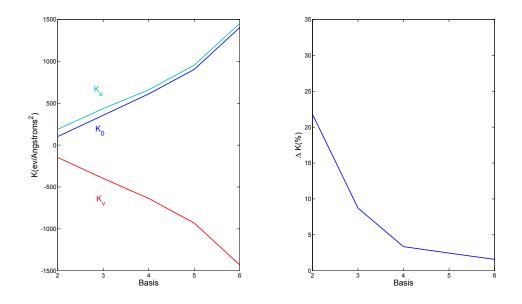


Figure S1: Calculation of the total contributions to the force constant at LDA level, (left) K_0 (blue), K_v (red) and K_e (green) varying the basis quality along the series cc-pvXz (X=d, t, q, 5, 6) in NH₃; (right) Comparison of the absolute value of K_v and K_e , $\Delta K = |Kv/Ke| - 1$ in % varying the basis quality

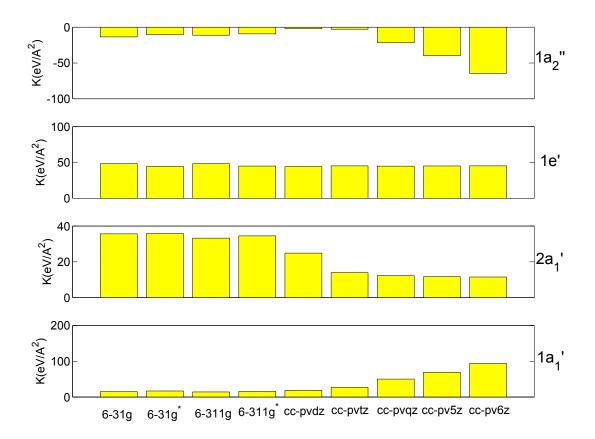


Figure S2: Calculation of the orbital contributions for each of the occupied orbitals of $\rm NH_3$ to the total force constant for several basis-sets at LDA level of theory

		BLYP				PBE			
System	Contribution	K_0	$2K_v$	K_e	K	K_0	$2K_v$	K_e	K
	$1a'_{1}$	58.84	-64.14	39.91	34.61	48.24	-64.02	39.97	24.18
	$2a_1^{\prime}$	84.35	-110.52	40.69	14.53	80.13	-110.09	43.58	13.62
NH_3	$1e^{\overline{\prime}}$	107.29	-153.53	90.17	43.93	103.76	-152.93	94.85	45.68
ů,	$1a_{2}''$	171.84	-322.55	147.23	-3.49	168.69	-324.09	153.58	-1.83
	Nuclear	-150.88	0.0	0.0	-150.88	150.88	0.0	0.0	-150.88
	DFT XC	0.0	0.0	14.07	14.07	0.0	0.0	20.18	20.18
	Total	378.74	-804.28	422.24	-3.30	353.70	-804.07	447.01	-3.37
	$1a_1'$	26.87	-24.16	12.18	14.89	24.77	-24.17	12.14	12.74
	$2a_1^{\prime}$	30.11	-28.70	8.22	9.62	29.12	-28.35	8.80	9.56
BH_3	$1e^{\overline{\prime}}$	55.49	-73.29	20.77	20.77	54.24	-72.29	39.27	21.22
-	Nuclear	-69.15	0.0	0.0	-69.15	-69.15	0.0	0.0	-69.15
	DFT XC	0.0	0.0	9.26	9.26	0.0	0.0	10.03	10.03
	Total	98.83	-199.44	106.79	6.18	93.22	-197.11	109.51	5.62

Table S1: Orbital contributions for NH_3 and BH_3 at GGA (BLYP and PBE)/cc-pvtz level of theory. The orbital contributions are given per individual orbital, i.e. the e' orbital total contribution is twice the one in the table due to the degeneracy. Units are $eV/Å^2$.

Table S2: Contributions of K_0 , K_v and K_e to the force constant of the orbital $1a_2''$ NH₃ and their decomposition in kinetic energy (*T*), electron-electron repulsion (V_{ee}), electron-nuclear interactions (V_{en}) at GGA (BLYP and PBE)/cc-pvtz level of theory. Units are eV/Å².

		k_0	$2k_v$	k_e	k
	T	125.05	-308.90	178.27	-5.58
BLYP	V_{en}	94.13	-51.65	-22.47	20.01
	V_{ee}	-47.35	38.00	-8.58	-17.93
	Total	171.84	-322.55	147.23	-3.50
	T	126.18	-310.92	167.03	-17.71
PBE	V_{en}	94.11	-51.31	2.99	45.79
	V_{ee}	-51.61	38.15	-16.44	-29.90
	Total	168.69	-324.09	153.58	-1.82