### Supplementary data for the article:

Filipović, N. R.; Marković, I.; Mitić, D.; Polović, N.; Milčić, M.; Dulović, M.; Jovanović, M.; Savić, M.; Nikšić, M.; Andelković, K.; et al. A Comparative Study of In Vitro Cytotoxic, Antioxidant, and Antimicrobial Activity of Pt(II), Zn(II), Cu(II), and Co(III) Complexes with N-Heteroaromatic Schiff Base (E)-2-[N'-(1-Pyridin-2-Yl-Ethylidene)Hydrazino]Acetate. *Journal of Biochemical and Molecular Toxicology* **2014**, 28 (3), 99–110. <a href="https://doi.org/10.1002/jbt.21541">https://doi.org/10.1002/jbt.21541</a>

# A Comparative Study of In Vitro Antitumor, Antioxidant and Antimicrobial activity of Pt(II), Zn(II), Cu(II) and Co(III) Complexes with N-heteroatomatic Schiff Base (E)-2-[N'-(1-pyridin-2-yl-ethylidene)hydrazino]acetate

Nenad R. Filipović<sup>a</sup>, Ivanka Marković<sup>b</sup>, Dragana Mitić<sup>c</sup>, Natalija Polović<sup>c</sup>, Miloš Milčić<sup>c</sup>, Marija Dulović<sup>b</sup>, Maja Jovanović<sup>b</sup>, Milena Savić<sup>a</sup>, Miomir Nikšić<sup>a</sup>, Katarina Anđelković<sup>c</sup>, Tamara Todorović<sup>c,1</sup>

<sup>a</sup> Dept. of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade,
Nemanjina 6, 11000 Belgrade, Serbia

<sup>b</sup> Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade,
Pasterova 2, 11000 Belgrade, Serbia

<sup>c</sup> Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia.

<sup>1</sup> Corresponding author: Tamara Todorović, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; Tel: +381-11-3336-685; Fax: +381-11-2184-330; E-mail: tamarat@chem.bg.ac.rs

1

### MATHERIALS AND METHODS

## **Antimicrobial Activity Assay**

The bacteria cultures were cultivated in the appropriate broth and agar (Table S1, Supporting Information) at 37  $\pm$  1 °C for 24 h and 50  $\pm$  1 °C for G. stearothermophylus, while the yeasts were cultivated at  $30 \pm 1$  °C for 24 to 48 h. The cultures were diluted with culture agar/broth to contain  $10^7$  CFU/mL (CFU = colony forming units). The number of live bacteria and yeasts was counted by the plate enumeration method. All cultures were incubated in aerobic conditions. An aliquot of the cultures (100 µL) was evenly spread on the surface of the solidified agar. The disks (6 mm) were impregnated with 10 µL solution of the tested compounds in DMSO. The concentration of the tested compounds was 0.5 mg/10 µL. Disks impregnated with 10 μL of DMSO were used as a negative control. The amount of standard antimicotic nystatin was 100 U/disc. The following antibiotics were used as the positive controls: penicillin (for L. monocytogenes and E. faecalis; 6 µg/disc), chloramphenicol (for B. cereus, G. stearothermophilus and Y. enterocolitic; 30 µg/disc), gentamycin (for E. coli O157:H7, S. enteritidis and S. sonnei; 30 µg/disc), amoxicillin (for P. aeruginosa and and P. hauseri; 10 µg/disc) and ampicillin (for S. aureus; 10 µg/disc). From each zone of inhibition, a piece of agar was transferred into the appropriate broth which was then incubated. If the broth was blurred, the effect of the compound was referred as microbiostatic, and if the broth remained clear the effect of the compound was referred as microbicidal. The plates were incubated at 37  $\pm$  1 °C (24 h) for the bacteria, except for G. stearothermophylus where the plates were incubated at  $50 \pm 1$  °C (24 h). The plates with the yeasts were incubated at  $30 \pm 1$ °C (48 h).

Table S1. The substrates used for growing of microorganisms

| Microorganism            | Broth                  | Solid medium                |  |
|--------------------------|------------------------|-----------------------------|--|
| Cryptococcus neoformans  | Malt Extract Broth,    | Malt Extract Agar, HiMedia  |  |
| ATCC 76484               | HiMedia                |                             |  |
| Saccharomyces cerevisiae | Malt Extract Broth,    | Malt Extract Agar, HiMedia  |  |
| ATCC 9763                | HiMedia                |                             |  |
| Candida albicans         | Malt Extract Broth,    | Malt Extract Agar, HiMedia  |  |
| ATCC 24433               | HiMedia                |                             |  |
| Bacillus cereus          | Nutrient Broth, Torlak | M 833 Bacillus cereus Agar  |  |
| ATCC 10876               |                        | Base + FD 003 + FD 045      |  |
| Staphilococcus aureus    | Nutrient Broth, Torlak | M 1468 Hi Crome Aureus      |  |
| ATCC 25923               |                        | Agar Base + FD 046          |  |
| Enterococcus faecalis    | Nutrient Broth, Torlak | Mueller Hinton Agar, Torlak |  |
| ATCC 49532               |                        | _                           |  |
| Geobacillus              | Nutrient Broth, Torlak | Mueller Hinton Agar, Torlak |  |
| stearothermophylus ATCC  |                        | _                           |  |
| 7953                     |                        |                             |  |
| Listeria monocytogenes   | TSYEB, Biolab          | TSYEA, Biolab               |  |
| ATCC 19115               |                        |                             |  |
| Salmonella enteritidis   | Nutrient Broth, Torlak | Salmonella Shigella Agar,   |  |
| ATCC 13076               |                        | Torlak                      |  |
| Escherichia coli O157:H7 | TSYEB, Biolab          | MacConkey Sorbitol Agar,    |  |
| ATCC 35150               |                        | HiMedia                     |  |
| Shigella sonnei          | Nutrient Broth, Torlak | Salmonella Shigella Agar,   |  |
| ATCC 29930               |                        | Torlak                      |  |
| Pseudomonas aeruginosa   | Nutrient Broth, Torlak | Mueller Hinton Agar, Torlak |  |
| ATCC 10145               |                        |                             |  |
| Proteus hauseri          | Nutrient Broth, Torlak | Mueller Hinton Agar, Torlak |  |
| ATCC 29905               |                        |                             |  |
| Yersinia enterocolitic   | Nutrient Broth, Torlak | Mueller Hinton Agar, Torlak |  |
| ATCC 23715               |                        |                             |  |

# **RESULTS**

# Structure of Pt(II) Complex 1

Scheme S1. Structures of aphaOEt and Pt(II) complex 1 along with atom numbering scheme.

Table S2. <sup>1</sup>H and <sup>13</sup>C NMR spectral data of the ligand aphaOEt and the complex **1** 

|                            | Chemical shifs ( $\delta$ , ppm) and assignments                                            | Chemical shifs $(\delta, ppm)$ |  |  |
|----------------------------|---------------------------------------------------------------------------------------------|--------------------------------|--|--|
|                            | of the signals in <sup>1</sup> H NMR spectrum                                               | and assignments of the         |  |  |
| compound                   |                                                                                             | signals in <sup>13</sup> C NMR |  |  |
|                            |                                                                                             | spectrum                       |  |  |
|                            | 3                                                                                           |                                |  |  |
|                            | $\delta$ : 1.19 (t, 3H, H–C12, ${}^{3}J_{12,11} = 7.0 \text{ Hz}$ ),                        | δ: 10.3 (C8); 14.0 (C12);      |  |  |
| aphaOEt                    | 2.17 (s, 3H, H–C8), 4.01 (s, 2H, H–C9),                                                     | 51.6 (C9); 60.0 (C11);         |  |  |
|                            | 4.11 (q, 2H, H–C11, ${}^{3}J_{11,12} = 7.0$ Hz),                                            | 118.3 (C3); 121.9 (C5);        |  |  |
|                            | 6.84 (br. s, 1H, H–N3), 7.21 (ddd, 1H,                                                      | 135.8 (C4); 142.4 (C7);        |  |  |
|                            | H-C5, ${}^{3}J_{5,4} = 7.0 \text{ Hz}$ , ${}^{3}J_{5,6} = 5.0 \text{ Hz}$ , ${}^{3}J_{5,3}$ | 148.0 (C6); 156.1 (C2);        |  |  |
|                            | = 1.0 Hz), 7.67 (td, 1H, H–C4, ${}^{3}J_{4,3}$ =                                            | 171.3 (C10)                    |  |  |
|                            | $8.0 \text{ Hz}, {}^{3}J_{4,5} = 7.0 \text{ Hz}$ ), $7.82 \text{ (dt, 1H, H-}$              |                                |  |  |
|                            | C3, ${}^{3}J_{3,4} = 8.0 \text{ Hz}, {}^{3}J_{3,5} = 1.0 \text{ Hz}, 8.48$                  |                                |  |  |
|                            | (br. d, 1H, H–C6, ${}^{3}J_{6,5} = 5.0 \text{ Hz}$ )                                        |                                |  |  |
|                            | \$ 226 ( 2H H G0) 2.00 (1 1 2H                                                              | \$ 10.7 (00) 55.0 (00)         |  |  |
|                            | δ: 2.26 (s, 3H, H–C8), 3.89 (br. d, 2H,                                                     | δ: 12.7 (C8), 55.0 (C9),       |  |  |
|                            | H–C9), 7.63 (ddd, 1H, H–C5, ${}^{3}J_{5,4} = 7.7$ ,                                         | 124.8 (C3), 125.7 (C5),        |  |  |
|                            | $^{3}J_{5,6} = 5.8; ^{4}J_{5,3} = 1.3 \text{ Hz}), 7.87 \text{ (br. d,}$                    | 140.2 (C4), 150.1 (C6),        |  |  |
| 1                          | 1H, H–C3, ${}^{3}J_{3,4} = 7.7$ Hz), 8.24 (td, 1H,                                          | 151.2 (C7), 158.7 (C2),        |  |  |
|                            | H-C4, ${}^{3}J_{4,3} = {}^{3}J_{4,5} = 7.7 \text{ Hz}, {}^{4}J_{4,6} = 1.0$                 | 169.3 (C10)                    |  |  |
|                            | Hz;), 8.45 (br. s, 1H, H–N3), 9.14 (dd,                                                     |                                |  |  |
|                            | 1H, H–C6, ${}^{3}J_{6,5} = 5.8$ ; ${}^{4}J_{6,4} = 1.0 \text{ Hz}$ )                        |                                |  |  |
|                            | δ: 2.26 (H–C8) <sup>b)</sup> , 3.97 (H–C9) <sup>b)</sup> , 7.73                             | δ: 11.0 (C8), 57.0 (C9),       |  |  |
| Calcd. for 1 <sup>a)</sup> | (H–C5), 7.75 (H–C3), 8.20 (H–C4), 9.14                                                      | 117.5 (C3), 118.7 (C5),        |  |  |
|                            | (H–C6)                                                                                      | 132.2 (C4), 142.7 (C6),        |  |  |
|                            |                                                                                             | 140.1 (C7), 145.7 (C2),        |  |  |
|                            |                                                                                             |                                |  |  |
|                            |                                                                                             | 159.9 (C10)                    |  |  |
| L                          | 1                                                                                           |                                |  |  |

a) <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts for the complex **1** were obtained by the GIAO/WP04 calculations.

b) Average value.

Table S3. <sup>15</sup>N NMR spectral data (derived from <sup>1</sup>H-<sup>15</sup>N HMBC and HSQC spectra) of the ligand aphaOEt and the complex **1** 

| aphaOEt | δ: 114.5 (N3), 306.4 (N1), 345.0 (N2) |
|---------|---------------------------------------|
| 1       | δ: 126.7 (N3), 189.6 (N1), 248.9 (N2) |

# Free radical scavenging activity

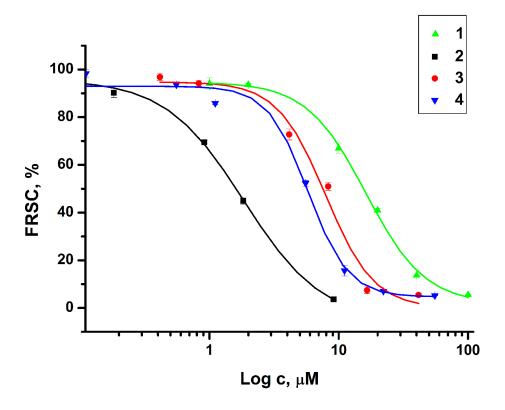



Figure S1. The log sigmoid dose–response curves of free radical scavenging activity of the complexes 1–4.

### **DNA Cleavage**

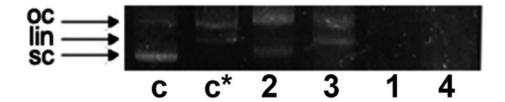



Figure S2. Electrophoregram of open circular (oc), linear (lin) and supercoiled (sc) form of plasmid pET20b treated with *in situ* generated hydroxyl radical in the presence or absence of the complexes (Legend: c = DNA control;  $c^* = DNA + H_2O_2 + UV$ ;  $1 = DNA + 1 + H_2O_2 + UV$ ;  $2 = DNA + 2 + H_2O_2 + UV$ ;  $3 = DNA + 3 + H_2O_2 + UV$ ;  $4 = DNA + 4 + H_2O_2 + UV$ ).

# **Antimicrobial Activity of the Complexes**

The complexes 1–4, as well as the metal salts used in syntheses were screened for their antimicrobial activity against a panel of fourteen strains of microorganisms: *C. neoformans*, *S. cerevisiae*, *C. albicans*, *B. cereus*, *S. aureus*, *E. faecalis*, *G. stearothermophylus*, *L. monocytogenes*, *S. enteritidis*, *E. coli* O157:H7, *S. sonnei*, *P.s aeruginosa*, *P. hauseri* and *Y. enterocolitic*. The antimicrobial activities of the tested compounds are summarized in Table S4 and Figure S3. The obtained results showed that starting metal salts did not show the inhibitory effect on the growth of tested strains of microorganisms. Among the tested complexes, only 1 showed moderate antifungal activity, while others were not active.

Table S4. Antimicrobial activities of the investigated compounds tested by the disc diffusion method (inhibition zone size including disc, mm)

|                    | (1)      | (2)     | (3)     | (4)  | Standard a) |
|--------------------|----------|---------|---------|------|-------------|
| C. neoformans      | 8* b)    | n.i. c) | n.i.    | n.i. | 20*         |
| S. cerevisiae      | 10*      | n.i.    | n.i.    | n.i. | 25*         |
| C. albicans        | 8*       | n.i.    | n.i.    | n.i. | 19*         |
| B. cereus          | n.i.     | 8       | 12* + 6 | 10   | 11          |
| S. aureus          | 10* + 10 | n.i.    | 14* + 6 | 19   | 21          |
| E. faecalis        | 10*      | n.i.    | 7*      | n.i. | 15*         |
| G. stearothemnoph. | 22*      | 16*     | 14*     | n.i. | 19*         |
| L. monocytogenes   | 10*      | 7*      | n.i.    | n.i. | 15*         |
| S. enteritidis     | 9*       | n.i.    | 18*     | n.i. | 30*         |
| E. coli O157:H7    | n.i.     | n.i.    | n.i.    | n.i. | 26*         |
| S. sonnei          | 8*       | 10*     | 10*     | n.i. | 32          |
| P. aeruginosa      | n.i.     | 16*     | 32*     | n.i. | 40          |
| P. hauseri         | 10*      | 5       | 11      | n.i. | 16          |
| Y. enterocolitica  | 14       | 10      | 8*      | n.i. | 28          |

a) The following antimicotic/antibiotics were used as standards: nystatin (all fungi strains; 100 U/disc), penicillin (*L. monocytogenes* and *E. faecalis*; 6 µg/disc), chloramphenicol (*B. cereus*, *G. stearothermophilus* and *Y. enterocolitic*; 30 µg/disc), gentamycin (*E. coli* O157:H7, *S. enteritidis* and *S. sonnei*; 30 µg/disc), amoxycyclin

(P. aeruginosa and and P. hauseri; 10 μg/disc) and ampicillin (S. aureus; 10 μg/disc); <sup>b)</sup> \* - microbicid; <sup>c)</sup> n.i. – no inhibition.

The complexes were generally more active against the Gram-positive than the Gram-negative bacteria. The least sensitive strain was *E. coli* since the tested compounds did not show the activity. The Cu(II) complex **3** exhibited strong bactericidal activity against *B. cereus*, while Pt(II) complex **1** showed strong activity against *G. stearothermophylus*. Both complexes posses greater activity against corresponding strain in comparison to the activity of standard antibiotic (chloramphenicol). Interestingly, although the activity of amoxicillin on *P. aeruginosa* was slightly greater than the activity of **3**, the complex showed microbicidal mode of action.

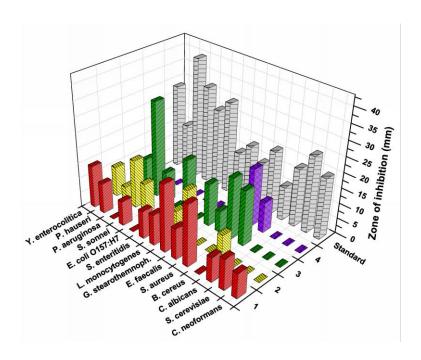



Figure S3. Representative antimicrobial activity plots for the complexes **1–4** and standard antimicotic/antibiotics. The following antibiotics were used as standards: nystatin (all fungi strains), penicillin (*L. monocytogenes* and *E. faecalis*), chloramphenicol (*B. cereus*, *G. stearothermophilus* and *Y. enterocolitic*), gentamycin (*E. coli* O157:H7, *S. enteritidis* and *S. sonnei*), amoxycyclin (*P. aeruginosaand* and *P. hauseri*) and ampicillin (*S. aureus*).