Supplementary material for the article:

Stanković, B.; Ostojić, B. D.; Gruden, M.; Popović, A.; Đorđević, D. S. Substituted Naphthalenes: Stability, Conformational Flexibility and Description of Bonding Based on ETS-NOCV Method. *Chemical Physics Letters* **2016**, *661*, 136–142. https://doi.org/10.1016/j.cplett.2016.08.056

Supplementary Material

Substituted naphthalenes: stability, conformational flexibility and description of bonding based on ETS-NOCV method

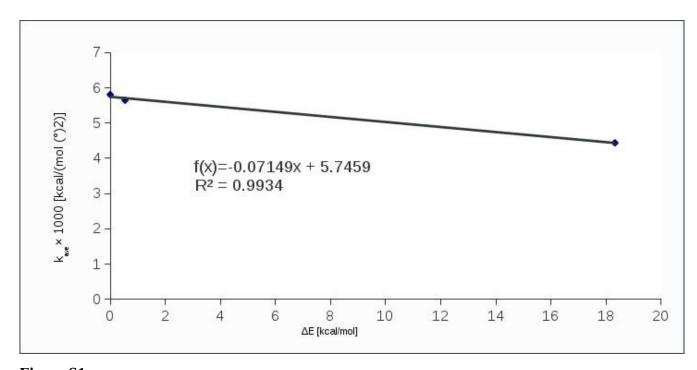
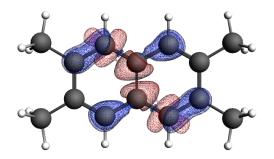
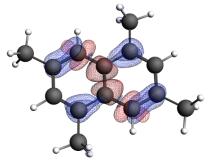
B. Stanković^a, B. D. Ostojić^{b,*}, M. A. Gruden^c, A. Popović^c, and D. S. Đorđević^b

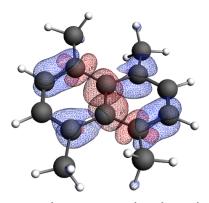
^aFaculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11 000 Belgrade, Serbia ^bInstitute for Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 14-16, 11 000 Belgrade, Serbia

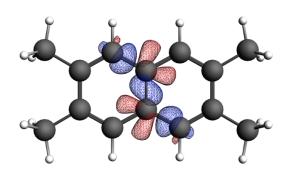
^cFaculty of Chemistry, University of Belgrade, Studentski trg 14-16, 11 000 Belgrade, Serbia

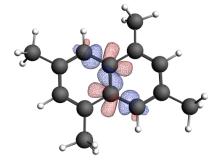
* Corresponding author. Fax: +381 112636061

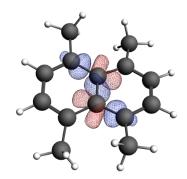
E-mail address: bostojic@chem.bg.ac.rs (B. D. Ostojić)


Figure S1 The relationship between averaged rigidity constants for 2,3,6,7-TeMN, 1,3,5,7-TeMN, and 1,4,5,8-TeMN (k_{ave} =(k_1 + k_2)/2), calculated at the MP2/cc-pVDZ level of theory and corresponding relative energies calculated at the B3LYP/cc-pVTZ level of theory (ΔE).


ΔEorb1= -774.7 kcal/mol


 Δ Eorb1= -753.9 kcal/mol


ΔEorb1= -679.6 kcal/mol

ΔEorb2= -216.2 kcal/mol

 Δ Eorb2= -220.9 kcal/mol

ΔEorb2= -202.9 kcal/mol

Figure S2

The deformation density plots $\Delta\rho_1$ and $\Delta\rho_2$ corresponding to most important NOCV pair of orbitals and orbital stabilization energies (ΔE orb1 and ΔE orb2) for 2,3,6,7-TeMN, 1,3,5,7-TeMN, and 1,4,5,8-TeMN obtained at the BLYP/TZ2P level of theory (the contour values: ± 0.006 a.u). The direction of the charge flow in the deformation density plot $\Delta\rho$ is from the red to the blue region.

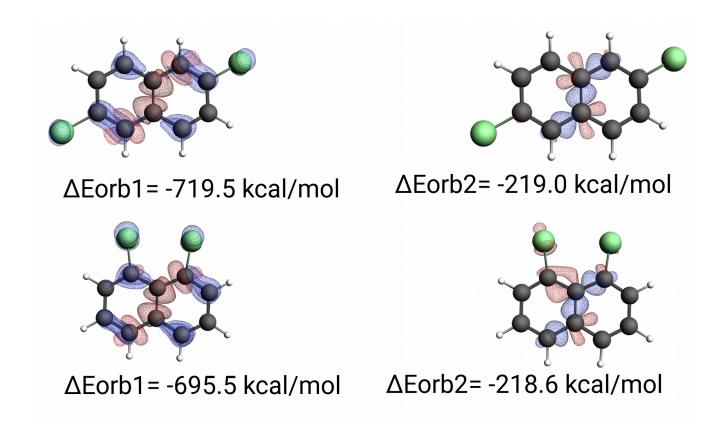
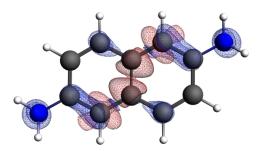
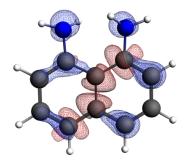
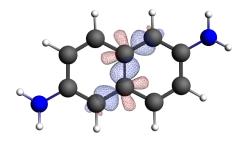
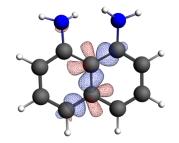




Figure S3


The deformation density plots $\Delta\rho_1$ and $\Delta\rho_2$ corresponding to most important NOCV pair of orbitals and orbital stabilization energies (ΔE orb1 and ΔE orb2) for 2,6-DCN and 1,8-DCN obtained at the BLYP/TZ2P level of theory (the contour values: ± 0.006 a.u). The direction of the charge flow in the deformation density plot $\Delta\rho$ is from the red to the blue region.


ΔEorb1= -708.3 kcal/mol

ΔEorb1= -701.3 kcal/mol

ΔEorb2= -224.2 kcal/mol

ΔEorb2= -211.9 kcal/mol

Figure S4

The deformation density plots $\Delta \rho_1$ and $\Delta \rho_2$ corresponding to most important NOCV pair of orbitals and orbital stabilization energies (ΔE orb1 and ΔE orb2) for 2,6-DAN and 1,8-DAN obtained at the BLYP/TZ2P level of theory (the contour values: ± 0.006 a.u). The direction of the charge flow in the deformation density plot $\Delta \rho$ is from the red to the blue region.

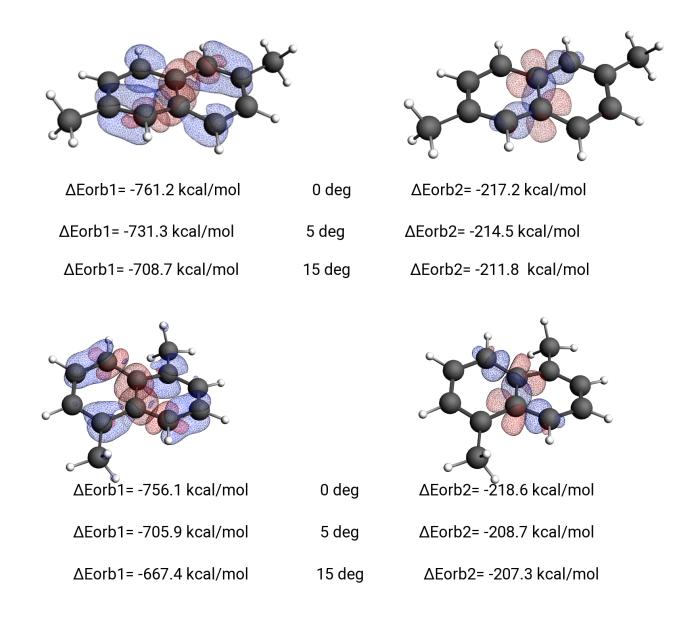


Figure S5

The change of orbital energies ΔE orb1 and ΔE orb2 of 2,6-DMN and 1,5-DMN for two most important deformation density channels ($\Delta \rho_1$ and $\Delta \rho_2$, respectively) with the out-of-plane deformation angles 0°, 5°, and 15° obtained at the BLYP/TZ2P level of theory. The direction of the charge flow in the deformation density plot $\Delta \rho$ is from the red to the blue region.