Supplementary data for the article:

Božić, A.; Marinković, A.; Bjelogrlić, S.; Todorović, T. R.; Cvijetić, I. N.; Novaković, I.; Muller, C. D.; Filipović, N. R. Quinoline Based Mono- and Bis-(Thio)Carbohydrazones: Synthesis, Anticancer Activity in 2D and 3D Cancer and Cancer Stem Cell Models. *RSC Advances* **2016**, *6* (106), 104763–104781. <u>https://doi.org/10.1039/c6ra23940d</u>

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

## **Electronic Supplementary Information**

Quinoline based mono- and bis-(thio)carbohydrazones: synthesis, anticancer activity in 2D and 3D cancer and cancer stem cell models

Aleksandra Božić,<sup>a</sup> Aleksandar Marinković,<sup>a</sup> Snežana Bjelogrlić,<sup>b</sup> Tamara R. Todorović,<sup>c</sup> Ilija N. Cvijetić,<sup>d</sup> Irena Novaković<sup>e</sup>, Christian D. Muller<sup>f\*</sup> and Nenad R. Filipović <sup>g\*</sup>

<sup>a</sup>Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Serbia
<sup>b</sup>National Cancer Research Center of Serbia, Pasterova 14, Belgrade, Serbia
<sup>c</sup>Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia.
<sup>d</sup>Innovation Center of the Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia
<sup>e</sup>Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, Belgrade, Serbia
<sup>f</sup>Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS Université de Strasbourg, 67401
Illkirch, France; E-mail: cdmuller@unistra.fr
<sup>g</sup>Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade, Serbia; E-mail:

nenadf.chem@gmail.com

\*Corresponding authors:

Dr. Christian D. Muller E-mail: cdmuller@unistra.fr Tel: +33-688285839 Fax: +33-368854310

Dr. Nenad Filipović E-mail: nenadf.chem@gmail.com Tel: +381 64 3456-845 Fax: +381 11 2184-330

## Content

| Figure S 1. Cell death response in THP-1 cells determined after 24 h incubation with inve compounds by means of Annexin V/propidium iodide dual staining method.                                | stigated                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Figure S 2. Concentration-response curves established for 24 h treatment. Standard sigmoida (A) with biphasic curves (B) obtained for THP-1 cells, and sigmoidal (C) curves attained for cells. | l curves<br>AsPC-1<br>6 |
| Figure S 3. Cell death response in AsPC-1 cells determined after 24 h incubation with inve compounds by means of Annexin V/propidium iodide dual staining method.                               | stigated                |
| Figure S 4. Role of caspases activation in apoptotic death of THP1 cells (A) and AsPC-1 cells                                                                                                   | (B)8                    |
| Figure S 5. Changes in expression of CD44 surface marker on AsPC-1 cells assessed after 72 h<br>incubation with S2 (A), S6 (B), and S4 (C)                                                      | h<br>9                  |
| Table S 1. Numbering of atoms in carbohydrazone O1-O6 and thiocarbohydrazone S1-S6 used NMR.                                                                                                    | 1 in<br>10              |
| Table S 2. Experimental and calculated <sup>1</sup> H NMR (500 MHz, DMSO- <i>d</i> <sub>6</sub> ) data of O1-O6                                                                                 | 12                      |
| Table S 3. Experimental and calculated <sup>1</sup> H NMR (500 MHz, DMSO- <i>d</i> <sub>6</sub> ) data of S1-S6                                                                                 | 13                      |
| Table S 4. Experimental and calculated <sup>13</sup> C NMR (126 MHz, DMSO- <i>d</i> <sub>6</sub> ) data of O1-O6                                                                                | 14                      |
| Table S 5. Experimental and calculated <sup>13</sup> C NMR (126 MHz, DMSO- <i>d</i> <sub>6</sub> ) data of S1-S6                                                                                | 15                      |
| Table S 6. Lipinski's pharmacokinetic properties of investigated compounds                                                                                                                      | 16                      |
| Figure S 6. Experimental FT-IR spectra of compound O1-O6.                                                                                                                                       | 17                      |
| Figure S 7. Experimental FT-IR spectra of compound S1-S6.                                                                                                                                       | 18                      |
| Figure S 8. <sup>1</sup> H NMR spectrum of O1 in DMSO-d <sub>6</sub> .                                                                                                                          | 19                      |
| Figure S 9. <sup>13</sup> C NMR spectrum of O1 in DMSO-d <sub>6</sub> .                                                                                                                         | 19                      |
| Figure S 10. COSY spectrum of O1.                                                                                                                                                               | 20                      |
| Figure S 11. NOESY spectrum of O1.                                                                                                                                                              | 20                      |
| Figure S 12. <sup>1</sup> H– <sup>13</sup> C HSQC spectrum of O1.                                                                                                                               | 21                      |
| Figure S 13. <sup>1</sup> H– <sup>13</sup> C HMBC spectrum of O1.                                                                                                                               | 21                      |
| Figure S 14. <sup>1</sup> H NMR spectrum of O2 in DMSO-d <sub>6</sub> .                                                                                                                         | 22                      |
| Figure S 15. <sup>13</sup> C NMR spectrum of O2 in DMSO-d <sub>6-</sub>                                                                                                                         | 22                      |
| Figure S 16. COSY spectrum of O2.                                                                                                                                                               | 23                      |
| Figure S 17. NOESY spectrum of O2                                                                                                                                                               | 23                      |

| Figure S 18. <sup>1</sup> H– <sup>13</sup> C HSQC spectrum of O2.                |    |
|----------------------------------------------------------------------------------|----|
| Figure S 19. <sup>1</sup> H– <sup>13</sup> C HMBC spectrum of O2.                | 24 |
| Figure S 20. <sup>1</sup> H NMR spectrum of O3 in DMSO-d <sub>6</sub>            |    |
| Figure S 21. <sup>13</sup> C NMR spectrum of O3 in DMSO- <i>d</i> <sub>6</sub>   |    |
| Figure S 22. COSY spectrum of O3.                                                |    |
| Figure S 23. NOESY spectrum of O3.                                               |    |
| Figure S 24. <sup>1</sup> H– <sup>13</sup> C HSQC spectrum of O3.                |    |
| Figure S 25. <sup>1</sup> H– <sup>13</sup> C HMBC spectrum of O3.                |    |
| Figure S 26. <sup>1</sup> H NMR spectrum of O4 in DMSO-d <sub>6</sub> .          |    |
| Figure S 27. <sup>13</sup> C NMR spectrum of O4 in DMSO- <i>d</i> <sub>6</sub>   |    |
| Figure S 28. COSY spectrum of O4.                                                |    |
| Figure S 29. NOESY spectrum of O4.                                               |    |
| Figure S 30. <sup>1</sup> H– <sup>13</sup> C HSQC spectrum of O4.                |    |
| Figure S 31. <sup>1</sup> H– <sup>13</sup> C HMBC spectrum of O4.                |    |
| Figure S 32. <sup>1</sup> H NMR spectrum of O5 in DMSO-d <sub>6</sub>            |    |
| Figure S 33. <sup>13</sup> C NMR spectrum of O5 in DMSO- <i>d</i> <sub>6</sub>   |    |
| Figure S 34. COSY spectrum of O5.                                                |    |
| Figure S 35. NOESY spectrum of O5.                                               |    |
| Figure S 36. <sup>1</sup> H– <sup>13</sup> C HSQC spectrum of O5.                |    |
| Figure S 37. <sup>1</sup> H– <sup>13</sup> C HMBC spectrum of O5.                |    |
| Figure S 38. <sup>1</sup> H NMR spectrum of O6 in DMSO-d <sub>6</sub> .          |    |
| Figure S 39. <sup>13</sup> C NMR spectrum of O6 in DMSO- <i>d</i> <sub>6</sub> . |    |
| Figure S 40. COSY spectrum of O6.                                                |    |
| Figure S 41. NOESY spectrum of O6.                                               |    |
| Figure S 42. <sup>1</sup> H– <sup>13</sup> C HSQC spectrum of O6.                |    |
| Figure S 43. <sup>1</sup> H– <sup>13</sup> C HMBC spectrum of O6.                |    |
| Figure S 44. <sup>1</sup> H NMR spectrum of S1 in DMSO- <i>d<sub>6</sub></i>     |    |
| Figure S 45. <sup>13</sup> C NMR spectrum of S1 in DMSO-d <sub>6</sub> .         |    |

| Figure S 46. COSY spectrum of S1.                                              |    |
|--------------------------------------------------------------------------------|----|
| Figure S 47. NOESY spectrum of S1.                                             |    |
| Figure S 48. <sup>1</sup> H– <sup>13</sup> C HSQC spectrum of S1.              |    |
| Figure S 49. <sup>1</sup> H– <sup>13</sup> C HMBC spectrum of S1.              |    |
| Figure S 50. <sup>1</sup> H NMR spectrum of S2 in DMSO-d <sub>6</sub>          | 40 |
| Figure S 51. <sup>13</sup> C NMR spectrum of S2 in DMSO-d <sub>6</sub> .       | 40 |
| Figure S 52. COSY spectrum of S2.                                              | 41 |
| Figure S 53. NOESY spectrum of S2.                                             | 41 |
| Figure S 54. <sup>1</sup> H– <sup>13</sup> C HSQC spectrum of S2.              |    |
| Figure S 55. <sup>1</sup> H– <sup>13</sup> C HMBC spectrum of S2.              |    |
| Figure S 56. <sup>1</sup> H NMR spectrum of S3 in DMSO-d <sub>6</sub> .        |    |
| Figure S 57. <sup>13</sup> C NMR spectrum of S3 in DMSO-d <sub>6</sub>         |    |
| Figure S 58. COSY spectrum of S3.                                              | 44 |
| Figure S 59. NOESY spectrum of S3.                                             | 44 |
| Figure S 60. <sup>1</sup> H– <sup>13</sup> C HSQC spectrum of S3.              | 45 |
| Figure S 61. <sup>1</sup> H– <sup>13</sup> C HMBC spectrum of S3.              | 45 |
| Figure S 62. <sup>1</sup> H NMR spectrum of S4 in DMSO-d <sub>6</sub> .        |    |
| Figure S 63. <sup>13</sup> C NMR spectrum of S4 in DMSO- <i>d</i> <sub>6</sub> |    |
| Figure S 64. COSY spectrum of S4.                                              | 47 |
| Figure S 65. NOESY spectrum of S4.                                             | 47 |
| Figure S 66. <sup>1</sup> H– <sup>13</sup> C HSQC spectrum of S4.              |    |
| Figure S 67. <sup>1</sup> H– <sup>13</sup> C HMBC spectrum of S4.              |    |
| Figure S 68. <sup>1</sup> H NMR spectrum of S5 in DMSO-d <sub>6</sub> .        |    |
| Figure S 69. <sup>13</sup> C NMR spectrum of S5 in DMSO-d <sub>6</sub> .       |    |
| Figure S 70. COSY spectrum of S5.                                              |    |
| Figure S 71. NOESY spectrum of S5.                                             |    |
| Figure S 72. <sup>1</sup> H– <sup>13</sup> C HSQC spectrum of S5.              | 51 |
| Figure S 73. <sup>1</sup> H– <sup>13</sup> C HMBC spectrum of S5.              | 51 |

| Figure S 74. <sup>1</sup> H NMR spectrum of S6 in DMSO-d <sub>6</sub> .  |    |
|--------------------------------------------------------------------------|----|
| Figure S 75. <sup>13</sup> C NMR spectrum of S6 in DMSO-d <sub>6</sub> . |    |
| Figure S 76. COSY spectrum of S6.                                        |    |
| Figure S 77. NOESY spectrum of S6.                                       |    |
| Figure S 78. <sup>1</sup> H– <sup>13</sup> C HSQC spectrum of S6.        | 54 |
| Figure S 79. <sup>1</sup> H– <sup>13</sup> C HMBC spectrum of S6.        | 54 |



**Figure S 1**. Cell death response in THP-1 cells determined after 24 h incubation with investigated compounds by means of Annexin V/propidium iodide dual staining method.



**Figure S 2.** Concentration-response curves established for 24 h treatment. Standard sigmoidal curves (A) with biphasic curves (B) obtained for THP-1 cells, and sigmoidal (C) curves attained for AsPC-1 cells.



**Figure S 3.** Cell death response in AsPC-1 cells determined after 24 h incubation with investigated compounds by means of Annexin V/propidium iodide dual staining method.



**Figure S 4.** Role of caspases activation in apoptotic death of THP1 cells (A) and AsPC-1 cells (B).



**Figure S 5.** Changes in expression of CD44 surface marker on AsPC-1 cells assessed after 72 h incubation with S2 (A), S6 (B), and S4 (C).



**Table S 1.** Numbering of atoms in carbohydrazone **O1-O6** and thiocarbohydrazone **S1-S6** used in NMR.



| Comp | C     | )1    | C     | 02    | 03            | 3     | 04            | ļ     | 05            |       | 06            |       |
|------|-------|-------|-------|-------|---------------|-------|---------------|-------|---------------|-------|---------------|-------|
| δ    | Exp.  | Calc. | Exp.  | Calc. | Exp.          | Calc. | Exp.          | Calc. | Exp.          | Calc. | Exp.          | Calc. |
| 2    | 8.94  | 9.23  | 8.99  | 9.27  |               |       |               |       |               |       |               |       |
| 3    | 7.57  | 7.76  | 7.61  | 7.79  | 8.34-<br>8.46 | 8.44  | 8.38-<br>8.60 | 8.54  | 8.30-<br>8.50 | 8.47  | 8.17-<br>8.39 | 8.56  |
| 4    | 8.39  | 8.63  | 8.43  | 8.65  | 8.27          | 8.56  | 8.38-<br>8.60 | 8.62  | 8.24          | 8.53  | 8.17-<br>8.39 | 8.59  |
| 5    | 7.98  | 8.27  | 8.04  | 8.31  | 7.93-<br>7.99 | 8.25  | 8.02          | 8.29  | 7.36          | 7.62  | 7.41          | 7.65  |
| 6    | 7.63  | 7.98  | 7.72  | 8.03  | 7.58          | 7.91  | 7.63          | 7.95  | 7.41          | 7.82  | 7.45          | 7.88  |
| 7    | 8.58  | 8.89  | 8.60  | 8.98  | 7.74          | 8.08  | 7.79          | 8.12  | 7.08          | 7.35  | 7.12          | 7.39  |
| 8    |       |       |       |       | 7.93-<br>7.99 | 8.35  | 8.02          | 8.39  | ОН<br>9.71    | 7.80  | ОН<br>9.80    | 7.83  |
| 9    | 9.14  | 9.25  | 9.50  | 9.40  | 8.03          | 7.92  | 8.31          | 8.08  | 8.09          | 7.93  | 8.48          | 8.09  |
| 11   |       |       | 9.50  | 9.40  |               |       | 8.31          | 8.08  |               |       | 8.48          | 8.09  |
| 12   |       |       |       |       |               |       |               |       |               |       |               |       |
| 13   |       |       | 8.60  | 8.98  |               |       | 8.38-<br>8.60 | 8.54  |               |       | 8.17-<br>8.39 | 8.56  |
| 14   |       |       | 7.72  | 8.03  |               |       | 8.38-<br>8.60 | 8.62  |               |       | 8.17-<br>8.39 | 8.59  |
| 15   |       |       | 8.04  | 8.31  |               |       | 8.02          | 8.29  |               |       | 7.41          | 7.65  |
| 16   |       |       | 8.43  | 8.65  |               |       | 7.63          | 7.95  |               |       | 7.45          | 7.88  |
| 17   |       |       | 7.61  | 7.79  |               |       | 7.79          | 8.12  |               |       | 7.12          | 7.39  |
| 18   |       |       | 8.99  | 9.27  |               |       | 8.02          | 8.39  |               |       | ОН<br>9.80    | 7.83  |
| N3   | 10.65 | 7.38  | 11.09 | 7.67  | 10.84         | 7.47  | 11.31         | 7.73  | 10.88         | 7.50  | 11.34         | 7.75  |
| N4   | 8.16  | 5.02  | 11.09 | 7.67  | 8.34-<br>8.46 | 5.13  | 11.31         | 7.73  | 8.30-<br>8.50 | 5.13  | 11.34         | 7.75  |
| N5   | 4.12  | 3.23  | 8.99  |       | 4.15          | 3.20  |               |       | 4.14          | 3.21  |               |       |
|      |       | 2.82  |       |       |               | 2.80  |               |       |               | 2.89  |               |       |

Table S 2. Experimental and calculated <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) data of O1-O6

| Comp | 5     | 51    | S             | 2     | S     | 53    | S             | 4     | S     | 5     | S             | 66    |
|------|-------|-------|---------------|-------|-------|-------|---------------|-------|-------|-------|---------------|-------|
| δ    | Exp.  | Calc. | Exp.          | Calc. | Exp.  | Calc. | Exp.          | Calc. | Exp.  | Calc. | Exp.          | Calc. |
| 2    | 8.96  | 9.27  | 9.00          | 9.36  |       |       |               |       |       |       |               |       |
| 3    | 7.59  | 7.80  | 7.62          | 7.84  | 8.52  | 8.38  | 8,90          | 8.66  | 8.82  | 8.40  | 8.05-<br>8.41 | 8.68  |
| 4    | 8.41  | 8.66  | 8.35-<br>8.64 | 8.70  | 8.34  | 8.61  | 8.46-<br>8.63 | 8.67  | 8.27  | 8.57  | 8.05-<br>8.41 | 8.64  |
| 5    | 8.03  | 8.37  | 8.09          | 7.43  | 7.97  | 8.27  | 8.06          | 8.29  | 7.37  | 7.64  | 7.43          | 7.66  |
| 6    | 7.65  | 7.99  | 7.75          | 8.06  | 7.59  | 7.96  | 7.67          | 8.00  | 7.42  | 7.87  | 7.43          | 7.92  |
| 7    | 8.73  | 8.85  | 8.88          | 9.14  | 7.75  | 8.12  | 7.82          | 8.19  | 7.09  | 7.39  | 7.14          | 7.45  |
| 8    |       |       |               |       | 7.97  | 8.40  | 8.06          | 8.46  | ОН    | 7.79  | ОН            | 7.83  |
|      |       |       |               |       |       |       |               |       | 9.80  |       | 9.89          |       |
| 9    | 9.30  | 9.35  | 9.91          | 9.86  | 8.18  | 7.95  | 8.40          | 8.48  | 8.23  | 7.96  | 8.89          | 8.48  |
| 11   |       |       | 9.48          | 9.48  |       |       | 8.20          | 8.05  |       |       | 8.53          | 8.06  |
| 12   |       |       |               |       |       |       |               |       |       |       |               |       |
| 13   |       |       | 8.35-<br>8.64 | 9.04  |       |       | 8.46-<br>8.63 | 8.53  |       |       | 8.05-<br>8.41 | 8.68  |
| 14   |       |       | 7.75          | 8.11  |       |       | 8.46-<br>8.63 | 8.68  |       |       | 8.05-<br>8.41 | 8.64  |
| 15   |       |       | 8.09          | 8.41  |       |       | 8.06          | 8.29  |       |       | 7.43          | 7.66  |
| 16   |       |       | 8.35-<br>8.64 | 8.66  |       |       | 7.67          | 7.98  |       |       | 7.43          | 7.90  |
| 17   |       |       | 7.62          | 7.82  |       |       | 7.82          | 8.15  |       |       | 7.14          | 7.41  |
| 18   |       |       | 9.00          | 9.30  |       |       | 8.06          | 8.46  |       |       | ОН            | 7.81  |
|      |       |       |               |       |       |       |               |       |       |       | 9.89          |       |
| N3   | 11.67 | 8.26  | 12.18         | 10.37 | 11.78 | 8.31  | 12.51         | 10.33 | 11.84 | 8.31  | 12.52         | 10.31 |
| N4   | 9.95  | 7.91  | 12.10         | 8.38  | 10.18 | 7.95  | 12.16         | 8.48  | 10.17 | 7.92  | 12.18         | 8.49  |
| N5   | 4.91  | 3.22  |               |       | 4.97  | 3.22  |               |       | 4.96  | 3.22  |               |       |

 Table S 3. Experimental and calculated <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) data of S1-S6

|         | C          | )1         | 0          | )2         | C          | )3         | C          | )4         | 05         |            | <b>O</b> 6 |            |
|---------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 8       | Exp        | Cal        | Exp        | Calc       | Exp        | Cal        | Exp        | Cal        | Exp        | Cal        | Exp        | Cal        |
|         | ·          | c.         | ·          |            |            | c.         | ·          | c.         | ·          | c.         | ·          | c.         |
| 2       | 150.       | 150.       | 150.       | 150.       | 154.       | 153.       | 151.       | 152.       | 152.       | 151.       | 151.       | 150.       |
|         | 08         | 03         | 16         | 39         | 34         | 38         | 67         | 88         | 25         | 13         | 92         | 23         |
| 3       | 121.       | 120.       | 121.       | 119.       | 118.       | 115.       | 117.       | 115.       | 118.       | 116.       | 118.       | 117.       |
|         | 67         | 21         | 77         | 98         | 03         | 51         | 78         | 81         | 35         | 76         | 12         | 00         |
| 4       | 136.       | 137.       | 136.       | 137.       | 136.       | 137.       | 136.       | 137.       | 136.       | 137.       | 136.       | 137.       |
|         | 55         | 01         | 62         | 81         | 19         | 31         | 47         | 41         | 06         | 37         | 40         | 49         |
| 4       | 127.       | 125.       | 128.       | 125        | 127.       | 125.       | 127.       | 125.       | 128.       | 126.       | 128.       | 126.       |
| a       | 94         | 93         | 02         | 36         | 66         | 50         | 99         | 83         | 52         | 32         | 75         | 60         |
| 5       | 128.       | 129.       | 129.       | 129.       | 127.       | 127.       | 128.       | 127.       | 117.       | 114.       | 117.       | 114.       |
|         | 90         | 02         | 28         | 69         | 72         | 43         | 84         | 36         | 74         | 86         | 90         | 86         |
| 6       | 126.       | 125.       | 126.       | 125.       | 126.       | 126.       | 127.       | 126.       | 127.       | 128.       | 128.       | 128.       |
|         | 45         | 33         | 49         | 26         | 84         | 29         | 79         | 64         | 73         | 56         | 13         | 95         |
| 7       | 125.       | 124.       | 125.       | 124.       | 129.       | 129.       | 127.       | 129.       | 111.       | 106.       | 112.       | 106.       |
|         | 61         | 17         | 72         | 65         | 82         | 13         | 11         | 20         | 59         | 68         | 13         | 80         |
| 8       | 131.<br>59 | 130.<br>68 | 131.<br>65 | 130.<br>19 | 128.<br>69 | 129.<br>02 | 130        | 129.<br>20 | 153.<br>24 | 152.<br>48 | 153.<br>37 | 152.<br>56 |
| 8a      | 145.       | 143.       | 145.       | 143.       | 147.       | 145.       | 147.       | 145.       | 137.       | 134.       | 138.       | 134.       |
|         | 01         | 34         | 19         | 61         | 26         | 87         | 35         | 84         | 93         | 42         | 13         | 34         |
| 9       | 136.       | 135.       | 139.       | 136.       | 140.       | 139.       | 144.       | 142.       | 140.       | 138.       | 144.       | 141.       |
|         | 89         | 46         | 89         | 96         | 64         | 93         | 06         | 52         | 50         | 54         | 02         | 31         |
| 10      | 157.       | 153.       | 152.       | 146.       | 156.       | 152.       | 153.       | 145.       | 156.       | 152.       | 162.       | 145.       |
|         | 21         | 32         | 28         | 03         | 76         | 74         | 99         | 51         | 83         | 52         | 45         | 41         |
| 11      |            |            | 139.<br>89 | 136.<br>96 |            |            | 144.<br>06 | 142.<br>52 |            |            | 144.<br>02 | 141.<br>31 |
| 12      |            |            | 131.<br>65 | 130.<br>19 |            |            | 151.<br>67 | 152.<br>88 |            |            | 151.<br>92 | 150.<br>23 |
| 12<br>a |            |            | 145.<br>19 | 143.<br>61 |            |            |            |            |            |            |            |            |
| 13      |            |            | 125.<br>72 | 124.<br>65 |            |            | 117.<br>78 | 115.<br>81 |            |            | 118.<br>12 | 117.<br>00 |
| 14      |            |            | 126.<br>49 | 125.<br>26 |            |            | 136.<br>47 | 137.<br>41 |            |            | 136.<br>40 | 137.<br>49 |
| 14<br>a |            |            |            |            |            |            | 127.<br>99 | 125.<br>83 |            |            | 128.<br>75 | 126.<br>60 |

 Table S 4. Experimental and calculated <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>) data of O1-O6

| 15 |  |  | 128. | 129. |   | 128. | 127. |  | 117. | 114. |
|----|--|--|------|------|---|------|------|--|------|------|
| 15 |  |  | 28   | 69   |   | 84   | 36   |  | 90   | 86   |
| 15 |  |  | 128. | 127. |   |      |      |  |      |      |
| a  |  |  | 02   | 66   |   |      |      |  |      |      |
| 16 |  |  | 136. | 137. |   | 127. | 126. |  | 128. | 128. |
|    |  |  | 62   | 81   |   | 79   | 64   |  | 13   | 95   |
| 17 |  |  | 121. | 119. |   | 127. | 129. |  | 112. | 106. |
| ľ  |  |  | 77   | 98   |   | 11   | 20   |  | 13   | 80   |
| 18 |  |  | 150. | 150. |   | 130  | 129. |  | 153. | 152. |
|    |  |  | 16   | 39   |   | 150  | 20   |  | 37   | 56   |
| 18 |  |  |      |      |   | 147. | 145. |  | 138. | 134. |
| a  |  |  |      |      |   | 35   | 84   |  | 13   | 34   |
|    |  |  |      |      | 1 |      |      |  |      |      |

Table S 5. Experimental and calculated <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>) data of S1-S6

|            | S1     |        | S2     |         | <b>S</b> 3 |        | S4     |        | S      | 5      | <b>S6</b> |        |
|------------|--------|--------|--------|---------|------------|--------|--------|--------|--------|--------|-----------|--------|
| 8          | Exp.   | Calc.  | Exp.   | Calc.   | Exp.       | Calc.  | Exp.   | Calc.  | Exp.   | Calc.  | Exp.      | Calc.  |
| 2          | 150.29 | 150.67 | 150.34 | 150.999 | 153.68     | 151.86 | 153.96 | 152.12 | 151.95 | 149.01 | 151.60    | 149.48 |
| 3          | 121.75 | 120.65 | 121.85 | 120.87  | 118        | 115.55 | 118.72 | 116.21 | 118.65 | 116.73 | 118.62    | 117.40 |
| 4          | 136.59 | 137.69 | 136.65 | 137.64  | 135.89     | 137.77 | 136.98 | 137.61 | 136.03 | 137.77 | 136.48    | 137.67 |
| <b>4</b> a | 127.94 | 125.87 | 128.01 | 125.91  | 127.46     | 126.00 | 128.23 | 126.03 | 128.71 | 126.91 | 128.90    | 126.92 |
| 5          | 129.59 | 131.14 | 129.99 | 131.07  | 127.57     | 127.45 | 128.37 | 127.33 | 117.71 | 114.87 | 117.87    | 114.75 |
| 6          | 126.40 | 125.19 | 126.48 | 125.21  | 126.75     | 127.23 | 127.75 | 127.27 | 127.97 | 129.71 | 128.38    | 129.63 |
| 7          | 126.33 | 125.44 | 126.67 | 125.96  | 129.57     | 129.45 | 130.47 | 129.73 | 112    | 107.03 | 112.24    | 107.33 |
| 8          | 131.21 | 128.45 | 131.46 | 129.06  | 128.40     | 129.37 | 129.21 | 129.42 | 153.36 | 152.71 | 153.44    | 152.73 |
| 8a         | 145.30 | 143.83 | 140.36 | 144     | 146.97     | 145.88 | 147.70 | 145.96 | 138.10 | 149.01 | 138.20    | 134.62 |
| 9          | 138.97 | 139.68 | 145.40 | 144.54  | 141.98     | 143.57 | 149.59 | 149.27 | 142.16 | 142.25 | 149.17    | 148.00 |
| 10         | 175.96 | 182.06 | 175.21 | 176.64  | 175.37     | 182.93 | 175.97 | 177.68 | 175.72 | 182.83 | 175.61    | 177.76 |
| 11         |        |        | 140.48 | 140.21  |            |        | 144.46 | 144.71 |        |        | 143.85    | 143.58 |
| 12         |        |        | 130.97 | 127.99  |            |        | 152.03 | 151.21 |        |        | 151.60    | 148.40 |

| 12a | 140. | 30 144.16 |  |        |        |  |        |        |
|-----|------|-----------|--|--------|--------|--|--------|--------|
| 13  | 125. | 98 125.97 |  | 118.41 | 115.83 |  | 118.62 | 117.00 |
| 14  | 126. | 48 125.18 |  | 136.98 | 138.02 |  | 136.48 | 138.05 |
| 14a |      |           |  | 128.23 | 125.99 |  | 128.90 | 126.99 |
| 15  | 129. | 99 131.91 |  | 128.37 | 127.59 |  | 117.87 | 115.10 |
| 15a | 128. | 01 125.58 |  |        |        |  |        |        |
| 16  | 136. | 65 138    |  | 127.75 | 126.97 |  | 128.38 | 129.43 |
| 17  | 121. | 85 120.27 |  | 130.47 | 129.70 |  | 112.24 | 107.24 |
| 18  | 150. | 34 150.94 |  | 129.21 | 129.45 |  | 153.44 | 152.68 |
| 18a |      |           |  | 147.70 | 145.93 |  | 138.20 | 134.75 |

Table S 6. Lipinski's pharmacokinetic properties of investigated compounds

|      | 01     | <b>S1</b> | 02     | S2     | 03     | <b>S3</b> | 04     | S4     | 05     | <b>S</b> 5 | <b>O</b> 6 | <b>S6</b> |
|------|--------|-----------|--------|--------|--------|-----------|--------|--------|--------|------------|------------|-----------|
| MW   | 229.24 | 245.30    | 368.39 | 384.46 | 229.24 | 245.30    | 368.39 | 384.46 | 245.24 | 261.30     | 400.39     | 416.46    |
| logP | 1.234  | 1.621     | 4.115  | 4.223  | 1.262  | 1.720     | 3.886  | 4.402  | 0.825  | 1.227      | 3.210      | 3.526     |
| HBD  | 4      | 4         | 2      | 2      | 4      | 4         | 2      | 2      | 5      | 5          | 4          | 4         |
| HBA  | 3      | 2         | 5      | 4      | 3      | 2         | 5      | 4      | 3      | 2          | 5          | 4         |

MW - molecular weight

- logP predicted octanol/water partition coefficient
- HBD number of hydrogen bond donor atoms per molecule
- HBA- number of hydrogen bond acceptor atoms per molecule



Figure S 6. Experimental FT-IR spectra of compound O1-O6.



Figure S 7. Experimental FT-IR spectra of compound S1-S6.





Figure S 11. NOESY spectrum of O1.













Figure S 19. <sup>1</sup>H–<sup>13</sup>C HMBC spectrum of O2.









Figure S 25. <sup>1</sup>H–<sup>13</sup>C HMBC spectrum of O3.













Figure S 33. <sup>13</sup>C NMR spectrum of O5 in DMSO- $d_6$ .



Figure S 35. NOESY spectrum of O5.



Figure S 37. <sup>1</sup>H–<sup>13</sup>C HMBC spectrum of O5.















Figure S 45. <sup>13</sup>C NMR spectrum of S1 in DMSO- $d_6$ .



Figure S 47. NOESY spectrum of S1.



Figure S 49. <sup>1</sup>H–<sup>13</sup>C HMBC spectrum of S1.



Figure S 51. <sup>13</sup>C NMR spectrum of S2 in DMSO- $d_6$ .



Figure S 53. NOESY spectrum of S2.



Figure S 55. <sup>1</sup>H–<sup>13</sup>C HMBC spectrum of S2.



![](_page_45_Figure_0.jpeg)

![](_page_45_Figure_1.jpeg)

![](_page_46_Figure_0.jpeg)

![](_page_46_Figure_1.jpeg)

![](_page_47_Figure_0.jpeg)

igure 5 05. C Wink speed and 01 54 in DW50-

![](_page_48_Figure_0.jpeg)

Figure S 65. NOESY spectrum of S4.

![](_page_49_Figure_0.jpeg)

Figure S 67.  $^{1}H^{-13}C$  HMBC spectrum of S4.

![](_page_50_Figure_0.jpeg)

Figure S 69. <sup>13</sup>C NMR spectrum of S5 in DMSO- $d_6$ .

![](_page_51_Figure_0.jpeg)

Figure S 71. NOESY spectrum of S5.

![](_page_52_Figure_0.jpeg)

![](_page_52_Figure_1.jpeg)

![](_page_53_Figure_0.jpeg)

Figure S 75. <sup>13</sup>C NMR spectrum of S6 in DMSO- $d_6$ .

![](_page_54_Figure_0.jpeg)

![](_page_54_Figure_1.jpeg)

![](_page_55_Figure_0.jpeg)

![](_page_55_Figure_1.jpeg)