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Experimental part 

 

Anticancer experiments 

 

Cell cultures 

Human mammary adenocarcinoma (MCF-7, ATCC® HTB-22) cell line was maintained 

in DMEM high glucose medium (Dominique Dutscher, Cat No L0102-500), while human acute 

monocytic leukemia cell line (THP-1, ATCC® TIB-202) was maintained in RPMI-1640 (Life 

Technologies, Cat. No. 11875-093), supplemented with 10% (v/v) heat inactivated fetal bovine 

serum (FBS, Life Technologies, Cat No 10270-106) and 1% (v/v) penicillin-streptomycin (10 

000 units/mL and 10 000 µg/mL, Life Technologies, Cat No 15140-122). Cells were kept at 37 

°C in humidified atmosphere containing 5 % (v/v) CO2 during their exponential growing phase 

and in the course of incubation with investigated compounds.  

Investigated compounds were initially dissolved in DMSO to the stock concentration of 

20 mM. Further dilutions have been performed with RPMI-1640 or DMEM complete media 

immediately before each experiment, thus the final concentration of DMSO on cells treated with 

the highest applied concentration of investigated compound was 0.5% (v/v). Cisplatin was 

dissolved in phosphate buffer solution (PBS) while its further dilutions have been made in 

DMEM. 

 

Annexin V and propidium iodide (PI) staining 

Cells were seeded in 96 flat bottom well plates (Corning® Costar®, Cat. No. CLS3596) 

in 0.1 mL volume, at density of 10 000 cells/well. MCF-7 cells were left overnight to settle, 

while treatment of THP-1 cells started 2 h after seeding. Investigated compounds were added in a 

range of six concentrations. Cells treated with 0.5 % DMSO and cells treated with Celastrol 

(Enzo Life Sciences, Cat. No. ALX-350-332-M025) at 50 µM were used as negative and positive 

controls, respectively.  

After 24 h of incubation, supernatant medium with non-adherent cells was removed from 

wells with MCF-7 cells and placed into another 96 well plate. Fresh phosphate buffer saline 

(PBS) was added to remaining adherent cells afterwards the plate was centrifuged at 450 g for 10 

min. Supernatant was discarded and 200 µL of trypsin-EDTA (BioWest, Nuaille, Cat No L0930-

100) was added to each well. Cells were detached in about 15 min of incubation at 37 ⁰C. 

Trypsin-EDTA was removed after additional spinning cycle, afterwards previously removed 

supernatants with non-adherent cells were turned back to trypsinized cells. Such prepared 

samples were stained with Annexin V-FITC (Immuno Tools, Cat No 31490013) and propidium 

iodide (PI, Miltenyl Biotec IncCat No 130-093-233) each in a volume of 3 µl. Here described 

trypsinization protocol was applied every time MCF-7 cells were prepared for flow cytometry 
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analyses, unless is stated otherwise. In case of THP-1 cells, Annexin V-FITC and PI were added 

on cells right after the incubation time was over.  

Plates were analyzed on Guava® easyCyte 12HT Benchtop flow microcapillary 

cytometer (Millipore, Merck, Darmstadt, Germany) using the dedicated InCyte® software 

package. Cells were classified according to Annexin V-FITC (green fluorescence) and PI (red 

fluorescence) labeling on viable (double negative), pre-apoptotic cells (Annexin V-FITC single-

stained cells), necrotic cells (PI single-stained cells), and cells in advanced phases of cell death 

(double-stained cells).  

Calculation of ApoC50/ ApoC25 concentration 

Percentages of Annexin V single-stained and double-stained cells were summarized for 

each concentration of investigated compound and plotted against corresponding concentration. 

Concentration-response curve was determined using the sigmoidal asymmetric five-parameter 

logistic equation (GraphPad Prism 6 software). The ApoC50 or ApoC25 concentrations were 

computed as those that correspond to 50 % and 25 % of apoptotic events on concentration-

response curve, respectively. 

Cell cycle analysis 

Distribution of cells within phases of mitotic division has been evaluated on remaining 

cells after Annexin V/PI analysis. Cells were fixed in 70 % ethanol right after the read out of 

apoptosis assay was finished, and left overnight at 4 °C. Before reading, plates were centrifuged 

on 450 g for 10 min, ethanol was discarded and PBS added in a volume of 100 µL per well. Cells 

were stained with 50 µL of FxCycleTM PI/RNAse Staining solution (Molecular Probes, Cat. No. 

F10797), and incubated at 37 °C for 30 min. Plates were analyzed on Guava® easyCyte 12HT 

Benchtop flow microcapillary cytometer using the dedicated InCyte® software package. 

Inhibition of caspase activity 

Cells were treated with investigated compounds at their ApoC50 or ApoC25 

concentrations for 6 h with or without pan-caspase inhibitor carbobenzoxy-valyl-alanyl-aspartyl-

[O-methyl]-fluoro methylketone  (Z-VAD-fmk, Promega, Madison, USA, Cat. No. G7232). Z-

VAD-fmk was added in a concentration that was previously tested and confirmed as non-toxic to 

cells over 6 h incubation (10 µM for THP-1 cells, and 20 µM for MCF-7 cells). As controls, non-

treated cells, cells treated with Z-VAD-fmk only, and cells treated with ApoC50/ApoC25 

concentration only were used. After incubation period was ended, treated cells were carried out 

for Annexin V/PI staining as described above, and analyzed on Guava® easyCyte 12HT 

Benchtop flow microcapillary cytometer using the dedicated InCyte® software package. The 

percent of cell deaths inhibited by Z-VAD-fmk co-treatment was determined using equation: 

Inhibition (%) = [1 – (% of apoptosis/necrosis in A / % of apoptosis/necrosis in B)] × 100 
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where A is the sample treated with Z-VAD-fmk and investigated compound at its 

ApoC50/ApoC25 concentration, while B is the corresponding sample treated only with the same 

investigated compound at ApoC50/ApoC25 concentration. 

Caspase-8 and caspase-9 activities 

Cells were treated with investigated compound at ApoC50/ApoC25 concentration for 6 h 

afterwards activity of caspase-8 and -9 were assayed by means of Guava Caspase 9 SR and 

Caspase 8 FAM kit (EMD Millipore, Cat. No. 4500-0640), following manufacturer’s 

instructions. Cells were analyzed on Guava® easyCyte 12HT Benchtop flow microcapillary 

cytometer using the dedicated InCyte® software package.  

Generation of mitochondrial superoxide radicals 

Cells were treated over 6 h with investigated compound added in concentration of 50 µM, 

and afterwards stained with MitoSox Red (Molecular Probes, Cat. No. M36008) according to the 

manufacturer’s recommendations. Analysis was performed on Guava® easyCyte 12HT 

Benchtop flow microcapillary cytometer using the dedicated InCyte® software package. 

Assessment of changes in mitochondrial transmembrane potential 

Cells were treated over 6 h with investigated compound in concentration of 50 µM. After 

incubation was terminated, cells were stained with FlowCellectTM MitoDamage Kit (Merck 

Millipore Corporation, Cat. No. FCCH100106) according to the manufacturer’s 

recommendations. Analysis has been performed on Guava® easyCyte 12HT Benchtop flow 

microcapillary cytometer using the dedicated InCyte® software package.  

 

Growth inhibition of 3D tumor models 

Three-dimensional MCF-7 tumor models were made in 96 well plates (Corning, Cat No 

4515). Tumors were left to grow for additional four days afterwards investigated compounds 

were added in concentrations of 100, 10 and 1 µM. Evaluation has been maintained during 8-day 

incubation period, with media exchanged on the day 4. Changes in the tumor size have been 

assessed on Celigo® imaging cytometer (Cyntellect, Brooks Life Science Systems) using Celigo 

software. Growth rates of non-treated and treated spheroids were computed for every other day 

during 8-day incubation by dividing the area on the day-n with the area on the day 0. 

Acute lethality assay 

Artemia salina toxicity assay was conducted as described earlier [S1]. DMSO was used as both, 

initial solvent for Pd(II) complexes and negative control (0.25% v/v), while cisplatin was used as 

positive control (dissolved in saline).  For each concentration of the tested substances two 

measurements were performed. LC50 was defined as the concentration of a substance that causes 
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death of 50% nauplii. DMSO was inactive under the applied conditions. (DMSO did not show a 

lethal effect under the applied concentrations). 

 

 

Human serum albumin (HSA) binding experiments 

 

HSA (purity ≥97%), warfarin (analytical standard) and ibuprofen (≥98%) were purchased 

from Sigma-Aldrich (Germany) and used without further purification. Stock solutions of the 

complexes and warfarin were prepared in 99.9% DMSO. The 20 mM Tris-HCl solution pH 7.4 

(buffer) was prepared with Milli-Q water. The exact stock protein concentration in buffer was 

determined using an extinction coefficient of 35700 M−1 cm−1 at 280 nm. Stock solutions were 

further diluted with buffer and final concentration of DMSO in the protein-ligand mixtures did 

not exceed 0.5% (v/v). All measurements were done in triplicate, and the appropriate blanks 

corresponding to various ligands in buffer concentration were subtracted to correct the signal 

background. 

UV absorbance spectra were recorded in the range of 250−320 nm at room temperature, 

on a NanoDrop 2000c spectrophotometer (Thermo Scientific, USA) equipped with 1.0 cm quartz 

cell. The final ligand (Pd‒complexes) concentrations and constant protein concentration were 0, 

5, 10, 20, 30, 40 μM and 10 μM, respectively.  

Fluorescence measurements were performed on FluoroMax®-4 spectrofluorometer 

(HORIBA Scientific, Japan) under thermostatic conditions (Peltier temperature-controlled 

cuvette holder), and the excitation and emission band widths were both 5 nm. After adding the 

ligand, the system was kept for equilibration for 2 min before recording the fluorescence spectra. 

The steady-state protein fluorescence spectra were measured in the absence and presence of the 

various concentrations of Pd-complexes (2, 4, 6, 8, 10, 12, 14 and 16 μM) at 25, 30 or 37 ºC. The 

final protein concentration was 1 μM, the excitation wavelength was set at 280 nm (excitation of 

the Trp and Tyr residues), and the emission spectra were read at 290 to 500 nm. Under the same 

concentration setup, the synchronous fluorescence spectra were recorded at two different 

scanning intervals: λ =15 nm (Tyr) and λ = 60 nm (Trp), where λ = λEM − λEX; λEM and λEX are 

the emission and excitation wavelengths, respectively. 

Fluorescence intensities were corrected for inner filter effect using eq. S1 [S2]: 

   (eq. S1) 

where F0 is measured fluorescence, FC is corrected fluorescence, AEX and AEM are absorbances of 

quencher at excitation and emission wavelength (340 nm), respectively. 

To elaborate the fluorescence quenching mechanism, the decrease in protein fluorescence 

intensity at 340 nm was analyzed using the well-known Stern-Volmer (SV) equation: 

  (eq. S2) 



5 

 

where F0 and FC are protein emission fluorescence at 340 nm without and with addition of 

ligand, respectively, [Q] is total quencher (ligands) concentration, and KSV is SV quenching 

constant.  

The estimation of the association (binding) constant (Ka), and number of binding sites (n) 

for binding of small molecule to set of equivalent sites on a macromolecule was done using the 

modified SV equation [S11]: 

   (eq. S3) 

where [P] and [L] are total concentration of protein (HSA) and ligand (Pd-complexes). The 

values of n and Ka were obtained from the slope and intercept of the modified SV plot, 

respectively. 

In competition binding experiments, 10 min pre-incubated equimolar mixtures of 

HSA‒warfarin or ‒ibuprofen (1 μM) were titrated with Pd‒complexes up to five-fold molar 

excess. An excitation wavelength of 280 nm was selected, and fluorescence spectra were 

recorded in the range of 300‒500 nm. Ligands binding constants were calculated as described 

above. 

The circular dichroism (CD) measurements were carried out on Jasco J-815 

spectropolarimeter (Japan Spectroscopic, Japan). Far-UV CD spectra of HSA (30 μM) in the 

presence and absence of ligands (30 μM and 120 μM) were recorded in the range of 200–250 nm 

at room temperature, under constant nitrogen flush, with an accumulation of three scans. Mean 

residue ellipticity (MRE) was calculated from equation:  

   (eq. S4) 

where θ is ellipticity in mdeg at 209 nm, r is number of amino acid residues (585), l is the path 

length of the cell in cm (0.01), and [HSA] is molar concentration of protein.  

The α-helical content of free and bound HSA was calculated from MRE values at 209 nm 

using the following equation [S3]: 

  (eq. S5) 

where MRE208 is the observed MRE value at 208 nm, 4000 is the MRE of the β–form and 

random coil conformation cross at 208 nm and 33,000 is the MRE value of a pure α–helix at 208 

nm. 

Molecular docking  

The crystal structure of HSA in complex with warfarin was downloaded from RCSB database, 

PDB code 2BXD [S4]. For DNA structures, we chose two, PDB coded 3U2N [S5] and 4U8A 

[S6]. The crystal structure of topoisomerase I (Top I) in the complex with camptothecin was 
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downloaded from RCSB database, PDB code 1T8I [S7]. The crystal structure of topoisomerase 

II (Top II) in the complex with etoplatin was downloaded from RCSB database, PDB code 

5GWI [S8].  All heteroatoms from crystal structures were removed, leaving only protein or 

DNA. Ligands were built in Avogadro and initially geometrically optimized using MMFF94 

force field [S9]. They were further optimized on B97D level of theory [S10], using 6-31g++ 

[S11, S12] basis set for C, N O and H atoms and LanL2DZ [S13–S15] for Pd atom in 

Gaussian09 D.01 software [S16]. Protein, DNA and ligand structures were prepared in Autodock 

Tools 1.5.6 [S17, S18]. Partial charges on ligand atoms in were calculated using MOPAC2016 

[S19] on PM7 [S20] level of theory with COSMO solvation model in case of Tops I and II 

docking. Dielectric constant was set to 12.4 (pyridine). The grid box for HSA was set in center of 

warfarine binding site, with dimensions 40×40×40 and grid spacing 0.375 Å. For docking into 

DNA structures, the grid box dimensions were 88×88×126. The grid box for Top I was set in the 

center of receptor camptothecin binding site, with dimensions 60×60×60. The grid box for Top II 

was set in the centre of receptor etoplatin binding site, with the same dimensions as for Top I. 

The simulated annealing protocol was used to dock ligands into receptors, with 100 runs and 50 

cycles. The Pd parameters were taken from Molecular Graphics Laboratory site 

(http://mgl.scripps.edu/). Docking was carried out in Autodock 4.2.6 [S18]. 

 

Top I Activity Inhibition Assays 

Top I reaction was conducted in the reaction mixture (20 µL) containing buffer Tango (33 mM 

Tris–acetate pH 7.9, 10 mM magnesium acetate, 66 mM potassium acetate, 100 µg mL–1 bovine 

serum albumin (BSA); Thermo Scientific, Waltham, Massachusetts, USA), 200 ng of 

pBlueScript SK (-) plasmid (supercoiled DNA substrate) and 1 or 3 (in DMSO) at the 

appropriate concentration. After addition of one unit of Top I (Invitrogen, Carlsbad, California, 

USA) the mixtures were incubated for 30 min at 37°C. The same mixture to which was added 

only DMSO or DMSO and Top I, but not chemical inhibitors were used as negative and positive 

control reactions, respectively. The composition of DNA molecules was analyzed by 

electrophoresis on 0.9% agarose gel (at a constant voltage of 80 V) in 1 × TAE buffer (40 mM 

Tris, 20 mM acetic acid, 1 mM EDTA). The gel was stained with 1µg mL–1 ethidium bromide 

solution (30 min at room temperature), distained in distilled water (30 min at room temperature) 

and visualized under UV light. 

Gel electrophoresis study of interactions with plasmid DNA 

The interaction of 1 and 3 with plasmid DNA was investigated by agarose gel electrophoresis. 

pBlueScript SK (-) plasmid (0.01 M) in 5 mM Tris buffer (pH = 7.2) was treated with 1 and 3 at 

37 °C. The samples were incubated for 90 and 120 min, and then loading buffer was added. The 

samples were then examined by electrophoresis at 6 V cm–1 on 0.9% agarose gel using Tris–

boric acid–EDTA buffer. After electrophoresis, the bands were visualized using UV light and 

photographed. The cleavage reaction was initiated by the addition of the complex and quenched 

with 2 µL of the loading buffer. 
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Scheme S1. Atom numbering used in NMR 

 

 

Fig. S1 IR spectrum of 5. 
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Fig. S2 UV/Vis spectrum of 5 in DMSO. 

 

 

Fig. S3 1H NMR spectrum of 5 in DMSO-d6. 
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Fig. S4 13C NMR spectrum of 5 in DMSO-d6. 

 

 

Fig. S5 2D HSQC spectrum of 5 in DMSO-d6. 

 



10 

 

 
Fig. S6 2D HMBC spectrum of 5 in DMSO-d6. 

 

Fig. S7 2D COSY spectrum of 5 in DMSO-d6. 
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Fig. S8 2D NOESY spectrum of 5 in DMSO-d6. 
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Results and discussion 

Synthesis and characterization 

In our previous work Pd(II) complexes 1–4 with ligands q8ahaOEt, q2ahaOEt, py2ahaOEt, and 

py2achaOEt were obtained by template reactions of K2[PdCl4], haOEt×HCl and corresponding 

N-heteroaromatic carbonyl compounds [S21] NN’ bidentate mode of coordination for this class 

of ligands was confirmed in both solution and solid state. In this work, novel Pd(II) complex 

with in situ obtained py2bzhaOEt ligand was synthesized by the same procedure - mixing of 

ethanolic solution of py2bz and haOEt×HCl with water solution of metal salt (Scheme S2). The 

results of elemental analysis confirmed that py2bzhaOEt was formed and that the inner sphere of 

the complex contains two chlorides and one palladium ion per ligand. The value of molar 

conductivity of 5 in DMSO is significantly lower than threshold value for 1 : 1 electrolytes 

[S22], pointing to the non-electrolyte nature of the complex. In the IR spectrum of 5 several 

characteristic vibrations were noticed and assigned: ν(N‒H) at 3244 cm–1, ν(C=O) strong band at 

1743 cm–1, as well as very strong band at 1205 cm‒1 which originates from ν(C‒O). Also, strong, 

characteristic band at 1586 cm‒1 is due to C=N group, while low intensity ν(N‒N) vibration was 

noticed at 1024 cm‒1. These values are very close to corresponding data obtained for 1–4 [S21]. 

The presence of the signal at 8.02 ppm, assigned to N3–H, in 1H NMR spectrum of 5 indicates 

that pybzhaOEt is coordinated to Pd(II) in neutral form. The obtained spectroscopic data 

corroborate molecular structure of 5, where the neutral ligand binds the metal in a bidentate 

fashion, while the remaining two metal coordination sites are occupied by chloride ions. This is 

also confirmed by single crystal X-ray diffraction. 

 

 
 

Scheme S2. Synthesis of [PdCl2(py2bzhaOEt)] (5) 

 

Table S1 summarizes crystallographic data for 5. Molecular structure of 5 with the atom 

numbering is given in Figure S9. Compound 5 is a molecular complex in which palladium ion 

sits in the center of the slightly distorted square planar coordination environment formed by 

pyridine nitrogen N1, imine nitrogen N14, and two chloride anions (which balance the metal 

charge). A descriptor  for the geometry of the coordination sphere equals to 0.08, which is fairly 

close to a theoretical value of 0.00 for an ideal square planar coordination core [S23]. Crystal 
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packing of 5 is characterized by isolated complex molecules with only one bifurcated 

intramolecular hydrogen bond observed. Table S2 summarizes geometrical details of a single 

bifurcated H-bond [S24] where the imine nitrogen N15 acts as a double donor towards 

intramolecular acceptors Cl2 and O1. 

 
Figure S9. ORTEP drawing of 5 with the atom numbering. Thermal ellipsoids are given at the 

50% probability level. Selected bond lengths [Å] and angles [°] with e.s.u.’s in parentheses:  

Pd–N1, 2.013(3); Pd–N14, 2.026(4); Pd–Cl1, 2.2883(14); Pd–Cl2, 2.2945(12); N1–Pd–N14, 

79.52(14); N1–Pd–Cl1, 95.05(9); N1–Pd–Cl2, 174.38(9); N14–Pd–Cl1, 174.52(11);  

N14–Pd–Cl2, 94.86(11); Cl1–Pd–Cl2, 90.57(5). 
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Table S1 Crystallographic data for 5 

 

Structure 5 

Brutto formula C16H17Cl2N3O2Pd 

Formula weight (gmol-1) 460.62 

Crystal color and habit Yellow stick 

Crystal dimensions (mm) 0.02 x 0.03 x 0.17 

Space group P21/n 

a (Å) 14.4227 (3) 

b (Å) 7.2284 (2) 

c (Å) 17.7189 (4) 

 () 101.744 (2) 

V (Å3) 1808.58 (8) 

Z 8 

 (CuK) (mm-1) 11.115 

Absorption correction Multi-scan 

F(000) 920 

 max () 62.29 

No. refl. measured 5039 

No. refl. unique 2799 

No. refl. observed [I>2(I)] 2420 

Rint 0.0393 

Rσ 0.0566 

Parameters 222 

R1 [I>2(I)] 0.0389 

wR2, all 0.1019 

S 1.002 

max, min (eÅ-3) 0.75, -0.64 
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Table S2 H-bond parameters in the structure of 5 

 

D-H···A H···A (Å) D···A (Å) D-H···A (°) D-H···A 

N15-HCl2 0.92 (5) 2.29 (6) 3.076 (4) 144 (5) 

N15-HO1 0.92 (5) 2.29 (6) 2.706 (6) 103 (4) 

 

 

 

Stability of the complexes 1 and 3 

 

The aqueous solution behaviour with respect to hydrolysis of 1 and 3 was studied in DMSO/H2O 

1:100 (v/v) at 298 K over 24 h by UV-Vis spectroscopy. The complexes were relatively stable, 

as can be seen from their electronic absorption spectra (Figure S10). Complex 1 showed less than 

2% decrease of the intensity of the band with an absorption maximum at 333 nm (Figure S10A), 

while decrease of the intensity of the band at 329 nm for complex 3 was less than 5% (Figure 

S10B). 

 

 
 

Fig. S10. UV-Vis spectroscopy data of 1 (A) and 3 (B) in DMSO/H2O 1 : 100. First 

measurement (black), after 24 h (red). 

 

 

Molar conductivity measurments of freshly prepared solutions of 1 and 3 in DMSO and 

conductivity measurments of the same samples after 24 h coborrate stability of the complexes 

since incerase in ΛM  for both samples after 24 h was less than 2.5 Ω–1 cm2 mol–1. 
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Anticancer experiments 

 

 
 

Fig. S11. Concentration-response curves for investigated complexes on THP-1 (A) and MCF-7 

(B) cells, and for cisplatin on MCF-7 cell (C). All results are presented as percentages of 

apoptotic cells determined by means of Annexin V/PI double staining method for two 

independent experiments (circles and crosses). ApoC50 and ApoC25 concentrations were 

computed using asymmetric five-parameter sigmoidal curve in GraphPad Prism software. 
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Fig. S12. Different types of cell death in THP-1 (A) and MCF-7 (B) cells treated with 

investigated compounds. The types were determined by means of Annexin V/PI assay after 24 h 

incubation. Results are represented as the mean ± SD percentages of two replicates from 

independent experiments. 



18 

 

Complex 3 challenges independent activation of intrinsic and extrinsic apoptosis pathways in 

both treated cell lines 

 

To assess the degree of apoptosis dependency on caspase activation, we tested how co-

incubation of cells with investigated compound and pancaspase inhibitor Z-VAD-fmk affect 

mode of cell death compared to samples treated with investigated compound only. For that 

matter, influence of caspases inhibition on both necrosis and apoptosis was followed, while 

within apoptotic death early and advanced phases were observed separately. This approach 

allows reviewing which of those events are impacted in term of inhibition or stimulation due to 

the lack of caspase activity.  

 

 
 

Fig. S13. Percentages of cell death inhibition in cells due to co-incubation with pan-caspase 

inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoro methylketone (Z-VAD-fmk) and 

investigated compounds, determined by means of Annexin V/PI staining method after 6 h of 

incubation. Results are expressed as the mean ± SD of two replicates from independent 

experiments. 
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As it can be seen in Figure S13, inhibition of caspase activity in THP-1 cells results in 

almost identical percentages of suppressed apoptotic events: 41 ± 9 % and 41 ± 13 % in samples 

subjected to 1 and 3, respectively. Necrosis is also inhibited but in a different extent between 

those treatments (50 ± 2 % and 32 ± 7 % for 1 and 3, respectively). However, there is significant 

discrepancy regarding impact of caspase inhibition on early and advanced phases of apoptotic 

process. There is a significant increase of Annexin V single-stained events in THP-1 cells co-

incubated with Z-VAD-fmk and 3 that demonstrates initiation of apoptotic death by this 

compound is actually caspase-independent (–155 ± 53 %). On the other hand, both early and late 

phases of apoptosis in 1-treated THP-1 cells are inhibited.  

Likely to results reviewed in THP-1 cells, the addition of Z-VAD-fmk to MCF-7 cells 

subjected to each of investigated compounds reduces incidence of apoptotic deaths in a similar 

extent (51 ± 6 % and 57 ± 18 % for 1 and 3, respectively, Figure S13). Furthermore, caspase-

independent initiation of apoptotic death described above in THP-1 samples subjected to 3 here 

is seen in MCF-7 cells too (–162 ± 74 %), together with strong caspase-dependency of its 

advanced phases (69 ± 12 %). On the contrary, induction of apoptosis with 1 displays strong 

caspase-dependency (67 ± 8 %), while its evolution is barely affected by inhibition of caspase 

cascades (7 ± 4 %). 

Although process of necrotic death, either being controlled or accidental, is not directly 

related to, or managed by activation of caspase pathways, assessment of necrosis feedback to co-

incubation with pan-caspase inhibitor may provide additional information. Commonly, it is 

expected that percentage of necrotic cells increases due to addition of Z-VAD-fmk as a 

consequence of interrupted apoptotic signaling transduction. However, if in the samples treated 

with investigated compound majority of necrotic cells result as a downstream events 

subsequently to triggered apoptosis (aponecrosis) [S25, S26], it can be expected that obstructed 

inception of apoptosis due to presence of pan-caspase inhibitor might consequently decreases the 

incidence of necrosis in Z-VAD-fmk co-treated samples. Even that percentage of necrotic cells is 

negligible in THP-1 samples evaluated after 24 h treatment with either 1 or 3 (Figure 1A, main 

text), results of the current experiment reveal that aponecrosis can occurs as an early event 

(Figure S13). On the contrary, necrosis is notably present in some MCF-7 samples after 24 h 

incubation with investigated compounds (Figure 1B, main text), but addition of Z-VAD-fmk 

results with meaningful augmentation of necrotic events. Those facts indicate that necrosis in 

MCF-7 cells subjected to 1 and 3 is most probably developed independently of apoptosis. 

Previously, we reviewed that apoptosis in THP-1 cells caused by the treatment with 

cisplatin was modestly caspase-dependent (23.5 ± 12 % of apoptotic events inhibited by Z-VAD-

fmk) [S27]. Here in MCF-7 cells (Figure S13), apoptosis challenged by cisplatin displays strong 

caspase-dependency (64 ± 5 % of inhibition), particularly its initiation (84 ± 2 %) as well as 

process of its evolution (55 ± 7 %). There is obvious phenotypically specific response of THP-1 

and MCF-7 cells to cisplatin, which is even more pronounced in terms of results on activity of 

caspase-8 and -9.  
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Complex 1 achieves superior inhibition of MCF-7 spheroids’ growth than other tested 

compounds 

 

 

 
Fig. S14. Growth rate graphs for MCF-7 3D spheroids non-treated and treated with investigated 

complex. Results are represented as the fold change of a single replicate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 

 

Spectroscopic studies revealed binding of 1 and 3 to human serum albumin (HSA) 

 

Fig. S15. (A) Stern–Volmer plots of HSA fluorescence quenched by 1 or 3 at three different 

temperatures. Synchronous fluorescence spectra of HSA (1 μM) with (B) Δλ = 60 nm (Trp) and 

(C) Δλ = 15 nm (Tyr) in the presence of increasing concentration of Pd-ligands (0-14 μM) for 

curves a to i, respectively. 
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Docking of 1 and 3 to Topoisomerases 

 

 

 

 

Fig. S16. Etoplatin position from crystal structure 5GWI (green carbon atoms) and docked pose 

(grey carbon atoms). Met 782 is also presented. 

 

 

Fig. S17. Crystal coordinates of camptothecin in active site of Top I. Green: hydrophilic 

interactions. Purple/grey: aromatic and other hydrophobic interactions. 

 

Met 782 
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Fig. S18. Compound 1 docked in Top II active site, DNA pocket. 

 

 
Fig. S19. Compound 1 docked in Top II active site, Met 782 pocket. 
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Fig. S20. Compound 3 docked in Top II active site, DNA pocket. Green lines: hydrophilic 

interactions. Orange/purple: hydrophobic. 

 

 

 

 
Fig. S21. Compound 3 docked in Top II active site, Met 782 pocket. 
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DNA Top I Inhibitory Activity of 1 and 3 

 

 

Fig. S22. Agarose gel showing a inhibition of Top  I with increasing concentrations of 3. Lanes: 

(A - MW) GeneRuler 1 kb Plus DNA Ladder 0.1-20 kb (Thermo Fisher Scientific);  (B - MW) 

GeneRuler DNA LadderMix 0.1-10 kb (Thermo Fisher Scientific); (A and B - 1) pBlueScript SK 

(-) without Top I; (A and B - 2) pBlueScript SK (-) with Top I; (A 3-8 and B 3-9) pBlueScript 

SK (-) with Top I and increasing concentrations of 3: (A3) 0.1 µM; (A4) 1 µM; (A5) 10 µM; 

(A6) 100 µM; (A7) 500 µM; (A8) 1000 µM; (B3) 0.1 µM; (B4) 1 µM; (B5) 2 µM; (B6) 4 µM; 

(B7) 6 µM; (B8) 8 µM; (B9) 10 µM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



26 

 

Gel electrophoresis study of interactions of 1 and 3 with plasmid DNA 

 

 

Fig. S23. Results of agarose gel electrophoresis of interaction of pBlueScript SK (-) plasmid with 

1 (A) and 3 (B) after 120 minutes of incubation. Lane 1 – control plasmid pBlueScript SK (-); 

lane 2, 3, 4, 5, 6, 7 and 8 – plasmid pBlueScript SK (-) with 50 µM, 100 µM, 200 µM, 300 µM, 

500 µM, 750 µM and 1000 µM of corresponding the complex, respectively; lane 9 –  control 

plasmid pBlueScript SK (-) + 3 µM of DMSO; Lane 10 – control plasmid pBlueScript SK (-); 

MW - GeneRuler 1 kb Plus DNA Ladder 0.1-20 kb (Thermo Fisher Scientific). 
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