Supplementary material for the article:

Beškoski, V. P.; Yamamoto, A.; Nakano, T.; Yamamoto, K.; Matsumura, C.; Motegi, M.; Beškoski, L. S.; Inui, H. Defluorination of Perfluoroalkyl Acids Is Followed by Production of Monofluorinated Fatty Acids. *Science of the Total Environment* **2018**, *636*, 355–359. https://doi.org/10.1016/j.scitotenv.2018.04.243

# **Materials and Methods**

#### PFAA contents in the sediment samples

For extraction of PFAAs, 10 g from Site A and 1 g from Site B of sediments, previously dried to  $105^{\circ}$ C and homogenized, were used according to a previously described procedure (Beškoski et al., 2013). As mass-labeled surrogates, 10 µL of MPFAC-MXA (each 100 ng mL<sup>-1</sup> in methanol), were spiked into the sample. All results were calculated according to dry matter, while percentages were calculated according to mass. Fluorinated chemicals analyzed in the sediment samples are listed in Table S1.

#### Quality control, method limits of detection (LOD), and method limits of quantification (LOQ)

Mass axis calibration was conducted using a mixture of sodium dodecyl sulfate, sodium taurocholate, and Ultramark 1621 (Lancaster Synthesis, Ward Hill, MA). The instrumental LOD was defined empirically as the concentration producing a signal to noise ratio of 3, and the LOQ was defined as the concentration producing a signal to noise ratio of 10. The method detection limit (MDL) and the method quantification limit (MQL) were determined by dividing the LOD and LOQ by the concentration factor (Table S5). The sampling containers, glass jars, polypropylene bottles as well as all the glassware were rinsed with methanol and Milli-Q water prior to use. Teflon bottles and Teflon-lined caps were avoided throughout the analysis. HPLC grade water, SPE blank, solvents and sample bottle blank were all analyzed, and no analytes were detected.

### **Results and Discussion**

# Change of basic parameters during biotransformation study

After one week of incubation, the pH decreased in BT and BC for both A-CB and B-CB (Fig. S1a and S1b), suggesting microbiological production of organic acids. Increases in pH during second and third weeks suggested changes within the microbial community and consumption of the previously produced organic acids as a source of carbon or oxygen limitation in the later stages of the study. After an increase in the number of bacteria in the first seven days of incubation up to  $5 \times 10^8$  colony forming unit (CFU) mL<sup>-1</sup>, the number was stable until the end of the study. In A-YM and B-YM, the numbers of CB increased in BT and BC (Fig. S1c and S1d). In contrast, after an initial increase in the numbers of YM, their number decreased to  $10^6$  CFU mL<sup>-1</sup> in BT and BC, except for A-YM in BC. To confirm oxygen limitation, the number of anaerobic bacteria was analyzed in all BT model systems at the beginning ( $5x10^4$ ) and at the end of the experiments ( $5.2x10^5$ ,  $6.4x10^6$ ,  $7.7x10^6$  and  $8.1x10^6$  in A-CB, B-CB, A-YM and B-YM, respectively). Results are suggesting that in the later phases of the experiment, conditions were favorable for the growth of anaerobic bacteria. Changes within the composition of the microbial consortia were accompanied by changes in pH. The pH in all AC model systems did not change significantly.

| Formula/Name/Acronym      | No. of CF <sub>2</sub> groups | Acronym | Analyte                  |
|---------------------------|-------------------------------|---------|--------------------------|
|                           | m = 2                         | PFBA    | Perfluorobutanoate       |
|                           | m = 3                         | PFPeA   | Perfluoropentanoate      |
|                           | m = 4                         | PFHxA   | Perfluorohexanoate       |
| $CF_3(CF_2)_m CO_2^-$     | m = 5                         | PFHpA   | Perfluoroheptanoate      |
| Deathrane allers          | m = 6                         | PFOA    | Perfluorooctanoate       |
| Perfluoroalkyl            | m = 7                         | PFNA    | Perfluorononanoate       |
| carboxylates              | m = 8                         | PFDA    | Perfluorodecanoate       |
| (PFCAs)                   | m = 9                         | PFUnDA  | Perfluoroundecanoate     |
| (FICAS)                   | m = 10                        | PFDoDA  | Perfluorododecanoate     |
|                           | m = 11                        | PFTrDA  | Perfluorotridecanoate    |
|                           | m = 12                        | PFTeDA  | Perfluorotetradecanoate  |
| $CF_3(CF_2)_nSO_3^-$      | <i>n</i> = 3                  | PFBS    | Perfluorobutanesulfonate |
|                           | <i>n</i> = 5                  | PFHxS   | Perfluorohexanesulfonate |
| Perfluoroalkyl sulfonates | <i>n</i> = 7                  | PFOS    | Perfluorooctanesulfonate |
| (PFSAs)                   | <i>n</i> = 9                  | PFDS    | Perfluorodecanesulfonate |

 Table S1. Perfluoroalkyl acids (PFAAs) described in this study.

Two types of functional groups with variable  $CF_2$  chain length were included: perfluoroalkyl carboxylates (PFCAs) and perfluoroalkyl sulfonates (PFSAs).

| 1 abic 52. | Widdel syste      | III setup useu ! | in this study.            |        |                  |  |
|------------|-------------------|------------------|---------------------------|--------|------------------|--|
| No.        | Model             | Microbial        | Microbiological media     | PFAA   | Sampling         |  |
| INO.       | system            | consortia        | Microbiological media     | tested | schedule (day)   |  |
| 1.         | $\mathrm{BT}^{1}$ | $A^2$ - $CB^3$   | Pushnal Hass with glucosa | PFOS   | _                |  |
| 2.         | BT                | $B^4$ -CB        | Bushnel Haas with glucose | PFOA   | 0 7 14 21 28     |  |
| 3.         | BT                | $A-YM^5$         | Malt extract broth        | PFOS   | 0, 7, 14, 21, 28 |  |
| 4.         | BT                | B-YM             | Mait extract broth        | PFOA   |                  |  |
| 5.         | $BC^{6}$          | A-CB             | Duchnel Hoos with alugose | _7     |                  |  |
| 6.         | BC                | B-CB             | Bushnel Haas with glucose | -      | 0 7 14 21 20     |  |
| 7.         | BC                | A-YM             | Malt averaget breath      | -      | 0, 7, 14, 21, 28 |  |
| 8.         | BC                | B-YM             | Malt extract broth        | -      | -                |  |
| 9.         | $AC^8$            | _                | Duchnel Hoos with alugose | PFOS   |                  |  |
| 10.        | AC                | -                | Bushnel Haas with glucose | PFOA   | 0 7 14 21 20     |  |
| 11.        | AC                | -                |                           | PFOS   | 0, 7, 14, 21, 28 |  |
| 12.        | AC                | -                | Malt extract broth        | PFOA   |                  |  |
| 1          | 2                 |                  | 2                         |        | 4                |  |

Table S2. Model system setup used in this study.

<sup>1</sup>Biotic test, <sup>2</sup>sediment sample from Site A, <sup>3</sup><u>c</u>hemoorganoheterotrophic <u>b</u>acteria, <sup>4</sup>sediment sample from Site B, <sup>5</sup>yeast and <u>m</u>olds, <sup>6</sup>biotic control, <sup>7</sup>0.05% dimethyl sulfoxide, <sup>8</sup>abiotic control

| Table 55. Instrumental parame | ters for LC/MIS quantitative (targeted) analysis.                          |
|-------------------------------|----------------------------------------------------------------------------|
|                               | Liquid chromatography-tandem mass spectrometry                             |
| Instrument                    | (LC/MS/MS) using Xevo TQ (Waters) coupled with                             |
|                               | ACQUITY UPLC (Waters)                                                      |
| Analytical column             | ACQUITY UPLC BEH (C18, $2.1 \times 50$ mm, $1.7$ µm, Waters)               |
| Detention con column          | ACQUITY UPLC BEH (C18, 2.1 × 100 mm, 1.7 μm,                               |
| Retention gap column          | Waters)                                                                    |
| Column temperature            | 40 °C                                                                      |
| Mobile phase                  | 2 mM ammonium acetate and acetonitrile                                     |
|                               | At a flow rate of 0.3 mL min <sup>-1</sup> , the mobile phase gradient was |
| Gradient profile              | ramped from 1% to 95% acetonitrile in 8 min, kept at 95%                   |
|                               | for 1 min, and then ramped down again to 1%.                               |
| Injection volume              | 5μL                                                                        |
| Ionization                    | Electrospray ionization (ESI) negative-ion mode SI negative-               |
| Ionization                    | ion mode                                                                   |
| Capillary voltage             | 0.5 kV                                                                     |
| Desolvation gas flow          | 1000 L h <sup>-1</sup>                                                     |
| Desolvation gas temperature   | 500 °C                                                                     |

Table S3. Instrumental parameters for LC/MS quantitative (targeted) analysis.

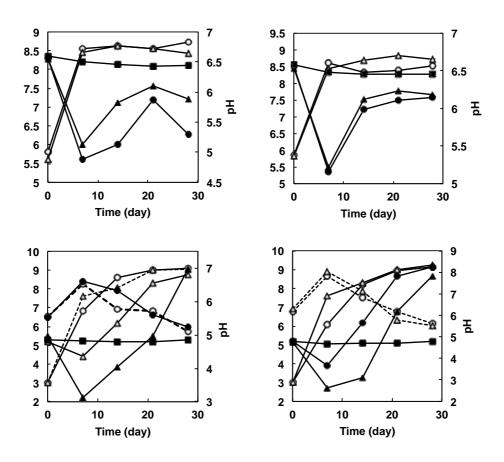
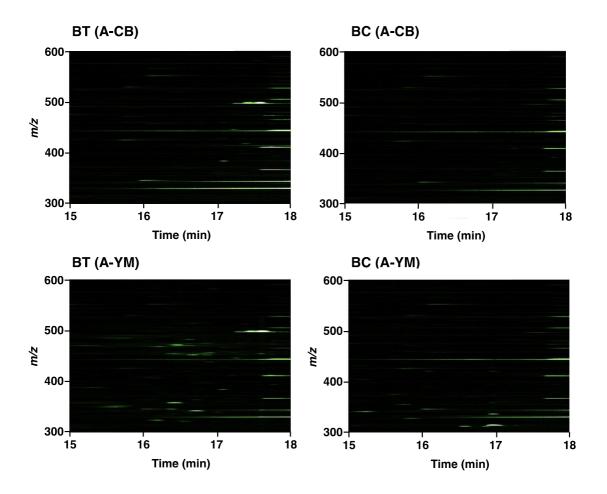
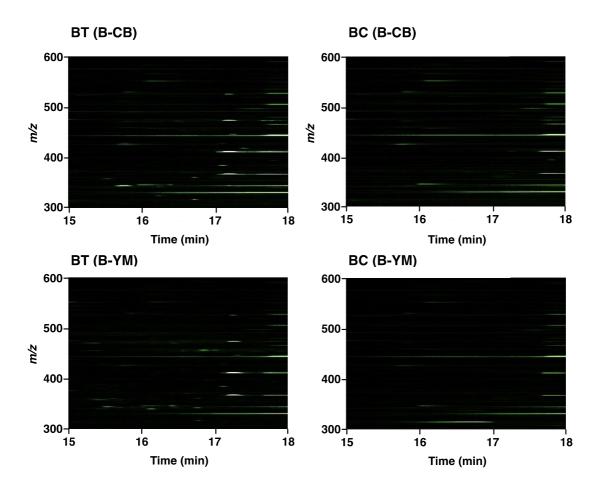

| <b>Table 54.</b> Instrumental pa | arameters for LC/MS untargeted analysis.                                                                       |
|----------------------------------|----------------------------------------------------------------------------------------------------------------|
| Instrument                       | LC/MS using Ultimate 3000 and Exactive (Thermo Fisher)                                                         |
| Analytical column                | TSK-GEL ODS-100S(C18, 2.0×150 mm, 5µm, Tosoh Corp.)                                                            |
| Retention gap column             | TSK-GEL ODS-100S (C18, 2.0×150 mm, 5µm, Tosoh Corp.)                                                           |
| Column temperature               | 40 °C                                                                                                          |
| Mobile phase                     | A: 2 mM ammonium bicarbonate water, B: 2 mM ammonium bicarbonate methanol                                      |
| Gradient profile                 | 10% B (0 min), 10% B (5 min), 80% B(10 min), 100% B (15 min), 100% B (23 min), 10% B (23.1 min) 10% B (28 min) |
| Injection volume                 | 5μL                                                                                                            |
| Ionization                       | ESI negative-ion mode                                                                                          |
| Capillary voltage                | 4.8 kV                                                                                                         |
| Shealth gas flow                 | 15                                                                                                             |
| Capillary temperature            | 250 °C                                                                                                         |
| Monitored <i>m/z</i> range       | 200–3000                                                                                                       |
|                                  |                                                                                                                |

Table S4. Instrumental parameters for LC/MS untargeted analysis.


| <b>Table S5.</b> Method detection limit (MDL), method quantification limit (MQL) and       Image: Comparison of the second secon |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| recovery rates for sediments from Site A and Site B, and model system samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |

| Site A (r | ng [g-dw]   | <sup>-1</sup> )   |                        |       |      |       |      |        |        |         |         |       |       |      |      |
|-----------|-------------|-------------------|------------------------|-------|------|-------|------|--------|--------|---------|---------|-------|-------|------|------|
|           | PFBA        | PFPeA             | PFHxA                  | PFHpA | PFOA | PFNA  | PFDA | PFUnDA | PFDoDA | PFTrDA  | PFTeDA  | PFBS  | PFHxS | PFOS | PFDS |
| MDL       | 0.01        | 0.01              | 0.01                   | 0.01  | 0.01 | 0.01  | 0.01 | 0.01   | 0.01   | 0.01    | 0.01    | 0.02  | 0.02  | 0.02 | 0.02 |
| MQL       | 0.03        | 0.03              | 0.03                   | 0.03  | 0.03 | 0.03  | 0.03 | 0.03   | 0.03   | 0.03    | 0.03    | 0.06  | 0.06  | 0.06 | 0.06 |
| Site B (  | ng [g-dw    | ] <sup>-1</sup> ) |                        |       |      |       |      |        |        |         |         |       |       |      |      |
|           | PFBA        | PFPeA             | PFHxA                  | PFHpA | PFOA | PFNA  | PFDA | PFUnDA | PFDoDA | PFTrDA  | PFTeDA  | PFBS  | PFHxS | PFOS | PFDS |
| MDL       | 0.1         | 0.1               | 0.1                    | 0.1   | 0.1  | 0.1   | 0.1  | 0.1    | 0.1    | 0.1     | 0.1     | 0.2   | 0.2   | 0.2  | 0.2  |
| MQL       | 0.3         | 0.3               | 0.3                    | 0.3   | 0.3  | 0.3   | 0.3  | 0.3    | 0.3    | 0.3     | 0.3     | 0.6   | 0.6   | 0.6  | 0.6  |
| Model s   | ystems B'   | T and AC          | (µg mL <sup>-1</sup> ) | )     |      |       |      |        |        |         |         |       |       |      |      |
|           |             | PFOA              |                        |       |      |       |      |        | :      | PFOS    |         |       |       |      |      |
| MDL       |             | 0.008             |                        |       |      |       |      |        |        | 0.016   |         |       |       |      |      |
| MQL       |             | 0.024             |                        |       |      |       |      |        |        | 0.048   |         |       |       |      |      |
| Recover   | y rate of l | MPFAC-M           | IXA (%)                |       |      |       |      |        |        |         |         |       |       |      |      |
|           |             | MPI               | BA                     | MPHxA | М    | PFOA  | MPF  | NA     | MPFDA  | MPFUnDA | MPFDoDA | MPFHx | S MF  | FOS  |      |
| Site A    |             | 11:               | 3.4                    | 108.5 | 1    | 13.9  | 103  | .2     | 92.5   | 97.8    | 92.3    | 126.7 | 11    | 18.6 |      |
| Site B    |             | 10                | 4.7                    | 106.9 | 1    | 107.3 | 79.  | 9      | 92.4   | 97.3    | 89.0    | 104.2 | 13    | 32.8 |      |


| m/z         | A-CB | B-CB     | ntion time)<br>A-YM | B-YM         |  |
|-------------|------|----------|---------------------|--------------|--|
| 218.103     | 15.6 | <u>-</u> | 15.5                | D-1 M        |  |
| 244.154     | -    | -        | 16.1                | 16.1         |  |
| 263.077     | 15.7 |          | -                   | -            |  |
| 264.061     | 15.5 | 15.5     | -                   | -            |  |
| 295.132     | 15.9 | 15.8     | -                   | -            |  |
| 323.163     | 16.6 | 16.6     | 16.5                | -            |  |
| 525.105     | 10.0 | 10.0     | 17.0                | -            |  |
| 325.179     | -    | 16.2     | 16.2                | -            |  |
|             |      | 16.5     | 16.5                |              |  |
| 339.158     | -    | -        | 16.6                | 16.1<br>16.5 |  |
| 341.173     | 15.5 | 15.5     | 15.4                | 15.4         |  |
| 541.175     | 16.2 | 16.1     | 16.1                | 16.1         |  |
|             | 10.2 | 10.1     | 16.6                | 16.7         |  |
|             |      |          | 17.0                | 10.7         |  |
| 343.189     | -    | 15.7     | 15.7                | 15.7         |  |
|             |      | 16.0     | 16.2                | 16.0         |  |
|             |      | 16.2     | 16.7                | 16.5         |  |
|             |      | 10.2     |                     | 16.7         |  |
| 345.205     | _    | 15.8     | 15.6                | 15.5         |  |
| 0.01200     |      | 1010     | 16.4                | 15.8         |  |
|             |      |          |                     | 16.5         |  |
| 347.220     | 16.4 | 16.4     | 16.4                | 16.4         |  |
|             |      |          |                     | 16.6         |  |
| 357.226     | -    | -        | -                   | 15.6         |  |
| 359.184     | -    | 15.5     | 15.3                | 15.4         |  |
| 0091101     |      |          | 15.6                | 15.7         |  |
|             |      |          | 16.4                |              |  |
| 361.200     | -    | 15.0     | 14.9                | 15.4         |  |
|             |      |          | 15.5                | 15.6         |  |
| 363.215     | -    | 14.7     | 14.4                | 14.5         |  |
|             |      | 15.5     | 15.3                | 15.4         |  |
|             |      |          | 15.9                | 16.1         |  |
| 419.278     | 17.4 | 17.4     | -                   | -            |  |
| 453.262     | -    | 16.6     | 16.7                | 16.4         |  |
|             |      | 16.8     | 16.9                | 16.8         |  |
| 455.277     | -    | -        | 16.4                | 16.4         |  |
|             |      |          | 16.8                | 16.8         |  |
|             |      |          | 17.6                | 17.5         |  |
|             |      |          |                     | 17.9         |  |
| 457.293     | -    | -        | 16.9                | 16.8         |  |
| 1 400 0 0 - |      | 4        | 17.2                | 17.0         |  |
| 469.256     | -    | 16.2     | 16.2                | 16.1         |  |
| 471.272     | -    | 16.6     | 16.5                | 16.4         |  |
| 473.288     | -    | 16.5     | 16.5                | 16.4         |  |
| 475.303     | 16.7 | 16.9     | 16.8                | 16.6         |  |
| 477.319     | -    | -        | 16.9                | 16.9         |  |
| 483.272     | -    | 16.6     | 16.6                | 16.6         |  |
| 501,057     | 15.3 | -        | -                   | -            |  |
| 519.068     | 14.7 | -        | -                   | -            |  |
| 412.964     |      | 17.2     |                     | 17.2         |  |
| (PFOA)      | -    | 11.2     | -                   | 17.2         |  |
| 498.927     | 17.5 |          | 17.5                |              |  |
| (PFOS)      |      |          |                     |              |  |



**Fig. S1.** Change of number of microorganisms and pH during biotransformation experiment with A-CB (a), B-CB (b), A-YM (c), and B-YM (d). Open and closed symbols on solid lines denote the number of bacteria and pH. respectively. Open symbols on dotted lines denote the number of veast and



**Fig. S2.** LC/MS spectra of biotic test (BT) and biotic control (BC) model systems incubated with PFOS after 28 days of incubation.



**Fig. S3.** LC/MS spectra of biotic test (BT) and biotic control (BC) model systems incubated with PFOA after 28 days of incubation.