Supplementary data for article:

Novakovic, M.; Bukvicki, D.; Andjelkovic, B.; Ilic-Tomic, T.; Veljic, M.; Tesevic, V.; Asakawa, Y. Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia Cruciata. *Journal of Natural Products* **2019**, 82 (4), 694–701. https://doi.org/10.1021/acs.jnatprod.8b00390

Supporting Information

Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort *Lunularia cruciata*

Miroslav Novakovic,*,†,

Danka Bukvicki,‡,

Boban Andjelkovic,

Tatjana Ilic-Tomic,

Milan Veljic,‡ Vele Tesevic,

and Yoshinori Asakawa

†Institute of Chemistry, Technology and Metallurgy, ‡Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac", §Faculty of Chemistry, ¹Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan

[⋄]Department of Agricultural and Food Sciences, University of Bologna, Via Fanin 46, 40127 Bologna, Italy

Table S1. Elution Program for the Silica Gel Column Separation

n-hexane	100	95	90	88	85	82	80	77	74	71	67
EtOAc	0	5	10	12	15	18	20	23	26	29	33
V (ml)	200	700	700	400	200	700	400	500	700	800	700
Fr. No.	-	-	-	-	-	0-46	47-62	63-82	83-113	114-148	149-182

n-hexane	63	60	57	54	50	40	30	20	0
EtOAc	37	40	43	46	50	60	70	80	100
V (ml)	400	700	700	400	300	300	200	200	200
Fr. No.	183-200	201-229	230-260	261-277	278-290	291-305	306-315	316-330	331-339

Figure S1. Aromatic part of the ${}^{1}H$ NMR spectrum of compound 1

Figure S2. Aliphatic part of the ${}^{1}H$ NMR spectrum of compound 1

Figure S3. Aromatic part of the ¹³C NMR spectrum of compound 1

Figure S4. Aliphatic part of the 13 C NMR spectrum of compound 1

Figure S5. Aromatic part of the COSY spectrum of compound 1

Figure S6. The first part of the NOESY spectrum of compound 1

Figure S7. The second part of the NOESY spectrum of compound 1

Figure S8. The third part of the NOESY spectrum of compound 1

Figure S9. Aromatic part of the HSQC spectrum of compound 1

Figure S10. Aliphatic part of the HSQC spectrum of compound 1

Figure S11. The first part of the HMBC spectrum of compound 1

Figure S12. The second part of the HMBC spectrum of compound 1

Figure S13. Aromatic part of the ¹H NMR spectrum of compound 2

Figure S14. Aliphatic part of the ¹H NMR spectrum of compound 2

Figure S15. Aromatic part of the ¹³C NMR spectrum of compound 2

Figure S16. Aliphatic part of the ¹³C NMR spectrum of compound 2

Figure S17. Aromatic part of the COSY spectrum of compound ${\bf 2}$

Figure S18. The first part of the NOESY spectrum of compound 2

Figure S19. The second part of the NOESY spectrum of compound 2

Figure S20. The third part of the NOESY spectrum of compound 2

Figure S21. Aromatic part of the HSQC spectrum of compound 2

Figure S22. The first part of the HMBC spectrum of compound ${\bf 2}$

Figure S23. The second part of the HMBC spectrum of compound 2

Figure S24. The third part of the HMBC spectrum of compound 2

Figure S25. Aromatic part of the ¹H NMR spectrum of compound 3

Figure S26. Aliphatic part of the ¹H NMR spectrum of compound 3

Figure S27. Aromatic part of the ¹³C NMR spectrum of compound 3

Figure S28. Aliphatic part of the ¹³C NMR spectrum of compound 3

Figure S29. Aromatic part of the COSY spectrum of compound 3

Figure S30. Aromatic part of the NOESY spectrum of compound 3

Figure S31. Aromatic part of the HSQC spectrum of compound 3

Figure S32. The first part of the HMBC spectrum of compound 3

Figure S33. The second part of the HMBC spectrum of compound 3

Figure S34. The third part of the HMBC spectrum of compound 3

Figure S35. Aromatic part of the ¹H NMR spectrum of compound 4

Figure S36. Aliphatic part of the ¹H NMR spectrum of compound 4

Figure S37. Aromatic part of the ¹³C NMR spectrum of compound 4

Figure S38. Aliphatic part of the ¹³C NMR spectrum of compound 4

Figure S39. Aromatic part of the COSY spectrum of compound 4

Figure S40. The first part of the NOESY spectrum of compound 4

 $Figure \ S41. \ Aromatic \ part \ of \ the \ HSQC \ spectrum \ of \ compound \ 4$

Figure S42. Aliphatic part of the HSQC spectrum of compound 4

Figure S43. Aromatic part of the HMBC spectrum of compound ${\bf 4}$

Figure S44. Aromatic part of the ¹H NMR spectrum of riccardin F at room temperature

Figure S45. Aromatic part of ¹H NMR spectrum of the purified riccardin F at 243K

Figure S46. Aromatic part of the ¹H NMR spectrum of compound 5 recorded in CD₃OD

Figure S47. Aliphatic part of the ¹H NMR spectrum of compound 5 recorded in CD₃OD

Figure S48. Aromatic part of the ¹H NMR spectrum of compound **5** recorded in mixture of CDCl₃ and CD₃OD

Figure S49. Aromatic part of the 13 C NMR spectrum of compound **5** recorded in mixture of CDCl₃ and CD₃OD

Figure S50. Aromatic part of the COSY spectrum of compound **11** recorded in mixture of CDCl₃ and CD₃OD

Figure S51. NOE correlations of aromatic protons of compound 5

Figure S52. HSQC correlations of aromatic protons of compound 5

Figure S53. HSQC correlations of aliphatic protons of compound 5

Figure S54. The first part of the HMBC spectrum of compound $\bf 5$ recorded in mixture of CDCl $_3$ and CD $_3$ OD

Figure S55. The second part of the HMBC spectrum of compound **5** recorded in mixture of CDCl₃ and CD₃OD

Figure S56. HMBC correlations of benzyl protons of compound 5

Figure S57. Aromatic part of the ¹H NMR spectrum of compound 6

Figure S58. Aliphatic part of the ¹H NMR spectrum of compound 6

Figure S59. Aromatic part of the ¹³C NMR spectrum of compound 6

Figure S60. Aliphatic part of the 13 C NMR spectrum of compound 6

Figure S61. Aromatic part of the COSY spectrum of compound ${\bf 6}$

Figure S62. The first part of the NOESY spectrum of compound 6

Figure S63. The second part of the NOESY spectrum of compound ${\bf 6}$

Figure S64. Aromatic part of the HSQC spectrum of compound 6

Figure S65. Aliphatic part of the HSQC spectrum of compound 6

Figure S66. The first part of the HMBC spectrum of compound 6

Figure S67. The second part of the HMBC spectrum of compound ${\bf 6}$

Figure S68. Aromatic part of the ¹H NMR spectrum of compound 7

Figure S69. Aliphatic part of the ¹H NMR spectrum of compound 7

Figure S70. Aromatic part of the ¹³C NMR spectrum of compound 7

Figure S71. Aliphatic part of the ¹³C NMR spectrum of compound 7

Figure S72. Aromatic part of the COSY spectrum of compound 7

Figure S73. Aromatic part of the NOESY spectrum of compound 7

Figure S74. Aromatic part of the HSQC spectrum of compound 7

Figure S75. Aliphatic part of the HSQC spectrum of compound 7

Figure S76. The first part of the HMBC spectrum of compound 7

Figure S77. The second part of the HMBC spectrum of compound 7

Figure S78. The third part of the HMBC spectrum of compound 7

Figure S79. HMBC correlation H-8/C-10 in compound 7

Table S2. Cytotoxicity (IC50, µM) of Bisbibenzyls on Two Human Cell Lines Determined by MTT Assay

	Cell	SI	
Compound	MRC5	A549	
Lunularin	200	150	
Perrottetin E	40.0	25.0	
Perrottetin F	30.0	15.0	
Riccardin C	15.0	22.5	
Riccardin F	15.0	30.0	
Riccardin G	7.5	2.5	3
1	40.0	10.0	4
2	60.0	10.0	6
3	5.0	5.0	1
4	15.0	10.0	1.5
5	3.0	5.0	0.6
6	30.0	60.0	
7	15.0	40.0	
Methylated	>120 ^b	>120	
perrottetin E			
Methylated	>120	>120	
Perrottetin F			
Cisplatin	3.5	2.5	1.4

^a Results represent mean of three independant experiments done in quadriplicate, with standard deviation between 1-5%.

^b not cytotoxic under tested conditions.

^cSI – selectivity index