Supplementary data for article:

Lippert, R.; Shubina, T. E.; Vojnovic, S.; Pavic, A.; Veselinovic, J.; Nikodinovic-Runic, J.; Stankovic, N.; Ivanović-Burmazović, I. Redox Behavior and Biological Properties of Ferrocene Bearing Porphyrins. *Journal of Inorganic Biochemistry* **2017**, *171*, 76–89. https://doi.org/10.1016/j.jinorgbio.2017.03.002

Supplementary Information

for

Redox behaviour and biological properties of a novel ferrocene bearing porphyrin

Rainer Lippert¹, Tatyana E. Shubina², Sandra Vojnovic³, Aleksandar Pavic³, Jovana Veselinovic³, Jasmina Nikodinovic-Runic³, Nada Stankovic^{3⊠}, Ivana Ivanović-Burmazović^{1⊠}

¹Chair of Bioinorganic Chemistry, Department of Chemistry & Pharmacy, Friedrich-

Alexander University Erlangen-Nuremberg, Egerlandstraße 1, D-91058 Erlangen, Germany.

² Computer Chemistry Center (CCC), Department of Chemistry & Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, Nägelsbachstraße 25, D-91052 Erlangen,

Germany.

³ Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 444a Vojvode Stepe, 11000 Belgrade, Serbia.

Table of Contents

Table S1 Bacteriostatic effect of porphyrin 4.

Table S2 Antifungal activity of porphyrin 4.

Table S3 Total cytotoxicity of porphyrins 1, 2, 4, and ferrocene 3.

Fig. S1 MIC of porphyrin 4 on C.albicans ATCC 10231.

Fig. S2 Effects of photoactivation on growth of *C. albicans* cultures treated with low doses of TPP **2**, ferrocene **3**, and porphyrin **4**.

Fig. S3 Effects of photoactivation on growth of *S. aureus* culture treated with low doses of TPP **2**, ferrocene **3**, and porphyrin **4**.

Fig. S4 Effects of photoactivation on growth of *B.subtilis* culture treated with low doses of TPP **2**, ferrocene **3**, and porphyrin **4**.

Fig. S5 Effects of photoactivation on growth of *K. pneumoniae* culture treated with low doses of TPP **2**, ferrocene **3**, and porphyrin **4**.

Fig. S6 Effects of photoactivation on growth of *E. faecalis* culture treated with low doses of TPP 2, ferrocene 3, and porphyrin 4.

Fig. S7 Effects of photoactivation on growth of *L. monocytogenes* culture treated with low doses of TPP 2, ferrocene 3, and porphyrin 4.

Fig. S8 UV/vis spectrum and fluorescence spectrum of porphyrin 1 in methylene chloride.

Fig. S9 UV/vis spectrum and fluorescence spectrum of TPP 2 in methylene chloride.

Fig. S10 Isotopic distributions of the UHR-ESI-TOF mass spectrum of porphyrin 4.

Fig. S11 Differential pulse voltammogram of porphyrin 1 and ferrocene 3 in methylene chloride.

Fig. S12 Differential pulse voltammogram of porphyrin 4 and ferrocene 3 in methylene chloride.

Organism	MIC (µg/mL)	sub MIC (µg/mL)	CRT* (h)
S. aureus	31.2	15.6	12
		7.8	4
		3.9	3
B. subtilis	125	62.5	15
		31.2	12
		15.6	6
		7.8	4
K. pneumonie	125	125	15
		62.5	5
E. faecalis	250	125	15
		62.5	5
		31.2	3

Table S1 Bacteriostatic effect of sub MIC concentrations of porphyrin 4.

*CRT – culture recovery time needed for culture to enter phase of exponential growth.

Organism	MIC (µg/mL)
C. albicans ATCC 10231	31.2

250

250

62.5

C. albicans CA-06

A. fumigatus 157/10

M. gypseum 95/10

Table S2 Antifungal activity of porphyrin 4 given as MIC of different pathogenic clinicalfungal isolates.

Table S3 Total cytotoxicity of porphyrins 1, 2, 4, and ferrocene 3 on MRC5 huma	ın			
fibroblasts (IC ₅₀) compared to hemolytic activity (H ₅₀). Concentration range was 5-500				
μ g/mL for each compound tested. IC ₅₀ and H ₅₀ are given in μ g/mL.				

compound	IC ₅₀	H ₅₀
4	20	100
1	10	300
2	500	>500
ferrocene 3	100	>500

• 15.6 μg/mL; ■1.25 μg/mL;

Fig. S2 Effects of photoactivation on growth of *C. albicans* cultures treated with low doses of TPP **2** (50 μ g/mL), ferrocene **3** (50 μ g/mL), and porphyrin **4** (7.8 μ g/mL, round marks, and 15.6 μ g/mL, triangular marks). Growth is given as a percent of control culture growth (100 %). Closed marks represent cultures grown in the dark, while open marks represent cultures grown upon illumination.

Fig. S3 Effects of photoactivation on growth of *S. aureus* culture treated with low doses of TPP **2** (50 μ g/mL), ferrocene **3** (50 μ g/mL), and porphyrin **4** (7.8 μ g/mL, round marks, and 15.6 μ g/mL, triangular marks). Growth is given as a percent of control culture growth (100 %). Closed marks represent cultures grown in the dark, while open marks represent cultures grown upon illumination.

Fig. S4 Effects of photoactivation on growth of *B.subtilis* culture treated with low doses of TPP **2** (50 μ g/mL), ferrocene **3** (50 μ g/mL), and porphyrin **4** (31.2 μ g/mL, round marks, and 62.5 μ g/mL, triangular marks). Growth is given as a percent of control culture growth (100 %). Closed marks represent cultures grown in the dark, while open marks represent cultures grown upon illumination.

Fig. S5 Effects of photoactivation on growth of *K. pneumoniae* culture treated with low doses of TPP 2 (50 μ g/mL), ferrocene 3 (50 μ g/mL), and porphyrin 4 (62.5 μ g/mL, round marks, and 125 μ g/mL, triangular marks). Growth is given as a percent of control culture growth (100 %). Closed marks represent cultures grown in the dark, while open marks represent cultures grown upon illumination.

Fig. S6 Effects of photoactivation on growth of *E. faecalis* culture treated with low doses of TPP **2** (50 μ g/mL), ferrocene **3** (50 μ g/mL), and porphyrin **4** (62.5 μ g/mL, round marks, and 125 μ g/mL, triangular marks). Growth is given as a percent of control culture growth (100 %). Closed marks represent cultures grown in the dark, while open marks represent cultures grown upon illumination.

Fig. S7 Effects of photoactivation on growth of *L. monocytogenes* culture treated with low doses of ferrocene 3 (50 μ g/mL), TPP 2 (50 μ g/mL), and porphyrin 4 (125 μ g/mL, round marks, and 250 μ g/mL, triangular marks). Growth is given as a percent of control culture growth (100 %). Closed marks represent cultures grown in the dark, while open marks represent cultures grown upon illumination.

Fig. S8 UV/vis spectrum of porphyrin **1** in methylene chloride (left); Fluorescence spectrum of porphyrin **1** in methylene chloride at the excitation wavelength of 420 nm (right).

Fig. S9 UV/vis spectrum of TPP **2** in methylene chloride (left); Fluorescence spectrum of TPP **2** in methylene chloride at the excitation wavelength of 420 nm (right).

Fig. S10 Measured (top) and simulated (bottom) isotopic distributions of the peaks at m/z 636.2422 [(C₈₀H₇₈Fe₂N₄O₄)+2H⁺] of the UHR-ESI-TOF mass spectrum of porphyrin **4** in methylene chloride/methanol (1/1) with formic acid at RT (**a**); Measured (top) and simulated (bottom) isotopic distributions of the peaks at m/z 1271.4773 [(C₈₀H₇₈Fe₂N₄O₄)+H⁺] of the UHR-ESI-TOF mass spectrum of porphyrin **4** in methylene chloride/methanol (1/1) with formic acid at RT (**b**).

Fig. S11 Differential pulse voltammogram of a 1:1 mixture of porphyrin 1 ($c=10^{-3}$ M) and ferrocene 3 ($c=10^{-3}$ M) in methylene chloride *vs.* Ag/AgCl as reference.

Fig. S12 Differential pulse voltammogram of a 1:1 mixture of porphyrin **4** ($c=10^{-3}$ M) and ferrocene **3** ($c=10^{-3}$ M) in methylene chloride *vs.* Ag/AgCl as reference.