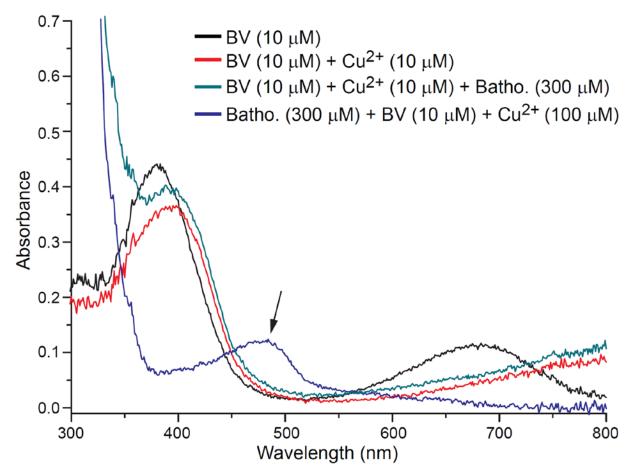
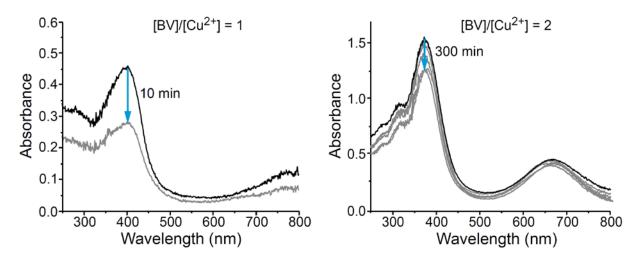


Supplementary data for article:

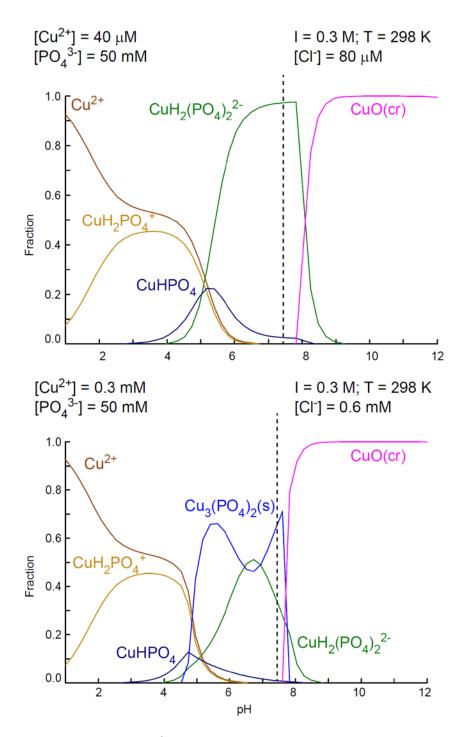
Dimitrijević, M. S.; Bogdanović Pristov, J.; Žižić, M.; Stanković, D. M.; Bajuk-Bogdanović, D.; Stanić, M.; Spasić, S.; Hagen, W.; Spasojević, I. Biliverdin-Copper Complex at Physiological PH. *Dalton Transactions* **2019**, *48* (18), 6061–6070. https://doi.org/10.1039/c8dt04724c

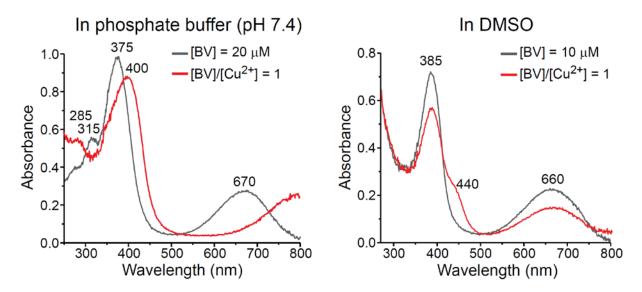

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

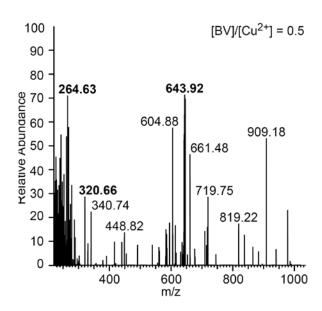
Electronic Supplementary Information

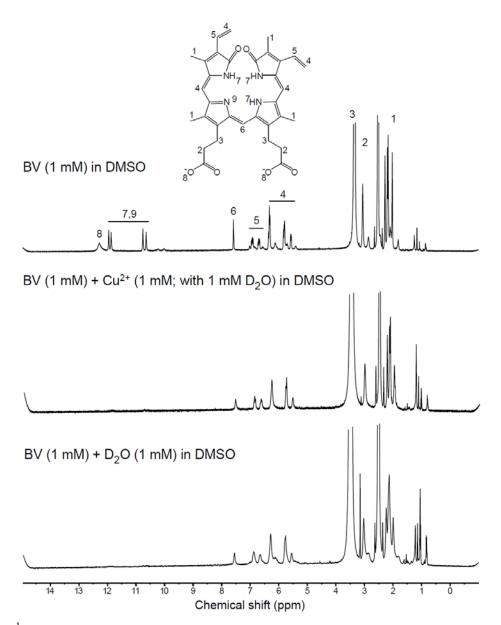

Biliverdin-copper complex at physiological pH

Milena Dimitrijević, Jelena Bogdanović Pristov, Milan Žižić, Dalibor Stanković, Danica Bajuk-Bogdanović, Marina Stanić, Snežana Spasić, Wilfred Hagen, Ivan Spasojević*


*E-mail: : redoxsci@gmail.com


Figure S1. The stability of $[BV]/[Cu^{2+}] = 1$ system in the presence of copper chelating agent bathocuproine in phosphate buffer (50 mM; pH 7.4). Green line - BV and Cu^{2+} were incubated for 5 min before the addition of bathocuproine. Blue line - Cu^{2+} was added to the buffer after BV and bathocuproine (arrow – absorbance line of bathocuproine complex with copper). It is important to note that bathocuproine is a non-innocent copper chelator. In the presence of bathocuproine, the reduction potential for the Cu^{2+}/Cu^{1+} couple is raised by approximately 500 mV, making Cu^{2+} a powerful oxidant. In the process, Cu^{2+} oxidizes BV-Cu complex, resulting in BV degradation (note that BV-related absorance is completely lost (blue line)) and Cu release.


Figure S2. Changes in UV-Vis spectra of BV-Cu²⁺ systems prepared at high concentrations in 50 mM phosphate buffer, pH 7.4. Left: $[BV]/[Cu^{2+}] = 1$; $[BV] = [Cu^{2+}] = 0.3$ mM. Right: $[BV]/[Cu^{2+}] = 2$; [BV] = 2mM; $[Cu^{2+}] = 1$ mM. Aliquots were taken from each system and diluted to lower final concentrations (10 or 40 μ M, respectively), to allow spectra acquisition. It can be observed that the $[BV]/[Cu^{2+}] = 1$ system underwent degradation within 10 min, whereas the $[BV]/[Cu^{2+}] = 2$ system was relatively stable for 5 h.


Figure S3. Speciation diagrams of Cu^{2+} in phosphate buffer (50 mM) at two concentrations – 40 μ M (top) and 300 μ M (bottom). Diagrams were prepared in Hydra-Medusa Software, using the presented parameters.

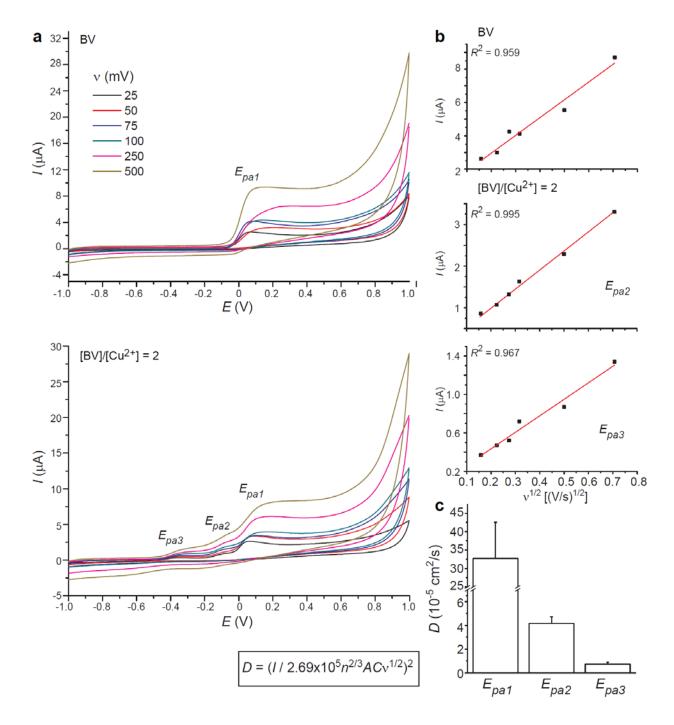

Figure S4. Comparison of UV-Vis spectra of biliverdin (BV) in the absence and the presence of Cu²⁺ in phosphate buffer (50 mM; pH 7.4) and in DMSO. Spectra were recorded after 5 min incubation period.

Figure S5. HESI-MS spectrum (full scan mode) of the system with [BV] = 20 μ M and [Cu] = 40 μ M ([BV]/[Cu] = 0.5). Assignation: m/z 643, BV-Cu complex; m/z 264, propentdyopent; m/z 320, propentdyopent complex with copper.²

Figure S6. ¹H NMR spectra of biliverdin (0.3 mM) in DMSO-d6 in the absence or the presence of Cu^{2+} at equimolar concentration. The bottom spectrum was recorded in a copper-free system, with the equimolar amount of D_2O as in experiments with copper. It can be observed that Cu^{2+} and D_2O induced similar (but not identical) changes. Changes in NH signals could not be observed in the presence of D_2O because of the chemical exchange. The peaks were assigned in accordance to previous reports. ³ The signals labeled with 4 come from two types of protons (-CH= and $=CH_2$). The spectra were collected within 20 min after sample preparation.

Figure S7. Scan rate analysis of BV and BV-Cu complex in phosphate buffer (50 mM; pH 7.4). (a) Cyclic voltammograms of BV (0.4 mM) in absence or presence of Cu²⁺ (0.2 mM) at the boron doped diamond electrode obtained at different scan rates (v = 0.025-0.5 V/s). (b) The dependence between anodic peak currents I at potentials E_{pal} (oxidation of BV), and E_{pa2} and E_{pa3} (oxidation of BV-Cu complex(es)) and $v^{1/2}$. Linear fit and R^2 values are presented. (c) D for BV and BV-Cu complex(es). Randles–Sevick equation (in the box): n, number of transferred e

(1e for all peak currents), A, area of the working electrode (0.0707 cm²); C, concentration of redox species in solution ([BV] = 0.4 mM; [BV-Cu] = 0.2 mM). Results are presented as means (\pm standard deviation) of measurements made at various ν . All three D values were statistically different (p < 0.001; ANOVA with *post hoc* Duncan's test).

Table S1. Raman spectral lines that were observed for BV (1 mM), using the $\lambda = 532$ nm laser excitation line.

Line [cm ⁻¹]	Assignment	References
1619	Lactam stretching	4
1470	C–C deformation, likely between rings	4,5
1443	Stretching CC, stretching CN	6
1393	CH3 asymmetric deformation	6
1362	CH3 deformation	6
1331	In plane bending CH(CH3)	6
1303	CH wagging	6
1254	Lactam ring	6
1179	C–H twisting	4
1101	Stretching C–C, stretching C–N	6
1003	Asymmetric CH ₃ deformation	6
971	C–C stretching mixed with C–H rocking	4
954	Stretching C–C–O	7
844	Stretching ring	6
767	In plane ring deformation	6
717	Out of plane ring deformation	6
684	Out of plane bending C=O	6

References

- (1) L. M. Sayre, *Science*, 1996, **274**, 1933–1934.
- (2) A. L. Balch, M. Mazzanti, B. C. Noll, M. M. Olmstead, *J. Am. Chem. Soc.*, 1993, **115**, 12206–12207.
- (3) (a) D. Chen, J. D. Brown, Y. Kawasaki, J. Bommer, J. Y. Takemoto, *BMC Biotechnol.*, 2012, **12**, 89; (b) G. M. Godziela, H. M. Goff, *J. Am. Chem. Soc.*, 1986, **108**, 2237–2243.
- (4) J. Hu, T. Wang, D. Moigno, M. Wumaier, W. Kiefer, J. Mao, Q. Wu, F. Niu, Y. Gu, Q. Chen, J. Ma, H. Feng, *Spectrochim. Acta A Mol. Biomol. Spectrosc.*, 2001, **57**, 2737–2743.
- (5) J. M. Hu, E. J. Liang, F. Duschek, W. Kiefer, *Spectrochim. Acta A: Mol. Biomol. Spectrosc.*, 1997, **53**, 1431–1438.
- (6) F. Celis, M. M. Campos-Vallette, J. S. Gómez-Jeria, R. E. Clavijo, G. P. Jara, C. Garrido, *Spectrosc. Lett.*, 2016, **49**, 336–342.
- (7) J. Chen, J. M. Hu, R. S. Sheng, Spectrochim. Acta, Part A., 1994, 50, 929–936.