Supplementary data for article:

Kop, T. J.; Dordevic, J.; Bjelakovic, M. S.; Milić, D. Fullerene Bisadduct Regioisomers Containing an Asymmetric Diamide Tether. Tetrahedron 2017, 73 (50), 7073-7078. https://doi.org/10.1016/j.tet.2017.10.069

Supplementary Information

Fullerene bisadduct regioisomers containing an asymmetric diamide tether

Tatjana Kop ${ }^{\text {a }}$, Jelena Đorđevićc ${ }^{\text {b }}$, Mira Bjelaković ${ }^{\text {a }}$, and Dragana Milić ${ }^{\text {b }}$
${ }^{a}$ University of Belgrade - Institute of Chemistry, Technology and Metallurgy, Center for Chemistry, Njegoševa 12, 11000 Belgrade, Serbia. ${ }^{b}$ University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia.

Content

1. Experimental Section: Synthesis of compounds 2-14. 2
2. Table S1. NMR chemical shifts ($\delta(\mathrm{ppm})$) of bisadducts $\mathbf{1 7}$. 8
3. Spectra of compounds 2-16. 9
4. Spectra (IR, NMR, MS and UV) of e-edge regioisomer 17a. 41
5. Spectra (IR, NMR, MS and UV) of e-face regioisomer 17b. 46
6. Spectra (IR, NMR, MS and UV) of trans-4 regioisomer 17c. 51
7. Spectra (IR, NMR, MS and UV) of cis-2 regioisomer 17d. 56

Experimental section

General: Flash column chromatography (FCC) and dry-column flash chromatography (DCFC) were carried out with Merck silica gel $0.04-0.063 \mathrm{~mm}$ and $0.015-0.04 \mathrm{~mm}$, respectively. Thin layer chromatography (TLC) was carried out on precoated silica gel $60 \mathrm{~F}_{254}$ plates. Melting points were determined on a Digital melting point WRS-1B apparatus and are uncorrected. IR spectra were recorded with a Perkin-Elmer FTIR 1725 X spectrophotometer. UV spectra were recorded with a GBC-Cintra 40 UV-vis spectrophotometer. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with Varian Gemini $200\left({ }^{1} \mathrm{H}\right.$ at $200 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 50 MHz) and Bruker Avance spectrometers (${ }^{1} \mathrm{H}$ at $500 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 125 MHz). Chemical shifts are measured in ppm, J in Hz. The sample was dissolved in the indicated solvent system, and TMS was used as an internal reference. The homonuclear 2D (DQF-COSY) and the heteronuclear $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ spectra (HSQC, HMBC) were recorded with the usual settings. The NMR spectra of all carbamates (4-7, $\mathbf{1 1}$ and 12) are consistent with the expected structure but are complicated (splitting of some signals) by the presence of carbamate rotamers. The high-resolution mass spectra were obtained with an Agilent Technologies 6210 TOF LC-MS spectrometer. SEM: Investigations of sample morphology were carried out with SEM, using a JEOL JSM-840A instrument, at an acceleration voltage of 30 kV . A drop of 1 mM solution of sample in CHCl_{3} and ODCB was deposited on the surface of glass substrate and left for 24 h to slowly evaporate in a glass petri dish (diameter 10 cm) under a PhMe atmosphere at room temperature. The investigated samples were gold sputtered in a JFC 1100 ion sputterer and then subjected to SEM observations. The solvents used for the SEM experiments (HPLC grade) were stored over $3 \AA$ molecular sieves and degassed under vacuum prior use.

Synthesis of compounds 2-14.

Compound 2. A suspension of γ-aminobutanoic acid (GABA) 1 ($3.50 \mathrm{~g}, 0.034 \mathrm{~mol}$), benzyl alcohol ($7.30 \mathrm{~g}, 7 \mathrm{~mL}$, $0.068 \mathrm{mmol})$ and p-toluenesulfonic acid monohydrate (PTSA) ($7.10 \mathrm{~g}, 0.037 \mathrm{~mol}$) in PhMe (200 mL) was heated to reflux for 5 h with azeotropic removal of water. The reaction mixture was concentrated to a one third of the volume and the product precipitated by addition of $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The precipitate was filtered, dissolved in $\mathrm{CH}_{3} \mathrm{OH}(60 \mathrm{~mL})$ and again precipitated by addition of $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$, giving after filtration and drying the benzyl ester $2(12.30 \mathrm{~g}$, 99%) as white crystals. M.p. $106.2-106.7^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$; $\operatorname{IR}(\mathrm{ATR}): 3100,3039,2942,1732,1642,1532,1188,1125 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=7.71$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{PTSA}}$), 7.37-7.30 (m, $5 \mathrm{H}, \mathrm{HC}^{\text {Ar }}$), $7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}^{\mathrm{PTSA}}$), $5.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}^{\mathrm{Bn}}\right), 2.95\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(4)^{\mathrm{GABA}}\right), 2.47\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(2)^{\mathrm{GABA}}\right), 2.33(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{H}_{3} \mathrm{C}^{\text {PTSA }}$), 1.92 (quint, $\left.J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(3)^{\mathrm{GABA}}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=173.83\left(\mathrm{CO}_{2} \mathrm{Bn}\right), 143.35$, 141.82, 137.43, 129.91, 129.59, 129.30, 126.91 ($\left.\mathrm{C}^{\mathrm{Ar}}\right), 67.44\left(\mathrm{CH}_{2}^{\mathrm{Bn}}\right), 40.00\left(\mathrm{CH}_{2}(4)^{\mathrm{GABA}}\right), 31.59\left(\mathrm{CH}_{2}(2)^{\mathrm{GABA}}\right), 23.65$ $\left(\mathrm{CH}_{2}(3)^{\mathrm{GABA}}\right), 21.30\left(\mathrm{CH}_{3}^{\text {PTSA }}\right) \mathrm{ppm}$; MS(ESI): Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 194.1181$, found: 194.1167 .

Compound 3. A solution of the PTSA salt $2(0.567 \mathrm{~g}, 1.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was washed with a saturated aqueous NaHCO_{3} solution ($3 \times 15 \mathrm{~mL}$) and dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated leaving the corresponding free amine, which was used in the next step. To a stirred, ice bath cooled solution of the free amine of $2(0.253 \mathrm{~g}, 1.3 \mathrm{mmol})$ and $\left.\mathrm{Et}_{3} \mathrm{~N}(263 \mathrm{mg}, 0.5 \mathrm{~mL})\right)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ a solution of tert-butyl bromoacetate (TBBA) ($255 \mathrm{mg}, 0.21 \mathrm{~mL}, 1.3 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise for 1 h . The reaction mixture was stirred with cooling for an additional 4 h . The solvent was evaporated and the remaining crude product was chromatographed on a SiO_{2} column by DCFC. Elution with $\mathrm{PhMe} / \mathrm{EtOAc}(1 / 1)$ mixture gave the product $\mathbf{3}$ (143 mg , 30%) as yellow oil. IR(ATR): 3340, 2979, 2938, 1743, 1695, 1238, $1167 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.32-$ $7.15\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{HC}^{\mathrm{Ar}}\right), 5.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}^{\mathrm{Bn}}\right), 3.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}-\mathrm{CO}_{2} t \mathrm{Bu}\right), 2.62\left(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(4)^{\mathrm{GABA}}\right), 2.43(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(2)^{\mathrm{GABA}}$), 1.82 (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}(3){ }^{\mathrm{GABA}}$), $1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}^{\mathrm{tBu}}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=173.30\left(\mathrm{CO}_{2} \mathrm{Bn}\right)$, $171.71\left(\mathrm{CO}_{2} t \mathrm{Bu}\right), 135.99$, 128.98 , 127.47, $126.89\left(\mathrm{C}^{\mathrm{Ar}}\right), 81.10\left(\mathrm{C}^{t \mathrm{Bu}}\right), 66.09\left(\mathrm{CH}_{2}^{\mathrm{Bn}}\right)$, $51.47\left(\mathrm{CH}_{2} \mathrm{CO}_{2} t \mathrm{Bu}\right)$, $48.52\left(\mathrm{CH}_{2}(4)^{\mathrm{GABA}}\right), 31.90\left(\mathrm{CH}_{2}(2)^{\mathrm{GABA}}\right), 28.00\left(\mathrm{CH}_{3}{ }^{\mathrm{tBu}}\right), 25.15\left(\mathrm{CH}_{2}(3)^{\mathrm{GABA}}\right) \mathrm{ppm} ; \mathrm{MS}(\mathrm{ESI}):$ Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}: 308,1856$, found: 308,1861 .

Compound 4. To a stirred, ice bath cooled solution of compound $3(0.73 \mathrm{~g}, 2.4 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ a solution of di(tert-butyl)dicarbonate $\left(\mathrm{Boc}_{2} \mathrm{O}, 1.05 \mathrm{~g}, 4.8 \mathrm{mmol}\right)$ in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ was added dropwise. After additional stirring for 24 h , the mixture was washed with brine and dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and the remaining material was purified on a SiO_{2} column by DCFC. Elution with $\mathrm{PhMe} / \mathrm{EtOAc}(8 / 2)$ gave N-Boc protected compound $\mathbf{4}$ as yellow oil ($0.76 \mathrm{~g}, 78 \%$). IR(ATR): 2977, 2934, 1742, 1701, 1458, 1367, 1247, $1153 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, compound exists as a $40: 60$ mixture of rotamers): $\delta=7.35\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{HC}^{\mathrm{Ar}}\right), 5.12(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{H}_{2} \mathrm{C}^{\mathrm{Bn}}$), 3.81 and 3.72 (two s, $2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}-\mathrm{CO}_{2} t \mathrm{Bu}$), 3.32 and 3.28 (two $\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(4)^{\mathrm{GABA}}$), 2.41 and 2.40 (two $\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(2)^{\mathrm{GABA}}$), 1.86 (quint, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(3)^{\mathrm{GABA}}$), 1.45 and 1.43 (two s, $18 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}^{\mathrm{tBu}}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.13,172.97\left(\mathrm{CO}_{2} \mathrm{Bn}\right), 169.17\left(\mathrm{CO}_{2} t \mathrm{Bu}\right), 155.64,155.39\left(\mathrm{CO}^{\mathrm{Boc}}\right), 135.98,128.53$, $128.19\left(\mathrm{C}^{\mathrm{Ar}}\right), 81.37,80.08$ and $79.94\left(\mathrm{C}^{\mathrm{tBu}}\right), 66.17\left(\mathrm{CH}_{2}{ }^{\mathrm{Bn}}\right), 50.29$ and $49.67\left(\mathrm{CH}_{2}-\mathrm{CO}_{2} t \mathrm{Bu}\right), 47.65\left(\mathrm{CH}_{2}(4)^{\mathrm{GABA}}\right)$, $31.32\left(\mathrm{CH}_{2}(2)^{\mathrm{GABA}}\right)$, 28.15, 28.04 and $27.94\left(\mathrm{CH}_{3}{ }^{\mathrm{tBu}}\right)$, 23.68, $23.46\left(\mathrm{CH}_{2}(3)^{\mathrm{GABA}}\right) \mathrm{ppm}$; MS(ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NNaO}_{6}(\mathrm{M}+\mathrm{Na})^{+}: 430.2200$, found 430.2183 .

Compound 5. To a solution of benzyl ester $4(1.23 \mathrm{~g}, 3.0 \mathrm{mmol})$ in $\mathrm{MeOH}(100 \mathrm{~mL}) 5 \% \mathrm{Pd} / \mathrm{C}(123 \mathrm{mg})$ was added and suspension was bubbled with argon. Mixture was hydrogenated at 40 psi at room temperature for 1 h . After filtering the catalyst and evaporating the solvent, crude acid $\mathbf{5}$ was isolated as colorless oil (0.95 g ; 99\%). IR(ATR):

3188, 2979, 2936, 1744, 1707, 1476, 1370, 1251, $1158 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=3.83$ and 3.82 (two s, $2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}-\mathrm{CO}_{2} t \mathrm{Bu}$), 3.34-3.29 (m, $2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(4)^{\mathrm{GABA}}$), 2.34 and 2.33 (two $\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(2)^{\mathrm{GABA}}$), $1.80(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}_{2} \mathrm{C}(3)^{\mathrm{GABA}}\right), 1.48,1.47,1.46,1.43\left(4 \mathrm{~s}, 18 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}^{\mathrm{tBu}}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=177.19,177.03$ $(\mathrm{COOH}), 171.11,170.99\left(\mathrm{CO}_{2} t \mathrm{Bu}\right), 157.73,157.49\left(\mathrm{CO}^{\mathrm{Boc}}\right), 82.88,82.79,81.81,81.60\left(\mathrm{C}^{\mathrm{tBu}}\right), 51.40,50.98,50.00$ $\left(\mathrm{CH}_{2}-\mathrm{CO}_{2} t \mathrm{Bu}, \mathrm{CH}_{2}(4)^{\mathrm{GABA}}\right), 32.20,31.96\left(\mathrm{CH}_{2}(2)^{\mathrm{GABA}}\right), 28.77,28.71,28.50,28.46\left(\mathrm{CH}_{3}{ }^{\mathrm{tBu}}\right), 24.87,24.76$ $\left(\mathrm{CH}_{2}(3)^{\mathrm{GABA}}\right)$ ppm; MS(ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NNaO}_{6}(\mathrm{M}+\mathrm{Na})^{+}: 340,1731$, found: 340,1714; Calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{KNO}_{6}$ $(\mathrm{M}+\mathrm{K})^{+}: 356,1470$, found: 356,1456 .

Compound 6. To a solution of acid $5(55 \mathrm{mg}, 0.17 \mathrm{mmol}, 1$ equiv.), DCC ($70.2 \mathrm{mg}, 0.34 \mathrm{mmol}, 2$ equiv.), and DMAP ($2.1 \mathrm{mg}, 0.017 \mathrm{mmol}, 0.1$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}(17.2 \mathrm{mg}, 0.02 \mathrm{~mL})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, a solution of glycine benzyl ester (GlyOBn, $28.1 \mathrm{mg}, 0.17 \mathrm{mmol}$, 1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added dropwise under an atmosphere of argon. The reaction mixture was stirred for 48 h . The solvent was evaporated to dryness and the reaction mixture was purified by FCC on SiO_{2}. Elution with $\mathrm{PhMe} / \mathrm{EtOAc} 7: 3$ gave the amide $\mathbf{6}(40 \mathrm{mg}, 50 \%)$ as colorless oil. IR(ATR): 3332, 2977, 2936, 1747, 1697, 1459, 1368, 1249, $1176 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$, compound exists as a 75:25 mixture of rotamers): $\delta=7.43-7.05\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{HC}^{\mathrm{Ar}}\right), 7.03$ and $6.22(2 \mathrm{br} \mathrm{s}, \mathrm{NH}), 5.17\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}^{\mathrm{Bn}}\right), 4.07(\mathrm{~d}$, $J=5,8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}-\mathrm{CO}_{2} \mathrm{Bn}$), 3.82 and 3.73 (two s, $2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}-\mathrm{CO}_{2} \mathrm{tBu}$), $3.34\left(\mathrm{t}, J=6,2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(4)^{\mathrm{GABA}}\right.$), $2.30(\mathrm{t}$, $J=7,0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(2)^{\mathrm{GABA}}$), 1.90-1.72 (m, $2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(3)^{\mathrm{GABA}}$), 1.46 and 1.44 (two s, $18 \mathrm{H}, \mathrm{CH}_{3}{ }^{\text {tBu }}$) ppm; ${ }^{13} \mathrm{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.43\left(\mathrm{CO}^{\mathrm{GABA}}\right), 169.88$ and $169.22\left(\mathrm{CO}_{2} \mathrm{Bn}, \mathrm{CO}_{2} t \mathrm{Bu}\right), 156.11\left(\mathrm{CO}^{\mathrm{Boc}}\right), 135.34,129.00,128.58$, 128.34, $125.27\left(\mathrm{C}^{\mathrm{Ar}}\right)$, 81.48, $80.26\left(\mathrm{C}^{t \mathrm{Bu}}\right), 66.97\left(\mathrm{CH}_{2}^{\mathrm{Bn}}\right), 50.34\left(\mathrm{CH}_{2}-\mathrm{CO}_{2} t \mathrm{Bu}\right), 47.34\left(\mathrm{CH}_{2}(4)^{\mathrm{GABA}}\right), 41.37\left(\mathrm{CH}_{2}-\right.$ $\left.\mathrm{CO}_{2} \mathrm{Bn}\right), 33.14\left(\mathrm{CH}_{2}(2)^{\mathrm{GABA}}\right), 28.21$ and $27.99\left(\mathrm{CH}_{3}{ }^{\text {tBu }}\right), 24.60\left(\mathrm{CH}_{2}(3)^{\mathrm{GABA}}\right) \mathrm{ppm}$; MS(ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{7}$ $(\mathrm{M}+\mathrm{H})^{+}: 465.2595$, found 465.2575 .

Compound 7. To a solution of benzyl ester $6(340 \mathrm{mg}, 0.73 \mathrm{mmol})$ in $\mathrm{MeOH}(100 \mathrm{~mL}) 5 \% \mathrm{Pd} / \mathrm{C}(34 \mathrm{mg})$ was added and suspension was bubbled with argon. Mixture was hydrogenated (40 psi) at room temperature for 1 h . After filtering the catalyst and evaporating the solvent, crude acid 7 ($272 \mathrm{mg}, 99 \%$) was isolated as colorless oil. IR(ATR): $3395,2979,2935,2488,1740,1681,1475,1370,1251,1159 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, compound exists as a $48: 52$ mixture of rotamers): $\delta=3.89$ and 3.84 (two s, $\left.4 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}-\mathrm{CO}_{2} t \mathrm{Bu}, \mathrm{H}_{2} \mathrm{C}-\mathrm{CO}_{2} \mathrm{H}\right), 3.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(4)^{\mathrm{GABA}}\right), 2.28$ $\left(\mathrm{t}, J=7,3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(2)^{\mathrm{GABA}}\right.$), $1.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(3)^{\mathrm{GABA}}\right.$), 1.47 and 1.43 (two s, $18 \mathrm{H}, \mathrm{CH}_{3}{ }^{\mathrm{tBu}}$) ppm; ${ }^{13} \mathrm{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=176.05,175.91\left(\mathrm{CO}_{2} \mathrm{H}\right), 173.16\left(\mathrm{CO}^{\mathrm{GABA}}\right), 171.10\left(\mathrm{CO}_{2} t \mathrm{Bu}\right), 157.63,157.46\left(\mathrm{CO}^{\mathrm{Boc}}\right), 82.72$ and $81.54\left(\mathrm{C}^{t \mathrm{Bu}}\right), 51.29,51.02,50.28$ and $47.72\left(\mathrm{CH}_{2}-\mathrm{CO}_{2} t \mathrm{Bu}, \mathrm{CH}_{2}(4)^{\mathrm{GABA}}\right), 41.83\left(\mathrm{CH}_{2}-\mathrm{CO}_{2} \mathrm{H}\right), 34.73$ and 33.82 $\left(\mathrm{CH}_{2}(2)^{\mathrm{GABA}}\right)$, 28.57and $28.33\left(\mathrm{CH}_{3}{ }^{\text {Bu }}\right)$, 26.71, 26.02, 25.62, $25.35\left(\mathrm{CH}_{2}(3)^{\mathrm{GABA}}\right) \mathrm{ppm}$; MS(ESI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+}: 375.2126$, found 375.2129 .

Compound 9. Solution of $\mathrm{Boc}_{2} \mathrm{O}(0.5 \mathrm{M} ; 1.83 \mathrm{~g} ; 8.6 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(17 \mathrm{~mL})$ was added dropwise to a stirred icecooled 0.25 M solution of 1,6-hexanediamine $8(5.00 \mathrm{~g} ; 43.0 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(172 \mathrm{~mL})$, for 6 h . Stirring was continued at room temperature for the next 18 h . Suspension was filtered over a sintered funnel and the solvent was evaporated under vacuum. The residual mixture was redissolved in $\operatorname{EtOAc}(50 \mathrm{~mL})$, washed with a saturated aqueous NaCl solution $(4 \times 15 \mathrm{~mL})$, and dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed under vacuum, yielding 9 as colorless oil ($1.48 \mathrm{~g}, 80 \%$). Further purification was not necessary. (If it is necessary, product may be purified by DCFC on silica-gel, with solvent mixtures $\mathrm{EtOAc} / \mathrm{MeOH} / \mathrm{NH}_{3}(80: 20: 3 \rightarrow 80: 20: 10)$ as eluents). IR(ATR): 3363, 2931, 1700, $1176,871 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.97$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}-\mathrm{Boc}$), $3.10\left(\mathrm{q}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, H_{2} \mathrm{C}-\mathrm{NHBoc}\right.$), 2.68 (t , $\left.J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}-\mathrm{NH}_{2}\right), 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}^{\mathrm{Boc}}\right), 1.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 1.51-1.25\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}^{2-5}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=155.9\left(\mathrm{CO}^{\mathrm{Boc}}\right), 78.5\left(\mathrm{C}^{\mathrm{Boc}}\right), 41.8\left(\mathrm{CH}_{2}-\mathrm{NH}_{2}\right), 40.2\left(\mathrm{CH}_{2}-\mathrm{NHBoc}\right), 33.3,29.8\left(2 \mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{3}^{\mathrm{Boc}}\right)$, 26.3, $26.2\left(2 \mathrm{CH}_{2}\right)$ ppm; ESI-TOF-MS: m / z : Calculated for $\mathrm{C}_{11} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}: 217.1910[\mathrm{M}+\mathrm{H}]^{+}$; found 217.1912.

Compound 10. Solution of BBA ($0.844 \mathrm{~g} ; 0.582 \mathrm{~mL} ; 3.70 \mathrm{mmol} ; 1$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6.75 mL) was added dropwise into a stirred solution of amine $9\left(1.00 \mathrm{~g}, 4.63 \mathrm{mmol} ; 1.25\right.$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}(0.374 \mathrm{~g} ; 0.515 \mathrm{~mL} ; 3.70 \mathrm{mmol}$; 1 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(19.2 \mathrm{~mL})$, at $0{ }^{\circ} \mathrm{C}$. The addition of BBA solution was completed after 1 h . The reaction mixture was then stirred at room temperature for 24 h , washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$ and saturated aqueous NaCl $(2 \times 15 \mathrm{~mL})$, and dried over anh. NaSO_{4}. After filtering and evaporation of the solvent, the reaction mixture was purified by DCFC on SiO_{2}. Elution with EtOAc gave compound 10 as pale yellow oil ($0.813 \mathrm{~g} ; 60 \%$). IR(ATR): 3346, 2974, 2932, 2858, 1741, 1711, 1524, 1457, 1366, 1251, 1175, 967, 751, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.36\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{HC}^{\mathrm{Ar}}\right), 5.17\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}^{\mathrm{Bn}}\right), 4.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}-\mathrm{Boc}), 3.45\left(\mathrm{~s}, 2 \mathrm{H}, H_{2} \mathrm{C}-\mathrm{CO}_{2} \mathrm{Bn}\right), 3.10(\mathrm{q}, J=6.2$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}-\mathrm{NHBoc}$), 2.59 (t, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, H_{2} \mathrm{C}-\mathrm{NH}-\mathrm{GlyOBn}$), $1.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}-\mathrm{GlyOBn}), 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}^{\mathrm{Boc}}\right.$), 1.57-1.26 (m, 8H, $\left.\mathrm{H}_{2} \mathrm{C}^{2-5}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.5\left(\mathrm{CO}_{2} \mathrm{Bn}\right), 156.0\left(\mathrm{CO}^{\mathrm{Boc}}\right), 135.6\left(\mathrm{C}^{\mathrm{Ar}}\right), 128.6 ;$ $128.4\left(\mathrm{CH}^{\mathrm{Ar}}\right), 79.0\left(\mathrm{C}^{\mathrm{Boc}}\right), 66.5\left(\mathrm{CH}_{2}{ }^{\mathrm{Bn}}\right), 50.9\left(\mathrm{CH}_{2}-\mathrm{CO}_{2} \mathrm{Bn}\right), 49.4\left(\mathrm{CH}_{2}-\mathrm{NHGlyOBn}\right), 40.5\left(\mathrm{CH}_{2}-\mathrm{NHBoc}\right), 29.9$ $\left(2 \mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}{ }^{\mathrm{Boc}}\right)$, 26.8, $26.6\left(2 \mathrm{CH}_{2}\right) \mathrm{ppm}$; ESI-TOF-MS: m/z: calculated for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4}: 365.2435[\mathrm{M}+\mathrm{H}]^{+}$, found 365.2428 .

Compound 11. Solution of benzyl chloroformate ($\mathrm{ZCl}, 439 \mathrm{mg}, 433 \mu \mathrm{~L}, 2.56 \mathrm{mmol}, 1.1$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (39 mL) was added dropwise in solution of compound $\mathbf{1 0}\left(850 \mathrm{mg} ; 2.33 \mathrm{mmol}\right.$; 1 equiv.) and $\mathrm{Et}_{3} \mathrm{~N}$ ($704 \mathrm{mg}, 970 \mu \mathrm{~L}, 6.99$ mmol, 3 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(116 \mathrm{~mL})$, at $0{ }^{\circ} \mathrm{C}$ for 2 h . Reaction mixture was stirred for additional 2 h at room temperature, and purified by DCFC on SiO_{2}. Elution with mixtures of solvents $\mathrm{PhMe} / \mathrm{EtOAc}(9: 1 \rightarrow 1: 1)$ afforded pure product 11 as yellow oil ($0.99 \mathrm{~g}, 83 \%$). IR(ATR): $3373,2975,2936,2836,1745,1712,1520,1457,1390,1366$,

1252, 1176, $999,743,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$, compound exists as a mixture of rotamers): $\delta=7.38-7.13$ $\left(\mathrm{m}, 10 \mathrm{H}, \mathrm{HC}^{\mathrm{Ar}}\right), 5.18,5.16\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}^{\mathrm{Bn}}\right), 5.09,5.08\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}^{\mathrm{Z}}\right), 4.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NHBoc}), 4.06,3.98(2 \mathrm{~s}, 2 \mathrm{H}$, $\mathrm{H}_{2} \mathrm{C}-\mathrm{CO}_{2} \mathrm{Bn}$), $3.32\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}-\mathrm{N}(\mathrm{Z}) \mathrm{GlyOBn}\right), 3.08\left(\mathrm{q}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}-\mathrm{NHBoc}\right), 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{\mathrm{Boc}}\right.$), 1.27, $1.22\left(2 \mathrm{br} \mathrm{s}, 8 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}^{2-5}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=169.6\left(\mathrm{CO}_{2} \mathrm{Bn}\right), 156.5\left(\mathrm{CO}^{\mathrm{Z}}\right), 155.9\left(\mathrm{CO}^{\mathrm{Boc}}\right)$; $155.7\left(\mathrm{CO}^{\mathrm{Z}}\right), 136.5\left(\mathrm{C}^{\mathrm{Ar}(\mathrm{Z})}\right), 135.3\left(\mathrm{C}^{\mathrm{Ar}(\mathrm{Bn})}\right), 128.5,128.34,128.29,128.1,127.85,127.82,127.6\left(\mathrm{CH}^{\mathrm{Ar}}\right), 78.8\left(\mathrm{C}^{\mathrm{Boc}}\right)$, 67.3, $67.1\left(\mathrm{CH}_{2}{ }^{\mathrm{Z}}\right), 66.73,66.68\left(\mathrm{CH}_{2}{ }^{\mathrm{Bn}}\right), 49.0,48.8,48.1\left(\mathrm{CH}_{2}-\mathrm{CO}_{2} \mathrm{Bn}, \mathrm{CH}_{2}-\mathrm{N}(\mathrm{Z}) \mathrm{GlyOBn}\right), 40.4\left(\mathrm{CH}_{2}-\mathrm{NHBoc}\right)$, 29.8, $29.0\left(2 \mathrm{CH}_{2}\right)$, $28.4\left(\mathrm{CH}_{3}^{\mathrm{Boc}}\right)$, 28.1, 27.7, 26.5, $26.4\left(2 \mathrm{CH}_{2}\right) \mathrm{ppm}$. ESI-TOF-MS: m/z: calculated for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}: 521.2622[\mathrm{M}+\mathrm{Na}]^{+}$; found 521.2620.

Compound 12. To the solution of compound $11(500 \mathrm{mg}$; 1.00 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ TFA (1 mL) was added, and reaction mixture was stirred overnight at room temperature. Solvent and TFA were removed from the mixture by successive co-evaporations with $\operatorname{PhMe}(5 \times 5 \mathrm{~mL}$, at least). TFA salt 12 remained as colorless oil ($510 \mathrm{mg}, 100 \%$). IR(ATR): 3067, 2942, 2872, 1694, 1622, 1596, 1533, 1496, 1436, 1190, 1140, 948, 838, 799, $723 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$, compound exists as a mixture of rotamers): $\delta=7.63$ (br s, $3 \mathrm{H}, \mathrm{NH}_{3}{ }^{+}$), $7.40-7.15\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{HC}^{\mathrm{Ar}}\right.$), 6.93 (br s, 2H, HC ${ }^{\mathrm{Ar}}$), 5.14, 5.13, 5.08, $5.03\left(4 \mathrm{~s}, 4 \mathrm{H}_{2} \mathrm{H}_{2} \mathrm{C}^{\mathrm{Bn}, \mathrm{Z}}\right.$), 4.01, 3.96, 3.91 ($3 \mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}-\mathrm{CO}_{2} \mathrm{Bn}$), 3.30 (br s, 2 H , $\mathrm{H}_{2} \mathrm{C}-\mathrm{N}(\mathrm{Z}) \mathrm{GlyOBn}$), 2.84 (br s, $2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}-\mathrm{NHBoc}$), 1.68-1.40 (m, 4H), 1.40-1.12 (m, 4 H) ppm; ${ }^{13} \mathrm{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=169.6\left(\mathrm{CO}_{2} \mathrm{Bn}\right), 161.6\left(\mathrm{q}^{2}{ }^{2} J_{\mathrm{C}, \mathrm{F}}=40 \mathrm{~Hz}, \mathrm{CO}^{\mathrm{TFA}}\right), 157.2,157.7,156.4\left(\mathrm{CO}^{\mathrm{Z}}\right), 136.2\left(\mathrm{C}^{\mathrm{Z}}\right), 135.2\left(\mathrm{C}^{\mathrm{Bn}}\right), 128.6$, $128.5,128.3,128.1,127.8,127.5,127.1\left(\mathrm{C}^{\mathrm{Ar}}\right), 116.0\left(\mathrm{q},{ }^{1} J_{\mathrm{C}, \mathrm{F}}=290 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 67.6\left(\mathrm{CH}_{2}{ }^{\mathrm{Z}}\right), 67.0\left(\mathrm{CH}_{2}{ }^{\mathrm{Bn}}\right), 49.2,48.9$ $\left(\mathrm{CH}_{2}-\mathrm{CO}_{2} \mathrm{Bn}\right), 48.3,48.2\left(\mathrm{CH}_{2} \mathrm{~N}(\mathrm{Z}) \mathrm{GlyOBn}\right), 39.7,39.6\left(\mathrm{CH}_{2}-\mathrm{NH}_{3}{ }^{+}\right), 27.9,27.3,26.9,25.8,25.1\left(\mathrm{CH}_{2}{ }^{2-5}\right)$ ppm; ESI-TOF-MS: m / z : calculated for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}: 399.2278\left[\mathrm{M}-\mathrm{CF}_{3} \mathrm{COO}^{-}\right]^{+}$; found 399.2266.

Compound 13. To an ice bath cooled solution of TFA salt $12\left(77.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 1\right.$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}(30.3 \mathrm{mg}, 0.05$ $\mathrm{mL}, 0.3 \mathrm{mmol}$, 1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, acid $7(56.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 1$ equiv.) and DMAP ($1.8 \mathrm{mg}, 0.015 \mathrm{mmol}$) were added. A solution of DCC ($61.9 \mathrm{mg}, 0.3 \mathrm{mmol}, 2$ equiv.) in $\mathrm{DCM}(1 \mathrm{~mL}$) was added to the reaction mixture (2 h) and stirred for 24 h . The solvent was evaporated in vacuo and the residue chromatographed by DCFC on SiO_{2} column using EtOAc/MeOH 50:1 to obtain amide 13 ($65 \mathrm{mg}, 57 \%$) as yellow oil. IR(ATR): 3350, 2976, 2935, 2861, 1747, 1698, 1542, 1460, 1248, $1172 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$, compound exists as a mixture of rotamers): $\delta=7.40-7.20\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{HC}^{\mathrm{Ar}}\right), 6.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HN}), 6.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HN}), 5.18,5.16,5.10,5.08\left(4 \mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}^{\mathrm{Bn}}, \mathrm{H}_{2} \mathrm{C}^{\mathrm{Z}}\right)$, 4.10-3.70 (m, 6H, H2C $\mathrm{C}^{\mathrm{Gly}}$), $3.31\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}\left(1,6^{\text {hexyl }}\right)\right.$), $3.20\left(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(4)^{\mathrm{GABA}}\right), 2.32(\mathrm{t}, J=7.0,2 \mathrm{H}$, $\mathrm{H}_{2} \mathrm{C}(2)^{\mathrm{GABA}}$), $1.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(3)^{\mathrm{GABA}}\right.$), 1.47 and 1.43 (two s, $18 \mathrm{H}, \mathrm{CH}_{3}{ }^{\mathrm{tBu}}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.36\left(\mathrm{CO}^{\mathrm{GABA}}\right), 169.27,169.14\left(\mathrm{CO}^{\mathrm{Gly}}\right), 156.56,156.19,155.93\left(\mathrm{NCO}_{2} \mathrm{Bn}, \mathrm{NCO}_{2}{ }^{t} \mathrm{Bu}\right), 136.56,136.48,135.35$, $128.59,128.43,128.27,127.95\left(\mathrm{C}^{\mathrm{Ar}}\right), 81.58$ and $80.36\left(\mathrm{C}^{t \mathrm{Bu}}\right), 67.40,67.29$ and $66.87\left(\mathrm{CH}_{2}{ }^{\mathrm{Br}}\right), 50.24,49.12,48.89$, 48.59, 48.18, $47.13\left(\mathrm{CH}_{2}{ }^{\mathrm{GlyOBn}}, \mathrm{CH}_{2}{ }^{\mathrm{GlyOtBu}}, \mathrm{CH}_{2}(4)^{\mathrm{GABA}}, C \mathrm{H}_{2} \mathrm{~N}(\mathrm{Z}) \mathrm{GlyOBn}\right), 43.51\left(\mathrm{CH}_{2}{ }^{\mathrm{Gly}}\right), 39.29,39.12\left(\mathrm{CH}_{2}\right)$,
$32.78\left(\mathrm{CH}_{2}(2)^{\mathrm{GABA}}\right), 29.33,29.22\left(\mathrm{CH}_{2}\right), 28.18,28.02\left(\mathrm{CH}_{3}{ }^{\text {tBu }}\right), 27.70,26.47,26.25,25.98\left(\mathrm{CH}_{2}\right), 24.22$ $\left(\mathrm{CH}_{2}(3)^{\mathrm{GABA}}\right) \mathrm{ppm}$; MS(ESI): Calcd for $\mathrm{C}_{40} \mathrm{H}_{59} \mathrm{~N}_{4} \mathrm{O}_{10}(\mathrm{M}+\mathrm{H})^{+}: 755.4226$, found 755.4220 .

12. Compound 14. To a solution of benzyl ester 13 ($165 \mathrm{mg}, 0.22 \mathrm{mmol}$) in $\mathrm{MeOH}(100 \mathrm{~mL}) 5 \% \mathrm{Pd} / \mathrm{C}(16.5 \mathrm{mg})$ was added and suspension was bubbled with argon. Mixture was hydrogenated at 40 psi for 24 h . After filtering the catalyst and evaporating the solvent, crude acid $\mathbf{1 4}(115.1 \mathrm{mg}, 99 \%)$ was isolated as colorless oil.
IR(ATR): $3378,3054,2979,2936,2862,2497,1743,1650,1462,1369,1266,1156 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\mathrm{CD}_{3} \mathrm{OD}$, compound exists as a mixture of rotamers): $\delta=3.88 / 3.85$ (minor) and 3.83/3.80 (major) (four $\mathrm{s}, 4 \mathrm{H}$, $\mathrm{H}_{2} \mathrm{C}^{\mathrm{GlyOtBu}}, \mathrm{H}_{2} \mathrm{C}^{\mathrm{Gly}(\mathrm{mmide})}$), 3.48 (s, $2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}^{\mathrm{GlyOH}}$), 3.33-3.28 (m, $2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(6)^{\text {hexyl }}$), 3.23/3.20 (two t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}_{2} \mathrm{C}(1)^{\text {hexyl }}\right)$), $2.99\left(\right.$ br $\left.\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(4)^{\mathrm{GABA}}\right)$, $2.32 / 2.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(2)^{\mathrm{GABA}}\right), 1.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(3)^{\mathrm{GABA}}\right)$, 1.48/1.44 (major) and 1.47/1.46 (minor) (four $\mathrm{s}, 18 \mathrm{H}, \mathrm{CH}_{3}{ }^{\text {Bu }}$) $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=176.06$ $(\mathrm{COOH}), 172.02,171.73,171.14,171.02,170.94(\mathrm{CO}), 157.69\left(\mathrm{CO}^{\mathrm{Boc}}\right), 82.86,82.78,81.75,81.60\left(\mathrm{C}^{\mathrm{tBu}}\right), 51.16$, 51.03, 50.80, 48.69, $48.46\left(\mathrm{CH}_{2}{ }^{\mathrm{GlyOtBu}}, \mathrm{CH}_{2}{ }^{\mathrm{GlyOH}}\right), 43.94,43.67\left(\mathrm{CH}_{2}{ }^{\text {Gly }}\right), 40.24,40.19\left(\mathrm{CH}_{2} \mathrm{NHGlyOH}\right), 33.99,33.38$ $\left(\mathrm{CH}_{2}(1)^{\mathrm{hexyl}}\right)$, $33.38\left(\mathrm{CH}_{2}(2)^{\mathrm{GABA}}\right), 30.25\left(\mathrm{CH}_{2}(2)^{\mathrm{GABA}}\right), 28.81 / 28.48$ (minor) and 28.77/28.53 (major) $\left(\mathrm{CH}_{3}{ }^{\mathrm{tBu}}\right), 27.33$, 27.25, $27.21\left(\mathrm{CH}_{2}{ }^{\text {hexyl }}\right)$, 25.68, $24.95\left(\mathrm{CH}_{2}(3)^{\mathrm{GABA}}\right) \mathrm{ppm}$; MS(ESI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{8}(\mathrm{M}+\mathrm{H})^{+}: 531.3388$, $(\mathrm{M}+\mathrm{Na})^{+}: 553.3208$; found: 531.3374, 553.3188.

Table S1. ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR chemical shifts ($\delta(\mathrm{ppm})$) of bisadducts 17.

	17a (e-edge)	17b (e-face)	17c (trans-4)	17d (cis-2)
HC(pyrr-1)	4.05s/65.02	$4.33 \mathrm{~d} ; 3.71 \mathrm{~d} / 66.92$	4.60d; 3.84d/68.5	4.23d; 3.58d/66.52
	4.04s/68.46		4.58d; 3.57d/66.69	3.95d; 3.73d/67.77
sp ${ }^{\text {C }} \mathrm{C}$ (full)	69.44; 69.90	70.22	69.80; 69.41;	67.14; 66.95;
			69.24; 69.17	66.74; 66.68
$\mathrm{H}_{2} \mathrm{C}(1)$	2.92/53.95	2.91/52.21	3.04-2.98/54.00	2.98;2.75/53.81
$\mathrm{H}_{2} \mathrm{C}(2)$	1.76/24.47	1.69/25.95	1.91-1.72/27.06	1.88;1.71/26.85
$\mathrm{H}_{2} \mathrm{C}(3)$	1.76/27.08	1.69/27.56	1.91-1.74/26.24	1.76;1.52/25.21
$\mathrm{H}_{2} \mathrm{C}(4)$	1.46/25.11	1.42/26.22	1.61-1.50/25.47	1.47/25.39
$\mathrm{H}_{2} \mathrm{C}(5)$	1.59/28.11	1.55/29.62	1.61-1.50/29.35	1.65/28.15
$\mathrm{H}_{2} \mathrm{C}$ (6)	3.21/38.27	3.20/39.85	3.33;3.22/39.23	3.42;3.06/39.36
NH-hexyl	5.61	5.65	5.60	6.00
CO-Gly	167.74	168.59	168.19	168.72
$\mathrm{H}_{2} \mathrm{C}$-Gly	3.90/42.51	3.83/42.76	3.87; 3.68/43.13	4.11;3.76/43.30
NH-Gly	6.85	7.20	6.86	6.93
CO-GABA	172.84	173.77	172.96	173.72
$\mathrm{H}_{2} \mathrm{C}(2)$-GABA	2.60/33.17	2.65/33.54	2.61-2.46/34.75	2.62;2.47/33.86
$\mathrm{H}_{2} \mathrm{C}(3)$-GABA	2.09/23.36	2.13/23.82	2.89; 2.06/22.80	2.10/24.28
$\mathrm{H}_{2} \mathrm{C}(4)$-GABA	2.90/51.13	3.12/50.77	3.08; 2.96/51.93	3.04;2.94/52.02
HC(pyrr-2)	4.29d; 3.65d/67.10	4.04s/67.53; 65.37	4.60d; 3.85d/67.62	4.36d; $3.87 \mathrm{~d} / 67.98$
			4.44d; 3.70d/67.07	3.96d; $3.72 \mathrm{~d} / 65.88$
sp ${ }^{\text {C }}$ (full ${ }^{\text {d }}$	69.57	69.44; 69.73		

Compound 2

Figure S1. IR spectrum of 2

- TOF MS: 0.395 min from DMDD11_MK70V_pos 1 wiff Agilent, subtracted (0.039 to 0.253 min)

Figure S2. Mass spectum of $\mathbf{2}$

Figure S3. ${ }^{1}$ H NMR spectrum of 2

Figure $\mathbf{S 4}$. ${ }^{13} \mathrm{C}$ NMR spectrum of 2

Compound 3

Figure S5. IR spectrum of $\mathbf{3}$

$$
\begin{aligned}
& \text { Data File Name: D:IPE Sciex Dataip Proiectsic Milici DataiOM.JDJ2 MK70V }
\end{aligned}
$$

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C17H25NO4	-	307.17836	0.39	4.45324 E6	-

Species	Abundance (counts)	lon Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret Time Error (min)
$\left[\begin{array}{l}\text { M-H }\end{array} \mathrm{H}^{+}\right.$	170172.27	308.18563	308.18609	0.45890	1.49	

Figure S6. Mass spectrum of $\mathbf{3}$
(a)

(b)

ряjoJ-2-M

Figure S7. ${ }^{1}$ H NMR spectra of $\mathbf{3}$ immediately after isolation (a) and lactam formed upon standing (b)

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$

Figure S9. IR spectrum of 4

One or more scans have failed IRM. Reviow the data file for details.

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C22H33NO6	-	407.23079	0.49	1.71001 E 6	-

Species	Abundance (counts)	lon Mass	Measured Mass	Error (mDas)	Error (ppm)	Ret. Time Error (min)
$\mathrm{M}-\mathrm{Na}$)	36265.51	430.22001	430.21833	-1.67834	-3.90	

Figure S10. Mass spectrum of 4

$$
-
$$

$$
\begin{aligned}
& \text { 」 }
\end{aligned}
$$

Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum of 4

Compound 5

Figure S13. IR spectrum of $\mathbf{5}$
 Method: diTTOF SoftwareldamethodsliNight_Sec Comp_ldent1 anmefe.xmi

One or more scans have failed IRM. Review the data file for details

Formula	a Compound name	Mass	Peak RT (min)	Peak area	Description	
C15H27NO6	06 -	317.18384	0.39	3.22727 E6	-	
Species	Abundance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Rot. Time Error (min)
${ }^{\mathrm{M}+\mathrm{Na}]^{+}}$	108890.97	340.17306	340.17135	-1.70813	-5.02	-
[M^{*} - $]^{\text {] }}$	9102.20	356.14700	356.14565	-1.34170	. 3.77	-

Figure S14. Mass spectrum of 5

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of 5

Figure S16. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5}$

Figure S17. IR spectrum of 6

One or more scans have failed IRM. Review the data file for details.

Formula		Compound name	Mass	Peak RT (min)	Peak area	Description	
C24H36N207		-	464.25225	0.40	6.83916 E6	-	
Species	Abundance (counts)		Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret Time Error (min)
[$\mathrm{M}^{+1+1]^{+}}$		49033.52	465.25953	465.25752	-2.00371	4.31	
[$\mathrm{M}+\mathrm{Na}]^{+}$		16364123	487.24147	487.23906	-241386	4.95	-
[$\mathrm{M}+\mathrm{K}]^{\text {c }}$		8016.51	503.21541	503.21354	-1.87096	3.72	

Figure S18. Mass spectrum of 6

```
DMJOJ 12
Solvent: cdc13
Ambient temperat
PULSE SEOUENCE
M
```



```
    2nd pulse 90.0
    Width 4600.0 Hz sec
#, Arrayed repetitions
DAIA PROCESSING (ine broadening 0.2 Hz
cine broadening 0.2 Hz
```


Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}$

Figure S20. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6}$

Compound 7

Figure S21. IR spectrum of 7

Formula		Compound name	Mass	Peak RT (min)	Peak area	Description	
C17430N2O7		-	374.20530	0.44	623063 E6	-	
Species	Abu	indance (counts)	Ion Mass	Measured Mass	Error (mDa)	Erroor (ppm)	Ret Time Error (min)
($\mathrm{M}+\mathrm{H}$) ${ }^{\text {c }}$		254	375.21258	375.21285	0.28071	0.75	
$\underline{M}+\mathrm{Na}]^{+}$		9778.88	397.19452	397.19472	0.20134	0.51	
$[2 \mathrm{M}+\mathrm{H}]+$		5852.61	749.41788	749.41769	-0.19409	-0.26	

Figure S22. Mass spectrum of 7

Figure S23. ${ }^{1} \mathrm{H}$ NMR spectrum of 7

Figure S24. ${ }^{13} \mathrm{C}$ NMR spectrum of 7

Compound 9

Figure S25. IR spectrum of 9

Method: di:TOF SoftwareldamethodsliNight Soe Comp Lidenti.anmiefc.xml

Formula	Compound name	Mass	Peak RT (min)	Poak area	Description	
C11H24N202	-	216.18378	0.53	4.10054 E7	-	
Specios $\sqrt{\text { ab }}$	ndance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Timo Error (min)
[$\mathrm{M}+\mathrm{H}]^{+}$	1442589.19	217.19105	217.19116	0.10650	0.49	
[2M+H\|-	38080.52	433.37483	433.37476	-0.07525	0.17	

Figure S26. Mass spectrum of 9

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum of 9

Figure S28. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{9}$
Compound $\mathbf{1 0}$

Figure S29. IR spectrum of $\mathbf{1 0}$

Melloo. Dillof Dataldamethodivight Ses Comp_ Ident1.anmiefc.xml

Figure S30. Mass spectrum of 10

Figure S31. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0}$

Figure S32. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 0}$

Figure S33. IR spectrum of $\mathbf{1 1}$

One or more scans have failed IRM. Review the data file for details.

Formula	Compound name	Mass	Peak RT (min)	Peak ares	Description
C28H38N206		4988.27299	0.48	$1.05490 \mathrm{E7}$	-

Species	Abundance (counts)	lon Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret Time Error (min)
MM Naj\|	218951.78	521.26221	521.26202	-0.18996	-0.36	

Figure S34. Mass spectrum of $\mathbf{1 1}$

TKN 93
Solvent: cac 13 atur
OExiIIT-200
pulse seoucte
Relax

afrsyed epet titons

Figure S35. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 1}$

Figure S36. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 1}$

Compound 12

Figure S37. IR spectrum of $\mathbf{1 2}$

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C23H30N204	-	398.22056	0.39	4.69451 E5	-

Species	Abundance (counts)	lon Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
$[\mathrm{M}+\mathrm{H}]+$	18964.89	399.22783	399.22684	-1.19030	-2.98	

Figure S38. Mass spectrum of $\mathbf{1 2}$

Figure S39. ${ }^{1}$ H NMR spectrum of $\mathbf{1 2}$

Figure $\mathbf{S 4 0} .{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 2}$

Figure S41. IR spectrum of $\mathbf{1 3}$

Figure S42. Mass spectrum of $\mathbf{1 3}$

\int

Figure S43. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 3}$

Figure $\mathbf{S 4 4} .{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 3}$
C

Figure S45. IR spectrum of $\mathbf{1 4}$

Formula		Compound name	Mass	Peak RT (min)	Peak aroa	Description	
C25H66N408		-	530.33156	0.53	1.05523 E 7	-	
Species	Abur	undance (counts)	Ion Mass	Measured Mass	Error (m0a)	Emror (ppm)	Ret Time Error (min)
$[\mathrm{M}+\mathrm{H}]^{+}$		281380.02	531.33884	531.33740	-1.43889	271	
[$\mathrm{M}-\mathrm{Na}]^{+}$		3221.05	5533.32079	55331855	-1.93218	-3.49	-
$[2 \mathrm{M}+\mathrm{H}]+$		11262.06	1061.67041	1061.66839	. 201597	-1.90	-

Figure S46. Mass spectrum of $\mathbf{1 4}$

Compound 15
(s)

Figure S49. IR spectrum of $\mathbf{1 5}$

Figure S50. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 5}$

Figure S51. Expanded parts of ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 5}$

Figure S52. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 5}$

Figure S53. COSY spectrum of 15

Figure S54. HSQC spectrum of $\mathbf{1 5}$

Figure S55. HMBC spectrum of $\mathbf{1 5}$

One or more scans have failed IRM. Review the data file for details.

Formula	Compound name	Mass	Peak RT (min)	Peak aroa	Description
C85H46N406	-	1218.34174	1.30	1.29097 E5	-

Figure S56. Mass spectrum of 15

Figure S57. UV spectrum of $\mathbf{1 5}$

Figure S58. IR spectrum of $\mathbf{1 6}$

Figure S59. UV spectrum of $\mathbf{1 6}$

Merged XIC, Period\# : 1 Experiment\# : 1

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C76H31N4O4	-	1063.23453	0.38	2.73438 E 6	-

Species	Abundance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
$[\mathrm{M}+2 \mathrm{H}] 2+$	12898.30	532.62454	532.62195	-2.58682	-4.86	
$\mathrm{M}+$	73132.64	1063.23398	1063.23246	-1.52685	-1.44	-
$[\mathrm{M}+\mathrm{H}]+$	59268.06	1064.24181	1064.23578	-6.02974	-5.67	

Figure S60. Mass spectrum of $\mathbf{1 6}$

Bisadduct 17a (e-edge)

Figure S61. IR spectrum of $\mathbf{1 7 a}$

Figure S62. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7 a}$

Figure S63. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 7 a}$

Figure S64. COSY spectrum of $\mathbf{1 7 a}$

Figure S65. HSQC spectrum of $\mathbf{1 7 a}$

Figure S66. HMBC spectrum of 17a

Figure S67. UV spectrum of $\mathbf{1 7 a}$

Merged XIC, Period\# : 1 Experiment\# : 1

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C76H30N4O2	-	1030.23688	0.37	3.93582 E6	-

Species	Abundance (counts)	lon Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
$[\mathrm{M}+2 \mathrm{H}] 2+$	98587.96	516.12571	516.12654	0.82170	1.59	-
$[\mathrm{M}+\mathrm{H}]+$	603602.35	1031.24415	1031.24815	3.99396	3.87	-
$[\mathrm{M}+\mathrm{Na}-\mathrm{H} 2 \mathrm{CO}]+$	9449.31	1035.24553	1035.25899	43.46227	41.98	-
$[\mathrm{M}+\mathrm{NH}+44]^{+}$	12937.32	1040.27070	1048.24460	-26.09770	-24.90	

Figure S68. Mass spectrum of 17a

Figure 69. IR spectrum of $\mathbf{1 7 b}$

Figure S70. ${ }^{1}$ H NMR spectrum of 17b

Figure S71. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 7 b}$

Figure S72. COSY spectrum of $\mathbf{1 7 b}$

Figure S73. HSQC spectrum of 17b

Figure S74. HMBC spectrum of 17b

Figure S75. UV spectrum of $\mathbf{1 7 b}$

Merged XIC, Period\# : 1 Experiment\# : 1

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C76H30N4O2	-	1030.23688	0.39	3.49337 E 6	-

Species	Abundance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
[$\mathrm{M}+2 \mathrm{H}]^{2+}$	63732.54	516.12571	516.12532	-0.39083	-0.76	-
$[\mathrm{M}+\mathrm{H}]^{+}$	234146.78	1031.24415	1031.24241	-1.74352	-1.69	-
$\mathrm{fl}^{(1+\mathrm{Na}-\mathrm{H} 2 \mathrm{O}} \mathrm{T}^{+}$	2667.01	1035.21553	1035.25634	40.84493	30.42	
($\mathrm{M}+\mathrm{NH}+4)^{+}$	6345.58	4048.27070	1048.24251	-28.40822	-26.89	
[$\mathrm{M}+\mathrm{Na}$]+	4606.54	1053.22610	1053.22575	-0.34850	-0.33	-

Figure S76. Mass spectrum of 17b

Bisadduct 17c (trans-4)

Figure S77. IR spectrum of $\mathbf{1 7 c}$

Figure S78. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7 c}$

Figure S79. Expanded parts of ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7 c}$

Figure S80. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 7 c}$

Figure S81. COSY spectrum of 17c

Figure S82. HSQC spectrum of $\mathbf{1 7 c}$

Figure S83. HMBC spectrum of 17c

Figure S84. Expanded part of HMBC spectrum of 17c

Figure S85. UV spectrum of $\mathbf{1 7 c}$
 Method: d:ITOF_DataldamethodsiNight_Sec_Comp_ident1.anmletc.xml

Figure S86. Mass spectrum of 17c

Figure S87. IR spectrum of $\mathbf{1 7 d}$

Figure S88. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7 d}$

Figure S89. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 7 d}$

Figure S90. COSY spectrum of $\mathbf{1 7 d}$

Figure S91. HSQC spectrum of 17d

Figure S92. HMBC spectrum of 17d

Figure S93. UV spectrum of $\mathbf{1 7 d}$

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C76H30N402	-	1030.23688	0.38	$2.22087 \mathrm{E6}$	-

Species	Abundance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret Time Error (min)
[$\mathrm{M}+2 \mathrm{H}]^{2}{ }^{\text {a }}$	43935.87	516.12571	516.12543	-0.28333	-0.55	-
[$\mathrm{M}+\mathrm{H}]^{+}$	20704122	1031.24415	1031.24263	-1.52197	-1.48	-
($\mathrm{M}+\mathrm{Na}+\mathrm{H} 2 \mathrm{O}$)+	3454.54	1035.21553	1035.25737	41.83265	40.41	
(M+NH4)	8415.79	1048.27070	1048.24313	-27.57179	28.30	
(M-Na\|+	3724.78	1053.22610	1053.22665	0.55450	0.53	-

Figure S94. Mass spectrum of $\mathbf{1 7 d}$

